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Abstract: The basic Markov-switching model has been extended in various ways ever since the seminal work
of Hamilton (1989. “A New Approach to the Economic Analysis of Nonstationary Time Series and the Business
Cycle.” Econometrica 57: 357-84). However, the estimation of Markov-switching models in the literature has
relied upon parametric assumptions on the distribution of the error term. In this paper, we present a Bayesian
approach for estimating Markov-switching models with unknown and potentially non-normal error distribu-
tions. We approximate the unknown distribution of the error term by the Dirichlet process mixture of normals,
in which the number of mixtures is treated as a parameter to estimate. In doing so, we pay special attention to
the identification of the model. We then apply the proposed model and MCMC procedure to the growth of the
postwar U.S. industrial production index. Our model can effectively control for irregular components that are
not related to business conditions. This leads to sharp and accurate inferences on recession probabilities.

Keywords: label switching problem; identification condition; unknown error distribution; mixture of normals;
semi-parametric Bayesian inference; Markov chain Monte Carlo

JEL Classification: C11; C13; C22

1 Introduction

Since the seminal work of Hamilton (1989), the basic Markov-switching model has been extended in various
ways. For example, Diebold, Lee, and Weinbach (1994) and Filardo (1994) extend the model to allow the tran-
sition probabilities governing the Markov process to be functions of exogenous or predetermined variables.
Kim (1994) extends it to the case of the state-space model, which encompasses general dynamic models such as
autoregressive moving average processes, unobserved components models, dynamic factor models, etc. Chib
(1998) introduces a structural break model with unknown multiple change points by constraining the transition
probabilities of the Markov-switching model so that the latent state variable can either stay at the current value
or jump to the next higher value.! More recently, Kaufmann (2015) proposes a general K-state model with time-
varying transition probabilities by employing the multinomial Logit specification. Fox et al. (2011), Song (2014),
and Bauwens, Carpantier, and Dufays (2017) introduce infinite hidden Markov models and generalize the finite
state Markov switching model of Hamilton (1989) to the case of an infinite number of states.

Estimations of the aforementioned models and the other Markov-switching models in the literature have
relied upon parametric assumptions on the distribution of the error term. Most applications in the literature

1 For surveys of earlier literature on Markov switching models, refer to Friihwirth-Schnatter (2006) and Hamilton (2016).
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assume normally distributed errors, with rare exceptions like Dueker (1997) and Bulla et al. (2011) who pro-
posed Markov-switching models of stock returns in which the innovations are assumed to be drawn from a
Student-t distribution; and Angelis and Cinzia (2017) who assumed a normal-inverse Gaussian distribution as
the conditional form of financial returns and model innovations.

In this paper, we deal with a Bayesian semi-parametric approach to making inferences on the Markov-
switching model when the unknown error distribution is approximated by the mixture of normals.? We address
two identification issues that are necessary for the estimation of the model. They include: (i) the problem of label
switching for the Markov-switching regime indicator variable; and (ii) the problem of disentangling the Markov-
switching regime indicator variable from the serially independent mixture indicator variable. If we do not take
care of these identification issues, the marginal posterior distributions of the model parameters obtained from
the MCMC output may be misleading. Without loss of generality, these issues are discussed within a basic model
with no serial correlation or heteroscedasticity in the error term. We then present an MCMC procedure for
estimating a generalized version of the model that allows for serial dependence as well as heteroscedasticity
in the error term. In our generalized model, we approximate the unknown distribution of the error term by
the Dirichlet process mixtures of normals. Our simulation study shows that the identification schemes and the
proposed MCMC procedure work well.

We apply the proposed model and the MCMC algorithm to the monthly index of industrial production
(1947:M1-2019:M9). It turns out that the posterior mean for the number of mixtures is about 3. The estimates
of the recession probabilities from the proposed model are much sharper and agree much more closely with
the NBER reference cycles than those from a model with a normality assumption. Besides, while results from
the model with normality assumption are very sensitive to the priors employed, those from the proposed model
are robust to them.

The rest of this paper is organized as follows. In Section 2, we motivate our paper by performing a Monte
Carlo experiment, which is designed to investigate the effect of maximizing a normal log-likelihood when the
normality assumption is violated for the error term. In Section 3, we deliver the two identification issues nec-
essary for the estimation of the model when the unknown error distribution is approximated by the mixture
of normals. In Section 4, we present an MCMC algorithm for making inferences on the model. In Section 5, we
apply the proposed identification schemes and the MCMC algorithm to the log-differenced monthly postwar U.S.
industrial production index [1947:M1-2019:M9]. Section 6 concludes the paper.

2 Pitfalls of Ignoring Non-normality and Maximizing a Normal Log
Likelihood

In order to investigate the small-sample performance of the maximum likelihood estimation when a normal
log-likelihood is maximized but the normality assumption is violated, we consider the following simple model
with Markov-switching mean:

)’t=ﬂst+55f, 5:‘~(0,1), =12, t=12,..,T, @D
where £ is independently distributed and S, is a 2-state Markov-switching process with transition probabilities

PrS, =1|S,y =11 = psyy. PrlS; = 2[S, 4 = 2] = psn- @

2 Defining x, and y, as a vector of covariates and the response variable, respectively, Taddy and Kottas (2009) consider a model
in which the unknown joint distribution of x, and y, depends upon a latent state variable (S,) that follows a K — state first-order
Markov-switching process. On the contrary, we deal with a model in which the distribution of y, conditional on x;, S;, and past
information is unknown. An example of our model is the Hamilton model (1989) in which the normally distributed error term is
replaced by the Dirichlet process mixture of normals.
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We consider the following four alternative distributions for the error term &, the first two of which are
symmetric and the other two are asymmetric:

Case #1:e; ~ iid. N(0,1)

S P _
Case #2:6; = —~ v iid t—distribution with d.f =v

2)_ 2
Case #3:¢7 = MWW 1y - i g N(0, 1), where E(In u2) = —1.2704, and var(In u?) = 72/2.

4/ war(n(u?))

Case #4:ef|Dt~i.i.d.N</4;,h;2), D, =1,2,3, where Pr[D, = i] = py,.i = 1,2,3
t t ?

For each of the above four cases, we generate 10,000 sets of data. For each data set generated, we estimate the
model in equations (1) and (2) by maximizing a normal log-likelihood. We consider three alternative sample
sizes: T = 500,T = 5,000and T = 50, 000. The parameter values we assign are given below:

py=—-06, p,=07 o*=11 pgy =09, pgy =095 v=>5
ui =105 u; =01, uj=-135 ">=02 h*>=0.05 hi*=1695;

Pp1 =02, pp, =06, pp3=02

Table 1reports the mean of the estimates for each parameter in each case, as well as the root mean squared
error (RMSE) for the estimates. For all the cases we consider, the maximum likelihood estimation seems to result
in consistent parameter estimates, in the sense that both the biases and RMSE’s decrease as the sample size
increases. When the normality assumption is violated, however, the maximization of a normal log likelihood
results in poor small sample properties of the estimators. In particular, in a situation like Case #4 in which the
degree of asymmetry in the error distribution is the highest, the biases remain sizable even when the sample
size is as large as 50,000.

Table 1: Maximizing the normal log likelihood function when the error distribution is potentially non-normal: Monte Carlo experiment.

True Case #1 Case #2 Case #3 Case #4
T =500
B, —0.6 —0.609 (0.130) —0.656 (0.555) —0.983 (0.780) —1.121(0.892)
B, 0.7 0.708 (0.088) 0.707 (0.083) 0.713(0.117) 0.721(0.127)
o? 11 1.087(0.090) 1.074 (0.140) 0.967 (0.210) 0.907 (0.264)
Py 0.9 0.892(0.049) 0.892 (0.056) 0.788 (0.203) 0.754 (0.228)
Py, 0.95 0.942 (0.029) 0.946 (0.023) 0.928 (0.038) 0.920 (0.043)
T=15000
B, —0.6 —0.602 (0.039) —0.610 (0.041) —0.742 (0.246) —0.959 (0.629)
B, 0.7 0.701(0.025) 0.696 (0.024) 0.730 (0.046) 0.735(0.088)
o? 11 1.100 (0.027) 1.100 (0.049) 1.013 (0.107) 0.944 (0.176)
Py 0.9 0.899(0.012) 0.902 (0.012) 0.848 (0.098) 0.788 (0.169)
Py, 0.95 0.949 (0.007) 0.951(0.006) 0.934 (0.020) 0.921(0.033)
T =50000
2 —0.6 —0.602 (0.013) —0.610 (0.025) —0.694 (0.096) —0.758 (0.169)
B, 0.7 0.700 (0.009) 0.695 (0.024) 0.734 (0.035) 0.764 (0.065)
o? 11 1.100 (0.008) 1.098 (0.038) 1.028 (0.074) 0.966 (0.137)
P 0.9 0.900 (0.004) 0.901(0.029) 0.868 (0.033) 0.835(0.069)

Py 0.95 0.950 (0.002) 0.951(0.030) 0.936 (0.015) 0.920 (0.031)
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In order to investigate how the inferences on the regime probabilities are affected by the violation of the
normality assumption, we conduct another simulation study. When generating data, we consider the same data
generating processes as given above, except that we generate S, ¢ = 1,2,..., T, only once and fix them in
repeated sampling. The sample size we consideris T = 500. For each data set generated in this way, we estimate
the model in equations (1) and (2) by maximizing a normal log-likelihood and then calculate the smoothed prob-
abilities conditional on estimated parameters. Figure 1 plots the average smoothed probabilities of low-mean
regime (S, = 1) for each case. The shaded areas represent the true low-mean regime. Case #1 with the normally
distributed error term provides us with the most accurate and sharpest regime inferences. However, as the dis-
tribution of the error term deviates from normality, the inferences about the regime probabilities deteriorate a
lot, especially for Case #4 in which the degree of asymmetry in the error distribution is the highest.
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Figure 1: Smoothed probabilities of regime 1 based on Quasi-maximum likelihood estimation under different error distributions
[T =500; shaded area: True regime 1].
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3 Basic Model and Two Identification Issues

Without loss of generality in dealing with the identification issues, let us consider the following basic model in
which the unknown error distribution is approximated by the mixture of normals:

yt=ﬂs[+6£f, S$=12,....K; t=12,....,T,
e/lD, ~iid N(up.h2), Do=12....M, 3

where S, is a first order Markov-switching process with the following transition probabilities:

K
PriS, = jISy =il = pgyjo D Psi=1 Li=12...K, @
j=1

and the mixture indicator variable D, is serially independent.

3.1 Identification Issue #1: The Label Switching Problem

For our basic model, a typical way of labeling the states for S, and D, is given below:

K

Bs, = Z PiSkes
k=1
M

M )
py = > uiDy, and hy? = > B2D,,.
m=1 m=1
where
1, if §=k k=12,...,K
Skt =
0, otherwise,
(6)
1, if D,=m; m=12,....M
Dm,t =
0, otherwise.

The above labeling is not unique and the unconstrained parameter spaces for #’s and y*'s (or h*?’s) contain
K! and M! subspaces, respectively, each corresponding to different way to label states. As discussed in Stephens
(2000) and Frithwirth-Schnatter (2001), when sampling from the unconstrained posterior via MCMC methods,
it is impossible to know which component of the sampled parameter corresponds to which state due to poten-
tial label switching. Thus, as noted by Stephens (2000), summarizing joint posterior distributions by marginal
distribution may lead to nonsensical answers due to the lack of identification.

The label switching problem is not an issue at all for the serially independent mixture indicator variable
D,, as we are not interested in the marginal distribution of y’s or h%'s, or in the inferences on D,. Furthermore,
the complete data likelihood f(y;, ..., y¢|D;, ..., Dy; ) and the prior for D, is invariant to the relabeling of the
states in D,. However, it is critical that we take care of the label switching problem for S, during the MCMC
procedure, given that we want to obtain inferences on S; and the regime-specific parameters based on their
marginal posterior distributions.

The label switching problem for S; can be solved by imposing the following ordering constraint on the
regime-specific parameters:

P<Py<...<px ™

A conventional way to incorporate the above constraint in the MCMC sampler is to employ a rejection
method after drawing {f,f, ... fx} jointly from the unconstrained joint posterior. However, note that the
ordering constraint in equation (7) results in correlations among g, k = 1,2, ..., K. For example, the smaller
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the distances among the f parameters, the higher will be the correlations among them. Every time the g
parameters are discarded and redrawn when the ordering constraint fails, we lose sample information about
these correlations. This is why the rejection method may fail, especially when the distances among the § param-
eters are not large enough relative to the standard deviation of the error term.

For the permutation sampler proposed by Frithwirth-Schnatter (2001), the f parameters are first drawn
from the unconstrained joint posterior. Then a suitable permutation of the labeling of the states is applied if the
ordering constraint is violated. As the permutation is applied without discarding the § parameters drawn in this
case, there is no loss of sample information unlike in the case of the rejection method. This is why the permu-
tation sampler improves upon the rejection method, as illustrated by Frithwirth-Schnatter (2001). However, one
potential drawback of the permutation sampler is that we need to set the marginal priors for §,, k=1,2,..., K,
to be identical, but independent. This is because the prior densities for the individual § coefficients should be
permutation-invariant. For this reason, it would be impossible to specify a joint prior that appropriately reflects
the potential correlations among the § parameters.

As an alternative method for dealing with the label switching problem, we consider the following transfor-
mation of the f parameters in equation (7):

St
B, =B+ Y a, S, =2.3,....K, a>0 forallk ®)
k=2

An advantage of the above specification is that we can indirectly specify the potential prior dependence
among f,, k = 1,2, ..., K, by employing independent marginal priors for f, and a;, k = 2,3,...,K. We first
draw f, conditional on q;, k = 2,3, ...,K, and then, draw a, for k = 2,3, ..., K, from appropriate truncated
marginal posteriors conditional on f; and G, = {a,, ..., @x_y; Gxq, ... A }. We can then recover the f,, ...,0x
parameters based on equation (8). Here, an important issue to consider is that the likelihood function for a,
depends only on the observations for which S, = j,j = k,k + 1,...,K, while the likelihood function for
f1 depends on all the observations in the sample. As in the case of the permutation sampler, there is no loss of
sample information in the course of the proposed MCMC procedure. Unlike the case of the permutation sampler,
however, the proposed prior and sampling procedure allow us to accommodate the non-sample information on
the potential dependence among the § parameters that results from the inequality constraint in equation (7).
Besides, the implementation of the proposed sampler is much easier than the permutation sampler, especially
for a model like the one in our empirical application section, in which the regime-specific means are subject to
structural breaks within the Markov-switching framework.

3.2 Identification Issue #2: Disentangling the Markov-Switching Variable (S,) from
the Mixture Indicator Variable (D,)

In this section, we consider the identification of the latent Markov-switching variable S, from the latent and
serially independent mixture indicator variable D, in equation (3). For this purpose, we substitute equation (8)
into equation (3) to obtain

Ye=PBS +e. e~ (B.0%), )
where f=1[f, fs ... ﬂ_K], with ﬁ_k=2§=2a]-, k = 23K 5=[S, .. SK,[]', with Sy,

k = 2,3,..., K, being defined in equation (6); and £, = f; + o€;. We can then approximate &, by the following
mixture of normals:
€D, ~iid N(th,hf)t), D,=12,...,M. (10)

3 WhenK = 2, for example, we have f, = f; + a,, where we impose independent priors for §; and a, (e.g., f; ~ N (bl, 0123 ) and
1
2

O’
a,~N (az, aﬁ ) , with 1[.] referring to the indicator function). In this case, it is easy to show that corr(f;, f,) = —24—,
*/1la,>0 ‘/o'lzi (0—121 +0'¢le)
1 1
which is a decreasing function of the prior mean of a,. Note that, as a, has a truncated normal distribution, agz is positively related
to the prior mean a,,.



DE GRUYTER S.-T. Hwu and C.-J. Kim: Markov-Switching Models with Unknown Error Distributions === 183

Note that the dynamics of S;, given the transition probabilities in equation (4), can be represented by the
following VAR process for S,:*
Et =0+ ngt—l + Vi, (1D

where the elements of the (K — 1) X 1vector Q, and the (K — 1) X (K — 1) matrix Q; are functions of the
transition probabilities. We define C as the collection of the eigenvectors of the Q; matrix. By pre-multiplying
both sides of equation (11) by C™%, and then, by rearranging the terms in the resulting equation and equation (9),
we obtain:

yt = E*IE? + ‘gts 'g[ ~ (ﬂ19 62)7 (12)
S =N+ MSE V] (13)

where f* = C'B; S = C185; Ay = C7'Qp; Ay = C7'Qy; € = diag{Ay, Ag, ..., Ag}, With A, k = 2,3,... K,
referring to the eigenvalues of Q;; and v} = C'v,.
Then, by noting that ¢, in equation (12) can be approximated by the mixture of normals as in equation (10)

(e &= XM UpDpe+\/IH_h2D, &, € ~iidN(0,1), where D,,, as defined in equation (6) is serially
independent and by noting that A, in equation (12) is diagonal, we can rewrite equations (12) and (13) as follows:

K M
Vo= Y B+ Y D+ | D B2 D €5, €F ~ LLAN(O, 1),
k=2 m=1 m=1

Sz,t = Ak,O + ’lkglt,t—l + \_/;;t, k= 2, 3, “en ,K,
Dm,t = 8m + Mmss m=12,...,M, 14)
where ﬂ_z is the (k — 1)th row of f*; S, refers to the (k — Dth row of §%; g, = Pr[D, = m]; and ¥V} ,
k =23, ...,K andn,,m = 1,2,..., M, are discrete and serially independent.
Equation (14) tells us that we have a K-state first-order Markov-switching process for S; and a mixture of M
normals for £, only when the following conditions hold:

M #0, k=2,3,... K, (15)

suggesting that all the eigenvalues of the Q; matrix in equation (11) should be non-zero.

4 Equation (6) and the transition probabilities in equation (4) allow us to represent the dynamics of the vector [S;,  S,, ... SK,[]'
in the following VAR form:
Sie Psu Psm -+ Dsxa || Sie Vie
Sot Psiz Psz -+ Dskz| Sz Vot
= +
Sk Psix  Psax -+ Psxx [ Sk Vit
where [v; v, ... vK]' is a vector of martingale difference sequences. As 25.;1 p;j=1and Zi.(:ls ¢ =1, the first row in the

above equation does not carry additional information beyond that contained in the rest of the rows. Thus, by imposing the con-
straint §;, y =1— 25;28 -1 on the second through K — th rows of the above equation, we obtain the following dynamics for
!

[Soe Sse - Skil:
Syt Ps12 (Psp2 = Ps1a) - (Psxa = Psaa) || Szt Vo
= : |+ : : S S
Skt Psax (Psox — Psak) -~ (Psxx — Psa) LSk -1 Vit

( gt =Q+ ngt—l + )
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It is easy to show that the model is not identified when equation (15) does not hold. For example, suppose
that Ay = 0Oand A, # 0,fork = 2,3,...,K — 1. Then, equation (14) can be written as

K-1 M+1
Ye= D BiSi D HuDe + | D, 2Dy €F, £ ~ LLAN(O,1),
k=2 m=1 m=1

See =Moot A4S +Vi, k=23, K-1,
Dyt =Gn+tme M=12,....M+1, (141)

where py, = ﬁ_l*{ Eur1 = Mo Dypgae = 31*(1; h;,,, = 0; and the transition probabilities for S, and the mixture
probabilities for D, are redefined accordingly. Note that equation (14’) describes a model with a (K — 1)-state
Markov-switching process for S, and a mixture of (M + 1) normals for &,. The likelihood value for the model
in Equation (14’) is exactly the same as that for the model in equations (14), and this is a typical example of
non-identification.

For economic data, a negative serial correlation in S; does not seem to make a lot of sense. We thus impose
the constraintsthat A, > 0,k = 2, ..., K,inorder to achieve the identification. For this purpose, We set the prior
mean of pg i to belargerthan0.5forj = 1,2, ..., K, as thisis the sufficient condition for 4, > 0,k = 2,3,... K.
Then, once the transition probabilities are drawn conditional on S;, t = 1,2,...,T, we can construct the Q,
matrix in equation (11) and calculate its eigenvalues A4;, k = 2,3, ..., K. Then, if the identifying constraints are
not satisfied, we redraw S;, t = 1,2,..., T, and the corresponding transition probabilities until the constraints
are satisfied.

4 General Model Specification and the MCMC Procedure

4.1 Specification for a General Model

Consider the following generalized model:®
Y= ﬁst +u, S;=12,....K,
¢y, = o-Wraf, ef ~(0,1), W,=12,...,N,
B<Py<..<Pg ©0i<0;<..<o0p, (16)

where £] is independently distributed; ¢(L) = 1 — ¢ L — G, L* — - — ¢,L" is a polynomial equation in the
lag operator; all roots of ¢p(L) = 0 lie outside the complex unit circle; the transitional dynamics of S, is specified
in equation (4). We assume that W, is independent of S, and follows an N-state, first-order Markov-switching
process with the following transition probabilities:$

N

Pr{W, = jIW,; = i1 = py ), Z Pwij=1 1Lj=12...N a7
j=1

In order to avoid the non-identification resulting from the problem of label switching, we follow employ
the following specifications for the g and 0124, parameters:

5 The first equation in (16) can be further generalized to the following regression equation with a vector of covariates x;:
Ye= ﬂst + F;[Xt + Uy, 67

where x, is a vector of exogenous variables.
6 The independence assumption between W, and S, is for analytical/computational convenience. This assumption can be relaxed.
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St
ﬁS[ =p+ Zak, ay >0 forallk, S;,=2,3,...,K
k=2
of =or[[A+by), A+b)>1foralln, W,=23,....N, (18)
which allow wus to employ independent priors for {f,a.k = 2,3,...,K} and for

{6%, A1+b,), n=2,3,...,N}. This way, we can also indirectly account for the dependence among f;,
k = 12,...,K and the dependence among o2, n = 1,2,...,N which result from the ordering constraints
(B < P, < ... < Prando?<or<..< aN).

By substituting equation (18) into equation (16) and rearranging terms, we obtain:

K
Ye=bh+ azz Sket aaz Set o+ agy Z Ske xSk + Ups
k=2 k=3 k=K-1
P, = gy uy, uf~(0,07), (19)
where
2
g, = vgf - H(1+b L g=1 W,=23.. N (& =g, t+by) (20)
1 n=2
Then, by defining e, = B, + u,, equation (19) can be rewritten as:”
Model with Transformed Parameters
K K
Yt = azz Ske t a32 Sket ot ag Z Skt xSk r + €
k=3 k=K-1

PL)e, = gwgt’
W, ~ (7¢(1)ﬂ1,512),
8w,

where &, = ¢p(1)f,/ gw, + u;. The unknown distribution of .| W, can be approximated by the following Dirichlet
process mixture of normals:®
Dirichlet Process Mixture of Normals

e WD~ iidN( Loy 02 )., =123, ...
Sw,

2 —
(Ums 1) ~G, m=1,2,3,... 22)
G|GO, a ~ DP(a, Gy),

N (g woht. )m( 52>

7 For a Markov-switching model with covariates, the first equation in (21) can be extended to:

K

K K
V=) S+ St F @Gy D SieF WS+ D S X + e (217)
k=2 k=3 k=K-1 k=1

8 Note that 0'12 and f, can be easily recovered from

1
P

M
1 ¢(1)Z”mpo’ 612= <g >2(ﬂm_ﬁ)2pD,m+hzv

m=1

; 1T 1 5 M 7 M
where (E) = ;2t=1 g! H= Zm=1/4m Poms and h? = Zm=1672n Pom:
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where DP(.,.) refers to the Dirichlet process;’ G, and a are referred to as the base distribution and the concen-
tration parameter, respectively.

The base distribution G, is like the mean of the Dirichlet Process. In other words, the Dirichlet Process draws
distributions around the base distribution the way a normal distribution draws real numbers around its mean.
The concentration parameter « is like an inverse-variance of the Dirichlet Process. It describes the concentration
of mass around the base distribution. In a Dirichlet Process mixture model, we can show that the probability
of assigning an observation to a newly drawn distribution around the base distribution is T—(;+a' Therefore, the
larger the «a is, the higher the probability of assigning an observation to a new distribution, and thus prior mean
of the number of mixture is higher.

We employ a Normal-Inverse Gamma distribution as the base distribution. This means that we use
N (ﬂo, q/ohfn) as the prior distribution for mixture mean y,,, and we use IG(%, 52—") as the prior distribution for
mixture variance hfn. These are the conjugate priors for the Dirichlet Process Mixture model. In the case of finite
mixture, the joint distribution of ( P> hfn) is given by G,, and thus, G = G;. The a parameter can be either fixed
or random. In case the @ parameter is random, it is common to employ a Gamma prior. Note that, conditional
on gy, fip,, and h%t, the first line in equation (22) implies

eo= Ly +hp vy b, ~ LEAN(, 1) @)

8w,

To complete the model, we employ the following priors for the parameters except those associated with the
mixture of normals:

Other Priors
d=[d b - Byl ~NAG s,
a=la, a; ... aK], ~ N, Zija,>0,....a,>00
(1+bn)~IG<V”’°,5"’°> , n=2.3,...,N,
2 2 Jyasnys1 24)
Psk = [Psja Pspe - pS,kK]/ ~ Dir(a g, Xs s -+ » As jaipg o >05 K =12, K,
Pwm = [Pw,m1 Pwme --- pW,mM], ~ Dir(ay pm» Ay mzs - » aW,rrLI\/I)l[pW,mm>0.5]’

m= 152"7M’

where 2; is diagonal; 1[.] is the indicator function; S@ refers to the stationary region of 55; IG(.) refers to the
inverted Gamma distribution; and Dir(.) refers to the Dirichlet distribution. Following Section 3.2, we impose
the constraints Dsix > 0.5, k=12,...,K and Pwm > 05n =1,2,...,N, in order to identify the Markov-
switching processes S; and W, against the mixture indicator variable D,.

4.2 MCMC Procedure

In this section, we present an MCMC procedure for estimating the model that consists of equations (21)—(24).

4.21 Drawing Variates Associated with Markov-Switching Regression Equation Conditional on the
Mixture of Normals and Data

By multiplying both sides of the first equation in (21) by ¢(L) and then by substituting equation (23) in the
resulting equation, we obtain

9 A Dirichlet process is a probability distribution whose range is itself a set of probability distributions.
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K K K
Py, = ¢(L)<a22 Sket agz Sket g Z Ske T aKSK,t> + Up, + &w,hp, Vs
k=2 k=3 k=K1

v, ~ LLdN(O, 1), 25)
which can be used to draw ¢, @ g2 <: g2 g .. glzv]/>, P (: [[3’&1 f)g’K],>,
~ = = "\ =« ’ ~ ’ .
Py (= [pw’l pW’M] , Sp <= S S ... S ) and W, <= (w, w, ... Wy ) conditional
on ji <= [ .. ,uM]'>,f12 <= L h@]’),DT <= Dy ... DT]/>,anddatal7 <= vy .. yT]’>.

4.2.1.1 Drawing @ Conditional on ¢, §2, $;, W, ji, h?, D; and Data
By rearranging equation (25), we obtain

Vi = azz; + agz;t +---+ aKzITQ +v, U~ LLAN(O,1), (26)
LYy, —p ¥ Ta WS . +
where y,, = WD[D[ and z]’.[ = W,] = 2,3,...,K. Then, for given y,, and Zp t=p+ 12,..,T,

j = 2,3,...,K, we can generate a,, s, ... , ay directly from the following truncated normal distributions, with-
out resorting to the rejection sampling:
(1) Draw a, from

2
a, | a3, 0y, ...,05 ~ N(ca,z,a)u)

1[a,>0]
(2) Draw ag from
2
as | ay, ay,...,0g ~ N<Ca.3’wa,3>1[a ol
3
(K-1) Draw ay from
2
ay | Gy, 04, ..., 0;_ NN(C ® )
K | Gp> Q35 ... 5 Qg ak> Pak )0 oy

where ¢, ; and a)ij refer to the posterior mean and posterior variance of the truncated full conditional distri-
bution of a; j = 2,3,...,K. Here, as discussed in Section 3.1, a; should be drawn based on the observations for
which St=j,j=kk+1,...K

4.2.1.2 Drawing ¢ Conditional on @, §2, $;, W;, 1, i, D;, and Data
By rearranging equation (25), we obtain

1~ ..
Yu=2; ¢+ v, v~ LLdN(,1), 27)
!/
G- —7 —7 . _,—2Z_a .
where y,, = 24# and z; = Yol ettt YerTho®l Then, based on equation (27), we can
we M, 8w, o, Ew,hp, 8w hp,

draw ¢ from an appropriate posterior distribution.

4.2.1.3 Drawing §* Conditional on @ ¢, $;, W;, ji, h%, D, and Data
By defining ; = gy, v, in equation (25), we can calculate {; by

_ P(L) ()’t - Z;fl) — Hp,

hy (28)

Ce

t

where zd = azzlk(:zsk’t + ang,j:gsk,t +---4 aK—lzIk(:K_rgk,t + ay Sk ;. Note that equation (20) implies

CIW,=n ~N(0,8) = g4N O, A+ by y>1- 29)
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We want to draw b, conditional on grzl_l,(1+ bpi1), ..., +by) forn = 2,3,...,N, and then we can
obtain g,zl, n = 2,3,...,N, based on equation (20). It should be noted that the likelihood function for 1 + b,)
depends on the values of ¢, for which W, = n,n + 1,...,N,as (1 + b,) is a common element only in ga/l,
W; = n,n + 1,...,N. Thus, if we define

* Ct (30)

n,t = N ’
gn—lv I1 a+bpw)
i=n+1

where W;, = 1,if W, = i, and 0, otherwise, we have the following result:

é’;ﬁt | gn—l? (1 + bn+1), cesy (1 + bN) ~ N(O, (1 + bn))l[(l+b")>1]’ (31)
forT, = {t: W, = n,n + 1,...,N}. Then, given the prior for (1 + b,) in equation (24), we can draw (1 + b,)
from the following truncated inverse Gamma distribution:

0
A+Dby) | &, A+by), ..., +Dby), by ~1(;<""J On1 i (32)

27 2 >1[(1+bn)>1]
where 6,; = 6, + ZIETHC:% and v,; = v,y + ¢, with ¢, referring to the cardinality of T,,. When drawing b,
from equation (32), we draw b,, directly from the truncated Inverse Gamma distribution. Once we draw (1 + b,),
n = 2,3,...,N, we can obtain g2 based on equation (20).

4.2.1.4 Drawing $;, ps, W;, and p,, Conditional on &, ¢, §2, ji, h?, D;, and Data
For this step, we can rewrite equation (25) in the following way:

¢(L)< ye-B; ) = tip, + &w Ve Oy ~ LLAN(O, 1), 33)

where ﬂs*, = Zf‘zza ;with g = 0.

When drawing S; conditional on all the other variates, equation (33) serves as a usual model with a Markov-
switching latent variable S,, while D, and W, serve as dummy variables. Furthermore, drawing W, conditional
on all the other variates, equation (33) serves as a usual model with a Markov-switching latent variable W, while
D, and S, serve as dummy variables. Thus, drawing S, and W is a standard procedure. Once S; and W are

drawn, we can draw j; and j,,, conditional on S, and W, respectively.

4.2.2 Drawing Variates Associated with the Mixture of Normals Conditional on &; ( =le; & .. e,]')

Conditional on &, g2, J) 52, ST, WT and data, we can calculate the error term &, from the first two equations in
in (21) as follows:

K K K
&= ¢(L)<)’t - aZZ ke + asz Spet g Z Sk + aKSK,t>1' (34)
k=2 k=3 k=K-1 g t
Then, based on equations (22) and (23), we can draw the variates associated with the mixture of normals (i.e.
I, 2, DT and a) conditional on &;. As discussed in Section 3.1, we are not interested in the marginal distribution
of u'sor h?’s or in the inferences on D,. Thus, the label switching problem for D, is not an issue here. We therefore
draw i or h? without any identifiability constraints. We proceed with the following procedures in drawing j,
h%, Dy and a:
(i) Draw f based on equation (23), conditional on g, 2, DT, and &;.
(ii) Draw h% based on equation (23), conditional on i, g%, Dy, and &;.
(iii) Draw D; and « for the Dirichlet process mixture of normals specified in equation (22), conditional on fi,
n?, g% and &7, The total number of mixtures (M*) realized at a particular MCMC iteration is obtained as a
byproduct of drawing Dy.
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Drawing jz and h? from their full conditional distributions derived from equation (23) is standard. The procedure
for drawing DT and « is based on West, Muller, and Escobar (1994), Escobar and West (1995), and Neal (2000).

4.3 Simulation Study

In this section, we perform simulation studies in order to show that the proposed model-identification schemes
and the proposed algorithm work properly. For this purpose, we first generate 100 sets of samples based on the
following data generating process, which is the same as Case #4 of Section 2 (withK = 2,N = Land¢L) = 1
for the model presented in Section 4.1):

4.3.1 Data Generating Process #1

Ye=PBs, +ogf, g ~0,0, S=12t=12,....T,

(=P +aS +oe, q=F~-pF>0,)

e D ~iid N(up.h?), D,=1,2.3,

T =500; p,=—06, f, =07 o*=11 psyy =09, psy =0.95,
where S,, = 1if S, = 2 and S,, = 0, otherwise; S, and D, are independent of each other and
p;y = PrlS, = jIS,; = il. The parameter values associated with the mixture of normals for £} are also the
same as those for Case #4 in Section 2.

Based on the discussions on the identification issues in Section 3, we consider the following representation
of the model for estimation:

V=S, +&, & ~iid(f,0%), S,=0,1 a,>0,

where we approximate the distribution of ¢, by the Dirichlet process mixture of normals in equation (22). The
priors we employ are:

Go

N(=0, 5hfn)1c;(130 @)

R ;  a~ Gamma(10,3); a, ~ N(L3, 0.45)1[a2>0]

/ .. !/ . .
[Psu1 Psp| ~ Dirichlet(9, Dy, o515 [Psz Psz] ~ Dirichlet(0.5,9.5), <o

When we estimate the model under a normality assumption for the error term, we employ the following
priors for #, and o*:
By ~ N(—0.6,0.45); ¢ ~ IG(3.4,2.7),

which are the same as the unconditional distributions for #, and 62 implied by our specification of the based
distribution G, for the Dirichlet process mixture of normals.

To show that the proposed identification schemes also work properly for a model with Markov-switching
variances, we additionally generate 100 sets of samples based on the following data-generating process:

4.3.2 Data Generating Process #2

ye=PF+ower, e ~©01, W,=12 t=12..T,

e D, ~iid N(up.h?), D =123,

T=500; f=1, 62=05; 6:=2; Ppyy =09, Py =095
where the parameter values associated with the mixture of normals for £} are the same as those for Case #4 in
Section 2.

10 The specified prior distribution of the concentration parameter a implies that the prior mean for the number of mixtures is 3.32
when sample size equals 500.
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Based on the discussions in Section 3, we consider the following representation of the model for estimation:

Ye= 8w, &t~ i-i-d-(ﬂ1/gwt’512)» & =1 g=o0,/0]

where we approximate the distribution of &, by the Dirichlet process mixture of normals in equation (22). The
priors we employ are:

Go = N(15R)I6( 22, )

7, 2 5 a ~ Gamma(lo, 3), gz ~ IG(l]., 40)1[g2>1]

! .. !/ . .
[Pwa  Pwal ~ Dirichlet(9, Dy, . >051} [Pwar Pwa| ~ Dirichlet(0.5, 9.51(pyy >051

When we estimate the model under a normality assumption for the error term, we employ the following
priors for #, and ¢2:
B~ N(,0.45); o2 ~IGG3,1),

which are the same as the unconditional distributions for #, and ¢? implied by our specification of the based
distribution G, for the Dirichlet process mixture of normals.

For both data-generating processes, we obtain the posterior mean of each parameter conditional on each of
the 100 generated samples. We then calculate the mean and the standard deviation of 100 posterior means for
each parameter obtained from these 100 samples. This is equivalent to investigating the sampling moments of
the posterior mean for each parameter.

The third column of Table 2 reports the sample mean and standard deviation of the posterior means when
the distribution of the error term is erroneously assumed to be normal. For data generating process #1, the results
reported in the upper panel of Table 2 are almost the same as those based on the maximum likelihood approach
as shown in the 6th column of Table 1 for T = 500. We have large biases in the parameter estimates. However,
the fourth column of Table 2 shows that, when the non-normality of the error distribution is appropriately taken
care of as outlined in Section 4.2, these biases almost disappear. In summary, we find strong simulation evidence
that the Markov switching component of the conditional mean is well identified from the mixture of normals
specification of the error innovation.

We reach at the same conclusion for data generating #2. However, the evidence seems to be less compelling
for the identification of the Markov switching component of the volatility process, as the results reported in the
lower panel of Table 2 suggest.

Table 2: Performance of the proposed algorithm [simulation Studies].

Parameter True value Average of posterior mean (RMSE)

Normality assumption Mixture of normals

Data generating process #1

B —0.6 —1.113 (0.856) —0.601(0.088)
p, 0.7 0.682(0.132) 0.703 (0.069)
c? 1.1 0.923 (0.231) 1.156 (0.168)
Ps 11 0.9 0.774 (0.172) 0.897(0.032)
Ps 2 0.95 0.924 (0.034) 0.944 (0.018)

Data generating process #2

p 1 1.154 (0.216) 0.993 (0.094)
0'12 0.5 0.635(0.472) 0.519 (0.322)
O'% 2 2.719(1.973) 2.223(0.531)
Py 0.9 0.834(0.135) 0.863 (0.104)

Py 0.95 0.801(0.220) 0.890 (0.121)
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5 An Application to the Growth of Postwar U.S. Industrial
Production Index [1947:M1-2019:M9]

5.1 Specification for an Empirical Model

We consider the following univariate Markov-switching model for the growth of industrial production index
(Ay,), with a two-state Markov-switching mean (S; = 1,2) and a three-state Markov-switching variance
w, = 1,2,3:1

Ay, = pic, + S+ U, G =123,
Qe > 0, Vt,
U= PUpy + g Uy, Uy ~ iid.(0,07), |pl<1, (35)

where u, is independently distributed; S, = 1ifS, = 2and §,, = 0, otherwise; f, . is the mean growth rate
during recession and f, ¢, + d,, is the mean growth rate during boom; g%vt is specified in equation (20) with
N = 3; S, and W, are independent. The transitional dynamics of S, and W, are specified in equations (4) and
(17) with K = 2and N = 3. In the above model, we introduce a latent discrete variable C, to allow for structural
breaks in the mean growth rates for boom recession.

Kim and Nelson (1999) show empirical evidence of a narrowing gap between growth rates of real GDP during
recessions and booms. They argue that this narrowing gap is as important as the reduction in the volatility of the
shocks as a feature of the Great Moderation. More recently, by specifying the regime-specific mean growth rates
of real GDP to follow random walks, Eo and Kim (2016) also show that the mean growth rate during the boom has
been steadily decreasing along with the long-run mean growth rate since 1947. To incorporate these particular
features of the business cycle discussed in Kim and Nelson (1999) and Eo and Kim (2016), we incorporate two
structural breaks with unknown break points in the mean growth rates for boom and recession. We specify g, ..
and a, ¢, in the following way:"*

Prc, =1+ 712G + (1o + 173Gy,

ayc, = (1 + 1y +13)C + (M, + 13)Cy  + 13Cs

Y2>0,73>0; >0, 1,>0, n3>0, (36)
where
1, if =k k=123
Cri = 37
0, otherwise,

and C, follows a three-state Markov-switching process with absorbing states, as specified below:

11 We allow for a 3-state Markov-switching process for the variance of the shocks to capture the unusually high volatility during
the Financial Crisis period.

12 Incorporating structural breaks in the mean growth rates for hoom or recession such that their gap narrows is based on the prior
belief that the Great Moderation is not over with the onset of the Financial Crisis. In his recent study on whether the Great Moderation
is over, Clark (2009) concludes that, over time, macroeconomic volatility will likely undergo occasional shifts between high and
low levels with low volatility being the norm, suggesting that the Great Moderation is not over. Gadea-Rivas, Gomez-Lscos, and
Perez-Quiros (2014) also provide empirical evidence suggesting that output volatility remains subdued despite the turmoil created
by the Financial Crisis of 2008.
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Pean > 0.5 Peiy =1—= Peas Peas =0, Pen =0, Dega > 0.5 Peos =1— Pegs
Pesi =0, Pepp =0, Pz =1, (38)

where pc; = Pr[C, = jIC, = i].

Note that the existence of the absorbing states in C, allows us to identify C, from the Markov-switching
process S; in our model. The ordering constraints in the last line of equation (36) guarantee a narrowing gap
between mean growth rates for booms and recessions. At the same time, they also guarantee that A, > 0, Vt
thereby allowing us to identify regime 2 (i.e. S, = 2) as a boom. A graphical illustration of the implied priors for
the mean growth rates during recessions and booms is provided in Figure 2.

By substituting equation (36) into equation (35), we obtain

Ayt =n-+ YZCZJ + (J’z + y3)C3,t
+ (g + 1y + 13)Cyp + (g + 13)Cop + 113C5 ISy, + Uy 39)

Then, by defining e, = y; + u, and rearranging the terms in equation (39), we obtain:
Empirical Model with Transformed Parameters

3 2 3
Ay, = 722 Cii+rsCyp + (’71C1,z + ’722 Cii + ’732 Cj,t>82,t +e,
=) = =)

.. 1
e = e+ ZweErn 1Pl <1, W, ~ ”-d-(g(l - ¢)7/1,O'12>,

W,
g =g (+b), &£=1 1U+b)>1 n=23, (40)

where £, = (1 - $)y;/ 8w, + u, with u ~ i.id.N(0,0?). The unknown distribution of the error term &, con-
ditional on W, can be approximated by the Dirichlet Process mixture of normals specified in equation (22).
Given the truncated normal priors, each of the y and # parameters can be sequentially drawn from appropriate
truncated normal distributions as explained in Section 3.1, without resorting to the rejection sampling.

Lastly, note that structural breaks in the mean growth rates for boom and recession imply structural breaks
in the long-run mean growth rate. Based on equation (39), the long-run mean growth rate (z,) at each iteration

Mean Growth Rate

ﬁl,Cl + a2,C1

ﬁl,CZ + aZ,CZ

ﬁl,C3 + az,C3

_g ﬁl,C3

_é ﬁl,CZ

B,

First Structural Break Point  Second Structural Break Point
(Unknown) (Unknown)

Figure 2: Graphical illustration of the priors for the narrowing gap between mean growth rates during boom and recession.
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of the MCMC can be obtained by:

7, =11+ 1, PrlC, = 2|11 + (y, + y3) PrlC, = 3|I;]
+ ((7]1 +n,+ 773) PI'[Ct = 1|IT] + (772 + 773) PI'[Ct = 2|IT] + 13 PI'[Ct = 3|IT]) Pr[st =12], (41)
where y, can be recovered in the same way as the f; coefficient is recovered in footnote 7, with M in footnote 7
now referring to the realized number of mixtures at a particular iteration of the MCMC; I refers to information
up to T; and Pr[S, = 2] refers to the steady-state probability that S, = 2, which is given by Pr[S, = 2] =
a- Ps,n)/ @ — Psu — Psz)-

5.2 Empirical Results

Data employed is the seasonally-adjusted postwar U.S. industrial production index, which is obtained from the
Federal Reserve Bank of St. Louis economic database (FRED), and the sample covers the period 1947:M1-2019:M9.
Figure 3 depicts the growth rate of the industrial production index. We estimate both the proposed model and
the model with a normality assumption for the error term. We obtain 500,000 MCMC draws and discard the
first 100,000 to guarantee the convergence of the sampler and to avoid the effect of the initial values. All the
inferences are based on the remaining 400,000 draws. We first consider the following tight priors:

Priors #1: Tight Priors

Y2 ~ N(0.1,0D),5g, 73~ N(0.2,0.2), 4,

M~ N(5,0Dy,50, M ~N©0.5,02),50. #15 ~N©.2,05),0
¢ ~ N05,05) 4 (A+Db) ~IG@,4), (1+by) ~IGA,8),
[Ps 11, Pl ~ Dir(0.45,0.09)p o5, [Pszn, Pszpl’ ~ Dir(0.05,048)5 o5,
[P 11 Pw.s2- Pw sl ~ Dir(0.9,0.05,0.08)p, ~os.
[Py 21 Pw 20 Pw 251’ ~ Dir(0.05,0.9,0.08)p, o5

[PW,31’ PW,32’ Pw’gz], ~ Dir(0.0S, 0.05, 0'9)PW,33>0'5’

6.5
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4.5

3.5

2.5 ﬂ
15 ' 4 l i I l I
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Figure 3: U.S. Industrial production (IP) index growth [1947:M1-2019:M9].
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Pey ~Dir(9.9,00)p sqs5. Pz ~ Dir9.9,00p, 205)-

(M, B2 ~ Gy = N(—0.5,312 )IG(17,4),

where the base distribution G, specified for the Dirichlet process implies the following unconditional distribu-
tions for y, and o2
71 ~N(=05,02) and 67 ~IG(4,2),

which are used as the priors for y, and 012 for the model with a normality assumption.

When we apply a normality test to the posterior means of the standardized errors from the model with a
normality assumption, the null is rejected at a 5 % significance level. This provides us with a justification for
employing the proposed model. For the proposed model, the posterior mean for the number of mixtures turns
out to be slightly higher than 3, and the null hypothesis of normality is not rejected (at a 5 % significance level) for
the posterior means of the standardized errors.’® These results suggest that the Dirichlet process mixture nor-
mals model reasonably well approximates the unknown distribution of the error term. Furthermore, a Bayesian
model selection criterion (Watanabe-Akaike information criterion or WAIC by Watanabe (2010)) very strongly
prefers the proposed model to the model with a normality assumption.

Figure 4 depicts the posterior probabilities of recession from the two models under the tight priors. The
shaded areas represent the NBER recessions. Estimates of the recession probabilities from the proposed model
are much sharper and agree much more closely with the NBER reference cycles than those from a model with
a normality assumption.

To examine the robustness of the results to the priors employed, we also consider the following loose priors
for some of the parameters by keeping the priors for the rest of the parameters unchanged:

Prior #2: Loose Priors
Y2 ~ NOL Dy, o, 73 ~ N(0.2,2),50)

n, ~ N(1.5, 1)[,,1>0], 1, ~ N(0.5, 2)[,]2>0], 13 ~ N(0.2, 4)[,,3>0],
[Ps,ll’Ps,lz], ~ Dir(0.09, 0'01)Ps,11>0-5’ [PS,Zl’Ps,ZZ]/ ~ Dir(0.01, 0.09)PS'22>0.5,

Peyy ~ Dir(0.99,0.00p_ sos5.  Pez ~ Dir(0.99,0.0Dp, -os.

For the case of the loose priors, the prior variances of the parameters are set to be much larger than those
for the case of the tight priors. We set the prior means of the parameters to be identical for the two cases. Figure 5
compares the posterior probabilities of recession from the two competing models under the loose priors. For the
model with a normality assumption, the inference on the recession probabilities deteriorates considerably with
the loose priors. For the proposed model, however, the recession probabilities under the loose priors are almost
the same as those under the tight priors, and we continue to have sharp inferences on the recession probabilities.
That is, the proposed model is robust to the priors employed, while the model with a normality assumption is
very sensitive to the priors.

Figure 6 depicts the posterior means of the error volatilities and those of the long-run mean growth rates
obtained based on equation (41). These are obtained from the proposed model under the tight priors.* As shown
in the upper panel of Figure 6, the high and medium volatility regimes are mostly focused on the period before
the mid-1980s. In most of the post-1984 period, the low volatility regime dominates except for a few episodes of
medium or high volatility that include the Great Recession. The lower panel of Figure 6 demonstrates a pattern
for a steadily decreasing long-run mean growth rate, which is consistent with Stock and Watson (2012) and Eo
and Kim (2016).

13 To calculate the Jarque-Bera test statistic for the normality test, we use the posterior means of the standardized errors (v, =
hi(et - gin )) obtained based on equation (23), for t = 1,2,...,T.

D, Wy t .
14 The results are almost the same when we employ the loose priors.
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Figure 4: Posterior probabilities of recession based on the two competing models: Tight priors.

Lastly, the upper panel of Figure 7 shows that the posterior distribution of the error term is bimodal before
the mixture of normals is controlled for. However, the lower panel of Figure 7 shows that, once the mixture of
normals is controlled for, the distribution of the error term is very close to the normal distribution.



196 = S.-T.Hwu and C.-J. Kim: Markov-Switching Models with Unknown Error Distributions DE GRUYTER

0.8

0.6

0.4

0.2

0

1 [l |

==

W UM A A

v kY

1947/02

1955/06  1963/10 1972/02 1980/06  1988/10  1997/02  2005/06  2013/10

(1) Model with Normally Assumption

0.8

0.6

0.4

0.2

0

- |

L

TAVAMLARLY Lt

1947/02

1955/06  1963/10 1972/02  1980/06  1988/10 1997/02 2005/06  2013/10

(i1) Model with Mixture of Normals: Proposed Model

Figure 5: Posterior probabilities of recession based on the two competing models: Loose priors.
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Figure 6: Time-varying volatility and long-run mean growth rate of IP: Proposed model [Tight Prior].
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Figure 7: Distribution of the standardized errors (solid line: Standardized errors; broken line: Standard Normal).

6 Summary

We provide solutions to the identification problems that are associated with the estimation of a Markov-
switching model in which the unknown error distribution is approximated by the Dirichlet process mixture
of normals: (i) the problem of label switching for the Markov-switching regime indicator variable; and (ii) the
problem of disentangling the Markov-switching regime indicator variable from the serially independent mix-
ture indicator variable. These solutions are very easy to implement in actual applications, and our Monte Carlo
experiments show that the proposed identification schemes and MCMC procedure work well.

When the proposed model and the MCMC procedure are applied to the monthly index of industrial pro-
duction (1947:M1-2019:M9), they provide us with considerably sharper and more accurate inferences on the
business cycle turning points than the model with an assumption of the normally distributed error term. In our
model, the irregular components that are not related to business conditions are effectively controlled for.
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