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Abstract: The basic Markov-switching model has been extended in various ways ever since the seminal work

of Hamilton (1989. “A New Approach to the Economic Analysis of Nonstationary Time Series and the Business

Cycle.” Econometrica 57: 357–84). However, the estimation of Markov-switching models in the literature has

relied upon parametric assumptions on the distribution of the error term. In this paper, we present a Bayesian

approach for estimating Markov-switching models with unknown and potentially non-normal error distribu-

tions. We approximate the unknown distribution of the error term by the Dirichlet process mixture of normals,

in which the number of mixtures is treated as a parameter to estimate. In doing so, we pay special attention to

the identification of the model. We then apply the proposed model and MCMC procedure to the growth of the

postwar U.S. industrial production index. Our model can effectively control for irregular components that are

not related to business conditions. This leads to sharp and accurate inferences on recession probabilities.

Keywords: label switching problem; identification condition; unknown error distribution; mixture of normals;

semi-parametric Bayesian inference; Markov chain Monte Carlo

JEL Classification: C11; C13; C22

1 Introduction

Since the seminal work of Hamilton (1989), the basic Markov-switching model has been extended in various

ways. For example, Diebold, Lee, and Weinbach (1994) and Filardo (1994) extend the model to allow the tran-

sition probabilities governing the Markov process to be functions of exogenous or predetermined variables.

Kim (1994) extends it to the case of the state-space model, which encompasses general dynamic models such as

autoregressive moving average processes, unobserved components models, dynamic factor models, etc. Chib

(1998) introduces a structural break model with unknownmultiple change points by constraining the transition

probabilities of the Markov-switching model so that the latent state variable can either stay at the current value

or jump to the next higher value.1 More recently, Kaufmann (2015) proposes a general K-state model with time-

varying transition probabilities by employing the multinomial Logit specification. Fox et al. (2011), Song (2014),

and Bauwens, Carpantier, and Dufays (2017) introduce infinite hidden Markov models and generalize the finite

state Markov switching model of Hamilton (1989) to the case of an infinite number of states.

Estimations of the aforementioned models and the other Markov-switching models in the literature have

relied upon parametric assumptions on the distribution of the error term. Most applications in the literature

1 For surveys of earlier literature on Markov switching models, refer to Frühwirth-Schnatter (2006) and Hamilton (2016).
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assume normally distributed errors, with rare exceptions like Dueker (1997) and Bulla et al. (2011) who pro-

posed Markov-switching models of stock returns in which the innovations are assumed to be drawn from a

Student-t distribution; and Angelis and Cinzia (2017) who assumed a normal-inverse Gaussian distribution as

the conditional form of financial returns and model innovations.

In this paper, we deal with a Bayesian semi-parametric approach to making inferences on the Markov-

switchingmodel when the unknown error distribution is approximated by themixture of normals.2 We address

two identification issues that are necessary for the estimation of themodel. They include: (i) the problem of label

switching for theMarkov-switching regime indicator variable; and (ii) the problem of disentangling theMarkov-

switching regime indicator variable from the serially independent mixture indicator variable. If we do not take

care of these identification issues, the marginal posterior distributions of the model parameters obtained from

the MCMC output may be misleading. Without loss of generality, these issues are discussed within a basic model

with no serial correlation or heteroscedasticity in the error term. We then present an MCMC procedure for

estimating a generalized version of the model that allows for serial dependence as well as heteroscedasticity

in the error term. In our generalized model, we approximate the unknown distribution of the error term by

the Dirichlet process mixtures of normals. Our simulation study shows that the identification schemes and the

proposed MCMC procedure work well.

We apply the proposed model and the MCMC algorithm to the monthly index of industrial production

(1947:M1–2019:M9). It turns out that the posterior mean for the number of mixtures is about 3. The estimates

of the recession probabilities from the proposed model are much sharper and agree much more closely with

the NBER reference cycles than those from a model with a normality assumption. Besides, while results from

the model with normality assumption are very sensitive to the priors employed, those from the proposedmodel

are robust to them.

The rest of this paper is organized as follows. In Section 2, we motivate our paper by performing a Monte

Carlo experiment, which is designed to investigate the effect of maximizing a normal log-likelihood when the

normality assumption is violated for the error term. In Section 3, we deliver the two identification issues nec-

essary for the estimation of the model when the unknown error distribution is approximated by the mixture

of normals. In Section 4, we present an MCMC algorithm for making inferences on the model. In Section 5, we

apply the proposed identification schemes and theMCMC algorithm to the log-differencedmonthly postwar U.S.

industrial production index [1947:M1–2019:M9]. Section 6 concludes the paper.

2 Pitfalls of Ignoring Non-normality and Maximizing a Normal Log

Likelihood

In order to investigate the small-sample performance of the maximum likelihood estimation when a normal

log-likelihood is maximized but the normality assumption is violated, we consider the following simple model

with Markov-switching mean:

yt = 𝛽St + 𝜎𝜀
∗
t
, 𝜀∗

t
∼ (0, 1), St = 1, 2, t = 1, 2,… , T, (1)

where 𝜀∗
t
is independently distributed and St is a 2-state Markov-switching process with transition probabilities

Pr[St = 1|St−1 = 1] = pS,11, Pr[St = 2|St−1 = 2] = pS,22. (2)

2 Defining xt and yt as a vector of covariates and the response variable, respectively, Taddy and Kottas (2009) consider a model

in which the unknown joint distribution of xt and yt depends upon a latent state variable (St) that follows a K − state first-order

Markov-switching process. On the contrary, we deal with a model in which the distribution of yt conditional on xt , St , and past

information is unknown. An example of our model is the Hamilton model (1989) in which the normally distributed error term is

replaced by the Dirichlet process mixture of normals.
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We consider the following four alternative distributions for the error term 𝜀t, the first two of which are

symmetric and the other two are asymmetric:

Case #1:𝜀∗
t
∼ i.i.d. N(0, 1)

Case #2:𝜀∗
t
= ut√

𝜈∕(𝜈−2) , ut ∼ i.i.d. t− distribution with d. f. = 𝜈

Case #3:𝜀∗
t
= ln(u2t )−E(ln(u2t ))√

(𝑣ar(ln(u2t ))
, ut ∼ i.i.d.N(0, 1), where E

(
ln u2

t

)
= −1.2704, and 𝑣ar

(
ln u2

t

)
= 𝜋2∕2.

Case #4:𝜀∗
t
|Dt ∼ i.i.d.N

(
𝜇∗
Dt
, h∗2

Dt

)
, Dt = 1, 2, 3, where Pr[Dt = i] = pD,i, i = 1, 2, 3

For each of the above four cases, we generate 10,000 sets of data. For each data set generated, we estimate the

model in equations (1) and (2) by maximizing a normal log-likelihood. We consider three alternative sample

sizes: T = 500, T = 5, 000 and T = 50, 000. The parameter values we assign are given below:

𝛽1 = −0.6, 𝛽2 = 0.7; 𝜎2 = 1.1; pS,11 = 0.9, pS,22 = 0.95; 𝜈 = 5;

𝜇∗
1
= 1.05, 𝜇∗

2
= 0.1, 𝜇∗

3
= −1.35; h∗2

1
= 0.2, h∗2

2
= 0.05, h∗2

3
= 1.695;

pD,1 = 0.2, pD,2 = 0.6, pD,3 = 0.2

Table 1 reports the mean of the estimates for each parameter in each case, as well as the root mean squared

error (RMSE) for the estimates. For all the cases we consider, themaximum likelihood estimation seems to result

in consistent parameter estimates, in the sense that both the biases and RMSE’s decrease as the sample size

increases. When the normality assumption is violated, however, the maximization of a normal log likelihood

results in poor small sample properties of the estimators. In particular, in a situation like Case #4 in which the

degree of asymmetry in the error distribution is the highest, the biases remain sizable even when the sample

size is as large as 50,000.

Table 1:Maximizing the normal log likelihood function when the error distribution is potentially non-normal: Monte Carlo experiment.

True Case #1 Case #2 Case #3 Case #4

T = 500

𝛽1 −0.6 −0.609 (0.130) −0.656 (0.555) −0.983 (0.780) −1.121 (0.892)
𝛽2 0.7 0.708 (0.088) 0.707 (0.083) 0.713 (0.117) 0.721 (0.127)

𝜎2 1.1 1.087 (0.090) 1.074 (0.140) 0.967 (0.210) 0.907 (0.264)

P11 0.9 0.892 (0.049) 0.892 (0.056) 0.788 (0.203) 0.754 (0.228)

P22 0.95 0.942 (0.029) 0.946 (0.023) 0.928 (0.038) 0.920 (0.043)

T = 5000

𝛽1 −0.6 −0.602 (0.039) −0.610 (0.041) −0.742 (0.246) −0.959 (0.629)
𝛽2 0.7 0.701 (0.025) 0.696 (0.024) 0.730 (0.046) 0.735 (0.088)

𝜎2 1.1 1.100 (0.027) 1.100 (0.049) 1.013 (0.107) 0.944 (0.176)

P11 0.9 0.899 (0.012) 0.902 (0.012) 0.848 (0.098) 0.788 (0.169)

P22 0.95 0.949 (0.007) 0.951 (0.006) 0.934 (0.020) 0.921 (0.033)

T = 50000

𝛽1 −0.6 −0.602 (0.013) −0.610 (0.025) −0.694 (0.096) −0.758 (0.169)
𝛽2 0.7 0.700 (0.009) 0.695 (0.024) 0.734 (0.035) 0.764 (0.065)

𝜎2 1.1 1.100 (0.008) 1.098 (0.038) 1.028 (0.074) 0.966 (0.137)

P11 0.9 0.900 (0.004) 0.901 (0.029) 0.868 (0.033) 0.835 (0.069)

P22 0.95 0.950 (0.002) 0.951 (0.030) 0.936 (0.015) 0.920 (0.031)
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In order to investigate how the inferences on the regime probabilities are affected by the violation of the

normality assumption, we conduct another simulation study. When generating data, we consider the same data

generating processes as given above, except that we generate St, t = 1, 2,… , T , only once and fix them in

repeated sampling. The sample size we consider is T = 500. For each data set generated in this way, we estimate

the model in equations (1) and (2) by maximizing a normal log-likelihood and then calculate the smoothed prob-

abilities conditional on estimated parameters. Figure 1 plots the average smoothed probabilities of low-mean

regime (St = 1) for each case. The shaded areas represent the true low-mean regime. Case #1 with the normally

distributed error term provides us with the most accurate and sharpest regime inferences. However, as the dis-

tribution of the error term deviates from normality, the inferences about the regime probabilities deteriorate a

lot, especially for Case #4 in which the degree of asymmetry in the error distribution is the highest.

Figure 1: Smoothed probabilities of regime 1 based on Quasi-maximum likelihood estimation under different error distributions

[T= 500; shaded area: True regime 1].
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3 Basic Model and Two Identification Issues

Without loss of generality in dealing with the identification issues, let us consider the following basic model in

which the unknown error distribution is approximated by the mixture of normals:

yt = 𝛽St + 𝜎𝜀
∗
t
, St = 1, 2,… ,K; t = 1, 2,… ., T,

𝜀∗
t
|Dt ∼ i.i.d. N

(
𝜇∗
Dt
, h∗2

Dt

)
, Dt = 1, 2,… ,M, (3)

where St is a first order Markov-switching process with the following transition probabilities:

Pr[St = j|St−1 = i] = pS,i j,

K∑
j=1

pS,i j = 1, i, j = 1, 2,… ,K, (4)

and the mixture indicator variable Dt is serially independent.

3.1 Identification Issue #1: The Label Switching Problem

For our basic model, a typical way of labeling the states for St and Dt is given below:

𝛽St =
K∑
k=1
𝛽kSk,t,

𝜇∗
Dt
=

M∑
m=1

𝜇∗
m
Dm,t and h∗2

Dt
=

M∑
m=1

h∗2
m
Dm,t,

(5)

where

Sk,t =
⎧⎪⎨⎪⎩
1, if St = k; k = 1, 2,… ,K

0, otherwise,

Dm,t =
⎧⎪⎨⎪⎩
1, if Dt = m; m = 1, 2,… ,M

0, otherwise.

(6)

The above labeling is not unique and the unconstrained parameter spaces for 𝛽′s and𝜇∗′s (or h∗2′s) contain

K! andM! subspaces, respectively, each corresponding to different way to label states. As discussed in Stephens

(2000) and Frühwirth-Schnatter (2001), when sampling from the unconstrained posterior via MCMC methods,

it is impossible to know which component of the sampled parameter corresponds to which state due to poten-

tial label switching. Thus, as noted by Stephens (2000), summarizing joint posterior distributions by marginal

distribution may lead to nonsensical answers due to the lack of identification.

The label switching problem is not an issue at all for the serially independent mixture indicator variable

Dt, as we are not interested in the marginal distribution of 𝜇
′s or h2′s, or in the inferences on Dt. Furthermore,

the complete data likelihood f (y1, . . . , yT |D1, . . . , DT ; .) and the prior for Dt is invariant to the relabeling of the

states in Dt. However, it is critical that we take care of the label switching problem for St during the MCMC

procedure, given that we want to obtain inferences on St and the regime-specific parameters based on their

marginal posterior distributions.

The label switching problem for St can be solved by imposing the following ordering constraint on the

regime-specific parameters:

𝛽1 < 𝛽2 <… < 𝛽K. (7)

A conventional way to incorporate the above constraint in the MCMC sampler is to employ a rejection

method after drawing {𝛽1𝛽2 … 𝛽K} jointly from the unconstrained joint posterior. However, note that the

ordering constraint in equation (7) results in correlations among 𝛽k , k = 1, 2,… ,K. For example, the smaller
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the distances among the 𝛽 parameters, the higher will be the correlations among them. Every time the 𝛽

parameters are discarded and redrawn when the ordering constraint fails, we lose sample information about

these correlations. This is why the rejectionmethodmay fail, especially when the distances among the 𝛽 param-

eters are not large enough relative to the standard deviation of the error term.

For the permutation sampler proposed by Frühwirth-Schnatter (2001), the 𝛽 parameters are first drawn

from the unconstrained joint posterior. Then a suitable permutation of the labeling of the states is applied if the

ordering constraint is violated. As the permutation is applied without discarding the 𝛽 parameters drawn in this

case, there is no loss of sample information unlike in the case of the rejection method. This is why the permu-

tation sampler improves upon the rejection method, as illustrated by Frühwirth-Schnatter (2001). However, one

potential drawback of the permutation sampler is that we need to set the marginal priors for 𝛽k , k = 1, 2, . . . , K,

to be identical, but independent. This is because the prior densities for the individual 𝛽 coefficients should be

permutation-invariant. For this reason, it would be impossible to specify a joint prior that appropriately reflects

the potential correlations among the 𝛽 parameters.

As an alternative method for dealing with the label switching problem, we consider the following transfor-

mation of the 𝛽 parameters in equation (7):

𝛽St = 𝛽1 +
St∑
k=2

ak, St = 2, 3,… ,K, ak > 0 for all k. (8)

An advantage of the above specification is that we can indirectly specify the potential prior dependence

among 𝛽k , k = 1, 2,… ,K, by employing independent marginal priors for 𝛽1 and ak , k = 2, 3,… ,K. We first

draw 𝛽1 conditional on ak , k = 2, 3,… ,K, and then, draw ak for k = 2, 3,… ,K, from appropriate truncated

marginal posteriors conditional on 𝛽1 and ã≠k = {a2,… , ak−1; ak+1,… aK}. We can then recover the 𝛽2, . . . ,𝛽K
parameters based on equation (8). Here, an important issue to consider is that the likelihood function for ak
depends only on the observations for which St = j, j = k, k + 1,… ,K, while the likelihood function for

𝛽1 depends on all the observations in the sample. As in the case of the permutation sampler, there is no loss of

sample information in the course of the proposedMCMC procedure. Unlike the case of the permutation sampler,

however, the proposed prior and sampling procedure allow us to accommodate the non-sample information on

the potential dependence among the 𝛽 parameters that results from the inequality constraint in equation (7).3

Besides, the implementation of the proposed sampler is much easier than the permutation sampler, especially

for a model like the one in our empirical application section, in which the regime-specific means are subject to

structural breaks within the Markov-switching framework.

3.2 Identification Issue #2: Disentangling the Markov-Switching Variable (S
t
) from

the Mixture Indicator Variable (D
t
)

In this section, we consider the identification of the latent Markov-switching variable St from the latent and

serially independent mixture indicator variable Dt in equation (3). For this purpose, we substitute equation (8)

into equation (3) to obtain

yt = 𝛽′S̄t + 𝜀t, 𝜀t ∼
(
𝛽1, 𝜎

2
)
, (9)

where 𝛽 =
[
𝛽2 𝛽3 … 𝛽K

]′
, with 𝛽k =

∑k

j=2a j, k = 2, 3,… ,K; S̄t =
[
S2,t … SK,t

]′
, with Sk,t,

k = 2, 3,… ,K, being defined in equation (6); and 𝜀t = 𝛽1 + 𝜎𝜀∗t . We can then approximate 𝜀t by the following

mixture of normals:

𝜀t|Dt ∼ i.i.d. N
(
𝜇Dt , h

2
Dt

)
, Dt = 1, 2,… ,M. (10)

3 When K = 2, for example, we have 𝛽2 = 𝛽1 + a2, where we impose independent priors for 𝛽1 and a2 (e.g., 𝛽1 ∼ N
(
b1, 𝜎

2
𝛽1

)
and

a2 ∼ N
(
𝛼2, 𝜎

2
a2

)
1[a2>0]

, with 1[.] referring to the indicator function). In this case, it is easy to show that corr(𝛽1, 𝛽2) =
𝜎2
𝛽1√

𝜎2
𝛽1

(
𝜎2
𝛽1
+𝜎2a2

) ,

which is a decreasing function of the prior mean of a2. Note that, as a2 has a truncated normal distribution, 𝜎
2
a2
is positively related

to the prior mean 𝛼2.
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Note that the dynamics of St, given the transition probabilities in equation (4), can be represented by the

following VAR process for S̄t:
4

S̄t = Q0 + Q1S̄t−1 + 𝜈̄t, (11)

where the elements of the (K − 1) × 1 vector Q0 and the (K − 1) × (K − 1) matrix Q1 are functions of the

transition probabilities. We define C as the collection of the eigenvectors of the Q1 matrix. By pre-multiplying

both sides of equation (11) by C−1, and then, by rearranging the terms in the resulting equation and equation (9),

we obtain:

yt = 𝛽∗
′
S̄∗
t
+ 𝜀t, 𝜀t ∼

(
𝛽1, 𝜎

2
)
, (12)

S̄∗
t
= Λ0 +Λ1S̄

∗
t−1 + 𝜈̄

∗
t
, (13)

where 𝛽∗ = C′𝛽; S̄∗
t
= C−1S∗

t
; Λ0 = C−1Q0; Λ1 = C−1Q1; C = diag{𝜆2, 𝜆3,… , 𝜆K}, with 𝜆k , k = 2, 3,… ,K,

referring to the eigenvalues of Q1; and 𝜈̄
∗
t
= C−1𝜈̄t.

Then, by noting that 𝜀t in equation (12) can be approximated by the mixture of normals as in equation (10)

(i.e. 𝜀t =
∑M

m=1𝜇mDm,t +
√∑M

m=1h
2
m
Dm,t𝜀

∗
t
, 𝜀∗

t
∼ i.i.d.N(0, 1)), where Dm,t as defined in equation (6) is serially

independent and by noting thatΛ1 in equation (12) is diagonal, we can rewrite equations (12) and (13) as follows:

yt =
K∑
k=2
𝛽∗
k
S̄∗
k,t
+

M∑
m=1

𝜇mDm,t +

√√√√ M∑
m=1

h2
m
Dm,t 𝜀

∗
t
, 𝜀∗

t
∼ i.i.d.N(0, 1),

S̄∗
k,t

= Λk,0 + 𝜆kS̄∗k,t−1 + 𝜈̄
∗
k,t
, k = 2, 3,… ,K,

Dm,t = gm + 𝜂m,t, m = 1, 2,… ,M, (14)

where 𝛽∗
k
is the (k − 1)th row of 𝛽∗; S̄∗

k,t
refers to the (k − 1)th row of S̄∗

t
; gm = Pr[Dt = m]; and 𝜈̄∗

k,t
,

k = 2, 3,… ,K, and 𝜂m,t,m = 1, 2,… ,M, are discrete and serially independent.

Equation (14) tells us that we have a K-state first-order Markov-switching process for St and a mixture ofM

normals for 𝜀t only when the following conditions hold:

𝜆k ≠ 0, k = 2, 3,… ,K, (15)

suggesting that all the eigenvalues of the Q1 matrix in equation (11) should be non-zero.

4 Equation (6) and the transition probabilities in equation (4) allowus to represent the dynamics of the vector
[
S1,t S2,t … SK,t

]′
in the following VAR form:

⎡⎢⎢⎢⎢⎢⎣

S1,t

S2,t
.
.
.

SK,t

⎤⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎣

pS,11 pS,21 … pS,K1

pS,12 pS,22 … pS,K2
.
.
.

.

.

. ⋱
.
.
.

pS,1K pS,2K … pS,KK

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

S1,t−1
S2,t−1
.
.
.

SK,t−1

⎤⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎣

𝜈1,t

𝜈2,t
.
.
.

𝜈K,t

⎤⎥⎥⎥⎥⎥⎦
where

[
𝜈1 𝜈2 … 𝜈K

]′
is a vector of martingale difference sequences. As

∑K

j=1 pi j = 1 and
∑K

j=1S jt = 1, the first row in the

above equation does not carry additional information beyond that contained in the rest of the rows. Thus, by imposing the con-

straint S1,t−1 = 1−∑K

j=2S j,t−1 on the second through K − th rows of the above equation, we obtain the following dynamics for[
S2,t S3,t … SK,t

]′
:

⎡⎢⎢⎢⎣

S2,t
.
.
.

SK,t

⎤⎥⎥⎥⎦
=
⎡⎢⎢⎢⎣

pS,12
.
.
.

pS,1K

⎤⎥⎥⎥⎦
+
⎡⎢⎢⎢⎣

(pS,22 − pS,12) … (pS,K2 − pS,12)

.

.

. ⋱
.
.
.

(pS,2K − pS,1K ) … (pS,KK − pS,1K )

⎤⎥⎥⎥⎦

⎡⎢⎢⎢⎣

S2,t−1
.
.
.

SK,t−1

⎤⎥⎥⎥⎦
+
⎡⎢⎢⎢⎣

𝜈2,t
.
.
.

𝜈K,t

⎤⎥⎥⎥⎦
,

(
S̄t = Q0 + Q1S̄t−1 + 𝜈̄t,

)
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It is easy to show that the model is not identified when equation (15) does not hold. For example, suppose

that 𝜆K = 0 and 𝜆k ≠ 0, for k = 2, 3,… ,K − 1. Then, equation (14) can be written as

yt =
K−1∑
k=2
𝛽∗
k
S̄∗
k,t
+

M+1∑
m=1

𝜇mDm,t +

√√√√M+1∑
m=1

h∗2
m
Dm,t 𝜀∗

t
, 𝜀∗

t
∼ i.i.d.N(0, 1),

S̄∗
k,t

= Λk,0 + 𝜆kS̄∗k,t−1 + 𝜈̄
∗
k,t
, k = 2, 3,… ,K − 1,

Dm,t = gm + 𝜂m,t, m = 1, 2,… ,M + 1, (14′)

where 𝜇∗
M+1 = 𝛽

∗
K
; gM+1 = ΛK,0; DM+1,t = S̄∗

K,t
; h∗

M+1 = 0; and the transition probabilities for St and the mixture

probabilities for Dt are redefined accordingly. Note that equation (14’) describes a model with a (K − 1)-state

Markov-switching process for St and a mixture of (M + 1) normals for 𝜀t. The likelihood value for the model

in Equation (14’) is exactly the same as that for the model in equations (14), and this is a typical example of

non-identification.

For economic data, a negative serial correlation in St does not seem to make a lot of sense. We thus impose

the constraints that𝜆k > 0, k = 2,… ,K, in order to achieve the identification. For this purpose,We set the prior

mean of pS,jj to be larger than 0.5 for j = 1, 2,… ,K, as this is the sufficient condition for𝜆k > 0, k = 2, 3,… ,K.

Then, once the transition probabilities are drawn conditional on St, t = 1, 2,… , T , we can construct the Q1

matrix in equation (11) and calculate its eigenvalues 𝜆k , k = 2, 3,… ,K. Then, if the identifying constraints are

not satisfied, we redraw St, t = 1, 2,… , T , and the corresponding transition probabilities until the constraints

are satisfied.

4 General Model Specification and the MCMC Procedure

4.1 Specification for a General Model

Consider the following generalized model:5

yt = 𝛽St + ut, St = 1, 2,… ,K,

𝜙(L)ut = 𝜎Wt
𝜀∗
t
, 𝜀∗

t
∼ (0, 1), Wt = 1, 2,… ,N,

𝛽1 < 𝛽2 <… < 𝛽K ; 𝜎2
1
< 𝜎2

2
<… < 𝜎2

N
, (16)

where 𝜀∗
t
is independently distributed;𝜙(L) = 1 − 𝜙1L − 𝜙2L

2 − · · · − 𝜙pL
p is a polynomial equation in the

lag operator; all roots of𝜙(L) = 0 lie outside the complex unit circle; the transitional dynamics of St is specified

in equation (4). We assume that Wt is independent of St and follows an N-state, first-order Markov-switching

process with the following transition probabilities:6

Pr[Wt = j|Wt−1 = i] = pW ,i j,

N∑
j=1

pW ,i j = 1, i, j = 1, 2,… ,N. (17)

In order to avoid the non-identification resulting from the problem of label switching, we follow employ

the following specifications for the 𝛽St and 𝜎
2
Wt

parameters:

5 The first equation in (16) can be further generalized to the following regression equation with a vector of covariates xt:

yt = 𝛽St + Γ′
St
xt + ut, (16′)

where xt is a vector of exogenous variables.

6 The independence assumption betweenWt and St is for analytical/computational convenience. This assumption can be relaxed.
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𝛽St = 𝛽1 +
St∑
k=2

ak, ak > 0 for all k, St = 2, 3,… ,K,

𝜎2
Wt

= 𝜎2
1

Wt∏
n=2

(1+ bn), (1+ bn) > 1 for all n, Wt = 2, 3,… ,N, (18)

which allow us to employ independent priors for {𝛽1, ak, k = 2, 3,… ,K} and for{
𝜎2
1
, (1+ bn), n = 2, 3,… ,N

}
. This way, we can also indirectly account for the dependence among 𝛽k ,

k = 1, 2,… ,K and the dependence among 𝜎2
n
, n = 1, 2,… ,N which result from the ordering constraints

(𝛽1 < 𝛽2 < … < 𝛽K and 𝜎
2
1
< 𝜎2

2
<… < 𝜎2

N
).

By substituting equation (18) into equation (16) and rearranging terms, we obtain:

yt = 𝛽1 + a2

K∑
k=2

Sk,t + a3

K∑
k=3

Sk,t + · · · + aK−1

K∑
k=K−1

Sk,t + aKSK,t + ut,

𝜙(L)ut = gWt
u∗
t
, u∗

t
∼
(
0, 𝜎2

1

)
, (19)

where

g2
Wt

=
𝜎2
Wt

𝜎2
1

=
Wt∏
n=2

(1+ bn), g2
1
= 1, Wt = 2, 3,… ,N.

(
g2
Wt

= g2
Wt−1

(1+ bW )
)

(20)

Then, by defining et = 𝛽1 + ut, equation (19) can be rewritten as:
7

Model with Transformed Parameters

yt = a2

K∑
k=2

Sk,t + a3

K∑
k=3

Sk,t + · · · + aK−1

K∑
k=K−1

Sk,t + aKSK,t + et,

𝜙(L)et = gWt
𝜀t,

𝜀t|Wt ∼ (
1

gWt

𝜙(1)𝛽1, 𝜎
2
1
),

where 𝜀t = 𝜙(1)𝛽1∕gWt
+ u∗

t
. The unknown distribution of 𝜀t|Wt can be approximated by the following Dirichlet

process mixture of normals:8

Dirichlet Process Mixture of Normals

𝜀t |Wt,Dt ∼ i.i.d.N

(
1

gWt

𝜇Dt , h
2
Dt

)
,Dt = 1, 2, 3,…

(
𝜇m, h

2
m

)
∼ G, m = 1, 2, 3,…

G|G0, 𝛼 ∼ DP(𝛼,G0),

G0 ≡ N
(
𝜆0, 𝜓0h

2
m

)
IG

(
𝜈h
2
,
𝛿h
2

)
,

(22)

7 For a Markov-switching model with covariates, the first equation in (21) can be extended to:

yt = a2

K∑
k=2

Sk,t + a3

K∑
k=3

Sk,t + · · · + aK−1

K∑
k=K−1

Sk,t + aKSK,t +
K∑
k=1

Sk,tΓ′
k
xt + et. (21′)

8 Note that 𝜎2
1
and 𝛽1 can be easily recovered from

𝛽1 =
1

𝜙(1)

M∑
m=1

𝜇m pD,m; 𝜎2
1
=

̃(
1

g2

) M∑
m=1

(𝜇m − 𝜇̄)2 pD,m + h̄2,

where
̃( 1

g2

)
= 1

T

∑T

t=1
1

g2
Wt

, 𝜇̄ = ∑M

m=1𝜇m pD,m, and h̄
2 = ∑M

m=1𝜎
2
m
pD,m.
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where DP(., .) refers to the Dirichlet process;9 G0 and 𝛼 are referred to as the base distribution and the concen-

tration parameter, respectively.

The base distributionG0 is like themean of the Dirichlet Process. In otherwords, the Dirichlet Process draws

distributions around the base distribution the way a normal distribution draws real numbers around its mean.

The concentration parameter𝛼 is like an inverse-variance of the Dirichlet Process. It describes the concentration

of mass around the base distribution. In a Dirichlet Process mixture model, we can show that the probability

of assigning an observation to a newly drawn distribution around the base distribution is 𝛼

T−1+𝛼 . Therefore, the

larger the 𝛼 is, the higher the probability of assigning an observation to a new distribution, and thus prior mean

of the number of mixture is higher.

We employ a Normal-Inverse Gamma distribution as the base distribution. This means that we use

N
(
𝜆0, 𝜓0h

2
m

)
as the prior distribution for mixture mean 𝜇m, and we use IG(

𝜈h
2
,
𝛿h
2
) as the prior distribution for

mixture variance h2
m
. These are the conjugate priors for the Dirichlet Process Mixturemodel. In the case of finite

mixture, the joint distribution of
(
𝜇m, h

2
m

)
is given by G0, and thus, G = G0. The 𝛼 parameter can be either fixed

or random. In case the 𝛼 parameter is random, it is common to employ a Gamma prior. Note that, conditional

on gWt
, 𝜇Dt , and h

2
Dt
, the first line in equation (22) implies

𝜀t =
1

gWt

𝜇Dt + hDt𝑣t, 𝑣t ∼ i.i.d.N(0, 1). (23)

To complete the model, we employ the following priors for the parameters except those associated with the

mixture of normals:

Other Priors

𝜙̃ =
[
𝜙1 𝜙2 … 𝜙 p

]′ ∼ N(A𝜙̃,Σ𝜙̃)1[S𝜙̃],
ã =

[
a2 a3 … aK

]′ ∼ N(A,Σã)1[a2>0,…,aK>0]
,

(1+ bn) ∼ IG

(
𝜈n,0

2
,
𝛿n,0

2

)
1[(1+bn)>1]

, n = 2, 3,… ,N,

p̃S,k =
[
pS,k1 pS,k2 … pS,kK

]′ ∼ Dir(𝛼S,k1, 𝛼S,k2,… , 𝛼S,kK )1[ pS,kk>0.5], k = 1, 2, ⋅,K,

p̃W ,m =
[
pW ,m1 pW ,m2 … pW ,mM

]′ ∼ Dir(𝛼W ,m1, 𝛼W ,m2,… , 𝛼W ,mM )1[ pW ,mm>0.5],

m = 1, 2, ⋅,M,

(24)

where Σã is diagonal; 1[.] is the indicator function; S𝜙̃ refers to the stationary region of 𝜙̃; IG(.) refers to the

inverted Gamma distribution; and Dir(.) refers to the Dirichlet distribution. Following Section 3.2, we impose

the constraints pS,kk > 0.5, k = 1, 2,… ,K, and pW ,nn > 0.5, n = 1, 2,… ,N , in order to identify the Markov-

switching processes St andWt against the mixture indicator variable Dt.

4.2 MCMC Procedure

In this section, we present an MCMC procedure for estimating the model that consists of equations (21)–(24).

4.2.1 Drawing Variates Associated with Markov-Switching Regression Equation Conditional on the

Mixture of Normals and Data

By multiplying both sides of the first equation in (21) by 𝜙(L) and then by substituting equation (23) in the

resulting equation, we obtain

9 A Dirichlet process is a probability distribution whose range is itself a set of probability distributions.
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𝜙(L)yt = 𝜙(L)
(
a2

K∑
k=2

Sk,t + a3

K∑
k=3

Sk,t + · · · + aK−1

K∑
k=K−1

Sk,t + aKSK,t

)
+ 𝜇Dt + gWt

hDt𝑣t,

𝑣t ∼ i.i.d.N(0, 1), (25)

which can be used to draw 𝜙̃, ã, g̃2
(
=
[
g2
2

g2
3

… g2
N

]′)
, P̃S

(
=
[
p̃′
S,1

… p̃′
S,K

]′)
,

P̃W

(
=
[
p̃′
W ,1

… p̃′
W ,M

]′)
, S̃T

(
=
[
S1 S2 … ST

]′)
, and W̃T

(
=
[
W1 W2 … WT

]′)
conditional

on 𝜇̃
(
=
[
𝜇1 … 𝜇M

]′)
, h̃2

(
=
[
h2
1

… h2
M

]′)
, D̃T

(
=
[
D1 … DT

]′)
, and data Ỹ

(
=
[
y1 … yT

]′)
.

4.2.1.1 Drawing ã Conditional on 𝝓̃, g̃2, S̃T , W̃T , 𝝁̃, h̃
2, D̃T and Data

By rearranging equation (25), we obtain

y1t = a2z
†
2t
+ a3z

†
3t
+ · · · + aKz

†
Kt
+ 𝑣t, 𝑣t ∼ i.i.d.N(0, 1), (26)

where y1t =
𝜙(L)yt−𝜇Dt
gWt

hDt
and z†

jt
=

∑K
k= j
𝜙(L)Sk,t

gWt
hDt

, j = 2, 3,… ,K. Then, for given y1t and z†
jt
, t = p + 1, 2,… , T ,

j = 2, 3,… ,K, we can generate a2, a3,… , aK directly from the following truncated normal distributions, with-

out resorting to the rejection sampling:

(1) Draw a2 from

a2 | a3, a4,… , aK ∼ N
(
ca,2, 𝜔

2
a,2

)
1[a2>0]

(2) Draw a3 from

a3 | a2, a4,… , aK ∼ N
(
ca,3, 𝜔

2
a,3

)
1[a3>0]

...

(K-1) Draw aK from

aK | a2, a3,… , aK−1 ∼ N
(
ca,K , 𝜔

2
a,K

)
1[aK>0]

,

where ca, j and 𝜔
2
a, j

refer to the posterior mean and posterior variance of the truncated full conditional distri-

bution of aj, j = 2, 3,… ,K. Here, as discussed in Section 3.1, ak should be drawn based on the observations for

which St = j, j = k, k + 1, . . . ,K.

4.2.1.2 Drawing 𝝓̃ Conditional on ã, g̃2, S̃T , W̃T , 𝝁̃, h̃
2, D̃T , and Data

By rearranging equation (25), we obtain

y2t = z∗
′

t
𝜙̃+ 𝑣t, 𝑣t ∼ i.i.d.N(0, 1), (27)

where y2t =
yt−z′t ã−𝜇Dt
gWt

hDt
and z∗

t
=
[
yt−1−z′t−1ã
gWt

hDt

yt−2−z′t−2ã
gWt

hDt
… yt− p−z′t− p

ã

gWt
hDt

]′
. Then, based on equation (27), we can

draw 𝜙̃ from an appropriate posterior distribution.

4.2.1.3 Drawing g̃2 Conditional on ã 𝝓̃, S̃T , W̃T , 𝝁̃, h̃
2, D̃T , and Data

By defining 𝜁t = gWt
𝑣t in equation (25), we can calculate 𝜁 t by

𝜁t =
𝜙(L)

(
yt − z′

t
ã
)
− 𝜇Dt

hDt
, (28)

where z′
t
ã = a2

∑K

k=2Sk,t + a3
∑K

k=3Sk,t + · · · + aK−1
∑K

k=K−1Sk,t + aKSK,t. Note that equation (20) implies

𝜁t|Wt = n ∼ N
(
0, g2

n

)
≡ gn−1N(0, (1+ bn))1[(1+bn)>1]. (29)
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We want to draw bn conditional on g2
n−1, (1+ bn+1),… , (1+ bN ) for n = 2, 3,… ,N , and then we can

obtain g2
n
, n = 2, 3,… ,N , based on equation (20). It should be noted that the likelihood function for (1 + bn)

depends on the values of 𝜁 t for which Wt = n, n + 1,… ,N , as (1 + bn) is a common element only in g2
Wt
,

Wt = n, n + 1,… ,N . Thus, if we define

𝜁∗
n,t

= 𝜁t

gn−1

√
N∏

i=n+1
(1+ biWi,t)

, (30)

whereWit = 1, ifWt = i, and 0, otherwise, we have the following result:

𝜁∗
n,t
| gn−1, (1+ bn+1),… , (1+ bN ) ∼ N(0, (1+ bn))1[(1+bn)>1], (31)

for Tn = {t:Wt = n, n + 1,… ,N}. Then, given the prior for (1 + bn) in equation (24), we can draw (1 + bn)

from the following truncated inverse Gamma distribution:

(1+ bn) | g2
n−1, (1+ bn+1),… , (1+ bN ), ũT ∼ IG

(
𝜈n,1

2
,
𝛿n,1

2

)
1[(1+bn)>1]

, (32)

where 𝛿n,1 = 𝛿n,0 +
∑

t∈Tn𝜁
∗2
n,t
and 𝜈n,1 = 𝜈n,0 + cn, with cn referring to the cardinality of Tn. When drawing bn

from equation (32), we draw bn directly from the truncated Inverse Gamma distribution. Oncewe draw (1 + bn),

n = 2, 3,… ,N , we can obtain g̃2 based on equation (20).

4.2.1.4 Drawing S̃T , p̃S, W̃T , and p̃W Conditional on ã, 𝝓̃, g̃2, 𝝁̃, h̃2, D̃T , and Data

For this step, we can rewrite equation (25) in the following way:

𝜙(L)
(
yt − 𝛽∗St

)
= 𝜇Dt + gWt

hDt𝑣t, 𝑣t ∼ i.i.d.N(0, 1), (33)

where 𝛽∗
St
= ∑St

j=2a j with 𝛽
∗
1
= 0.

When drawing S̃T conditional on all the other variates, equation (33) serves as a usualmodel with aMarkov-

switching latent variable St, while Dt andWt serve as dummy variables. Furthermore, drawing W̃T conditional

on all the other variates, equation (33) serves as a usualmodelwith aMarkov-switching latent variableWt, while

Dt and St serve as dummy variables. Thus, drawing S̃T and W̃T is a standard procedure. Once S̃T and W̃T are

drawn, we can draw p̃S and p̃W conditional on S̃T and W̃T , respectively.

4.2.2 Drawing Variates Associated with theMixture of Normals Conditional on 𝜺̃T

(
=
[
𝜺1 𝜺2 … 𝜺T

]′)

Conditional on ã, g̃2, 𝜙̃, 𝜎̃2, S̃T , W̃T and data, we can calculate the error term 𝜀t from the first two equations in

in (21) as follows:

𝜀t = 𝜙(L)
(
yt − a2

K∑
k=2

Sk,t + a3

K∑
k=3

Sk,t + · · · + aK−1

K∑
k=K−1

Sk,t + aKSK,t

)
1

gWt

. (34)

Then, based on equations (22) and (23), we can draw the variates associatedwith themixture of normals (i.e.

𝜇̃, h̃2, D̃T and 𝛼) conditional on 𝜀̃T . As discussed in Section 3.1, we are not interested in the marginal distribution

of𝜇′s or h2′s or in the inferences onDt. Thus, the label switching problem forDt is not an issue here.We therefore

draw 𝜇̃ or h̃2 without any identifiability constraints. We proceed with the following procedures in drawing 𝜇̃,

h̃2, D̃T and 𝛼:

(i) Draw 𝜇̃ based on equation (23), conditional on g̃, h̃2, D̃T , and 𝜀̃T .

(ii) Draw h̃2 based on equation (23), conditional on 𝜇̃, g̃2, D̃T , and 𝜀̃T .

(iii) Draw D̃T and 𝛼 for the Dirichlet process mixture of normals specified in equation (22), conditional on 𝜇̃,

h̃2, g̃2, and 𝜀̃T , The total number of mixtures (M
∗) realized at a particular MCMC iteration is obtained as a

byproduct of drawing D̃T .
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Drawing 𝜇̃ and h̃2 from their full conditional distributions derived from equation (23) is standard. The procedure

for drawing D̃T and 𝛼 is based on West, Muller, and Escobar (1994), Escobar and West (1995), and Neal (2000).

4.3 Simulation Study

In this section, we perform simulation studies in order to show that the proposed model-identification schemes

and the proposed algorithm work properly. For this purpose, we first generate 100 sets of samples based on the

following data generating process, which is the same as Case #4 of Section 2 (with K = 2, N = 1, and𝜙(L) = 1

for the model presented in Section 4.1):

4.3.1 Data Generating Process #1

yt = 𝛽St + 𝜎𝜀
∗
t
, 𝜀∗

t
∼ (0, 1), St = 1, 2; t = 1, 2,… , T,(

yt = 𝛽1 + a2S2,t + 𝜎𝜀∗t , a2 = 𝛽2 − 𝛽1 > 0,
)

𝜀∗
t
|Dt ∼ i.i.d. N

(
𝜇∗
Dt
, h∗2

Dt

)
, Dt = 1, 2, 3,

T = 500; 𝛽1 = −0.6, 𝛽2 = 0.7; 𝜎2 = 1.1; pS,11 = 0.9, pS,22 = 0.95,

where S2,t = 1 if St = 2 and S2,t = 0, otherwise; St and Dt are independent of each other and

pij = Pr[St = j|St−1 = i]. The parameter values associated with the mixture of normals for 𝜀∗
t
are also the

same as those for Case #4 in Section 2.

Based on the discussions on the identification issues in Section 3, we consider the following representation

of the model for estimation:

yt = a2S2,t + 𝜀t, 𝜀t ∼ i.i.d.
(
𝛽1, 𝜎

2
)
, S2,t = 0, 1, a2 > 0,

where we approximate the distribution of 𝜀t by the Dirichlet process mixture of normals in equation (22). The

priors we employ are:10

G0 ≡ N
(
−0.6, 5h2

m

)
IG
(
130

2
,
30

2

)
; 𝛼 ∼ Gamma(10, 3); a2 ∼ N(1.3, 0.45)1[a2>0]

[
pS,11 pS,12

]′ ∼ Dirichlet(9, 1)1[ pS,11>0.5];
[
pS,21 pS,22

]′ ∼ Dirichlet(0.5, 9.5)1[ pS,22>0.5].

When we estimate the model under a normality assumption for the error term, we employ the following

priors for 𝛽1 and 𝜎
2:

𝛽1 ∼ N(−0.6, 0.45); 𝜎2 ∼ IG(3.4, 2.7),

which are the same as the unconditional distributions for 𝛽1 and 𝜎
2 implied by our specification of the based

distribution G0 for the Dirichlet process mixture of normals.

To show that the proposed identification schemes also work properly for a model with Markov-switching

variances, we additionally generate 100 sets of samples based on the following data-generating process:

4.3.2 Data Generating Process #2

yt = 𝛽 + 𝜎Wt
𝜀∗
t
, 𝜀∗

t
∼ (0, 1), Wt = 1, 2; t = 1, 2,… , T,

𝜀∗
t
|Dt ∼ i.i.d. N

(
𝜇∗
Dt
, h∗2

Dt

)
, Dt = 1, 2, 3,

T = 500; 𝛽 = 1, 𝜎2
1
= 0.5; 𝜎2

2
= 2; pW ,11 = 0.9, pW ,22 = 0.95,

where the parameter values associated with the mixture of normals for 𝜀∗
t
are the same as those for Case #4 in

Section 2.

10 The specified prior distribution of the concentration parameter 𝛼 implies that the prior mean for the number of mixtures is 3.32

when sample size equals 500.
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Based on the discussions in Section 3, we consider the following representation of themodel for estimation:

yt = gWt
𝜀t, 𝜀t ∼ i.i.d.

(
𝛽1∕gWt

, 𝜎2
1

)
, g1 = 1, g2 = 𝜎22∕𝜎

2
1

where we approximate the distribution of 𝜀t by the Dirichlet process mixture of normals in equation (22). The

priors we employ are:

G0 ≡ N
(
1, 5h2

m

)
IG
(
130

2
,
15

2

)
; 𝛼 ∼ Gamma(10, 3); g2 ∼ IG(11, 40)1[g2>1]

[
pW ,11 pW ,12

]′ ∼ Dirichlet(9, 1)1[ pW ,11>0.5];
[
pW ,21 pW ,22

]′ ∼ Dirichlet(0.5, 9.5)1[ pW ,22>0.5].

When we estimate the model under a normality assumption for the error term, we employ the following

priors for 𝛽1 and 𝜎
2:

𝛽 ∼ N(1, 0.45); 𝜎2
1
∼ IG(3, 1),

which are the same as the unconditional distributions for 𝛽1 and 𝜎
2 implied by our specification of the based

distribution G0 for the Dirichlet process mixture of normals.

For both data-generating processes, we obtain the posterior mean of each parameter conditional on each of

the 100 generated samples. We then calculate the mean and the standard deviation of 100 posterior means for

each parameter obtained from these 100 samples. This is equivalent to investigating the sampling moments of

the posterior mean for each parameter.

The third column of Table 2 reports the sample mean and standard deviation of the posterior means when

the distribution of the error term is erroneously assumed to benormal. For data generating process #1, the results

reported in the upper panel of Table 2 are almost the same as those based on the maximum likelihood approach

as shown in the 6th column of Table 1 for T = 500. We have large biases in the parameter estimates. However,

the fourth column of Table 2 shows that, when the non-normality of the error distribution is appropriately taken

care of as outlined in Section 4.2, these biases almost disappear. In summary, we find strong simulation evidence

that the Markov switching component of the conditional mean is well identified from the mixture of normals

specification of the error innovation.

We reach at the same conclusion for data generating #2. However, the evidence seems to be less compelling

for the identification of the Markov switching component of the volatility process, as the results reported in the

lower panel of Table 2 suggest.

Table 2: Performance of the proposed algorithm [simulation Studies].

Parameter True value Average of posterior mean (RMSE)

Normality assumption Mixture of normals

Data generating process #1

𝛽1 −0.6 −1.113 (0.856) −0.601 (0.088)
𝛽2 0.7 0.682 (0.132) 0.703 (0.069)

𝜎2 1.1 0.923 (0.231) 1.156 (0.168)

PS,11 0.9 0.774 (0.172) 0.897 (0.032)

PS,22 0.95 0.924 (0.034) 0.944 (0.018)

Data generating process #2

𝛽 1 1.154 (0.216) 0.993 (0.094)

𝜎2
1

0.5 0.635 (0.472) 0.519 (0.322)

𝜎2
2

2 2.719 (1.973) 2.223 (0.531)

PW ,11 0.9 0.834 (0.135) 0.863 (0.104)

PW ,22 0.95 0.801 (0.220) 0.890 (0.121)
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5 An Application to the Growth of Postwar U.S. Industrial

Production Index [1947:M1–2019:M9]

5.1 Specification for an Empirical Model

We consider the following univariate Markov-switching model for the growth of industrial production index

(Δyt), with a two-state Markov-switching mean (St = 1, 2) and a three-state Markov-switching variance

(Wt = 1, 2, 3):11

Δyt = 𝛽1,Ct + a2,CtS2,t + ut, Ct = 1, 2, 3,

a2,Ct > 0, ∀ t,

ut = 𝜙ut−1 + gWt
u∗
t
, u∗

t
∼ i.i.d.

(
0, 𝜎2

1

)
, |𝜙| < 1, (35)

where ut is independently distributed; S2,t = 1 if St = 2 and S2,t = 0, otherwise; 𝛽1,Ct is the mean growth rate

during recession and 𝛽1,Ct + a2,Ct is the mean growth rate during boom; g2
Wt

is specified in equation (20) with

N = 3; St andWt are independent. The transitional dynamics of St andWt are specified in equations (4) and

(17) with K = 2 and N = 3. In the above model, we introduce a latent discrete variable Ct to allow for structural

breaks in the mean growth rates for boom recession.

KimandNelson (1999) showempirical evidence of a narrowing gapbetween growth rates of real GDPduring

recessions and booms. They argue that this narrowing gap is as important as the reduction in the volatility of the

shocks as a feature of the Great Moderation. More recently, by specifying the regime-specific mean growth rates

of real GDP to follow randomwalks, Eo and Kim (2016) also show that themean growth rate during the boomhas

been steadily decreasing along with the long-run mean growth rate since 1947. To incorporate these particular

features of the business cycle discussed in Kim and Nelson (1999) and Eo and Kim (2016), we incorporate two

structural breaks with unknown break points in the mean growth rates for boom and recession. We specify 𝛽1,Ct
and a2,Ct in the following way:

12

𝛽1,Ct = 𝛾1 + 𝛾2C2,t + (𝛾2 + 𝛾3)C3,t,

a2,Ct = (𝜂1 + 𝜂2 + 𝜂3)C1,t + (𝜂2 + 𝜂3)C2,t + 𝜂3C3,t,

𝛾2 > 0, 𝛾3 > 0; 𝜂1 > 0, 𝜂2 > 0, 𝜂3 > 0, (36)

where

Ck,t =
⎧⎪⎨⎪⎩
1, if Ct = k; k = 1, 2, 3

0, otherwise,
(37)

and Ct follows a three-state Markov-switching process with absorbing states, as specified below:

11 We allow for a 3-state Markov-switching process for the variance of the shocks to capture the unusually high volatility during

the Financial Crisis period.

12 Incorporating structural breaks in themean growth rates for boom or recession such that their gap narrows is based on the prior

belief that the GreatModeration is not overwith the onset of the Financial Crisis. In his recent study onwhether the GreatModeration

is over, Clark (2009) concludes that, over time, macroeconomic volatility will likely undergo occasional shifts between high and

low levels with low volatility being the norm, suggesting that the Great Moderation is not over. Gadea-Rivas, Gomez-Lscos, and

Perez-Quiros (2014) also provide empirical evidence suggesting that output volatility remains subdued despite the turmoil created

by the Financial Crisis of 2008.
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pC,11 > 0.5; pC,12 = 1− pC,11; pC,13 = 0, pC,21 = 0, pC,22 > 0.5; pC,23 = 1− pC,22;

pC,31 = 0, pC,32 = 0, pC,33 = 1, (38)

where pC,ij = Pr[Ct = j|Ct−1 = i].

Note that the existence of the absorbing states in Ct allows us to identify Ct from the Markov-switching

process St in our model. The ordering constraints in the last line of equation (36) guarantee a narrowing gap

between mean growth rates for booms and recessions. At the same time, they also guarantee that a2,Ct > 0, ∀ t,

thereby allowing us to identify regime 2 (i.e. St = 2) as a boom. A graphical illustration of the implied priors for

the mean growth rates during recessions and booms is provided in Figure 2.

By substituting equation (36) into equation (35), we obtain

Δyt = 𝛾1 + 𝛾2C2,t + (𝛾2 + 𝛾3)C3,t
+ ((𝜂1 + 𝜂2 + 𝜂3)C1,t + (𝜂2 + 𝜂3)C2,t + 𝜂3C3,t)S2,t + ut. (39)

Then, by defining et = 𝛾 1 + ut and rearranging the terms in equation (39), we obtain:

Empirical Model with Transformed Parameters

Δyt = 𝛾2
3∑
j=2

Cj,t + 𝛾3C3,t +
(
𝜂1C1,t + 𝜂2

2∑
j=1

Cj,t + 𝜂3
3∑
j=1

Cj,t

)
S2,t + et,

et = 𝜙et−1 + gWt
𝜀t, |𝜙| < 1, 𝜀t|Wt ∼ i.i.d.

(
1

gWt

(1− 𝜙)𝛾1, 𝜎21

)
,

g2
n
= g2

n−1(1+ bn), g2
1
= 1, (1+ bn) > 1, n = 2, 3, (40)

where 𝜀t = (1− 𝜙)𝛾1∕gWt
+ u∗

t
, with u∗

t
∼ i.i.d.N

(
0, 𝜎2

1

)
. The unknown distribution of the error term 𝜀t con-

ditional on Wt can be approximated by the Dirichlet Process mixture of normals specified in equation (22).

Given the truncated normal priors, each of the 𝛾 and 𝜂 parameters can be sequentially drawn from appropriate

truncated normal distributions as explained in Section 3.1, without resorting to the rejection sampling.

Lastly, note that structural breaks in themean growth rates for boom and recession imply structural breaks

in the long-run mean growth rate. Based on equation (39), the long-run mean growth rate (𝜏 t) at each iteration

Figure 2: Graphical illustration of the priors for the narrowing gap between mean growth rates during boom and recession.
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of the MCMC can be obtained by:

𝜏t = 𝛾1 + 𝛾2 Pr[Ct = 2|IT ]+ (𝛾2 + 𝛾3) Pr[Ct = 3|IT ]
+ ((𝜂1 + 𝜂2 + 𝜂3) Pr[Ct = 1|IT ]+ (𝜂2 + 𝜂3) Pr[Ct = 2|IT ]+ 𝜂3 Pr[Ct = 3|IT ]) Pr[St = 2], (41)

where 𝛾 1 can be recovered in the same way as the 𝛽1 coefficient is recovered in footnote 7, withM in footnote 7

now referring to the realized number of mixtures at a particular iteration of the MCMC; IT refers to information

up to T; and Pr[St = 2] refers to the steady-state probability that St = 2, which is given by Pr[St = 2] =
(1 − pS,11)∕(2 − pS,11 − pS,22).

5.2 Empirical Results

Data employed is the seasonally-adjusted postwar U.S. industrial production index, which is obtained from the

Federal Reserve Bank of St. Louis economic database (FRED), and the sample covers the period 1947:M1–2019:M9.

Figure 3 depicts the growth rate of the industrial production index. We estimate both the proposed model and

the model with a normality assumption for the error term. We obtain 500,000 MCMC draws and discard the

first 100,000 to guarantee the convergence of the sampler and to avoid the effect of the initial values. All the

inferences are based on the remaining 400,000 draws. We first consider the following tight priors:

Priors #1: Tight Priors

𝛾2 ∼ N(0.1, 0.1)[𝛾2>0], 𝛾3 ∼ N(0.2, 0.2)[𝛾3>0],

𝜂1 ∼ N(1.5, 0.1)[𝜂1>0], 𝜂2 ∼ N(0.5, 0.2)[𝜂2>0], 𝜂3 ∼ N(0.2, 0.5)[𝜂3>0],

𝜙 ∼ N(0.5, 0.5)[|𝜙|<1], (1+ b2) ∼ IG(4, 4), (1+ b3) ∼ IG(4, 8),

[pS,11, PS,12]
′ ∼ Dir(0.45, 0.05)PS,11>0.5, [PS,21, PS,22]

′ ∼ Dir(0.05, 0.45)PS,22>0.5,

[PW ,11, PW ,12, PW ,13]
′ ∼ Dir(0.9, 0.05, 0.05)PW ,11>0.5,

[PW ,21, PW ,22, PW ,23]
′ ∼ Dir(0.05, 0.9, 0.05)PW ,22>0.5,

[PW ,31, PW ,32, PW ,33]
′ ∼ Dir(0.05, 0.05, 0.9)PW ,33>0.5,

Figure 3: U.S. Industrial production (IP) index growth [1947:M1–2019:M9].
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PC,11 ∼ Dir(9.9, 0.1)PC,11>0.5, PC,22 ∼ Dir(9.9, 0.1)[PC,22>0.5],

(
𝜇m, h

2
m

)
∼ G0 ≡ N

(
−0.5, 3h2

m

)
IG(17, 4),

where the base distribution G0 specified for the Dirichlet process implies the following unconditional distribu-

tions for 𝛾 1 and 𝜎
2
1
:

𝛾1 ∼ N(−0.5, 0.2) and 𝜎2
1
∼ IG(4, 2),

which are used as the priors for 𝛾 1 and 𝜎
2
1
for the model with a normality assumption.

When we apply a normality test to the posterior means of the standardized errors from the model with a

normality assumption, the null is rejected at a 5 % significance level. This provides us with a justification for

employing the proposed model. For the proposed model, the posterior mean for the number of mixtures turns

out to be slightly higher than 3, and the null hypothesis of normality is not rejected (at a 5 % significance level) for

the posterior means of the standardized errors.13 These results suggest that the Dirichlet process mixture nor-

malsmodel reasonably well approximates the unknown distribution of the error term. Furthermore, a Bayesian

model selection criterion (Watanabe-Akaike information criterion or WAIC by Watanabe (2010)) very strongly

prefers the proposed model to the model with a normality assumption.

Figure 4 depicts the posterior probabilities of recession from the two models under the tight priors. The

shaded areas represent the NBER recessions. Estimates of the recession probabilities from the proposed model

are much sharper and agree much more closely with the NBER reference cycles than those from a model with

a normality assumption.

To examine the robustness of the results to the priors employed, we also consider the following loose priors

for some of the parameters by keeping the priors for the rest of the parameters unchanged:

Prior #2: Loose Priors

𝛾2 ∼ N(0.1, 1)[𝛾2>0], 𝛾3 ∼ N(0.2, 2)[𝛾3>0],

𝜂1 ∼ N(1.5, 1)[𝜂1>0], 𝜂2 ∼ N(0.5, 2)[𝜂2>0], 𝜂3 ∼ N(0.2, 4)[𝜂3>0],

[PS,11, PS,12]
′ ∼ Dir(0.09, 0.01)PS,11>0.5, [PS,21, PS,22]

′ ∼ Dir(0.01, 0.09)PS,22>0.5,

PC,11 ∼ Dir(0.99, 0.01)PC,11>0.5, PC,22 ∼ Dir(0.99, 0.01)PC,22>0.5.

For the case of the loose priors, the prior variances of the parameters are set to be much larger than those

for the case of the tight priors.We set the priormeans of the parameters to be identical for the two cases. Figure 5

compares the posterior probabilities of recession from the two competingmodels under the loose priors. For the

model with a normality assumption, the inference on the recession probabilities deteriorates considerably with

the loose priors. For the proposed model, however, the recession probabilities under the loose priors are almost

the same as those under the tight priors, andwe continue to have sharp inferences on the recession probabilities.

That is, the proposed model is robust to the priors employed, while the model with a normality assumption is

very sensitive to the priors.

Figure 6 depicts the posterior means of the error volatilities and those of the long-run mean growth rates

obtained based on equation (41). These are obtained from the proposedmodel under the tight priors.14 As shown

in the upper panel of Figure 6, the high and medium volatility regimes are mostly focused on the period before

the mid-1980s. In most of the post-1984 period, the low volatility regime dominates except for a few episodes of

medium or high volatility that include the Great Recession. The lower panel of Figure 6 demonstrates a pattern

for a steadily decreasing long-run mean growth rate, which is consistent with Stock and Watson (2012) and Eo

and Kim (2016).

13 To calculate the Jarque-Bera test statistic for the normality test, we use the posterior means of the standardized errors (𝑣t =
1

hDt
(𝜀t − 1

gWt

𝜇Dt )) obtained based on equation (23), for t = 1, 2,… , T .

14 The results are almost the same when we employ the loose priors.
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Figure 4: Posterior probabilities of recession based on the two competing models: Tight priors.

Lastly, the upper panel of Figure 7 shows that the posterior distribution of the error term is bimodal before

the mixture of normals is controlled for. However, the lower panel of Figure 7 shows that, once the mixture of

normals is controlled for, the distribution of the error term is very close to the normal distribution.
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Figure 5: Posterior probabilities of recession based on the two competing models: Loose priors.
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Figure 6: Time-varying volatility and long-run mean growth rate of IP: Proposed model [Tight Prior].
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Figure 7: Distribution of the standardized errors (solid line: Standardized errors; broken line: Standard Normal).

6 Summary

We provide solutions to the identification problems that are associated with the estimation of a Markov-

switching model in which the unknown error distribution is approximated by the Dirichlet process mixture

of normals: (i) the problem of label switching for the Markov-switching regime indicator variable; and (ii) the

problem of disentangling the Markov-switching regime indicator variable from the serially independent mix-

ture indicator variable. These solutions are very easy to implement in actual applications, and our Monte Carlo

experiments show that the proposed identification schemes and MCMC procedure work well.

When the proposed model and the MCMC procedure are applied to the monthly index of industrial pro-

duction (1947:M1–2019:M9), they provide us with considerably sharper and more accurate inferences on the

business cycle turning points than the model with an assumption of the normally distributed error term. In our

model, the irregular components that are not related to business conditions are effectively controlled for.
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