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Abstract: This paper extends the Realized-GARCH framework, by allowing the conditional variance equation
to incorporate exogenous variables related to intra-day realized measures. The choice of these measures is
motivated by the so-called heterogeneous auto-regressive (HAR) class of models. Our augmented model is
found to outperform both the Realized-GARCH and the various HAR models in terms of in-sample fitting and
out-of-sample forecasting accuracy. The new model specification is examined under alternative parametric
density assumptions for the return innovations. Non-normality seems to be very important for filtering the
return innovations to which variance responds and helps significantly upon the prediction performance of
the suggested model.

Keywords: HAR; heterogeneous auto-regressive; NIG; realized variance; Realized-GARCH; SGED.

1 Introduction
Modelling and accurately predicting the volatility of asset returns is a key issue behind many financial
applications, such as portfolio allocation, risk management and option pricing. Since Engle (1982) and
Bollerslev (1986), a first “generation” of volatility models evolved and has been extensively used; the well-
documented generalized autoregressive conditional heteroscedasticity (GARCH) class of models. The simple
autoregressive structure of these models provided an easy way to capture clusters in the latent volatility
dynamicsof returns.NumerousdifferentparametricGARCH-type specificationshavebeensuggested toextend
the GARCH models, leading to more sophisticated volatility models which incorporate leverage/feedback
effects, long-memory, regime-switches, among other stylized properties of volatility.1

Normally, standard GARCH models (and their extensions) use daily returns to extract information about
the current level of volatility, treating volatility itself as unobservable. However, more recent advances in the
high-frequency financial econometrics literature utilized intra-day data to construct observable proxies of
variance, the so-called as realized variance (RV) estimators. These observable variance measures gave rise to
a new econometric modelling framework, aiming to either incorporate this information into GARCH models

1 Andersen et al. (2009), Bauwens, Hafner, and Laurent (2012) as well as Francq and Zakoian (2019) provide excellent surveys
on GARCH-type volatility models.
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or directly model the realized variance process. Engle (2002) and Engle and Gallo (2006), first, used RV in a
Multiplicative ErrorModel (MEM) context, while Shephard and Sheppard (2010) presented a so-calledHEAVY
(high-frequency volatility) model for jointly modelling latent and observable variance dynamics. The most
popular and easily applicablemodels of this research-strandwere the HAR-type realized variance regressions
popularized by Corsi (2009) and the Realized-GARCH framework of Hansen, Huang, and Shek (2012). These
models, which we can think of as a second generation of volatility models, have been shown to boost the
forecasting performance of the variance process, especially when a realized variance proxy is included in the
GARCH.2

One of the most important benefits of GARCH over HAR-type models is that they can jointly model the
dynamics of returns and variance.3 Hence, in this paper we employ and effectively build on the Realized-
GARCH framework of Hansen, Huang, and Shek (2012). We first extend the Realized-GARCH model to
incorporate additional intra-day realized measures capturing different volatility asymmetry sources, i.e.
asymmetries originating from both responses of variance to lagged return innovations and/or short-lived
effects from realized upside and downside intra-day variations. In addition to these measures, we also
consider extensions including a volatility-of-volatility measure, which can correct for attenuation-biases in
measuring realized variance, as well as heterogeneous terms of realized variance, which approximate long-
memory properties of variance. These extensions are well-justified by the literature on HARmodels. We show
that the inclusion of these metrics in parametric GARCH specifications may improve the efficiency of the
conditional variance estimates.We therefore refer to these extensions of the Realized-GARCHmodel as a third
generation of volatility models.

We empirically assess the ability of the above new extensions to improve upon the performance of the
standard Realized-GARCH models to fit the data and predict realized volatility. We use intra-day data of the
S & P500 data and we allow return innovations to follow alternative parametric probability density functions
(PDFs), apart from the Normal (N) that is often used in practice. We consider the cases of the skewed-GED
(SGED) and normal-inverse-Gaussian (NIG) PDFs that have been shown to outperform other parametric
densities in fitting financial return data.4 These PDFs are more flexible and can account for more pronounced
levels of skewness and excess kurtosis in asset returns. Therefore, they can help to better filter the return
innovations, and hence to improve the model-inference for both returns and variance.

Twomainconclusions canbedrawn fromthe results of our empirical analysis. First, themodel-extensions
that we suggest seem to improve both the in- and out-of-sample performance of the model to predict realized
volatility compared to the standard Realized-GARCH. This finding is justified by a number of goodness-of-
fit and prediction-accuracy metrics reported, as well as by a series of equal-prediction performance tests
evaluating the relative out-of-sample forecasting performance of the models. Our results show that the
significant improvement in the prediction performance of the model comes primarily from the inclusion of
the upside and downside intra-day movements of realized variance. Second, allowing for asymmetric/fat-
tailed return distributions also plays a crucial role in the accurate filtering of the innovations, and consistently

2 There are several papers documenting the importance of RV for several financial applications. For instance Christoffersen et
al. (2014), Hansen, Huang, and Wang (2015), Feunou, Jahan-Parvar, and Okou (2017), Feunou and Okou (2019), among others,
demonstrate that incorporating RV for option pricing is beneficial. Also, Louzis, Xanthopoulos-Sisinis, and Refenes (2014),Wang,
Chen, and Gerlach (2019), and Chen, Watanabe, and Lin (2021) highlight the impact of RV on accurately forecasting tail-risk at
multiple horizons ahead.
3 Kourtis, Markellos, and Symeonidis (2016) provide a comparison of the volatility forecasting performance of HAR and Realized-
GARCH models across different markets.
4 The SGED has been used since Theodossiou (1998) in several financial applications; for instance, it has been used in capturing
higher-order risk-premia (Theodossiou and Savva 2016), in option-pricing theory (Theodossiou 2015), in conditional density
modelling (Feunou, Jahan-Parvar, and Tédongap 2016) and value-at-risk (VaR) forecasting (Dendramis, Spungin, and Tzavalis
2014). Similarly, the NIG has been shown to perform better than conventional parametric densities in the context of stochastic
volatility models (Andersson 2001; Barndorff-Nielsen 1997), discrete-time conditional volatility models (Forsberg and Bollerslev
2002; Jensen and Lunde 2001), VaR forecasting (Venter and de Jongh 2002; Wilhelmsson 2009), as well as option-pricing (Chorro,
Guégan, and Ielpo 2012; Eriksson, Ghysels, and Wang 2009; Ghysels and Wang 2014; Stentoft 2008).
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helps the identification of the parameters of the volatility process. This boosts the prediction performance of
all the augmented GARCH-type specifications that we consider in our analysis.

The remainder of the paper is organized as follows. Section 2 presents a generic framework for the joint
dynamicsof returns andvarianceandspecifies the conditional variancemodel suggestedby thepaper. Section
3 provides details on the joint estimation procedure that we follow. Section 4 provides a detailed discussion
on both the in-sample fit and the out-of-sample forecasting performance of the models. Section 5 concludes
the paper.

2 The model
Let us write the continuously-compounded daily returns as rt = pt − pt−1, where pt = log(Pt) is the log-price
of an observed price process Pt of a financial asset. The conditional PDF of rt is described by fr(rt|t−1),
with t−1 being the 𝜎-algebra formed by the information-set on the observed variables up to time t − 1.
We denote the conditional mean and variance of returns as mt ≡ E[rt|t−1] and ht ≡ 𝑣ar[rt|t−1], which are
linked to the conditional location and scale parameters of fr(rt|t−1), respectively. The conditional variance
function ht can also be written as ht = E

[⟨p, p⟩t−1,t ||t−1
]
, where ⟨p, p⟩t−1,t is the quadratic variation of the

log-price process pt defined on a daily fixed time interval (t − 1, t). As follows, the log-quadratic variation can
be denoted as 𝑣t ≡ log ⟨p, p⟩t−1,t and has a conditional PDF f𝑣

(
𝑣t

||t−1
)
, with conditional mean E

[
𝑣t

||t−1
]
=

E
[
log ⟨p, p⟩t−1,t ||t−1

]
= log E

[⟨p, p⟩t−1,t ||t−1
]
+ o ≃ log ht, where the convexity term o is negligible. Since

𝑣t is unobservable, a natural measure used in the literature to proxy 𝑣t is the logarithm of RV, where log
(RVt) is a consistent estimator of log ⟨p, p⟩t−1,t; see for example Barndorff-Nielsen and Shephard (2002a),
Barndorff-Nielsen and Shephard (2002b), Barndorff-Nielsen and Shephard (2004a), Barndorff-Nielsen and
Shephard (2004b), and Barndorff-Nielsen and Shephard (2006).5

Under any (generic) parametric specification for the returns rt and log-variance 𝑣t dynamics, we can
write the joint conditional PDF as f (rt, 𝑣t|(t−1;𝜗)), where 𝜗 is a one-dimensional real-valued vector of model
parameters, i.e. 𝜗 ∈ ℝk×1. Given the above definitions, the generic framework of the joint dynamics of rt and
𝑣t can be written as:

rt = mt +
√
htzt (1a)

𝑣t = log ht + 𝜎𝑣ut (1b)

where zt = (rt −mt)∕
√
ht and ut = (𝑣t − log ht)∕𝜎𝑣 being jointly∼i.i.d.(0, 1); i.e. there are no cross- or serial-

correlations between zt and ut. Note that 𝜎2
𝑣
is the conditional variance Var

[
𝑣t

||t−1
]
, which is assumed

constant.6 The above framework assumes there is a one-to-one relation between 𝑣t and log ht. This parsimo-
nious relation can ensure robustness and accuracy of the estimation procedure, as it helps the parameter
identification by avoiding over-parametrization and is a very common choice among econometricians (see
Bekierman and Gribisch (2016), Hansen and Huang (2016), Koopman and Scharth (2012), and Takahashi,
Omori, andWatanabe (2009) among others). For the conditional mean of rt we follow the standard approach
in the literature (see Engle, Lilien, and Robins (1987)), and we assume that mt = r f + 𝜇

√
ht, which incor-

porates the risk-free rate rf , as well as a volatility-in-mean effect capturing a time-varying risk-premium
embodied in rt.

5 Details on the estimation of RV and other realized measures can be found in Section 3.
6 In the remainder of the paper we will assume that 𝑣t follows the normal distribution so that convexity term o of the mean
equation of 𝑣t equals − 1

2𝜎
2
𝑣
. Unreported evidence indicate that the empirical results remain robust to its inclusion in the mean

equation of 𝑣t. We also found the time-variation of the variance of 𝑣t to be negligible; hence beyond the scope of this paper.
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2.1 Conditional variance function specifications
In this section we introduce a new conditional variance framework which nests the standard GJR threshold
GARCH threshold specification (Glosten, Jagannathan, and Runkle 1993) and the HAR family of RV models.
We can write the variance function as follows:

ht = b0 + b1ht−1 + 𝜏(t − 1)+ x(t − 1), (2)

where
𝜏(t) = b2𝜖2t + b3𝕀{zt<0}𝜖

2
t , 𝜖t =

√
htzt, (3)

is the news impact function (NIF) of variance (with b3 capturing the variance asymmetry induced by the
well-documented leverage effect),7 and

x(t) = c0RVt + c1RV+
t + c2RV−

t + c3RV
[5]
t + c4RV

[20]
t + c5RQ

1∕2
t (4)

is the component of ht driven by exogenous variables related to intra-day realized measures. Note that this
NIF specification 𝜏(t) is more flexible than the one in Hansen’s Realized GARCH, as it can also accommodate
for asymmetric volatility effects.

The rationale behind the choice of the realized measures included in x(t) (Eq. (4)) is motivated by
recent empirical findings, and primarily from the literature of HAR models aiming to predict the dynamics
of RV. We first include RV as in Hansen, Huang, and Shek (2012), which has been shown to enhance the
forecasting performance of conditional/realized variance models. Next, we consider the realized upside and
downside semi-variances, denoted as RV+ and RV−, respectively. Patton and Sheppard (2015) provide clear
evidence supporting the decomposition of RV into its two semi-variance components, as it can be beneficial
for volatility forecasting when there are prevalent asymmetries in high-frequency data. They use anHAR-type
regression framework to show that the response of RV to the two semi-variances can differ, with the negative
realized semi-variance being more informative for predicting future RV. At this point, we should highlight
that semi-variances have never been used before into a GARCH-based framework, and therefore it would be
interesting to examine (see Section 4) whether the parametric NIF component of themodel can absorb similar
information to the two semi-variances regarding the asymmetric responses of variance.

Moreover, we incorporate in x(t) the 5- and 20-day (weekly andmonthly)moving-average terms ofRV, i.e.
RV Andersenet al. (2009) andRV Bollerslev et al. (2009),whichhavebeenused in theHAR literature toapprox-
imate the long-memorybehaviourofRV.8 Interestingly, the inclusionof these so-called“heterogeneous” terms
in x(t) and, hence, in the conditional variance model (2) allows capturing long-memory patterns of ht exoge-
nously, without affecting the parsimonious parametric structure of themodel (see also Huang, Liu, andWang
(2016)). Baillie et al. (2019) provide a very detailed discussion on the long-memory property of RV and its
connection with the heterogeneous terms.

Last, the term RQ1∕2
t that we include in x(t) constitutes a measure of realized quarticity, which effectively

reflects the variance-of-variance. Despite the fact that RV can be a consistent estimator of quadratic variation,
it is still subject to measurement error due to finite sampling. It has been shown that the variance of this error
is proportional to RQ (see Andersen, Bollerslev, and Meddahi (2005)). Therefore, taking RQ1∕2

t into account
can absorb this error and correct for attenuation-biases in estimating/forecasting variance. Bollerslev, Patton,
and Quaedvlieg (2016) and Cipollini, Gallo, and Otranto (2020), again within the context of an HAR model,
exploit RQ to attenuate the bias of the estimated model parameters driven by the measurement error of RV.

7 Alternative GARCH-type models may offer different specifications for the NIF specification of variance. However, there is
enough consensus that the simple threshold representation of the GJR model performs extremely well, while at the same time
being parsimonious and easy to interpret. In Appendix A.3, we consider and estimate alternative specifications for the NIF in
order to examine if they can capture the leverage effect better than the GJR model. See also the discussion in Section 4.1.
8 Them-day moving average terms are simply obtained as RV [m]

t ≡ RV(t+1−m:t) = m−1∑m
j=1RVt+1− j.
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The above general framework, to which we henceforth refer as GARCH-HAR-X class and is described by
Eqs. (2)–(4), nests a number of specifications suggested in the literature for modelling conditional and/or
realized variance dynamics. These nested specifications include several HAR-type models, as well as the
Realized-GARCH and its extensions produced by the additional exogenous realized measures; i.e. from the
factors included in x(t). More specifically, for b1 = b2 = b3 = c1 = c2 = c5 = 0 we obtain the standard HAR
model of Corsi (2009). Similarly, forb1 = b2 = b3 = c0 = c5 = 0,weget themoreflexible SHARmodel of Patton
and Sheppard (2015), where the capital letter “S” indicates the inclusion of semi-variances in (4). Finally, for
c1 = c2 = c3 = c4 = c5 = 0, the model reduces to the Realized-GARCH, which for simplicity in this paper we
denote as GARCH-R. Again, note that our GARCH-R is more generic than the standard Realized-GARCH as it
allows for volatility asymmetries through the b3 term in the NIF (3).

We further utilize this framework to study several extensions to the aforementioned existing models.
First, augmenting the standardHARmodel to include information regarding the realized variance-of-variance
(setting b1 = b2 = b3 = c1 = c2 = 0) yields a representation that we denote as HARQ, where the capital letter
“Q” reflects the realized quarticity term in (3).9 This can be combined with the two semi-variances (when
b1 = b2 = b3 = c0 = 0) to generate the SHARQ model.

Next, if we allow for b2 ≠ 0 and (possibly) b3 ≠ 0, the above specifications of the HARmodel (namely, the
HAR, SHAR,HARQandSHARQ) are extended to include information from the filtered return innovations. This
extension allows capturing magnitude and leverage effects on RV, through out return innovations functions
𝜖2t and I{𝜖t<0}𝜖

2
t , respectively. We will henceforth refer to these models, simply, as HARz, SHARz, HARQz,

SHARQz (where the “z” suffix stands for the filtered return innovation).
Furthermore, we present extensions of the GARCH-R model nested in the above framework. For c0 =

c3 = c4 = c5 = 0 we obtain the GARCH-S model which augments the GARCH-R by allowing for upside and
downside semi-variances. When c1 = c2 = c5 = 0 and c0 = c5 = 0, we obtain the GARCH-HAR and GARCH-
SHAR models, respectively. These two specifications include the heterogeneous (moving-average) terms of
RV, as in the HAR-type models literature. Finally, for c1 = c2 = 0 and c0 = 0, we get the GARCH-HARQ and
GARCH-SHARQ models, which incorporate realized quarticity information in the GARCH-HAR and GARCH-
SHARmodels.Note that theGARCH-SHARQmodelconstituteswhatwecall the“full” specificationproducedby
Eqs. (2)–(4), and it encompasses all the specifications considered. We will use GARCH-SHARQ as benchmark
for futuremodel comparisons, especially vis-a-vis theGARCH-R and the augmentedHAR-type representations
using the sameexogenousvariables. Theparameter restrictions for thenested specifications thatwediscussed
are also summarized in Table 1.

3 Data & estimation

3.1 Data
We implement our generalized Realized-GARCH-HAR framework on the S&P500 index.10 We obtain ultra-
high-frequency data (UHF) from the trade and quote (TAQ) Database. This allows us to monitor all the
recorded tick-level data on the S&P500 index, at millisecond-level precision. Our dataset covers the period of
1995–2016. Given the UHF data on the index, we construct evenly-spaced observations of 5 min intervals for

9 Note that our HARQ representation is slightly different from that in Bollerslev, Patton, and Quaedvlieg (2016); in their paper
they only consider the interaction between RQ and RV, instead of using RQ as explanatory variable to predict RV. However, for
simplicity we preserve the same name for the model.
10 The S&P500 data provide an attractive ground for an analysis of this type. The USmarket is very liquid, and therefore one can
easily obtain a rich dataset consisting of equity index options as well as ultra-high-frequency intra-day tick-data. Also, there is an
abundance of studies documenting the interesting stylized facts of this market; asymmetric volatility/feedback effects, negative
variance risk-premia, significant deviations from normality of both physical and risk-neutral densities, etc.
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Table 1: Nested models within the GARCH-HAR-X class.

ht 𝝐
2
t 𝝐

2
t 𝕀{zt<0} RVt RV+

t RV−
t RV [5]

t RV [20]
t RQ1∕2

t

HAR – – – X – – X X –
SHAR – – – – X X X X –
HARz – X X X – – X X –
SHARz – X X – X X X X –
HARQ – – – X – – X X X
SHARQ – – – – X X X X X
HARQz – X X X – – X X X
SHARQz – X X – X X X X X
GARCH-R X X X X – – – – –
GARCH-S X X X – X X – – –
GARCH-HAR X X X X – – X X –
GARCH-SHAR X X X – X X X X –
GARCH-HARQ X X X X – – X X X
GARCH-SHARQ X X X – X X X X X

This table presents the variables included in the different models nested within the GARCH-HAR-X class. The first column
corresponds to the model abbreviations used throughout the paper. Recall that 𝜖t =

√
htzt , where ht denotes the conditional

variance and zt the return innovation term. RVt stands for the daily realized variance, while RV+
t and RV−

t denote daily upside
and downside realized semi-variances, respectively. The RV [5]

t and RV [20]
t variables are the 5- and 20-day moving average terms

of RV, and RQt denotes the so-called realized quarticity.

the trading hours between 9:30 and 16:00 (EST) by taking the last price that was recorded within the previous
5min period. This gives us 78 intra-day observations per day, whichwe use to calculate the realizedmeasures.
In case there is no trading in a specific interval, then the corresponding return is set to zero.

To calculate the realized measure of variance RVt, included in relation (4), we rely on the heavily-
used estimator (see Andersen et al. (2001), Barndorff-Nielsen and Shephard (2002a), Barndorff-Nielsen and
Shephard (2002b), Barndorff-Nielsen and Shephard (2004a), Barndorff-Nielsen and Shephard (2004b), and
Barndorff-Nielsen and Shephard (2006) among others):

RVt =
n∑
i=1

r2t,i,

where r2t,i is the ith intra-day log-return at day t defined as rt,i = pt, in − pt, i−1n (with i = 1, 2,… , n), where p
stands for the log-price. This converges in probability to the quadratic variation ⟨p, p⟩t−1.t as n→∞, i.e. as the
time-interval between two consecutive observations shrinks. For the upside and downside semi-variances we
follow Barndorff-Nielsen, Kinnebrock, and Shephard (2008) and Patton and Sheppard (2015). They show that
RV can be further decomposed into upside and downside semi-variances, defined as:

RV+
t =

n∑
i=1

r2t,i𝕀{rt,i>0} and RV−
t =

n∑
i=1

r2t,i𝕀{rt,i≤0},

respectively. The RV decomposition simply implies that RVt = RV+
t + RV−

t . Finally, as an estimator for the
realized quarticity we use

RQt =
n
3

n∑
i=1

r4t,i,

which, in the absence of jumps, it can be shown to provide ameasure proportional to the asymptotic variance
of RV; see Barndorff-Nielsen and Shephard (2002a) and Andersen, Bollerslev, and Diebold (2007).
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3.2 A joint maximum likelihood estimation approach
We apply a joint maximum likelihood estimation (MLE) of returns rt and log-quadratic variation 𝑣t on
the system of equations defined by (1a) and (1b), where 𝑣t is approximated by log(RVt) and conditional
variance ht is described by (2)–(4). Responding to heavily-documented evidence that return distributions
exhibit pronounced skewness and/or kurtosis levels, we consider different parametric PDFs for the return
innovations zt. Beyond the Normal (N) distribution, we consider the cases of the skewed-GED (SGED), as well
as the very flexible normal-inverse-Gaussian (denoted as NIG).11

Both the SGED and the (standardized) NIG are two-parameter distributions that have been shown to
outperform other parametric distributions in fitting financial return data. This is because they are able
to span a significantly wider domain of theoretically feasible skewness-kurtosis combinations, compared
to other conventional parametric densities; see discussion in Jondeau and Rockinger (2003).12 They also nest
a range of popular parametric densities (including the Normal) as limiting cases. Capturing asymmetry and
fat-tails in returns helps to better filter the return innovations and hence to improve the model-inference
for both returns and variance. Ignoring these features might induce inefficiency and bias in the parameter
estimates which would impact both the in-sample and out-of-sample performance of the system of Eqs. (1a)
and (1b); see discussion in Papantonis, Rompolis, and Tzavalis (2021).

On the other hand, evidence suggests that the distribution of log(RV) is approximately Normal; see
Andersen et al. (2001) andAndersen et al. (2003). Therefore, it follows naturally to assume that the innovation
term u in Eq. (1b) is Normally distributed, i.e. u ∼ N(0, 1). Also, note that working with log(RV), instead of
RV, absorbs almost entirely the heteroscedasticity in the error term of Eq. (1b); see Bollerslev et al. (2009).
Simulation results in Papantonis (2016) and Papantonis, Rompolis, and Tzavalis (2021) show significant
improvements in terms of bias and efficiency for the parameter estimates of volatility models when a similar
joint MLE framework is considered.

The joint MLE provides a very straightforward and robust method of obtaining parameter estimates
and has been used in numerous similar applications (see Hansen, Huang, and Shek (2012), Hansen and
Huang (2016), Papantonis (2016), Papantonis, Rompolis, and Tzavalis (2021) and references therein). The
joint log-likelihood function that we maximize can be simply expressed as follows:

(rt, 𝑣t|(t−1;𝜗)) ≡ 
R(rt|t−1;𝜗)+ 

V (𝑣t|t−1;𝜗)

=
T∑
t=1

log fr(rt|t−1;𝜗)+
T∑
t=1

log f𝑣(𝑣t|t−1;𝜗), (5)

where T is the sample size. The total log-likelihood (rt, 𝑣t|(t−1;𝜗)) is simply obtained as the sum of two
independent log-likelihood components for the returnsR(rt|t−1;𝜗) and log-realized varianceV (𝑣t|t−1;𝜗).
Theparametervector𝜗canbeestimatedbysolving the followingnumericalnon-linearmaximizationproblem:

𝜗̂ = argmax
𝜗

.

The standard errors of the parameter estimator 𝜗̂ are calculated from the inverse of the information matrix.
The variance-covariance matrix of the MLE estimator can be written:

Var(𝜗̂) =
[
I(𝜗̂)

]−1
=

(
−E

[
H(𝜗̂)

])−1
=

(
−E

[
𝜕2(𝜗̂)
𝜕𝜗̂𝜕𝜗̂′

])−1

11 A more detailed description of the standardized NIG and SGED is provided in Appendix A.
12 Specifically, the SGED behaves similarly to the skewed-student-t distribution, therefore has been used in several financial
risk applications focusing on capturing fat-tails in returns, for instance when modelling value-at-risk or expected shortfall; see
Dendramis, Spungin, and Tzavalis (2014).
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where the Hessian matrix H is obtained numerically. The standard errors of 𝜗̂ are simply obtained as the
square-root of the diagonal elements of the above covariance matrix.

4 Estimation results

4.1 In-sample estimates
The in-sample MLE parameter estimates, along with their standard errors in parenthesis, are presented
in Tables 2–4. Each table presents results under the three alternative density specifications for the return
innovation term zt thatweconsider; i.e. for theNormal (Table2), SGED(Table3)andNIG(Table4)distributions.
Note that the tables include not only the results of the full model, but also those of the several nested
specifications discussed in Section 2. For all the specifications considered, the tables report the values of both
components of (rt, 𝑣t|(Ft−1;𝜗)), i.e. R(rt|Ft−1;𝜗) and 

V (𝑣t|Ft−1;𝜗), in order to provide a more complete
picture of themarginal contribution of each component to the total likelihood value; for brevity we denote the
likelihood components also as , R and 

V , respectively. Additionally, we provide the Akaike information
criterion (AIC) and Bayesian information criterion (BIC) in order to demonstrate how well the alternative
model and/or density specifications fit the data. Finally, to assess the prediction performance of the models,
in Table 5 we report results for several widely-used prediction performance metrics calculated using the
full sample estimates of conditional variance. These metrics include the mean squared and absolute errors
(denoted as MSE and MAE), as well as the heteroscedasticity-adjusted mean squared (HMSE) and mean
absolute percentage (MAPE) error metrics, which are more robust to possible heteroscedastic patterns in the
forecast errors. The same metrics are also used in the next subsection to evaluate the out-of-sample accuracy
of variance predictions. These loss-functions are calculated as

LMSEt = [log RVt − log ht]
2 , LMAEt = ||log RVt − log ht|| , LHMSEt =

[
RVt − ht
RVt

]2
and LMAPEt =

||||
RVt − ht
RVt

||||
(6)

Several interesting conclusions can be drawn from the results shown in Tables 2–5. First, they clearly
demonstrate that the full GARCH-SHARQ specification considerably improves upon the in-sample fit and
predictive performance of realized variance compared to the HAR model of Corsi (2009) or the GARCH-R
model of Hansen, Huang, and Shek (2012). This result can be clearly justified by all the prediction and
fit performance metrics reported in the tables. Recall that the GARCH-R and HAR-type models are the key
reference models for our comparisons, since the GARCH-SHARQ follows as direct extension of these.

The enhanced performance of the GARCH-SHARQ model with respect to GARCH-R comes primarily
from the decomposition of RV into upside and downside realized semi-variances (RV+ and RV−) therefore
introducing a source of asymmetry (this also holds for the GARCH-S/SHAR/SHARQ models), as well as from
the inclusion of realized quarticity RQ in x(t), which helps controlling for attenuation biases in realized
variancemeasurement (refer to the GARCH-HARQ/SHARQ). It becomes obvious that this particular extension
of the GARCH-R model increases the variance prediction performance significantly (e.g. the HMSE metric
drops from 0.6336 to 0.5056 under the NIG distribution). A similar conclusion can be drawn from the values
of the log-likelihood function  and its two component terms R and 

V reported in the tables. Note that the
values of R and 

V indicate that the gains in the log-likelihood of the model come primarily from improving
its fit into the realized measure of log-variance 𝑣t. Additionally, we find that the improved performance of the
GARCH-SHARQ model to some extent is also due to the 5-day and 20-day (heterogeneous) moving-average
terms of RV (RV (Andersen et al. 2009) and RV (Bollerslev et al. 2009)), which help approximating the long-
memory property of variance (see also Huang, Liu, andWang (2016)). The standard errors reported below the
parameter estimates indicate that all the exogenous variables are significant at conventional levels (5% and
below) and, according to AIC and BIC, including them in the equation significantly improves the ability of
the model to fit the data.
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Table 2: Full sample maximum likelihood parameter estimates for linear GARCH-HAR-X(N) models.

HAR SHAR HARz SHARz HARQ SHARQ HARQz SHARQz

𝜇 0.0371
[0.0134]

0.0373
[0.0134]

0.0408
[0.0134]

0.0394
[0.0134]

0.0370
[0.0134]

0.0375
[0.0134]

0.0411
[0.0134]

0.0410
[0.0134]

b0 3.7334
[0.3908]

3.9286
[0.3766]

4.0149
[0.3763]

3.9895
[0.3747]

3.5804
[0.3685]

3.6333
[0.3655]

3.8294
[0.3614]

3.8179
[0.3614]

b1 – – – – – – – –
b2 – – −0.0400

[0.0036]
−0.0124
[0.0054]

– – −0.0223
[0.0037]

−0.0195
[0.0044]

b3 – – 0.1216
[0.0072]

0.0606
[0.0108]

– – 0.0936
[0.0070]

0.0873
[0.0088]

c0 0.3407
[0.0172]

– 0.2584
[0.0177]

– 0.7518
[0.0237]

– 0.6207
[0.0244]

–

c1 – −0.0556
[0.0223]

– 0.0289
[0.0334]

– 0.5189
[0.0350]

– 0.5964
[0.0323]

c2 – 0.6692
[0.0261]

– 0.5045
[0.0387]

– 0.7964
[0.0239]

– 0.6349
[0.0272]

c3 0.3964
[0.0234]

0.4469
[0.0225]

0.4487
[0.0229]

0.4558
[0.0226]

0.3043
[0.0210]

0.3414
[0.0212]

0.3544
[0.0211]

0.3561
[0.0212]

c4 0.1487
[0.0162]

0.1356
[0.0154]

0.1463
[0.0156]

0.1395
[0.0154]

0.1277
[0.0148]

0.1219
[0.0145]

0.1272
[0.0144]

0.1264
[0.0144]

c5 – – – – −0.1775
[0.0055]

−0.1400
[0.0068]

−0.1508
[0.0054]

−0.1478
[0.0060]

𝜂 – – – – – – – –
𝜆 – – – – – – – –


R 17,696.22 17,718.79 17,704.42 17,709.31 17,732.42 17,740.41 17,732.05 17,732.45


V −5019.80 −4871.16 −4863.74 −4841.68 −4768.40 −4725.40 −4663.16 −4662.86

 12,676.42 12,847.63 12,840.68 12,867.64 12,964.02 13,015.02 13,068.89 13,069.59

AIC −25,342.84 −25,683.27 −25,667.36 −25,719.27 −25,916.03 −26,016.03 −26,121.78 −26,121.18
BIC −25,309.75 −25,643.55 −25,621.03 −25,666.32 −25,876.31 −25,969.69 −26,068.82 −26,061.60
K 5 6 7 8 6 7 8 9

GARCH-R GARCH-S GARCH-HAR GARCH-SHAR GARCH-HARQ GARCH-SHARQ

𝜇 0.0430
[0.0134]

0.0419
[0.0134]

0.0435
[0.0134]

0.0427
[0.0134]

0.0413
[0.0134]

0.0416
[0.0134]

b0 1.8323
[0.1371]

1.8050
[0.1350]

2.0252
[0.1831]

1.9573
[0.1748]

2.1203
[0.2034]

2.0054
[0.1969]

b1 0.6829
[0.0117]

0.6816
[0.0114]

0.5681
[0.0243]

0.5730
[0.0220]

0.4814
[0.0256]

0.5005
[0.0252]

b2 −0.0339
[0.0029]

−0.0092
[0.0037]

−0.0390
[0.0031]

−0.0106
[0.0040]

−0.0321
[0.0031]

−0.0220
[0.0039]

b3 0.1138
[0.0050]

0.0612
[0.0067]

0.1398
[0.0066]

0.0781
[0.0080]

0.1214
[0.0062]

0.0989
[0.0078]

c0 0.2409
[0.0113]

– 0.2248
[0.0137]

– 0.4524
[0.0218]

–

c1 – 0.0430
[0.0173]

– −0.0030
[0.0215]

– 0.3563
[0.0295]

c2 – 0.4519
[0.0242]

– 0.4630
[0.0266]

– 0.4999
[0.0242]

c3 – – 0.0425
[0.0208]

0.0460
[0.0187]

0.0615
[0.0180]

0.0529
[0.0175]

c4 – – 0.0652
[0.0080]

0.0597
[0.0076]

0.0670
[0.0084]

0.0636
[0.0081]

c5 – – – – −0.0984
[0.0056]

−0.0853
[0.0060]

𝜂 – – – – – –
𝜆 – – – – – –


R 17,758.16 17,775.49 17,748.91 17,765.45 17,774.01 17,777.40


V −4803.51 −4755.93 −4739.31 −4691.87 −4576.14 −4568.83

 12,954.64 13,019.56 13,009.61 13,073.58 13,197.88 13,208.57

AIC −25,897.29 −26,025.11 −26,003.21 −26,129.15 −26,377.75 −26,397.13
BIC −25,857.57 −25,978.78 −25,950.26 −26,069.58 −26,318.18 −26,330.94
K 6 7 8 9 9 10

This table presents maximum likelihood estimation (MLE) results for the GARCH-HAR-X class of models defined in Table 1
assuming that the return innovations follow the Normal distribution. R denotes the maximum log-likelihood value of the return
component, while V is the maximum log-likelihood value of the log realized variance component.  is the sum of the two
components. AIC and BIC denote the Akaike and Bayesian Information Criteria, respectively. K is the number of model
parameters. Standard errors are shown in brackets.



180 | I. Papantonis et al.: Augmenting the Realized-GARCH

Table 3: Full sample maximum likelihood parameter estimates for linear GARCH-HAR-X(SGED) models.

HAR SHAR HARz SHARz HARQ SHARQ HARQz SHARQz

𝜇 0.0420
[0.0149]

0.0419
[0.0150]

0.0482
[0.0148]

0.0459
[0.0149]

0.0409
[0.0150]

0.0413
[0.0149]

0.0473
[0.0150]

0.0472
[0.0150]

b0 3.3310
[0.3936]

3.5336
[0.3791]

3.6432
[0.3785]

3.6084
[0.3767]

3.1686
[0.3702]

3.2321
[0.3673]

3.4414
[0.3626]

3.4315
[0.3631]

b1 – – – – – – – –
b2 – – −0.0375

[0.0037]
−0.0105
[0.0054]

– – −0.0201
[0.0038]

−0.0178
[0.0045]

b3 – – 0.1236
[0.0073]

0.0638
[0.0109]

– – 0.0950
[0.0071]

0.0896
[0.0089]

c0 0.3372
[0.0174]

– 0.2504
[0.0179]

– 0.7493
[0.0240]

– 0.6135
[0.0247]

–

c1 – −0.0523
[0.0223]

– 0.0286
[0.0332]

– 0.5188
[0.0352]

– 0.5929
[0.0325]

c2 – 0.6635
[0.0263]

– 0.4909
[0.0388]

– 0.7932
[0.0242]

– 0.6255
[0.0275]

c3 0.3888
[0.0234]

0.4359
[0.0226]

0.4378
[0.0230]

0.4448
[0.0227]

0.2953
[0.0211]

0.3314
[0.0212]

0.3434
[0.0212]

0.3449
[0.0212]

c4 0.1453
[0.0162]

0.1343
[0.0155]

0.1455
[0.0156]

0.1388
[0.0155]

0.1255
[0.0149]

0.1201
[0.0146]

0.1263
[0.0145]

0.1256
[0.0145]

c5 – – – – −0.1763
[0.0056]

−0.1388
[0.0068]

−0.1489
[0.0054]

−0.1463
[0.0060]

𝜂 1.4332
[0.0288]

1.4376
[0.0289]

1.4293
[0.0287]

1.4315
[0.0288]

1.4431
[0.0290]

1.4452
[0.0291]

1.4382
[0.0289]

1.4384
[0.0289]

𝜆 −0.0713
[0.0138]

−0.0714
[0.0137]

−0.0710
[0.0132]

−0.0709
[0.0136]

−0.0735
[0.0138]

−0.0727
[0.0137]

−0.0720
[0.0138]

−0.0720
[0.0139]

Skew −0.1817 −0.1810 −0.1816 −0.1809 −0.1854 −0.1831 −0.1825 −0.1823
Kurt 3.9491 3.9375 3.9595 3.9536 3.9242 3.9183 3.9362 3.9356


R 17,828.06 17,849.71 17,836.58 17,840.82 17,861.87 17,868.51 17,861.68 17,861.88


V −4988.08 −4841.32 −4830.21 −4808.78 −4739.42 −4696.98 −4632.22 −4631.92

 12,839.97 13,008.39 13,006.37 13,032.04 13,122.45 13,171.54 13,229.46 13,229.97

AIC −25,665.95 −26,000.77 −25,994.74 −26,044.08 −26,228.91 −26,325.07 −26,438.92 −26,437.93
BIC −25,619.61 −25,947.82 −25,935.16 −25,977.88 −26,175.95 −26,265.50 −26,372.73 −26,365.12
K 7 8 9 10 8 9 10 11

GARCH-R GARCH-S GARCH-HAR GARCH-SHAR GARCH-HARQ GARCH-SHARQ

𝜇 0.0486
[0.0151]

0.0462
[0.0151]

0.0497
[0.0151]

0.0474
[0.0151]

0.0459
[0.0151]

0.0459
[0.0150]

b0 1.7720
[0.1404]

1.7491
[0.1382]

1.8945
[0.1843]

1.8344
[0.1765]

1.9665
[0.2062]

1.8633
[0.1995]

b1 0.6746
[0.0124]

0.6737
[0.0120]

0.5593
[0.0252]

0.5647
[0.0229]

0.4666
[0.0261]

0.4861
[0.0256]

b2 −0.0306
[0.0030]

−0.0062
[0.0038]

−0.0357
[0.0032]

−0.0078
[0.0041]

−0.0289
[0.0032]

−0.0191
[0.0040]

b3 0.1132
[0.0051]

0.0612
[0.0068]

0.1393
[0.0067]

0.0787
[0.0081]

0.1211
[0.0063]

0.0994
[0.0080]

c0 0.2395
[0.0117]

– 0.2229
[0.0139]

– 0.4551
[0.0222]

–

c1 – 0.0448
[0.0177]

– 0.0004
[0.0219]

– 0.3629
[0.0300]

c2 – 0.4470
[0.0247]

– 0.4559
[0.0270]

– 0.5006
[0.0246]

c3 – – 0.0386
[0.0211]

0.0419
[0.0191]

0.0599
[0.0182]

0.0514
[0.0177]

c4 – – 0.0686
[0.0081]

0.0632
[0.0077]

0.0710
[0.0086]

0.0675
[0.0083]

c5 – – – – −0.0996
[0.0057]

−0.0870
[0.0061]

𝜂 1.4502
[0.0294]

1.4574
[0.0296]

1.4465
[0.0292]

1.4533
[0.0294]

1.4553
[0.0293]

1.4566
[0.0294]

𝜆 −0.0718
[0.0142]

−0.0719
[0.0144]

−0.0714
[0.0142]

−0.0711
[0.0142]

−0.0728
[0.0139]

−0.0723
[0.0139]

Skew −0.1800 −0.1790 −0.1795 −0.1777 −0.1815 −0.1799
Kurt 3.9047 3.8863 3.9141 3.8962 3.8921 3.8885


R 17,875.72 17,889.54 17,870.04 17,882.95 17,893.30 17,895.70


V −4771.74 −4725.34 −4707.22 −4660.95 −4546.11 −4538.94

 13,103.98 13,164.20 13,162.83 13,222.00 13,347.19 13,356.76
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Table 3: (continued)

GARCH-R GARCH-S GARCH-HAR GARCH-SHAR GARCH-HARQ GARCH-SHARQ

AIC −26,191.96 −26,310.40 −26,305.65 −26,422.00 −26,672.39 −26,689.52
BIC −26,139.01 −26,250.83 −26,239.46 −26,349.19 −26,599.57 −26,610.08
K 8 9 10 11 11 12

This table presents maximum likelihood estimation (MLE) results for the GARCH-HAR-X class of models defined in Table 1
assuming that the return innovations follow the SGED distribution. R denotes the maximum log-likelihood value of the return
component, while V is the maximum log-likelihood value of the log realized variance component.  is the sum of the two
components. AIC and BIC denote the Akaike and Bayesian Information Criteria, respectively. K is the number of model
parameters. Standard errors are shown in brackets.

Table 4: Full sample maximum likelihood parameter estimates for linear GARCH-HAR-X(NIG) models.

HAR SHAR HARz SHARz HARQ SHARQ HARQz SHARQz

𝜇 0.0392
[0.0173]

0.0393
[0.0172]

0.0471
[0.0172]

0.0440
[0.0172]

0.0390
[0.0172]

0.0394
[0.0172]

0.0468
[0.0171]

0.0466
[0.0172]

b0 3.2043
[0.3659]

3.3970
[0.3534]

3.5057
[0.3535]

3.4730
[0.3519]

3.0709
[0.3466]

3.1268
[0.3441]

3.3332
[0.3406]

3.3255
[0.3404]

b1 – – – – – – – –
b2 – – −0.0335

[0.0035]
−0.0092
[0.0051]

– – −0.0176
[0.0036]

−0.0159
[0.0043]

b3 – – 0.1153
[0.0068]

0.0615
[0.0103]

– – 0.0892
[0.0067]

0.0852
[0.0084]

c0 0.3120
[0.0162]

– 0.2301
[0.0167]

– 0.6971
[0.0225]

– 0.5705
[0.0232]

–

c1 – −0.0447
[0.0209]

– 0.0307
[0.0311]

– 0.4869
[0.0329]

– 0.5552
[0.0304]

c2 – 0.6126
[0.0246]

– 0.4464
[0.0362]

– 0.7381
[0.0227]

– 0.5795
[0.0258]

c3 0.3631
[0.0218]

0.4070
[0.0211]

0.4109
[0.0215]

0.4166
[0.0213]

0.2784
[0.0198]

0.3117
[0.0199]

0.3236
[0.0199]

0.3248
[0.0199]

c4 0.1382
[0.0151]

0.1293
[0.0145]

0.1387
[0.0146]

0.1332
[0.0145]

0.1209
[0.0139]

0.1162
[0.0137]

0.1219
[0.0136]

0.1214
[0.0136]

c5 – – – – −0.1642
[0.0052]

−0.1302
[0.0064]

−0.1391
[0.0051]

−0.1372
[0.0056]

𝜂 55.3203
[5.3562]

56.8253
[4.3716]

53.1010
[4.5842]

54.9382
[5.1462]

51.6319
[4.5846]

53.7877
[5.9446]

51.1707
[4.6025]

51.3957
[4.7125]

𝜆 −0.6989
[0.0104]

−0.6954
[0.0105]

−0.6963
[0.0105]

−0.6961
[0.0105]

−0.6930
[0.0107]

−0.6919
[0.0107]

−0.6919
[0.0107]

−0.6919
[0.0107]

Skew −0.2819 −0.2768 −0.2867 −0.2818 −0.2893 −0.2830 −0.2902 −0.2895
Kurt 3.1602 3.1549 3.1661 3.1605 3.1697 3.1626 3.1709 3.1701


R 18,026.91 18,045.10 18,035.71 18,038.15 18,060.83 18,065.43 18,061.25 18,061.25


V −4953.26 −4808.52 −4796.64 −4775.34 −4708.11 −4666.18 −4601.30 −4600.98

 13,073.66 13,236.58 13,239.07 13,262.81 13,352.72 13,399.25 13,459.96 13,460.27

AIC −26,133.31 −26,457.16 −26,460.13 −26,505.62 −26,689.45 −26,780.50 −26,899.92 −26,898.55
BIC −26,086.97 −26,404.21 −26,400.56 −26,439.43 −26,636.49 −26,720.92 −26,833.72 −26,825.74
K 7 8 9 10 8 9 10 11

GARCH-R GARCH-S GARCH-HAR GARCH-SHAR GARCH-HARQ GARCH-SHARQ

𝜇 0.0514
[0.0171]

0.0486
[0.0170]

0.0520
[0.0171]

0.0494
[0.0171]

0.0475
[0.0170]

0.0476
[0.0170]

b0 1.6796
[0.1313]

1.6554
[0.1290]

1.8057
[0.1733]

1.7489
[0.1658]

1.8992
[0.1950]

1.8060
[0.1890]

b1 0.6770
[0.0123]

0.6770
[0.0119]

0.5624
[0.0253]

0.5687
[0.0231]

0.4681
[0.0264]

0.4870
[0.0260]

b2 −0.0271
[0.0028]

−0.0051
[0.0036]

−0.0320
[0.0030]

−0.0069
[0.0039]

−0.0263
[0.0031]

−0.0178
[0.0038]

b3 0.1051
[0.0048]

0.0583
[0.0064]

0.1298
[0.0063]

0.0754
[0.0076]

0.1139
[0.0060]

0.0950
[0.0075]

c0 0.2215
[0.0109]

– 0.2065
[0.0130]

– 0.4229
[0.0209]

–

c1 – 0.0454
[0.0166]

– 0.0060
[0.0206]

– 0.3419
[0.0284]

c2 – 0.4082
[0.0228]

– 0.4163
[0.0251]

– 0.4625
[0.0231]

c3 – – 0.0344
[0.0199]

0.0369
[0.0181]

0.0562
[0.0174]

0.0486
[0.0169]
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Table 4: (continued)

GARCH-R GARCH-S GARCH-HAR GARCH-SHAR GARCH-HARQ GARCH-SHARQ

c4 – – 0.0655
[0.0077]

0.0607
[0.0073]

0.0687
[0.0081]

0.0655
[0.0079]

c5 – – – – −0.0926
[0.0054]

−0.0816
[0.0058]

𝜂 50.1807
[4.4828]

52.4872
[3.9657]

49.3305
[4.6749]

52.3148
[4.4833]

49.8684
[4.6023]

51.1580
[3.8995]

𝜆 −0.6891
[0.0108]

−0.6872
[0.0109]

−0.6897
[0.0108]

−0.6881
[0.0108]

−0.6863
[0.0109]

−0.6859
[0.0109]

Skew −0.2918 −0.2846 −0.2946 −0.2854 −0.2916 −0.2877

Kurt 3.1733 3.1651 3.1765 3.1659 3.1735 3.1690

R 18,073.95 18,084.96 18,070.49 18,080.10 18,091.53 18,092.74


V −4739.17 −4693.48 −4675.14 −4629.49 −4516.30 −4509.27

 13,334.78 13,391.48 13,395.35 13,450.61 13,575.24 13,583.46

AIC −26,653.57 −26,764.96 −26,770.70 −26,879.23 −27,128.48 −27,142.93
BIC −26,600.61 −26,705.38 −26,704.51 −26,806.41 −27,055.66 −27,063.49
K 8 9 10 11 11 12

This table presents maximum likelihood estimation (MLE) results for the GARCH-HAR-X class of models defined in Table 1
assuming that the return innovations follow the NIG distribution. R denotes the maximum log-likelihood value of the return
component, while V is the maximum log-likelihood value of the log realized variance component.  is the sum of the two
components. AIC and BIC denote the Akaike and Bayesian Information Criteria, respectively. K is the number of model
parameters. Standard errors are shown in brackets.

Second, our results clearly indicate that this generalized/augmented GARCH-HAR-X framework also
provides themeans for useful extensions to the standard HAR-typemodel-variants suggested in the literature
topredictRV.Ascanbeseen fromTables2–4, comparing thestandardHAR-typemodels to their corresponding
GARCH-HAR-X counterparts shows that all the GARCH-model features have significant impact on RVt, even
in the presence of the other HAR-model terms. Their sign and magnitude is in line with other studies in the
standard GARCH model literature, and they seem to improve both the joint fit to returns and variance and
the performance of the HARmodel to predict the realized variance measure 𝑣t. The values of the loss-metrics
reported in Table 5 indicate a sizeable performance improvement (for instance the HMSE drops from 0.6647
to 0.5750 when comparing the SHAR of Patton and Sheppard (2015) to the corresponding GARCH-SHAR),
while those of , R and 

V again reflect that most of the gains come from improving its fit into the realized
measure of log-variance 𝑣t.

The improvedperformanceof theaugmentedHAR-typemodels that include theGARCH terms stemsfirstly
from the autoregressive conditional variance component ht−1, differentiating the impact from that of lagged
RV. As seen by the estimates of the models, the inclusion of ht−1 in the HAR model does not interact with
the lagged realized measures, which means that it reflects different dynamic effects of conditional variance.
A second source of performance improvement over the standard HAR models comes from adding the return
innovation functions, i.e. through the NIF 𝜏(t); refer to the HARz, SHARz, HARQz, SHARQz models. Doing so
allowsus to capture asymmetries in realized variance in a similarway as inGARCHmodels. Other studies have
tried to capture leverage effects in HAR models by simply using lagged returns (Audrino and Hu 2016; Corsi
and Renò 2012). Even though this approach might look very similar conceptually, we have found that using
lagged filtered innovations zt instead (as in a GARCH model) performs much better in fitting the data. This
is an interesting finding and can be justified by the fact that filtered innovations provide a “cleaner” source
of news information and have time-invariant distributional properties (at least for the first two moments of
the distribution) since they are not contaminated by conditional variance or variance-in-mean effects, unlike
raw returns.

A third conclusion that can be drawn from our results is related to the importance of the NIF component
𝜏(t). It appears that including in ht the exogenous realized variables through x(t) cannot fully absorb the
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Table 5: Full sample variance loss-function results for GARCH-HAR-X models.

MSE MAE HMSE MAPE

Panel A: GARCH-HAR-X(N)

HAR 0.3587 0.4649 0.8972 0.5752
SHAR 0.3400 0.4520 0.8343 0.5526
HARz 0.3390 0.4514 0.8211 0.5518
SHARz 0.3364 0.4495 0.8124 0.5483
HARQ 0.3276 0.4459 0.6897 0.5313
SHARQ 0.3225 0.4423 0.6880 0.5267
HARQz 0.3154 0.4364 0.6659 0.5177
SHARQz 0.3153 0.4364 0.6664 0.5178
GARCH-R 0.3318 0.4458 0.7897 0.5428
GARCH-S 0.3261 0.4427 0.7478 0.5356
GARCH-HAR 0.3242 0.4417 0.7455 0.5337
GARCH-SHAR 0.3187 0.4382 0.7146 0.5268
GARCH-HARQ 0.3056 0.4292 0.6258 0.5054
GARCH-SHARQ 0.3048 0.4288 0.6252 0.5050

Panel B: GARCH-HAR-X(SGED)

HAR 0.3547 0.4618 0.8389 0.5578
SHAR 0.3364 0.4489 0.7824 0.5366
HARz 0.3350 0.4481 0.7665 0.5351
SHARz 0.3324 0.4463 0.7591 0.5319
HARQ 0.3242 0.4430 0.6449 0.5162
SHARQ 0.3193 0.4394 0.6443 0.5119
HARQz 0.3119 0.4331 0.6217 0.5026
SHARQz 0.3119 0.4332 0.6222 0.5027
GARCH-R 0.3280 0.4427 0.7402 0.5276
GARCH-S 0.3226 0.4397 0.7024 0.5210

parameters b2 and b3 of 𝜏(t), which control for asymmetric effects of lagged innovations on ht. This can be
seen by directly comparing the estimates of the HAR-typemodels (HAR, SHAR, HARQ and SHARQ) to those of
their corresponding NIF-augmented representations (HARz, SHARz, HARQz and SHARQz), which have been
intentionally designed to include the 𝜏(t) terms. The parameters of 𝜏(t) are statistically significant even in
the presence of the two semi-variances RV+ and RV−.13 This result implies that the realized semi-variances
bring different information to the conditional variance equation. Almost certainly, this source of information
relatesmostly to short-termeffects fromsigned-jumpvariation.Moreover, thedifferent values of the coefficient
estimates for RV+ and RV− indicate that there are prevalent asymmetries in the responses of the conditional
variance to positive and negative jumps. These asymmetric responses are directly related to realized skewness
in intra-daydata. In the absenceof realized skewness the two semi-varianceswouldbe almost identical, hence
the signed jump variation would collapse to zero, therefore having no contribution in forecasting conditional
variance. This finding is in linewith the HAR-type regression results discussed in Patton and Sheppard (2015).
Summingup, theabove resultshighlight that thereare twochannelsof volatilityasymmetry; theoneoriginates

13 Let us highlight here that this might as well depend on the parametric choice for the NIF. Therefore, in order to examine
if the GJR model provides a good specification for the leverage effect, we also consider some alternative and more generic
parametrizations of the 𝜏(t) function, such as the smooth-transition GARCH of González-Rivera (1998) as well as a generalized
version of the GJR which allows the threshold parameter to be different from zero (i.e. the threshold is treated as an unknown
parameter that can be estimated from the data, as in Zakoian (1994)). For reasons of space, in Appendix A.3 we present results
only for the full GARCH-SHARQ specification. These results suggest that the GJR provides a robust specification for 𝜏(t). This is
true across the three distributions considered.
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Table 5: (continued)

MSE MAE HMSE MAPE

Panel B: GARCH-HAR-X(SGED)

GARCH-HAR 0.3205 0.4387 0.6975 0.5188
GARCH-SHAR 0.3152 0.4352 0.6701 0.5123
GARCH-HARQ 0.3024 0.4262 0.5856 0.4916
GARCH-SHARQ 0.3016 0.4259 0.5854 0.4914

Panel C: GARCH-HAR-X(NIG)

HAR 0.3503 0.4577 0.7069 0.5183
SHAR 0.3324 0.4452 0.6647 0.5007
HARz 0.3310 0.4441 0.6522 0.4991
SHARz 0.3285 0.4425 0.6457 0.4964
HARQ 0.3206 0.4384 0.5505 0.4819
SHARQ 0.3158 0.4345 0.5514 0.4781
HARQz 0.3085 0.4281 0.5338 0.4698
SHARQz 0.3084 0.4282 0.5342 0.4699
GARCH-R 0.3242 0.4388 0.6336 0.4932
GARCH-S 0.3189 0.4360 0.6022 0.4878
GARCH-HAR 0.3168 0.4348 0.5978 0.4854
GARCH-SHAR 0.3116 0.4313 0.5750 0.4798
GARCH-HARQ 0.2991 0.4216 0.5057 0.4608
GARCH-SHARQ 0.2984 0.4214 0.5056 0.4608

This table presents in-sample results for one-step ahead predictions of log RV generated by the models shown in the first
column of the table. It reports the mean squared error (MAE), mean absolute error (MAE), heteroskedasticity-adjusted mean
squared error (HMSE), andmean absolute percentage error (MAPE). Panel A reports the results assuming that return innovations
follow the standard Normal distribution. In Panel B and C return innovations follow the SGED and NIG distributions, respectively.

from the asymmetric responses to intra-day realized upside/downside variation, while the other is driven
from non-linearities with respect to lagged return innovations. Both of these channels are found to carry
statistically significant information for volatility forecasting.

Fourth, the impactof realizedquarticityRQonconditionalvariance is found tobenegativeandsignificant,
with a sizeable contribution to the likelihood. This indicates that beyond the skewness effect on conditional
variance that comes fromsigned-jumpvariations, there is also amaterial volatility-of-volatility effect related to
intra-day realized kurtosis. Bollerslev, Patton, andQuaedvlieg (2016) and Cipollini, Gallo, andOtranto (2020),
ina slightlydifferent context, use theRQ inorder to indirectly account for time-variation in theHARparameters
and they also report results similar in direction andmagnitude; they attribute this effect to attenuation-biases
in measuring realized variance.

Finally, regarding the alternative densities that we used to model the returns innovations zt, our results
show that the NIG distribution provides much better fit to the actual data, followed by the SGED. This
improvement is significant not only in terms of joint log-likelihood and information criteria, but also in terms
of in-sample variance loss-functions. This result is robust across all the restricted specifications nestedwithin
our generalized GARCH-HAR-X framework. In particular, our results indicate that the NIG distribution is
able to capture a much higher level of negative skewness in the data (varying around −0.29 across models),
while producing less pronounced kurtosis (approximately 3.17). The SGED distribution on the other hand
generates lower values of negative skewness (approximately −0.19), while generating higher values for
kurtosis (approximately 3.86). It is evident that the fit improves significantly when accounting for higher
negative skewness levels. The semi-heavy behaviour of the NIG tails seems to be more flexible in capturing
the skewness of the actual data, hence improving the filtering of zt and the identification of the parameters
of ht, especially for the NIF component.



I. Papantonis et al.: Augmenting the Realized-GARCH | 185

4.2 Out-of-sample results
In order to assess the out-of-sample (OOS) performance of ourmodels, we split the sample in two parts; we use
thefirst 3000observations (4/01/1995 to30/11/2006) to initializefitting themodels (“training” sample) and the
remaining approximately 2500 observations (that is from 1/12/2006 onwards) to test the OOS performance. In
this way, wemaintain a good balance between having a significantly large sample that allows us to accurately
estimate model-parameters and also keeping a considerably large period for our OOS testing (Diebold 2015).
Note that our OOS period covers themajor financial crisis of 2007–08 and other short-lived shocks such as the
flash-crash of 2010; this will enable us to examine the robustness of our models against those severe events
as well.

We carry out a daily rolling re-estimation of the models to obtain one-step ahead predictions, always
keeping the window-size fixed at 3000 observations.14 Despite the fact that the GARCH-based framework
is by construction optimized to provide one-step ahead conditional variance forecasts at a daily frequency,
another reason we focus on evaluating the one-step ahead variance predictions is because it has been shown
in numerous theoretical econometric studies that the test statistics used in the assessment of equivalent
prediction accuracy in pair-wise model-comparisons have good size and power properties primarily for
one-step ahead forecasts.15

We carry out a series of comparative tests; these will help us shed more light to the model-performance
andensure that our findings from the full-sample analysis alsoholdOOS. In order to facilitate the comparisons
we use the same variance loss-functions as in the in-sample analysis and we also employ the reality check
(RC) introduced in White (2000). This test is asymptotically valid for both non-nested and nested model-
comparisonswhen theOOSestimates are obtainedusing a rolling-window.RC is a very commonchoice among
similar studies (see for instanceHansenandLunde (2005)aswell asBollerslev,Patton,andQuaedvlieg (2016)),
since it provides a very straightforward framework for comparingwhether the loss of amodelA is (statistically)
significantly lower than that of a benchmarkmodel B.16 The statistical hypotheses for theRC test canbe simply
formulated as

H0 : E[ĝt+1] ≤ 0 versus

H1 : E[ĝt+1] > 0

with ĝt+1 ≡ LB
(
RVt+1, hBt+1|𝜗̂Bt

)
− LA

(
RVt+1, hAt+1|𝜗̂At

)

where L(RVt+1, ht+1|𝜗̂t) can be any of the loss functions in (6). In our pair-wise comparisons model A will
always be the full GARCH-SHARQ model whereas we (sequentially) consider all the restricted specifications
as benchmark models B. Note that during the implementation of the RCs we use the stationary bootstrap
technique of Politis and Romano (1994) to obtain the asymptotic variance of the loss-differential distribution.
For the selection of the block-length of the bootstrap we follow the approach in Politis and White (2004),
taking into account the correction discussed in Patton, Politis, and White (2009).

We compare the prediction performance of the full GARCH-SHARQ model relative to all the restricted
cases. As before, we are primarily interested in the comparisons vis-a-vis the standard GARCH-R model and
the nested HAR-type variants. In Tables 6 and 7 we show the OOS variance loss-functions and RC p-values,
respectively, based on the MSE, MAE, HMSE and MAPE metrics. To save some space we report the results for
the NIG distribution, since it was found to outperform both the Normal and SGED.

14 Obtaining forecastsbasedonrolling re-estimationofmodelparameters is also robust to theoccurrenceofpossiblyunaccounted
structural breaks; this problem is also discussed in Giraitis et al. (2015) and Giraitis, Kapetanios, and Price (2013).
15 See West (2006) and Clark and McCracken (2013) for a more thorough discussion. Hansen and Lunde (2005) (and similar
studies) also focus on one-step ahead forecasts when comparing volatility models.
16 A notable advantage of White’s RC when used for multiple model comparison is that it does not rely on the use of probability
inequalities and typically gives quite conservative tests (in contrast to Bonferroni bound tests). See also Hansen (2005).
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Table 6: Out-of-sample variance loss-function results for GARCH-HAR-X(NIG) models.

MSE MAE HMSE MAPE

GARCH-SHARQ 0.3613 0.4627 0.6325 0.5062
GARCH-HARQ 0.3603 0.4616 0.6274 0.5027
GARCH-SHAR 0.3807 0.4808 0.8222 0.5715
GARCH-HAR 0.3893 0.4863 0.8735 0.5815
GARCH-S 0.3869 0.4841 0.8461 0.5762
GARCH-R 0.3957 0.4884 0.9150 0.5858
SHARQz 0.3725 0.4697 0.7074 0.5253
HARQz 0.3717 0.4690 0.7049 0.5242
SHARQ 0.3791 0.4744 0.7240 0.5333
HARQ 0.3797 0.4743 0.7036 0.5269
SHARz 0.4081 0.4948 0.9918 0.5977
HARz 0.4130 0.4979 1.0059 0.6032
SHAR 0.4082 0.4946 1.0076 0.5985
HAR 0.4314 0.5100 1.0892 0.6241

This table presents out-of-sample results for one-step ahead predictions of log RV generated by the models shown in the first
column of the table assuming that return innovations follow the NIG distribution. It reports the mean squared error (MAE), mean
absolute error (MAE), heteroskedasticity-adjusted mean squared error (HMSE), and mean absolute percentage error (MAPE). We
apply a daily rolling re-estimation of the models with a fixed window size of 3000 observations.

Table 7: Reality check tests results comparing restricted models within the GARCH-HAR-X(NIG) to the full GARCH-SHARQ
specification.

MSE MAE HMSE MAPE

GARCH-HARQ 1.0000 1.0000 1.0000 1.0000
GARCH-SHAR 0.0001 0.0000 0.0000 0.0000
GARCH-HAR 0.0000 0.0000 0.0000 0.0000
GARCH-S 0.0000 0.0000 0.0000 0.0000
GARCH-R 0.0000 0.0000 0.0000 0.0000
SHARQz 0.0136 0.0074 0.0014 0.0001
HARQz 0.0175 0.0168 0.0023 0.0001
SHARQ 0.0021 0.0005 0.0002 0.0000
HARQ 0.0006 0.0003 0.0010 0.0000
SHARz 0.0000 0.0000 0.0000 0.0000
HARz 0.0000 0.0000 0.0000 0.0000
SHAR 0.0000 0.0000 0.0000 0.0000
HAR 0.0000 0.0000 0.0000 0.0000

This table reports the p-values of Reality Check tests for the GARCH-HAR-X class of models with NIG-distributed return
innovations. All (nested) models, shown in the first column of the table, are compared to the full GARCH-SHARQ specification.

Table 6 results indicate that our extended specifications outperform the benchmark GARCH-R and HAR-
type models, corroborating the findings of the in-sample analysis. Overall, the GARCH-HARQ model was
found to yield the best OOS performance, followed closely by the GARCH-SHARQ. For example, the GARCH-
HARQ representation reduces the MSE from 0.3957 under the GARCH-R or 0.3797 under the HARQ model to
0.3603. Results for the variance percentage errors (i.e. for the HMSE metric) are also very interesting. Again,
if we compare the GARCH-R and HARQ models to our augmented GARCH-HARQ specification we see that
HMSE drops significantly from 0.9150 and 0.7036 to 0.6274. These findings reveal that the GARCH-HARQ
(and the full GARCH-SHARQ) model can not only shrink the magnitude of the average errors, but also better
capture extreme errors relative to the actual realized variance levels. The above arguments can be further
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justified by the p-values of the RC tests that we have performed. Results in Table 7 suggest that all of the
aforementioned loss-function improvements are statistically significant at conventional levels of statistical
significance (bootstrapped p-values are below 5%, in most cases close to zero).

Turning again the discussion to the relative contribution of the additional variables that extend the
GARCH-R and HAR-type models to the GARCH-SHARQ framework, we observe that the results of the OOS
exercise are consistent with those of the in-sample (full-sample) analysis. In particular, the performance
metrics indicate that the GARCH-S improves upon the standard GARCH-R, highlighting the importance of
the RV+ and RV− semi-variances. Similar conclusions can be drawn for the heterogeneous components RV
(Andersen et al. 2009) and RV (Bollerslev et al. 2009) (e.g. by comparing the GARCH-HAR to the GARCH-R)
and the realized quarticity measure RQ (by comparing the GARCH-SHARQ to the GARCH-SHAR). The above
results become more clear when looking at the HMSE or MAPE metrics. As can be seen by the estimates of
these metrics the majority of the prediction gains come firstly from correcting for attenuation-biases through
RQ and secondly through decomposing RV into its two upside/downside semi-variance components RV+

and RV−. The relative contribution of the heterogeneous terms is less pronounced but still very significant,
accommodating for long-memory patterns beyond the persistency inherent in the parametric structure of the
GARCH-based framework.

Looking into the HAR-type model extensions, we conclude again that the OOS results confirm the in-
sample ones. The reported prediction performance metrics indicate that the OOS gains come primarily from
the extension of the HAR to include information from filtered return innovations (e.g. compare SHARQ
to SHARQz), followed by the extensions also incorporating filtered conditional variance ht−1 (compare for
instance the SHARQz to the GARCH-SHARQ).

Finally, results for the OOS exercise evaluating the impact of the distributional assumption for the return
innovations zt on the prediction performance of the models are presented in Tables 8 and 9. In particular,
Table 8 presents the variance loss-function results under all three parametric densities that we employ for the
returns distribution and, similarly, Table 9 presents the RC test results for the models using NIG innovations
for zt versus those assuming SGED or Normal. Note that the models with SGED and/or Normal are the
benchmark models when compared to the NIG, since the NIG has been generally found to perform more
flexibly. The table results clearly indicate that, for all loss/prediction metrics, the NIG distribution enhances
the performance of variance forecasts compared to both SGED and Normal distribution, and this holds across
all model specifications. The superiority of the NIG distribution can be statistically confirmed by the p-values
of the RC tests. These are almost zero, thus clearly rejecting the null hypothesis suggesting that the SGED (or
Normal) distribution is equivalent to the NIG in terms of prediction performance.

4.3 Robustness of OOS results to longer horizons
The OOS results of the previous section are focused on one-period ahead, where inference procedures on
the prediction performance have better size and power properties as noted before. In this section, we exam-
ine the OOS forecasting performance of the models for longer horizons ahead to see if our results remain
robust. To obtain the multi-period ahead predictions, we rely on the “direct” forecasting approach (see for
instance Clark and McCracken (2005), Marcellino, Stock, and Watson (2006), Clark and McCracken (2013),
and Ghysels et al. (2019)) and we employ the following horizon-specific regression model as implied by the
full GARCH-SHARQ specification:

R̃Vt+s = 𝛽0,s + 𝛽h,sh̃t+1 + 𝜷
′
x,sx̃(t)+ 𝜎u,sut+s (7)

where we forecast the log-realized variance R̃Vt+s at multiple periods ahead, while also using the log-
transformations of the exogenous variables in x̃(t) as “control” variables (since these are also observable
in t). In the equation above (Eq. (7)) we have x̃′(t) =

{
R̃V+

t , R̃V
−
t , R̃V

[5]
t , R̃V [20]

t , R̃Qt

}′
(with corresponding

vector of regression coefficients𝛽′x,s),where the tilde notationhas beenused todenote the log-transformations
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Table 8: Out-of-sample variance loss-function results for GARCH-HAR-X models under different distributional assumptions for
the return innovations.

MSE MAE HMSE MAPE

GARCH-SHARQ(NIG) 0.3613 0.4627 0.6325 0.5062
GARCH-SHARQ(SGED) 0.3689 0.4660 0.7088 0.5314
GARCH-SHARQ(N) 0.3660 0.4675 0.7452 0.5425
GARCH-HAR(NIG) 0.3893 0.4863 0.8735 0.5815
GARCH-HAR(SGED) 0.3974 0.4926 0.9946 0.6165
GARCH-HAR(N) 0.4023 0.4959 1.0471 0.6308
GARCH-SHAR(NIG) 0.3807 0.4808 0.8222 0.5715
GARCH-SHAR(SGED) 0.3885 0.4874 0.9346 0.6057
GARCH-SHAR(N) 0.3932 0.4906 0.9814 0.6192
GARCH-S(NIG) 0.3869 0.4841 0.8461 0.5762
GARCH-S(SGED) 0.3942 0.4900 0.9588 0.6101
GARCH-S(N) 0.3991 0.4935 1.0093 0.6242
GARCH-R(NIG) 0.3957 0.4884 0.9150 0.5858
GARCH-R(SGED) 0.4033 0.4945 1.0397 0.6212
GARCH-R(N) 0.4084 0.4980 1.0962 0.6361
SHAR(NIG) 0.4082 0.4946 1.0076 0.5985
SHAR(SGED) 0.4163 0.5009 1.1500 0.6359
SHAR(N) 0.4211 0.5043 1.2106 0.6515
HAR(NIG) 0.4314 0.5100 1.0892 0.6241
HAR(SGED) 0.4403 0.5160 1.2526 0.6648
HAR(N) 0.4456 0.5196 1.3217 0.6820

This table presents out-of-sample results for one-step ahead predictions of log RV generated by the models shown in the first
column of the table assuming that return innovations follow the standard Normal, SGED, and NIG distribution. It reports the
mean squared error (MAE), mean absolute error (MAE), heteroskedasticity-adjusted mean squared error (HMSE), and mean
absolute percentage error (MAPE). The definitions of these metrics are given in (6). We apply a daily rolling re-estimation of the
models with a fixed window size of 3000 observations.

of the variables in x̃.17 The conditional variance dynamics which we incorporate in the regression model
through h̃t+1 (known at time t) are obtained from the previous one-step ahead forecasting exercise, i.e. by
daily re-estimating the model using a rolling-window approach. Using these estimates, alongside with the
observable exogenous variables, allows us to obtain multi-step OOS predictions of the log-realized variance
R̃Vt+s by calculating the conditional expectation E[R̃Vt+s|t], at each point in time t.

There are several reasons behind our decision to run the OOS predictive regressions using log-
transformations. Firstly, we want to maintain consistency with log-variance Eq. (1b), as this is the one we
actually estimate in the rolling-sample MLE. Secondly, predicting the log-transformation of variance (at any
horizon) is the best way to ensure that we will obtain non-negative variance estimates OOS, without having
to impose any parameter restrictions. Additionally, as we mentioned in our empirical estimation section,
the log-realized variance approximately follows a Normal distribution, which is a desired property for our
multi-step OOS regression framework, as the OLS estimator will demonstrate lower bias and improved effi-
ciency (see also Papantonis, Rompolis, and Tzavalis (2021)). Effectively, what we do here is very similar to a
log-HAR regression specification for predicting variance atmultiple-horizons ahead; the only difference being
the addition of the log-conditional variance in the regression, which encapsulates in h̃t+1 the endogenous
conditional variance dynamics, as well as the variance response to lagged return innovations.

17 This regression-based framework has been used extensively in the literature to examine the forecasting performance of
variance over long-horizons; see, e.g. Corsi (2009), Andersen, Bollerslev, and Diebold (2007) as well as Ghysels et al. (2019) for a
recent survey.
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Table 9: Reality Check tests results comparing different distributions for the return innovations.

MSE MAE HMSE MAPE

Panel A: NIG vs SGED

GARCH-SHARQ 0.1229 0.0092 0.0000 0.0000
GARCH-SHAR 0.0000 0.0000 0.0000 0.0000
GARCH-HAR 0.0000 0.0000 0.0000 0.0000
GARCH-S 0.0000 0.0000 0.0000 0.0000
GARCH-R 0.0000 0.0000 0.0000 0.0000
SHAR 0.0000 0.0000 0.0000 0.0000
HAR 0.0000 0.0000 0.0000 0.0000

Panel B: NIG vs N

GARCH-SHARQ 0.0187 0.0000 0.0000 0.0000
GARCH-SHAR 0.0000 0.0000 0.0000 0.0000
GARCH-HAR 0.0000 0.0000 0.0000 0.0000
GARCH-S 0.0000 0.0000 0.0000 0.0000
GARCH-R 0.0000 0.0000 0.0000 0.0000
SHAR 0.0000 0.0000 0.0000 0.0000
HAR 0.0000 0.0000 0.0000 0.0000

This table reports the p-values of reality check tests comparing similar models (reported in the first column) under different
distributions for the return innovations. Panel A compares the NIG versus SGED, while panel B compares the NIG versus the
standard Normal distribution.

In Table 10, we present estimates of the OOS prediction loss-metrics for all the alternative specifications
nested with the GARCH-SHARQ. This is done for s = {5, 10, 20} days ahead. For reasons of space, we present
results for the full set of models only for the NIG distribution, since it has been found to perform better under
all circumstances.18 The results of the table are consistent with those for the case of one-period ahead for
all models, and indicate that the full GARCH-SHARQ model provides the best OOS performance compared
to all the other nested specifications. This result is true for all the different horizons ahead considered and
under all the forecasting performance metrics reported in the table. Especially when comparing with the
GARCH-R model, the improvements in variance forecasts appear to be very substantial. As can be seen from
the table, these improvements are mainly due to the inclusion of the RV [5]

t and RV [20]
t terms approximating

the long-memory property of variance process, and the two semi-variances RV+
t and RV−

t . As expected, the
forecasting performance of all the alternative models deteriorates (in terms of the prediction loss-metrics
reported in the table) as we projection horizon increases.19

18 We replicate the multi-step ahead OOS forecasting exercise under the assumption of SGED- and Normally-distributed return
innovations. We find that assuming an NIG distribution for returns leads to more accurate variance forecasts at all different
horizons. This is in line not only with our full-sample results, but also with the one-step ahead predictions discussed in the
previous sections.
19 The coefficient estimates of the regression model in Eq. (6) – not reported here for reasons of space – indicate that the model
keeps its prediction ability even for h = 20 days ahead.
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5 Summary & conclusions
In this paper,we extend theRealized-GARCHmodel (or GARCH-Runder our notation)with exogenous variates
related tomeasurable featuresof realizedvariance, theselectionofwhich ismotivatedby theongoing literature
on HAR models for realized variance. The suggested GARCH-HAR-X framework can be also seen as an a dual
extension of the HAR model to include GARCH terms. We analyse both the in-sample and out-of-sample
prediction performance of the generalized model, as well as the several specifications nested within, and
we do that under different assumptions for the probability density function of the return innovations. We
consider not only the Normal, often used in practice, but also the SGED and the NIG distribution which have
been shown to perform very well in capturing distributional asymmetries of financial data.

We find our “full” GARCH-SHARQ specification to perform significantly better than the standard GARCH-
R in fitting the data and forecasting realized variance. We show that its enhanced performance originates
from the following three sources/extensions to the conditional variance function: (i) the decomposition of
realized variance into upside downside semi-variances, which allows to better capture short-term asymmetric
behaviours in variance due to the signed-jump variation; (ii) the addition of the heterogeneous components,
which effectively approximate a long-memory effect in conditional variance dynamics and, most importantly,
(iii) the inclusion of a variance-of-variance (quarticity) proxy responsible for capturing attenuation-biases in
variance forecasts. The in-sampleandout-of-sampleperformanceof themodels is assessedbasedonanumber
of different fit and prediction-accuracy metrics; these clearly indicate that the inclusion of upside/downside
realized semi-variances, as well as realized quarticity, are the main drivers for the significant gains in the
prediction performance of the augmented GARCH-SHARQ model.

Furthermore, our GARCH-SHARQ model has also been found to perform better than the several nested
HAR-type representations.We show that this is primarily due to the filtered return innovationswhen included
in conditional variance through the news-impact function. This allows for two separate channels of leverage-
effect; through asymmetric responses to both return innovations and semi-variances. Finally, regarding
the performance of the alternative model specifications under different parametric density assumptions, our
analysis showsthat theNIGdistributionenhances the in-samplefitandout-of-sample forecastingperformance
compared to both the SGED and the Normal distribution, and this holds across all model specifications. We
show that this may be attributed to the enhanced flexibility of the NIG in capturing asymmetries in the data.
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Appendix A: Distributions

A.1 The standardized normal-inverse-Gaussian distribution

A.1.1 The normal-inverse-Gaussian (NIG) distribution

The normal-inverse-Gaussian, henceforth NIG, results as a special case of the generalized hyperbolic (GH)
family of (mean-variance) mixture distributions popularized by Barndorff-Nielsen (1978), with the mixing
distribution in this case being the inverse-Gaussian (IG). A very detailed description of this family of distri-
butions can be found in McNeil, Frey, and Embrechts (2005). The location-scale invariant parametrization of
the PDF of a random variable X that follows an NIG distribution, i.e. x ∼ NIG(𝛼̄, 𝛽, 𝜇̄, 𝛿), is defined by:

fNIG(x; 𝛼̄, 𝛽, 𝜇̄, 𝛿) =
𝛼̄

𝜋𝛿
exp

[√
𝛼̄2 − 𝛽2 + 𝛽

x − 𝜇̄

𝛿

]
q
(x − 𝜇̄

𝛿

)−1
𝕂1

(
𝛼̄q

(x − 𝜇̄

𝛿

))
,

where 𝕂1(.) is the modified Bessel function of third order and index 1, and q(x) =
√
1+ x2. All distributional

parameters must be real-valued while satisfying 0 ≤ |𝛽| < 𝛼̄ and 𝛿 > 0. The interpretation of the parameters
is quite straightforward: 𝛼̄ and 𝛽 are shape parameters, driving the steepness and the asymmetry of the
density, respectively, while 𝜇̄ and 𝛿 correspond to the location and the scale of the distribution. In the limiting
case of 𝛽 = 0 the resulting density is symmetric, and also as 𝛼̄ →∞ then the density converges to the Normal.
It can be shown that (under the location-scale invariant parametrization) it holds that:

X ∼ NIG(𝛼̄, 𝛽, 𝜇̄, 𝛿) ⇔ X − 𝜇̄

𝛿
∼ NIG(𝛼̄, 𝛽,0, 1),

while the moment-generating function (MGF) can be expressed as:

M̄(𝜏; 𝛼̄, 𝛽, 𝜇̄, 𝛿) = exp
⎡⎢⎢⎣
𝛼̄

⎛⎜⎜⎝

√
1−

(
𝛽

𝛼̄

)2

−

√
1−

(
𝛽

𝛼̄
+ 𝛿

𝛼̄
t
)2⎞⎟⎟⎠

+ 𝜏𝜇̄

⎤⎥⎥⎦
.

To get the first four central moments we solve the above MGF:

E[X] = 𝜇̄ + 𝜆𝛿√
1− 𝜆2

Var[X] = 𝛿2

𝛼̄
(√

1− 𝜆2
)3∕2

Skew[X] = 3
⎛⎜⎜⎜⎝

𝜆(
𝛼̄
√
1− 𝜆2

)1∕2

⎞⎟⎟⎟⎠
Kurt[X] = 3

(
1+ 4𝜆2 + 1

𝛼̄
√
1− 𝜆2

)
,

where 𝜆 = 𝛽∕𝛼̄.

A.1.2 The zero-mean & unit-variance NIG specification

We want to ensure that the innovation z follows a zero-mean and unit-variance NIG distribution. Using the
MGF of the NIG to solve for the first central moments and equating the first twomoments of rt+1, we can show
that the returns follow a conditional NIG distribution as:
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rt+1 ∼ NIG(𝛼̄t+1, 𝛽 t+1, 𝜇̄t+1, 𝛿t+1|t),

with

𝜇̄t+1 = Et[rt+1]− 𝜆t+1𝛿t+1

(√
1− 𝜆2t+1

)−1

𝛿t+1 = Vart[rt+1]1∕2
[
𝛼̄t+1

(√
1− 𝜆2t+1

)3∕2]1∕2

,

i.e. it is entirely driven by the constant values 𝛼̄ and 𝛽. Given 0 ≤ |𝛽| < 𝛼̄ we define

𝜆 = 𝛽∕𝛼̄ ∈ (−1, 1) and 𝜂 =
√
𝛼̄2 − 𝛽2 > 0, (A.1)

which we can think of as two quantities driving the “asymmetry” and “steepness” of the density. Finally, we
solve the system of equations implied in (A.1) for 𝛼̄ and 𝛽 to get the parameters

𝛽 = 𝜂𝜆(1− 𝜆2)−1∕2 and 𝛼̄ =
√
𝛽2 + 𝜂2,

whichwesubstitute in thedensity functionabove toget the log-likelihoodof returns.Using theparametrization
above, we can think of the standardized innovation z as having a standardized NIG density purely defined by
two parameters, i.e. z ∼ NIG(𝜂, 𝜆).

A.2 The SGED (skewed generalized error) distribution
A zero-mean and unit-variance random variable Z is SGED-distributed as z ∼ SGED(𝜂, 𝜆) (Theodossiou 1998)
when it adheres to the PDF:

fSGED(z; 𝜂, 𝜆) = C exp
(
− |z + 𝛿|𝜂
[1+ sign(z + 𝛿)𝜆]𝜃𝜂

)
,

where the following parametrizations hold:

C = (𝜂∕2𝜃)Γ(1∕𝜂)−1

𝜃 = Γ(1∕𝜂)1∕2Γ(3∕𝜂)−1∕2S−1

𝛿 = 2𝜆AS−1

S =
√
1+ 3𝜆2 − 4A2𝜆2

A = Γ(2∕𝜂)Γ(1∕𝜂)−1∕2Γ(3∕𝜂)−1∕2,

with Γ being the gamma-function Γ(q) = ∫
∞
0 xq−1e−xdx. The density is defined iff

𝜂 > 0 and − 1 < 𝜆 < 1.

This density nests several conventional densities as well. For instance, for 𝜆 = 0 the density reduces to
the GED distribution of Nelson (1991), which is symmetric but fat-tailed. When 𝜆 = 0 and 𝜂 = 2, the density
collapses to the standard Normal. For 𝜆 = 0 and 𝜂 = 1 we get the double-exponential distribution and finally
for 𝜆 = 0 and 𝜂 = +∞ we get a uniform in the [−

√
3,+

√
3] interval. Hence, it is easy to interpret 𝜂 as the

degrees of freedom and 𝜆 as the asymmetry parameter of the density.
Regarding the higher moments of an SGED-distributed random variable, the following mapping holds:

skew[Z] = E[z3] = A3 − 3𝛿 − 𝛿3

kurt[Z] = E[z4] = A4 − 4A3𝛿 + 6𝛿2 + 3𝛿4,
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with

A3 = 4𝜆(1+ 𝜆2)Γ(4∕𝜂)Γ(1∕𝜂)−1𝜃3

A4 = (1+ 10𝜆2 + 5𝜆4)Γ(5∕𝜂)Γ(1∕𝜂)−1𝜃4.

A.3 Robustness of the GARCH-SHARQ model to alternative specifications of the NIF
TheNIFgivenbyEq. (3) assumesabrupt shifts invarianceht+1 drivenby thesignof𝜖t.Alternative specifications
of this function considered smooth transition shifts have been also suggested in the literature (see Franses and
VanDijk (2000), for a survey). In this direction, the logistic smooth transitionmodel of González-Rivera (1998)
is one popular alternative. This model assumes that 𝜏(t) is given as

𝜏(t) = b2𝜖2t + b3𝜖2t g(zt; 𝛾), (A.2)

where g(zt; 𝛾) = [1+ exp(−𝛾zt)]−1 ∈ (0, 1) is the logistic function governing the transition between the two
regimes assumed by the NIF. The value of parameter 𝛾, known as the speed-of-transition parameter, deter-
mines the smoothness of the transition between the two regimes implied by g(zt). For 𝛾 →∞, g(zt; 𝛾) tends
to the indicator function implied by Eq. (3); i.e. equation (A.2) reduces to (3) and the two NIF functions are
equivalent. On the other hand, when 𝛾 → 0, then g(zt; 𝛾)→ 1

2 which means that the smooth-transition model
reduces to the standard GARCH model, also nested within the GJR.

Another direction towardswhich Eq. (3) can be extended is to allow for an unknown threshold parameter,
instead of assuming 𝛿 = 0 as in (3), i.e.,

𝜏(t) = b2𝜖2t + b3𝕀(zt < 𝛿)𝜖2t . (A.3)

The threshold parameter 𝛿 can be estimated endogenously from the data, using a grid-search approach.20
In Table 11, we present estimates of the fully specifiedGARCH-SHARQmodel under the three distributions

considered. The results show that the estimates of 𝛾 are quite large (implying almost abrupt shifts between the
two regimes of the NIF) and the threshold parameter 𝛿 is very close to zero; the bootstrapped standard errors
reported in square brackets indicate that the null hypothesis of 𝛿 = 0 cannot be rejected. These results hold
for all distributions considered. This allows us to conclude that theNIF function given by (3) provides a correct
specification of the data. Further support of (3) can be obtained by the values of the likelihood components
, R and 

V (or the information criteria AIC and BIC), as well the prediction performance metrics reported
in the table. The use of the NIFs (A.2) and (A.3) does not improve upon the performance of (3).

20 Note that both (A.2) and (A.3) can be nested in a more general specification of the logistic transition function given as
g(zt; 𝛾, 𝛿) = [1+ exp(−𝛾(zt − 𝛿))]−1. However, estimation of the model with this transition function often leads to identification
problems of 𝛾 and 𝛿. Thus, estimation of (A.2) and (A.3), separately, often constitutes a preferable approach to obtain robust
estimates of 𝛾 and 𝛿.
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