Abstract
The Heterogeneous Autoregressive (HAR) model is commonly used in modeling the dynamics of realized volatility. In this paper, we propose a flexible HAR(1, . . . , p) specification, employing the adaptive LASSO and its statistical inference theory to see whether the lag structure (1, 5, 22) implied from an economic point of view can be recovered by statistical methods. The model differs from Audrino and Knaus (2016) [Audrino, F. and S. D. Knaus. 2016. “Lassoing the HAR model: A model selection perspective on realized volatility dynamics.” Econometrics Review 35: 1485–1521]. where the authors apply LASSO on the AR(p) model, which does not necessarily lead to a HAR model. Adaptive LASSO estimation and the subsequent hypothesis testing results fail to show strong evidence that such a fixed lag structure can be recovered by a flexible model. We also apply the group LASSO and related tests to check the validity of the classic HAR, which is rejected in most cases. The results justify our intention to use a flexible lag structure while still keeping the HAR frame. In terms of the out-of-sample forecasting, the proposed flexible specification works comparably to the benchmark HAR(1, 5, 22). Moreover, the time-varying model combinations show that when the market environment is not stable, the fixed lag structure (1, 5, 22) is not particularly accurate and effective.
A Appendix
A.1 Supplementary Tables for Section 4.3
Descriptive statistics of the time series of
mean⋅102 | std.⋅102 | min⋅103 | max | skewness | kurtosis | obs | |
---|---|---|---|---|---|---|---|
Individual Stocks | |||||||
BA | 1.288 | 0.689 | 3.644 | 0.075 | 3.204 | 16.541 | 3013 |
IBM | 1.023 | 0.615 | 3.145 | 0.102 | 4.549 | 35.388 | 3013 |
JNJ | 0.818 | 0.443 | 2.398 | 0.068 | 4.440 | 33.995 | 3014 |
KO | 0.902 | 0.474 | 2.311 | 0.071 | 4.164 | 29.759 | 3014 |
WMT | 0.989 | 0.528 | 3.158 | 0.089 | 4.078 | 31.856 | 3013 |
CAT | 1.474 | 0.881 | 3.984 | 0.127 | 3.414 | 19.876 | 3015 |
DIS | 1.230 | 0.707 | 3.541 | 0.090 | 3.662 | 21.376 | 3013 |
NKE | 1.119 | 0.680 | 3.181 | 0.133 | 5.294 | 57.956 | 3014 |
UNH | 1.497 | 0.962 | 4.487 | 0.139 | 3.632 | 23.581 | 3015 |
XOM | 1.119 | 0.680 | 3.181 | 0.133 | 5.292 | 54.917 | 3014 |
Indices | |||||||
AEX | 0.966 | 0.577 | 1.498 | 0.060 | 2.442 | 12.542 | 4387 |
All Ordinaries | 0.604 | 0.347 | 1.113 | 0.039 | 2.685 | 15.456 | 4387 |
Bovespa | 1.349 | 0.637 | 3.166 | 0.082 | 3.551 | 25.485 | 4387 |
CAC 40 | 1.060 | 0.588 | 2.017 | 0.072 | 2.588 | 16.122 | 4387 |
DAX | 1.160 | 0.694 | 2.245 | 0.077 | 2.468 | 13.671 | 4387 |
DJIA | 0.902 | 0.608 | 1.769 | 0.093 | 3.515 | 26.398 | 4387 |
Euro STOXX 50 | 1.132 | 0.672 | 0.216 | 0.104 | 3.068 | 22.602 | 4387 |
FT Straits Times | 0.698 | 0.313 | 2.684 | 0.046 | 3.069 | 22.940 | 4387 |
FTSE 100 | 0.799 | 0.490 | 1.946 | 0.068 | 2.870 | 18.920 | 4387 |
FTSE MIB | 1.017 | 0.569 | 2.593 | 0.073 | 2.374 | 14.283 | 4387 |
IBEX 35 | 1.106 | 0.566 | 2.025 | 0.074 | 2.170 | 14.456 | 4387 |
IPC Mexic | 0.806 | 0.494 | 1.837 | 0.072 | 3.364 | 28.846 | 4387 |
KOSPI Composite | 0.997 | 0.597 | 2.382 | 0.077 | 2.413 | 14.472 | 4387 |
Nasdaq 100 | 0.973 | 0.623 | 2.098 | 0.066 | 2.394 | 12.521 | 4386 |
Nikkei 225 | 0.947 | 0.483 | 2.293 | 0.057 | 2.816 | 18.231 | 4387 |
Russel 2000 | 0.906 | 0.550 | 1.713 | 0.076 | 3.057 | 19.573 | 4386 |
S&P 500 | 0.912 | 0.611 | 1.273 | 0.088 | 3.127 | 20.815 | 4387 |
S&P CNX Nifty | 1.010 | 0.682 | 2.094 | 0.137 | 4.438 | 46.791 | 4387 |
Swiss Market | 0.816 | 0.480 | 2.686 | 0.065 | 3.081 | 19.248 | 4387 |
In-sample RMSEs of each model (
HAR (1, 5, 22) | HAR (a, b, c) | HAR-LASSO | AR-LASSO | AR-AIC | HAR-NP | HARQ | HARSJ | HARSJ-LASSO | |
---|---|---|---|---|---|---|---|---|---|
Individual Stocks | |||||||||
BA | 0.246 | 0.319 | 0.244 | 0.241 | 0.233 | 0.190 | 0.241 | 0.247 | 0.246 |
IBM | 0.232 | 0.249 | 0.225 | 0.217 | 0.206 | 0.156 | 0.226 | 0.226 | 0.225 |
JNJ | 0.145 | 0.163 | 0.147 | 0.145 | 0.140 | 0.098 | 0.140 | 0.147 | 0.149 |
KO | 0.133 | 0.130 | 0.123 | 0.125 | 0.119 | 0.079 | 0.130 | 0.133 | 0.129 |
WMT | 0.178 | 0.176 | 0.165 | 0.167 | 0.161 | 0.094 | 0.174 | 0.177 | 0.173 |
CAT | 0.382 | 0.387 | 0.370 | 0.369 | 0.353 | 0.276 | 0.369 | 0.378 | 0.375 |
DIS | 0.278 | 0.339 | 0.273 | 0.271 | 0.263 | 0.213 | 0.270 | 0.278 | 0.285 |
NKE | 0.192 | 0.231 | 0.184 | 0.185 | 0.208 | 0.115 | 0.187 | 0.181 | 0.183 |
UNH | 0.417 | 0.497 | 0.406 | 0.408 | 0.394 | 0.305 | 0.416 | 0.425 | 0.421 |
XOM | 0.356 | 0.361 | 0.344 | 0.339 | 0.327 | 0.151 | 0.344 | 0.359 | 0.357 |
Indices | |||||||||
AEX | 0.122 | 0.131 | 0.113 | 0.114 | 0.115 | 0.089 | – | 0.118 | 0.113 |
All Ordinaries | 0.049 | 0.055 | 0.049 | 0.050 | 0.048 | 0.042 | – | 0.048 | 0.049 |
Bovespa | 0.225 | 0.224 | 0.204 | 0.202 | 0.212 | 0.164 | – | 0.216 | 0.196 |
CAC 40 | 0.142 | 0.152 | 0.140 | 0.142 | 0.134 | 0.093 | – | 0.137 | 0.140 |
DAX | 0.178 | 0.188 | 0.169 | 0.169 | 0.163 | 0.119 | – | 0.172 | 0.165 |
DJIA | 0.149 | 0.160 | 0.159 | 0.158 | 0.138 | 0.095 | – | 0.143 | 0.154 |
Euro STOXX 50 | 0.206 | 0.211 | 0.206 | 0.204 | 0.194 | 0.113 | – | 0.195 | 0.205 |
FT Straits Times | 0.043 | 0.052 | 0.040 | 0.041 | 0.040 | 0.030 | – | 0.042 | 0.042 |
FTSE 100 | 0.088 | 0.091 | 0.087 | 0.086 | 0.083 | 0.057 | – | 0.086 | 0.087 |
FTSE MIB | 0.117 | 0.130 | 0.117 | 0.116 | 0.114 | 0.083 | – | 0.112 | 0.114 |
IBEX 35 | 0.137 | 0.143 | 0.135 | 0.136 | 0.132 | 0.104 | – | 0.130 | 0.131 |
IPC Mexico | 0.074 | 0.075 | 0.073 | 0.073 | 0.071 | 0.063 | – | 0.071 | 0.073 |
KOSPI Composite | 0.121 | 0.118 | 0.114 | 0.115 | 0.111 | 0.072 | – | 0.113 | 0.115 |
Nasdaq 100 | 0.108 | 0.113 | 0.098 | 0.100 | 0.100 | 0.077 | – | 0.101 | 0.099 |
Nikkei 225 | 0.114 | 0.116 | 0.101 | 0.102 | 0.105 | 0.074 | – | 0.112 | 0.101 |
Russel 2000 | 0.127 | 0.134 | 0.124 | 0.124 | 0.118 | 0.096 | – | 0.119 | 0.119 |
S&P 500 | 0.149 | 0.162 | 0.143 | 0.144 | 0.139 | 0.095 | – | 0.139 | 0.141 |
S&P CNX Nifty | 0.219 | 0.235 | 0.223 | 0.219 | 0.215 | 0.129 | – | 0.208 | 0.217 |
Swiss Market | 0.085 | 0.091 | 0.084 | 0.084 | 0.080 | 0.063 | – | 0.081 | 0.082 |
The ratio in bold implies the model performs the best in in-sample fitting among all models.
Out-of-sample RMSEs of each model (
HAR (1, 5, 22) | HAR (a, b, c) | HAR-LASSO | AR-LASSO | AR-AIC | HAR-NP | HARQ | HARSJ | HARSJ-LASSO | |
---|---|---|---|---|---|---|---|---|---|
Individual Stocks | |||||||||
BA | 0.284 | 0.326 | 0.303 | 0.297 | 0.305 | 0.378 | 0.315 | 0.409 | 0.294 |
IBM | 0.309 | 0.311 | 0.316 | 0.387 | 0.325 | 0.264 | 0.305 | 0.364 | 0.309 |
JNJ | 0.187 | 0.189 | 0.184 | 0.192 | 0.189 | 0.181 | 0.211 | 0.231 | 0.190 |
KO | 0.176 | 0.167 | 0.178 | 0.183 | 0.183 | 0.280 | 0.172 | 0.235 | 0.175 |
WMT | 0.265 | 0.265 | 0.257 | 0.270 | 0.235 | 0.221 | 0.334 | 0.319 | 0.248 |
CAT | 0.531 | 0.510 | 0.526 | 0.567 | 0.529 | 0.691 | 0.533 | 0.676 | 0.480 |
DIS | 0.343 | 0.397 | 0.366 | 0.354 | 0.355 | 0.456 | 0.495 | 0.517 | 0.407 |
NKE | 0.681 | 0.691 | 0.710 | 0.698 | 0.692 | 1.858 | 0.754 | 1.221 | 0.698 |
UNH | 0.697 | 0.746 | 0.728 | 0.710 | 0.691 | 0.748 | 3.061 | 1.650 | 1.285 |
XOM | 0.535 | 0.544 | 0.546 | 0.537 | 0.488 | 0.294 | 1.508 | 0.588 | 0.565 |
Indices | |||||||||
AEX | 0.129 | 0.135 | 0.128 | 0.129 | 0.129 | 0.176 | – | 0.222 | 0.126 |
All Ordinaries | 0.063 | 0.068 | 0.066 | 0.068 | 0.065 | 0.086 | – | 0.083 | 0.064 |
Bovespa | 0.277 | 0.277 | 0.266 | 0.270 | 0.305 | 0.341 | – | 0.376 | 0.249 |
CAC 40 | 0.164 | 0.173 | 0.181 | 0.182 | 0.160 | 0.224 | – | 0.237 | 0.178 |
DAX | 0.194 | 0.198 | 0.205 | 0.193 | 0.200 | 0.227 | – | 0.284 | 0.191 |
DJIA | 0.235 | 0.233 | 0.247 | 0.225 | 0.227 | 0.405 | – | 0.269 | 0.235 |
Euro STOXX 50 | 0.296 | 0.294 | 0.311 | 0.344 | 0.270 | 0.253 | – | 0.341 | 0.315 |
FT Straits Times | 0.060 | 0.071 | 0.049 | 0.051 | 0.061 | 0.068 | – | 0.094 | 0.051 |
FTSE 100 | 0.099 | 0.102 | 0.102 | 0.105 | 0.095 | 0.138 | – | 0.101 | 0.097 |
FTSE MIB | 0.138 | 0.147 | 0.138 | 0.147 | 0.141 | 0.170 | – | 0.240 | 0.151 |
IBEX 35 | 0.184 | 0.188 | 0.182 | 0.183 | 0.175 | 0.238 | – | 0.246 | 0.181 |
IPC Mexico | 0.095 | 0.093 | 0.093 | 0.096 | 0.096 | 0.120 | – | 0.118 | 0.097 |
KOSPI Composite | 0.164 | 0.151 | 0.138 | 0.148 | 0.158 | 0.168 | – | 0.218 | 0.140 |
Nasdaq 100 | 0.141 | 0.151 | 0.132 | 0.126 | 0.142 | 0.242 | – | 0.181 | 0.118 |
Nikkei 225 | 0.146 | 0.147 | 0.136 | 0.137 | 0.156 | 0.173 | – | 0.186 | 0.134 |
Russel 2000 | 0.181 | 0.186 | 0.174 | 0.169 | 0.177 | 0.313 | – | 0.209 | 0.150 |
S&P 500 | 0.239 | 0.229 | 0.217 | 0.203 | 0.224 | 0.169 | – | 0.242 | 0.192 |
S&P CNX Nifty | 0.338 | 0.302 | 0.296 | 0.399 | 0.259 | 0.266 | – | 0.369 | 0.275 |
Swiss Market | 0.100 | 0.104 | 0.100 | 0.101 | 0.101 | 0.142 | – | 0.146 | 0.106 |
The ratio in bold implies the model performs the best in out-of-sample forecasting among all models.
A.2 Robustness check
Here we deliver the robustness check results of other approach in determining the tuning parameter. Alternatively, choosing λ based on the Bayesian Information Criterion (BIC) is also commonly used in empirical studies due to its computational simplicity. We compare the in-sample fitting and out-of-sample forecasting performance of the HAR-LASSO model with the
In- and out-of-sample RMSE ratios relative to HAR(1, 5, 22), for HAR-LASSO model choosing tuning parameter with
HAR(1, 5, 22) | HAR-LASSO ( | HAR-LASSO (BIC) | ||
---|---|---|---|---|
In-sample fitting | ||||
Stocks | Mean | 1.0000 | 0.9546 | 0.9294 |
Median | 1.0000 | 0.9571 | 0.9375 | |
Indices | Mean | 1.0000 | 0.9668 | 0.9521 |
Median | 1.0000 | 0.9680 | 0.9484 | |
Out-of-sample forecasting | ||||
Stocks | Mean | 1.0000 | 1.0022 | 1.3802 |
Median | 1.0000 | 1.0101 | 1.2673 | |
Indices | Mean | 1.0000 | 1.0119 | 1.1498 |
Median | 1.0000 | 1.0136 | 1.1192 |
Table 8 shows that determining λ with BIC makes the in-sample fitting of the flexible HAR model more accurate. However, we found that BIC yields quite bad forecasting performance in terms of out-of-sample.
References
Andersen, T., T. Bollerslev, F. Diebold, and H. Ebens. 2001. “The Distribution of Realized Stock Return Volatility.” Journal of Financial Economics 61: 43–76.10.1016/S0304-405X(01)00055-1Search in Google Scholar
Andersen, T. G., T. Bollerslev, and F. X. Diebold. 2007. “Roughing it Up: Including Jump Components in the Measurement, Modeling, and Forecasting of Return Volatility.” The Review of Economics and Statistics 89: 701–720.10.3386/w11775Search in Google Scholar
Audrino, F., and L. Camponovo. 2018. “Oracle Properties, Bias Correction, and Bootstrap Inference for Adaptive Lasso for Time Series M-Estimators.” Journal of Time Series Analysis 39: 111–128.10.1111/jtsa.12270Search in Google Scholar
Audrino, F., L. Camponovo, and C. Roth. 2017. “Testing the Lag Structure of Assets’ Realized Volatility Dynamics.” Quantitative Finance and Economics 1: 363–387.10.3934/QFE.2017.4.363Search in Google Scholar
Audrino, F., and S. D. Knaus. 2016. “Lassoing the HAR Model: A Model Selection Perspective on Realized Volatility Dynamics.” Econometrics Review 35: 1485–1521.10.1080/07474938.2015.1092801Search in Google Scholar
Baillie, R. T., T. Bollerslev, and H. O. Mikkelsen. 1996. “Fractionally Integrated Generalized Autoregressive Conditional Heteroskedasticity.” Journal of Econometrics 74: 3–30.10.1016/S0304-4076(95)01749-6Search in Google Scholar
Barndorff-Nielsen, O. E., P. R. Hansen, A. Lunde, and N. Shephard. 2008. “Designing Realized Kernels to Measure the Ex Post Variation of Equity Prices in the Presence of Noise.” Econometrica 76: 1481–1536.10.3982/ECTA6495Search in Google Scholar
Barndorff-Nielsen, O. E., P. R. Hansen, A. Lunde, and N. Shephard. 2009. “Realized Kernels in Practice: Trades and quotes.” The Econometrics Journal 12: C1–C32.10.1111/j.1368-423X.2008.00275.xSearch in Google Scholar
Barndorff-Nielsen, O. E., and N. Shephard. 2002. “Estimating Quadratic Variation Using Realized Variance.” Journal of Applied Econometrics 17: 457–477.10.1002/jae.691Search in Google Scholar
Barndorff-Nielsen, O. E., and N. Shephard. 2004. “Power and Bipower Variation with Stochastic Volatility and Jumps.” Journal of Financial Econometrics 2: 1–37.10.1093/jjfinec/nbh001Search in Google Scholar
Bollerslev, T. 1986. “Generalized Autoregressive Conditional Heteroskedasticity.” Journal of Econometrics 31: 307–327.10.1016/0304-4076(86)90063-1Search in Google Scholar
Bollerslev, T., A. J. Patton, and R. Quaedvlieg. 2016. “Exploiting the Errors: A Simple Approach for Improved Volatility Forecasting.” Journal of Econometrics 192: 1–18.10.1016/j.jeconom.2015.10.007Search in Google Scholar
Burman, P., E. Chow, and D. Nolan. 1994. “A Cross-Validatory Method for Dependent Data.” Biometrika 81: 351–358.10.1093/biomet/81.2.351Search in Google Scholar
Chen, X., and E. Ghysels. 2010. “News-Good or Bad-and its Impact on Volatility Predictions over Multiple Horizons.” The Review of Financial Studies 24: 46–81.10.1093/rfs/hhq071Search in Google Scholar
Corsi, F. 2009. “A Simple Approximate Long-Memory Model of Realized Volatility.” Journal of Financial Econometrics 7: 174–196.10.1093/jjfinec/nbp001Search in Google Scholar
Corsi, F., F. Audrino, and R. Renò. 2012. Handbook of Volatility Models and Their Applications. John Wiley & Sons, chapter HAR Modeling for Realized Volatility Forecasting, 363–382.10.1002/9781118272039.ch15Search in Google Scholar
Corsi, F., and R. Renò. 2012. “Discrete-Time Volatility Forecasting with Persistent Leverage Effect and the Link with Continuous-Time Volatility Modeling.” Journal of Business & Economic Statistics 30: 368–380.10.1080/07350015.2012.663261Search in Google Scholar
Craioveanu, M., and E. Hillebrand. 2012. Why it is OK to Use the HAR-RV(1, 5, 22) Model. Unpublished manuscript.Search in Google Scholar
Fan, J., J. Lv, and L. Qi. 2011. “Sparse High Dimensional Models in Economics.” Annual Review of Economics 3: 291–317.10.1146/annurev-economics-061109-080451Search in Google Scholar PubMed PubMed Central
Fengler, M. R., E. Mammen, and G. Vogt. 2015. “Specification and Structural Break Tests for Additive Models with Applications to Realized Variance Data.” Journal of Econometrics 7: 174–196.10.1016/j.jeconom.2015.04.002Search in Google Scholar
Gong, X., and B. Lin. 2017. “Forecasting the Good and Bad Uncertainties of Crude Oil Prices Using a HAR Framework.” Energy Economics 67: 315–327.10.1016/j.eneco.2017.08.035Search in Google Scholar
Gong, X., and B. Lin. 2018. “Structural Breaks and Volatility Forecasting in the Copper Futures Market.” Journal of Futures Markets 38: 290–339.10.1002/fut.21867Search in Google Scholar
Hansen, P. R. 2005. “A Tests for Superior Predictive Ability.” Journal of Business & Economic Statistics 188: 196–218.Search in Google Scholar
Hansen, P. R., and A. Lunde. 2005. “A Forecast Comparison of Volatility Models: Does Anything Beat a GARCH(1,1)?” Journal of Applied Econometrics 20: 873–889.10.1002/jae.800Search in Google Scholar
Hansen, P. R., A. Lunde, and J. M. Nason. 2011. “The Model Confidence Set.” Econometrica 79: 453–497.10.2139/ssrn.522382Search in Google Scholar
Jacod, J., Y. Li, P. A. Mykland, M. Podolskij, and M. Vetter. 2009. “Microstructure Noise in the Continuous Case: The Pre-Averaging Approach.” Stochastic Processes and their Applications 119: 2249–2276.10.1016/j.spa.2008.11.004Search in Google Scholar
Kock, A. B. 2016. “Consistent and Conservative Model Selection with the Adaptive Lasso in Stationary and Nonstationary Autoregressions.” Econometric Theory 32: 243–259.10.1017/S0266466615000304Search in Google Scholar
Kock, A. B., and L. Callot. 2015. “Oracle Inequalities for High Dimensional Vector Autoregressions.” Journal of Econometrics 186: 325–344.10.1016/j.jeconom.2015.02.013Search in Google Scholar
Mammen, E., O. Linton, and J. Nielsen. 1999. “The Existence and Asymptotic Properties of a Backfitting Projection Algorithm Under Weak Conditions.” The Annals of Statistics 27: 1443–1490.10.1214/aos/1017939138Search in Google Scholar
Müller, U., M. Dacorogna, R. Dav, R. Olsen, O. Pictet, and J. v. Weizsacker. 1997. “Volatilities of Different Time Resolutions – Analysing the Dynamics of Market Components.” Journal of Empirical Finance 4: 213–239.10.1016/S0927-5398(97)00007-8Search in Google Scholar
Müller, U., M. Dacorogna, R. Dav, O. Pictet, R. Olsen, and W. J. 1993. “Fractals and Intrinsic Time – a Challenge to Econometricians.” Unpublished Manuscript, Olsen & Associates, Zürich.Search in Google Scholar
Polley, E. C., and M. J. van der Laan. 2010. “Super Learner in Prediction.” U.C. Berkeley Division of Biostatistics Working Paper Series. Working Paper 266. Available at http://biostats.bepress.com/ucbbiostat/paper266.Search in Google Scholar
Racine, J. 2000. “Consistent Cross-Validatory Model-Selection for Dependent Data: hν-Block Cross-Validation.” Journal of Econometrics 99: 39–61.10.1016/S0304-4076(00)00030-0Search in Google Scholar
Romano, J. P., and M. Wolf. 2005. “Stepwise Multiple Testing as Formalized Datasnooping.” Econometrica 73: 1237–1282.10.1111/j.1468-0262.2005.00615.xSearch in Google Scholar
Tibshirani, R. 1996. “Regression Shrinkage and Selection via the Lasso.” Journal of the Royal Statistical Society. Series B (Methodological) 58: 267–288.10.1111/j.2517-6161.1996.tb02080.xSearch in Google Scholar
van der Laan, M. J., E. C. Polley, and A. E. Hubbard. 2007. “Super Learner.” Statistical Applications in Genetics and Molecular Biology 6(1). DOI: 10.2202/1544-6115.1309.Search in Google Scholar
Wen, F., X. Gong, and S. Cai. 2016. “Forecasting the Volatility of Crude Oil Futures Using HAR-Type Models with Structural Breaks.” Energy Economics 59: 400–413.10.1016/j.eneco.2016.07.014Search in Google Scholar
Yuan, M., and Y. Lin. 2006. “Model Selection and Estimation in Regression with Grouped Variables.” Journal of the Royal Statistical Society Series B (Statistical Methodology) 68: 49–67.10.1111/j.1467-9868.2005.00532.xSearch in Google Scholar
Zhang, L. 2006. “Efficient Estimation of Stochastic Volatility Using Noisy Observations: a Multi-Scale Approach.” Bernoulli 12: 1019–1043.10.3150/bj/1165269149Search in Google Scholar
Zou, H. 2006. “The Adaptive Lasso and its Oracle Properties.” Journal of the American Statistical Association 101: 1418–1429.10.1198/016214506000000735Search in Google Scholar
Zumbach, G., and P. Lynch. 2001. “Heterogeneous Volatility Cascade in Financial Markets.” Physica A: Statistical Mechanics and its Applications 298: 521–529.10.1016/S0378-4371(01)00249-7Search in Google Scholar
Supplementary Material
The online version of this article offers supplementary material (DOI: https://doi.org/10.1515/snde-2017-0080).
©2019 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Research Articles
- Are stock returns an inflation hedge for the UK? Evidence from a wavelet analysis using over three centuries of data
- Gamification of global climate change: an experimental analysis
- An efficient sequential learning algorithm in regime-switching environments
- What cycles? Data detrending in DSGE models
- Flexible HAR model for realized volatility
Articles in the same Issue
- Research Articles
- Are stock returns an inflation hedge for the UK? Evidence from a wavelet analysis using over three centuries of data
- Gamification of global climate change: an experimental analysis
- An efficient sequential learning algorithm in regime-switching environments
- What cycles? Data detrending in DSGE models
- Flexible HAR model for realized volatility