Home Flexible HAR model for realized volatility
Article
Licensed
Unlicensed Requires Authentication

Flexible HAR model for realized volatility

  • Francesco Audrino , Chen Huang EMAIL logo and Ostap Okhrin
Published/Copyright: November 15, 2018

Abstract

The Heterogeneous Autoregressive (HAR) model is commonly used in modeling the dynamics of realized volatility. In this paper, we propose a flexible HAR(1, . . . , p) specification, employing the adaptive LASSO and its statistical inference theory to see whether the lag structure (1, 5, 22) implied from an economic point of view can be recovered by statistical methods. The model differs from Audrino and Knaus (2016) [Audrino, F. and S. D. Knaus. 2016. “Lassoing the HAR model: A model selection perspective on realized volatility dynamics.” Econometrics Review 35: 1485–1521]. where the authors apply LASSO on the AR(p) model, which does not necessarily lead to a HAR model. Adaptive LASSO estimation and the subsequent hypothesis testing results fail to show strong evidence that such a fixed lag structure can be recovered by a flexible model. We also apply the group LASSO and related tests to check the validity of the classic HAR, which is rejected in most cases. The results justify our intention to use a flexible lag structure while still keeping the HAR frame. In terms of the out-of-sample forecasting, the proposed flexible specification works comparably to the benchmark HAR(1, 5, 22). Moreover, the time-varying model combinations show that when the market environment is not stable, the fixed lag structure (1, 5, 22) is not particularly accurate and effective.

JEL Classification: C12; C32; C51; C52

A Appendix

A.1 Supplementary Tables for Section 4.3

Table 5:

Descriptive statistics of the time series of RVt(d) for the 10 individual stocks and 19 indices data.

mean⋅102std.⋅102min⋅103maxskewnesskurtosisobs
Individual Stocks
BA1.2880.6893.6440.0753.20416.5413013
IBM1.0230.6153.1450.1024.54935.3883013
JNJ0.8180.4432.3980.0684.44033.9953014
KO0.9020.4742.3110.0714.16429.7593014
WMT0.9890.5283.1580.0894.07831.8563013
CAT1.4740.8813.9840.1273.41419.8763015
DIS1.2300.7073.5410.0903.66221.3763013
NKE1.1190.6803.1810.1335.29457.9563014
UNH1.4970.9624.4870.1393.63223.5813015
XOM1.1190.6803.1810.1335.29254.9173014
Indices
AEX0.9660.5771.4980.0602.44212.5424387
All Ordinaries0.6040.3471.1130.0392.68515.4564387
Bovespa1.3490.6373.1660.0823.55125.4854387
CAC 401.0600.5882.0170.0722.58816.1224387
DAX1.1600.6942.2450.0772.46813.6714387
DJIA0.9020.6081.7690.0933.51526.3984387
Euro STOXX 501.1320.6720.2160.1043.06822.6024387
FT Straits Times0.6980.3132.6840.0463.06922.9404387
FTSE 1000.7990.4901.9460.0682.87018.9204387
FTSE MIB1.0170.5692.5930.0732.37414.2834387
IBEX 351.1060.5662.0250.0742.17014.4564387
IPC Mexic0.8060.4941.8370.0723.36428.8464387
KOSPI Composite0.9970.5972.3820.0772.41314.4724387
Nasdaq 1000.9730.6232.0980.0662.39412.5214386
Nikkei 2250.9470.4832.2930.0572.81618.2314387
Russel 20000.9060.5501.7130.0763.05719.5734386
S&P 5000.9120.6111.2730.0883.12720.8154387
S&P CNX Nifty1.0100.6822.0940.1374.43846.7914387
Swiss Market0.8160.4802.6860.0653.08119.2484387
Table 6:

In-sample RMSEs of each model (×103) for each stock/index.

HAR (1, 5, 22)HAR (a, b, c)HAR-LASSOAR-LASSOAR-AICHAR-NPHARQHARSJHARSJ-LASSO
Individual Stocks
BA0.2460.3190.2440.2410.2330.1900.2410.2470.246
IBM0.2320.2490.2250.2170.2060.1560.2260.2260.225
JNJ0.1450.1630.1470.1450.1400.0980.1400.1470.149
KO0.1330.1300.1230.1250.1190.0790.1300.1330.129
WMT0.1780.1760.1650.1670.1610.0940.1740.1770.173
CAT0.3820.3870.3700.3690.3530.2760.3690.3780.375
DIS0.2780.3390.2730.2710.2630.2130.2700.2780.285
NKE0.1920.2310.1840.1850.2080.1150.1870.1810.183
UNH0.4170.4970.4060.4080.3940.3050.4160.4250.421
XOM0.3560.3610.3440.3390.3270.1510.3440.3590.357
Indices
AEX0.1220.1310.1130.1140.1150.0890.1180.113
All Ordinaries0.0490.0550.0490.0500.0480.0420.0480.049
Bovespa0.2250.2240.2040.2020.2120.1640.2160.196
CAC 400.1420.1520.1400.1420.1340.0930.1370.140
DAX0.1780.1880.1690.1690.1630.1190.1720.165
DJIA0.1490.1600.1590.1580.1380.0950.1430.154
Euro STOXX 500.2060.2110.2060.2040.1940.1130.1950.205
FT Straits Times0.0430.0520.0400.0410.0400.0300.0420.042
FTSE 1000.0880.0910.0870.0860.0830.0570.0860.087
FTSE MIB0.1170.1300.1170.1160.1140.0830.1120.114
IBEX 350.1370.1430.1350.1360.1320.1040.1300.131
IPC Mexico0.0740.0750.0730.0730.0710.0630.0710.073
KOSPI Composite0.1210.1180.1140.1150.1110.0720.1130.115
Nasdaq 1000.1080.1130.0980.1000.1000.0770.1010.099
Nikkei 2250.1140.1160.1010.1020.1050.0740.1120.101
Russel 20000.1270.1340.1240.1240.1180.0960.1190.119
S&P 5000.1490.1620.1430.1440.1390.0950.1390.141
S&P CNX Nifty0.2190.2350.2230.2190.2150.1290.2080.217
Swiss Market0.0850.0910.0840.0840.0800.0630.0810.082
  1. The ratio in bold implies the model performs the best in in-sample fitting among all models.

Table 7:

Out-of-sample RMSEs of each model (×103) for each stock/index.

HAR (1, 5, 22)HAR (a, b, c)HAR-LASSOAR-LASSOAR-AICHAR-NPHARQHARSJHARSJ-LASSO
Individual Stocks
BA0.2840.3260.3030.2970.3050.3780.3150.4090.294
IBM0.3090.3110.3160.3870.3250.2640.3050.3640.309
JNJ0.1870.1890.1840.1920.1890.1810.2110.2310.190
KO0.1760.1670.1780.1830.1830.2800.1720.2350.175
WMT0.2650.2650.2570.2700.2350.2210.3340.3190.248
CAT0.5310.5100.5260.5670.5290.6910.5330.6760.480
DIS0.3430.3970.3660.3540.3550.4560.4950.5170.407
NKE0.6810.6910.7100.6980.6921.8580.7541.2210.698
UNH0.6970.7460.7280.7100.6910.7483.0611.6501.285
XOM0.5350.5440.5460.5370.4880.2941.5080.5880.565
Indices
AEX0.1290.1350.1280.1290.1290.1760.2220.126
All Ordinaries0.0630.0680.0660.0680.0650.0860.0830.064
Bovespa0.2770.2770.2660.2700.3050.3410.3760.249
CAC 400.1640.1730.1810.1820.1600.2240.2370.178
DAX0.1940.1980.2050.1930.2000.2270.2840.191
DJIA0.2350.2330.2470.2250.2270.4050.2690.235
Euro STOXX 500.2960.2940.3110.3440.2700.2530.3410.315
FT Straits Times0.0600.0710.0490.0510.0610.0680.0940.051
FTSE 1000.0990.1020.1020.1050.0950.1380.1010.097
FTSE MIB0.1380.1470.1380.1470.1410.1700.2400.151
IBEX 350.1840.1880.1820.1830.1750.2380.2460.181
IPC Mexico0.0950.0930.0930.0960.0960.1200.1180.097
KOSPI Composite0.1640.1510.1380.1480.1580.1680.2180.140
Nasdaq 1000.1410.1510.1320.1260.1420.2420.1810.118
Nikkei 2250.1460.1470.1360.1370.1560.1730.1860.134
Russel 20000.1810.1860.1740.1690.1770.3130.2090.150
S&P 5000.2390.2290.2170.2030.2240.1690.2420.192
S&P CNX Nifty0.3380.3020.2960.3990.2590.2660.3690.275
Swiss Market0.1000.1040.1000.1010.1010.1420.1460.106
  1. The ratio in bold implies the model performs the best in out-of-sample forecasting among all models.

A.2 Robustness check

Here we deliver the robustness check results of other approach in determining the tuning parameter. Alternatively, choosing λ based on the Bayesian Information Criterion (BIC) is also commonly used in empirical studies due to its computational simplicity. We compare the in-sample fitting and out-of-sample forecasting performance of the HAR-LASSO model with the hν-block cross-validation and BIC. The results are presented by the RMSE ratios relative to classic HAR(1, 5, 22) in Table 8.

Table 8:

In- and out-of-sample RMSE ratios relative to HAR(1, 5, 22), for HAR-LASSO model choosing tuning parameter with hν-block cross-validation and BIC.

HAR(1, 5, 22)HAR-LASSO (hν-block)HAR-LASSO (BIC)
In-sample fitting
StocksMean1.00000.95460.9294
Median1.00000.95710.9375
IndicesMean1.00000.96680.9521
Median1.00000.96800.9484
Out-of-sample forecasting
StocksMean1.00001.00221.3802
Median1.00001.01011.2673
IndicesMean1.00001.01191.1498
Median1.00001.01361.1192

Table 8 shows that determining λ with BIC makes the in-sample fitting of the flexible HAR model more accurate. However, we found that BIC yields quite bad forecasting performance in terms of out-of-sample.

References

Andersen, T., T. Bollerslev, F. Diebold, and H. Ebens. 2001. “The Distribution of Realized Stock Return Volatility.” Journal of Financial Economics 61: 43–76.10.1016/S0304-405X(01)00055-1Search in Google Scholar

Andersen, T. G., T. Bollerslev, and F. X. Diebold. 2007. “Roughing it Up: Including Jump Components in the Measurement, Modeling, and Forecasting of Return Volatility.” The Review of Economics and Statistics 89: 701–720.10.3386/w11775Search in Google Scholar

Audrino, F., and L. Camponovo. 2018. “Oracle Properties, Bias Correction, and Bootstrap Inference for Adaptive Lasso for Time Series M-Estimators.” Journal of Time Series Analysis 39: 111–128.10.1111/jtsa.12270Search in Google Scholar

Audrino, F., L. Camponovo, and C. Roth. 2017. “Testing the Lag Structure of Assets’ Realized Volatility Dynamics.” Quantitative Finance and Economics 1: 363–387.10.3934/QFE.2017.4.363Search in Google Scholar

Audrino, F., and S. D. Knaus. 2016. “Lassoing the HAR Model: A Model Selection Perspective on Realized Volatility Dynamics.” Econometrics Review 35: 1485–1521.10.1080/07474938.2015.1092801Search in Google Scholar

Baillie, R. T., T. Bollerslev, and H. O. Mikkelsen. 1996. “Fractionally Integrated Generalized Autoregressive Conditional Heteroskedasticity.” Journal of Econometrics 74: 3–30.10.1016/S0304-4076(95)01749-6Search in Google Scholar

Barndorff-Nielsen, O. E., P. R. Hansen, A. Lunde, and N. Shephard. 2008. “Designing Realized Kernels to Measure the Ex Post Variation of Equity Prices in the Presence of Noise.” Econometrica 76: 1481–1536.10.3982/ECTA6495Search in Google Scholar

Barndorff-Nielsen, O. E., P. R. Hansen, A. Lunde, and N. Shephard. 2009. “Realized Kernels in Practice: Trades and quotes.” The Econometrics Journal 12: C1–C32.10.1111/j.1368-423X.2008.00275.xSearch in Google Scholar

Barndorff-Nielsen, O. E., and N. Shephard. 2002. “Estimating Quadratic Variation Using Realized Variance.” Journal of Applied Econometrics 17: 457–477.10.1002/jae.691Search in Google Scholar

Barndorff-Nielsen, O. E., and N. Shephard. 2004. “Power and Bipower Variation with Stochastic Volatility and Jumps.” Journal of Financial Econometrics 2: 1–37.10.1093/jjfinec/nbh001Search in Google Scholar

Bollerslev, T. 1986. “Generalized Autoregressive Conditional Heteroskedasticity.” Journal of Econometrics 31: 307–327.10.1016/0304-4076(86)90063-1Search in Google Scholar

Bollerslev, T., A. J. Patton, and R. Quaedvlieg. 2016. “Exploiting the Errors: A Simple Approach for Improved Volatility Forecasting.” Journal of Econometrics 192: 1–18.10.1016/j.jeconom.2015.10.007Search in Google Scholar

Burman, P., E. Chow, and D. Nolan. 1994. “A Cross-Validatory Method for Dependent Data.” Biometrika 81: 351–358.10.1093/biomet/81.2.351Search in Google Scholar

Chen, X., and E. Ghysels. 2010. “News-Good or Bad-and its Impact on Volatility Predictions over Multiple Horizons.” The Review of Financial Studies 24: 46–81.10.1093/rfs/hhq071Search in Google Scholar

Corsi, F. 2009. “A Simple Approximate Long-Memory Model of Realized Volatility.” Journal of Financial Econometrics 7: 174–196.10.1093/jjfinec/nbp001Search in Google Scholar

Corsi, F., F. Audrino, and R. Renò. 2012. Handbook of Volatility Models and Their Applications. John Wiley & Sons, chapter HAR Modeling for Realized Volatility Forecasting, 363–382.10.1002/9781118272039.ch15Search in Google Scholar

Corsi, F., and R. Renò. 2012. “Discrete-Time Volatility Forecasting with Persistent Leverage Effect and the Link with Continuous-Time Volatility Modeling.” Journal of Business & Economic Statistics 30: 368–380.10.1080/07350015.2012.663261Search in Google Scholar

Craioveanu, M., and E. Hillebrand. 2012. Why it is OK to Use the HAR-RV(1, 5, 22) Model. Unpublished manuscript.Search in Google Scholar

Fan, J., J. Lv, and L. Qi. 2011. “Sparse High Dimensional Models in Economics.” Annual Review of Economics 3: 291–317.10.1146/annurev-economics-061109-080451Search in Google Scholar PubMed PubMed Central

Fengler, M. R., E. Mammen, and G. Vogt. 2015. “Specification and Structural Break Tests for Additive Models with Applications to Realized Variance Data.” Journal of Econometrics 7: 174–196.10.1016/j.jeconom.2015.04.002Search in Google Scholar

Gong, X., and B. Lin. 2017. “Forecasting the Good and Bad Uncertainties of Crude Oil Prices Using a HAR Framework.” Energy Economics 67: 315–327.10.1016/j.eneco.2017.08.035Search in Google Scholar

Gong, X., and B. Lin. 2018. “Structural Breaks and Volatility Forecasting in the Copper Futures Market.” Journal of Futures Markets 38: 290–339.10.1002/fut.21867Search in Google Scholar

Hansen, P. R. 2005. “A Tests for Superior Predictive Ability.” Journal of Business & Economic Statistics 188: 196–218.Search in Google Scholar

Hansen, P. R., and A. Lunde. 2005. “A Forecast Comparison of Volatility Models: Does Anything Beat a GARCH(1,1)?” Journal of Applied Econometrics 20: 873–889.10.1002/jae.800Search in Google Scholar

Hansen, P. R., A. Lunde, and J. M. Nason. 2011. “The Model Confidence Set.” Econometrica 79: 453–497.10.2139/ssrn.522382Search in Google Scholar

Jacod, J., Y. Li, P. A. Mykland, M. Podolskij, and M. Vetter. 2009. “Microstructure Noise in the Continuous Case: The Pre-Averaging Approach.” Stochastic Processes and their Applications 119: 2249–2276.10.1016/j.spa.2008.11.004Search in Google Scholar

Kock, A. B. 2016. “Consistent and Conservative Model Selection with the Adaptive Lasso in Stationary and Nonstationary Autoregressions.” Econometric Theory 32: 243–259.10.1017/S0266466615000304Search in Google Scholar

Kock, A. B., and L. Callot. 2015. “Oracle Inequalities for High Dimensional Vector Autoregressions.” Journal of Econometrics 186: 325–344.10.1016/j.jeconom.2015.02.013Search in Google Scholar

Mammen, E., O. Linton, and J. Nielsen. 1999. “The Existence and Asymptotic Properties of a Backfitting Projection Algorithm Under Weak Conditions.” The Annals of Statistics 27: 1443–1490.10.1214/aos/1017939138Search in Google Scholar

Müller, U., M. Dacorogna, R. Dav, R. Olsen, O. Pictet, and J. v. Weizsacker. 1997. “Volatilities of Different Time Resolutions – Analysing the Dynamics of Market Components.” Journal of Empirical Finance 4: 213–239.10.1016/S0927-5398(97)00007-8Search in Google Scholar

Müller, U., M. Dacorogna, R. Dav, O. Pictet, R. Olsen, and W. J. 1993. “Fractals and Intrinsic Time – a Challenge to Econometricians.” Unpublished Manuscript, Olsen & Associates, Zürich.Search in Google Scholar

Polley, E. C., and M. J. van der Laan. 2010. “Super Learner in Prediction.” U.C. Berkeley Division of Biostatistics Working Paper Series. Working Paper 266. Available at http://biostats.bepress.com/ucbbiostat/paper266.Search in Google Scholar

Racine, J. 2000. “Consistent Cross-Validatory Model-Selection for Dependent Data: hν-Block Cross-Validation.” Journal of Econometrics 99: 39–61.10.1016/S0304-4076(00)00030-0Search in Google Scholar

Romano, J. P., and M. Wolf. 2005. “Stepwise Multiple Testing as Formalized Datasnooping.” Econometrica 73: 1237–1282.10.1111/j.1468-0262.2005.00615.xSearch in Google Scholar

Tibshirani, R. 1996. “Regression Shrinkage and Selection via the Lasso.” Journal of the Royal Statistical Society. Series B (Methodological) 58: 267–288.10.1111/j.2517-6161.1996.tb02080.xSearch in Google Scholar

van der Laan, M. J., E. C. Polley, and A. E. Hubbard. 2007. “Super Learner.” Statistical Applications in Genetics and Molecular Biology 6(1). DOI: 10.2202/1544-6115.1309.Search in Google Scholar

Wen, F., X. Gong, and S. Cai. 2016. “Forecasting the Volatility of Crude Oil Futures Using HAR-Type Models with Structural Breaks.” Energy Economics 59: 400–413.10.1016/j.eneco.2016.07.014Search in Google Scholar

Yuan, M., and Y. Lin. 2006. “Model Selection and Estimation in Regression with Grouped Variables.” Journal of the Royal Statistical Society Series B (Statistical Methodology) 68: 49–67.10.1111/j.1467-9868.2005.00532.xSearch in Google Scholar

Zhang, L. 2006. “Efficient Estimation of Stochastic Volatility Using Noisy Observations: a Multi-Scale Approach.” Bernoulli 12: 1019–1043.10.3150/bj/1165269149Search in Google Scholar

Zou, H. 2006. “The Adaptive Lasso and its Oracle Properties.” Journal of the American Statistical Association 101: 1418–1429.10.1198/016214506000000735Search in Google Scholar

Zumbach, G., and P. Lynch. 2001. “Heterogeneous Volatility Cascade in Financial Markets.” Physica A: Statistical Mechanics and its Applications 298: 521–529.10.1016/S0378-4371(01)00249-7Search in Google Scholar


Supplementary Material

The online version of this article offers supplementary material (DOI: https://doi.org/10.1515/snde-2017-0080).


Published Online: 2018-11-15

©2019 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 24.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/snde-2017-0080/html?lang=en
Scroll to top button