Home A semiparametric nonlinear quantile regression model for financial returns
Article
Licensed
Unlicensed Requires Authentication

A semiparametric nonlinear quantile regression model for financial returns

  • Krenar Avdulaj EMAIL logo and Jozef Barunik
Published/Copyright: June 3, 2016

Abstract

Accurately measuring and forecasting value-at-risk (VaR) remains a challenging task at the heart of financial economic theory. Recently, quantile regression models have been used successfully to capture the conditional quantiles of returns and to forecast VaR accurately. In this paper, we further explore nonlinearities in data and propose to couple realized measures with the nonlinear quantile regression framework to explain and forecast the conditional quantiles of financial returns. The nonlinear quantile regression models are implied by the copula specifications and allow us to capture possible nonlinearities, tail dependence, and asymmetries in the conditional quantiles of financial returns. Using high frequency data that covers most liquid US stocks in seven sectors, we provide ample evidence of asymmetric conditional dependence with different levels of dependence, which are characteristic for each industry. The backtesting results of estimated VaR favour our approach.

JEL Classification: C14; C32; C58; F37; G32

Acknowledgments

We are grateful to the editor, Fredj Jawadi, the two anonymous referees, and the participants at the 2nd International Workshop on “Financial Markets and Nonlinear Dynamics” for many useful comments and suggestions. Support from the Czech Science Foundation under the P402/12/G097 DYME Dynamic Models in Economics project is gratefully acknowledged. Avdulaj gratefully acknowledges financial support from the Grant Agency of the Charles University (GA UK) under the project 162815.

Appendix A Proofs

Probability distribution of rt+1 conditional on ϑt

τ(rt+1|ϑt)=C(ut,vt+1)ut

Proof. from

(<rt+1,V=ϑt)=FV,(ϑt,rt+1)ϑt

it follows that

(R<rt+1,V=ϑt)=limϵ0(rt+1|ϑtVϑt+ϵ)=limϵ0F(ϑt+ϵ,rt+1)F(ϑt,rt+1)FV(ϑt+ϵ)FV(ϑt)(F(ϑt,rt+1)/ϑt)ϵfV(ϑt)ϵ=1fV(ϑt)C(FV(ϑt),F(rt+1))ϑt=1fV(ϑt)*C(ut,vt+1)utFV(ϑt)ϑt*=C(ut,vt+1)/ut

where ut=F𝒱 (ϑt), νt+1=F (rt+1) and * terms cancel out.□

Following the same path it is easy to show that

τ(ϑt|rt+1)=C(ut,vt+1)vt+1

Appendix B Tables and Figures

Table 4:

Descriptive statistics for daily returns and realized volatility over the sample period extending from August 2004 to December 2011.

Returns
Information technologyConsumer discretionaryConsumer staplesTelecommunication services
AAPLINTCMSFTAMZNDISMCDKOPGWMTCMCSATVZ
Mean–0.0003–0.0001–0.00010.00150.00090.00040.00010.0006–0.00010.0002–0.0001–0.0004
Std dev0.02010.01640.01400.02240.01560.01210.01060.00990.01080.01870.01320.0127
Skewness–0.30970.06410.14830.30040.46820.29670.0474–0.05800.44040.62740.58770.5984
Kurtosis3.29143.34025.81214.41356.97696.06838.12746.65946.597918.23229.59648.3887
Minimum–0.1223–0.0907–0.0755–0.1313–0.0909–0.0799–0.0717–0.0660–0.0653–0.1416–0.0629–0.0760
Maximum0.11230.08800.11020.13880.11850.10350.07950.07760.07620.23250.12420.1118
FinancialsEnergyHealth care
BACCWFCCVXSLBXOMJNJMRKPFE
Mean–0.0023–0.0042–0.00020.0001–0.00020.00050.00010.0000–0.0006
Std dev0.03270.03410.02720.01540.02150.01470.00920.01520.0133
Skewness–0.4071–1.78890.24580.0847–0.4012–0.01080.0305–0.17100.1302
Kurtosis13.628720.858813.052611.96755.427810.39409.65996.89053.2493
Minimum–0.2509–0.3468–0.2081–0.1296–0.1552–0.1261–0.0803–0.1092–0.0696
Maximum0.20140.19920.19330.14600.12530.11890.07280.09190.0714
Realized volatility
Information technologyConsumer discretionaryConsumer staplesTelecommunication services
AAPLINTCMSFTAMZNDISMCDKOPGWMTCMCSATVZ
Mean0.00040.00030.00020.00060.00030.00020.00010.00010.00020.00040.00020.0002
Std dev0.00080.00050.00040.00090.00050.00040.00030.00040.00040.00070.00050.0005
Skewness11.976410.77007.69197.67079.877525.379910.489526.074520.718912.790412.054115.4769
Kurtosis209.4541191.673090.607180.7537151.3225868.6006175.7496895.9773625.6571243.4969242.6791382.1494
Minimum0.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.00000.0000
Maximum0.01920.01210.00700.01440.01170.01570.00630.01430.01260.01690.01420.0148
FinancialsEnergyHealth care
BACCWFCCVXSLBXOMJNJMRKPFE
Mean0.00090.00110.00070.00030.00050.00020.00010.00030.0002
Std dev0.00260.00400.00170.00070.00090.00070.00030.00070.0004
Skewness7.960710.84885.796017.12728.325318.396118.560413.50838.8700
Kurtosis95.3976166.798545.1057435.1365111.8150490.6232486.2773263.8237125.7655
Minimum0.00000.00000.00000.00000.00000.00000.00000.00000.0000
Maximum0.04890.08660.02310.02070.01780.02050.00900.01650.0079

References

Allen, D. E., A. K. Singh, R. J. Powell, M. McAleer, J. Taylor, and L. Thomas. 2013. “Return-Volatility Relationship: Insights from Linear and Non-Linear Quantile Regression.” Tinbergen Institute Discussion Paper 13–020/III, Amsterdam and Rotterdam. urn:NBN:nl:ui:15–1765/38773.Search in Google Scholar

Andersen, T., T. Bollerslev, F. Diebold, and P. Labys. 2003. “Modeling and Forecasting Realized Volatility.” Econometrica 71 (2): 579–625.10.3386/w8160Search in Google Scholar

Berkowitz, J., P. Christoffersen, and D. Pelletier. 2011. “Evaluating Value-at-Risk Models With Desk-Level Data.” Management Science 57 (12): 2213–2227.10.1287/mnsc.1080.0964Search in Google Scholar

Bouyé, E. and M. Salmon. 2009. Dynamic Copula Quantile Regressions and Tail Area Dynamic Dependence in Forex Markets.” The European Journal of Finance 15 (7–8): 721–750.10.1080/13518470902853491Search in Google Scholar

Brownlees, C. T., and G. M. Gallo. 2010. “Comparison of Volatility Measures: A Risk Management Perspective.” Journal of Financial Econometrics 8 (1): 29–56.10.1093/jjfinec/nbp009Search in Google Scholar

Cappiello, L., B. Gérard, A. Kadareja, and S. Manganelli. 2014. “Measuring Comovements by Regression Quantiles.” Journal of Financial Econometrics 12 (14): 645–678.10.1093/jjfinec/nbu009Search in Google Scholar

Chen, X., and Y. Fan. 2006. “Estimation of Copula-Based Semiparametric Time Series Models.” Journal of Econometrics 130 (2): 307–335.10.1016/j.jeconom.2005.03.004Search in Google Scholar

Chen, X., R. Koenker, and Z. Xiao. 2009. “Copula-Based Nonlinear Quantile Autoregression.” Econometrics Journal 12: S50–S67.10.1920/wp.cem.2008.2708Search in Google Scholar

Chernozhukov, V., I. Fernández-Val, and A. Galichon. 2009. Improving Point and Interval Estimators of Monotone Functions by Rearrangement.” Biometrika 96 (3): 559–575.10.1093/biomet/asp030Search in Google Scholar

Chernozhukov, V., I. Fernández-Val, and A. Galichon. 2010. “Quantile and Probability Curves Without Crossing.” Econometrica 78 (3): 1093–1125.10.3982/ECTA7880Search in Google Scholar

Clements M. P., A. B. Galvão, and J. H. Kim. 2008. “Quantile Forecasts of Daily Exchange Rate Returns from Forecasts of Realized Volatility.” Journal of Empirical Finance 15: 729–750.10.1016/j.jempfin.2007.12.001Search in Google Scholar

Dette, H., and S. Volgushev. 2008. “Non-Crossing Non-Parametric Estimates of Quantile Curves.” Journal of the Royal Statistical Society: Series B (Statistical Methodology) 70 (3): 609–627.10.1111/j.1467-9868.2008.00651.xSearch in Google Scholar

Diebold, F. X., and R. S. Mariano. 2002. “Comparing Predictive Accuracy.” Journal of Business & economic statistics 20 (1): 134–144.10.3386/t0169Search in Google Scholar

Engle, R. F., and S. Manganelli. 2004. “Caviar: Conditional Autoregressive Value at Risk by Regression Quantiles.” Journal of Business & Economic Statistics 22 (4): 367–381.10.1198/073500104000000370Search in Google Scholar

Genest, C., K. Ghoudi, and L.-P. Rivest. 1995. “A Semiparametric Estimation Procedure of Dependence Parameters in Multivariate Families of Distributions.” Biometrika 82 (3): 543–552.10.1093/biomet/82.3.543Search in Google Scholar

Giacomini, R., and I. Komunjer. 2005. “Evaluation and Combination of Conditional Quantile Forecasts.” Journal of Business & Economic Statistics 23 (4): 416–431.10.1198/073500105000000018Search in Google Scholar

Koenker, R. 2004. “Quantile Regression for Longitudinal Data.” Journal of Multivariate Analysis 91 (1): 74–89. Special Issue on Semiparametric and Nonparametric Mixed Models.10.1016/j.jmva.2004.05.006Search in Google Scholar

Koenker, R., and G. Bassett, Jr. 1978. “Regression Quantiles.” Econometrica 46 (1): 33–50.10.2307/1913643Search in Google Scholar

Koenker, R., and B. J. Park. 1996. “An Interior Point Algorithm for Nonlinear Quantile Regression.” Journal of Econometrics 71 (1–2): 265–283.10.1016/0304-4076(96)84507-6Search in Google Scholar

Maheu, J. M., and T. H. McCurdy. 2011. “Do High-Frequency Measures of Volatility Improve Forecasts of Return Distributions?” Journal of Econometrics 160 (1): 69–76. Realized Volatility.10.1016/j.jeconom.2010.03.016Search in Google Scholar

Portnoy, S., and R. Koenker. 1997, 11. “The Gaussian Hare and The Laplacian Tortoise: Computability of Squared-Error Versus Absolute-Error Estimators.” Statistical Science 12 (4): 279–300.10.1214/ss/1030037960Search in Google Scholar

Xiao, Z. 2009. “Quantile Cointegrating Regression.” Journal of Econometrics 150 (2): 248–260. Recent Development in Financial Econometrics.10.1016/j.jeconom.2008.12.005Search in Google Scholar

Žikeš, F., and J. Baruník. 2016. “Semi-Parametric Conditional Quantile Models for Financial Returns and Realized Volatility.” Journal of Financial Econometrics 14 (1): 185–226.10.1093/jjfinec/nbu029Search in Google Scholar


Supplemental Material:

The online version of this article (DOI: 10.1515/snde-2016-0044) offers supplementary material, available to authorized users.


Published Online: 2016-6-3
Published in Print: 2017-2-1

©2017 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 6.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/snde-2016-0044/html
Scroll to top button