Abstract
Accurately measuring and forecasting value-at-risk (VaR) remains a challenging task at the heart of financial economic theory. Recently, quantile regression models have been used successfully to capture the conditional quantiles of returns and to forecast VaR accurately. In this paper, we further explore nonlinearities in data and propose to couple realized measures with the nonlinear quantile regression framework to explain and forecast the conditional quantiles of financial returns. The nonlinear quantile regression models are implied by the copula specifications and allow us to capture possible nonlinearities, tail dependence, and asymmetries in the conditional quantiles of financial returns. Using high frequency data that covers most liquid US stocks in seven sectors, we provide ample evidence of asymmetric conditional dependence with different levels of dependence, which are characteristic for each industry. The backtesting results of estimated VaR favour our approach.
Acknowledgments
We are grateful to the editor, Fredj Jawadi, the two anonymous referees, and the participants at the 2nd International Workshop on “Financial Markets and Nonlinear Dynamics” for many useful comments and suggestions. Support from the Czech Science Foundation under the P402/12/G097 DYME Dynamic Models in Economics project is gratefully acknowledged. Avdulaj gratefully acknowledges financial support from the Grant Agency of the Charles University (GA UK) under the project 162815.
Appendix A Proofs
Probability distribution of rt+1 conditional on ϑt
Proof. from
it follows that
where ut=F𝒱 (ϑt), νt+1=Fℛ (rt+1) and * terms cancel out.□
Following the same path it is easy to show that
Appendix B Tables and Figures
Descriptive statistics for daily returns and realized volatility over the sample period extending from August 2004 to December 2011.
Returns | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Information technology | Consumer discretionary | Consumer staples | Telecommunication services | |||||||||
AAPL | INTC | MSFT | AMZN | DIS | MCD | KO | PG | WMT | CMCSA | T | VZ | |
Mean | –0.0003 | –0.0001 | –0.0001 | 0.0015 | 0.0009 | 0.0004 | 0.0001 | 0.0006 | –0.0001 | 0.0002 | –0.0001 | –0.0004 |
Std dev | 0.0201 | 0.0164 | 0.0140 | 0.0224 | 0.0156 | 0.0121 | 0.0106 | 0.0099 | 0.0108 | 0.0187 | 0.0132 | 0.0127 |
Skewness | –0.3097 | 0.0641 | 0.1483 | 0.3004 | 0.4682 | 0.2967 | 0.0474 | –0.0580 | 0.4404 | 0.6274 | 0.5877 | 0.5984 |
Kurtosis | 3.2914 | 3.3402 | 5.8121 | 4.4135 | 6.9769 | 6.0683 | 8.1274 | 6.6594 | 6.5979 | 18.2322 | 9.5964 | 8.3887 |
Minimum | –0.1223 | –0.0907 | –0.0755 | –0.1313 | –0.0909 | –0.0799 | –0.0717 | –0.0660 | –0.0653 | –0.1416 | –0.0629 | –0.0760 |
Maximum | 0.1123 | 0.0880 | 0.1102 | 0.1388 | 0.1185 | 0.1035 | 0.0795 | 0.0776 | 0.0762 | 0.2325 | 0.1242 | 0.1118 |
Financials | Energy | Health care | ||||||||||
BAC | C | WFC | CVX | SLB | XOM | JNJ | MRK | PFE | ||||
Mean | –0.0023 | –0.0042 | –0.0002 | 0.0001 | –0.0002 | 0.0005 | 0.0001 | 0.0000 | –0.0006 | |||
Std dev | 0.0327 | 0.0341 | 0.0272 | 0.0154 | 0.0215 | 0.0147 | 0.0092 | 0.0152 | 0.0133 | |||
Skewness | –0.4071 | –1.7889 | 0.2458 | 0.0847 | –0.4012 | –0.0108 | 0.0305 | –0.1710 | 0.1302 | |||
Kurtosis | 13.6287 | 20.8588 | 13.0526 | 11.9675 | 5.4278 | 10.3940 | 9.6599 | 6.8905 | 3.2493 | |||
Minimum | –0.2509 | –0.3468 | –0.2081 | –0.1296 | –0.1552 | –0.1261 | –0.0803 | –0.1092 | –0.0696 | |||
Maximum | 0.2014 | 0.1992 | 0.1933 | 0.1460 | 0.1253 | 0.1189 | 0.0728 | 0.0919 | 0.0714 | |||
Realized volatility | ||||||||||||
Information technology | Consumer discretionary | Consumer staples | Telecommunication services | |||||||||
AAPL | INTC | MSFT | AMZN | DIS | MCD | KO | PG | WMT | CMCSA | T | VZ | |
Mean | 0.0004 | 0.0003 | 0.0002 | 0.0006 | 0.0003 | 0.0002 | 0.0001 | 0.0001 | 0.0002 | 0.0004 | 0.0002 | 0.0002 |
Std dev | 0.0008 | 0.0005 | 0.0004 | 0.0009 | 0.0005 | 0.0004 | 0.0003 | 0.0004 | 0.0004 | 0.0007 | 0.0005 | 0.0005 |
Skewness | 11.9764 | 10.7700 | 7.6919 | 7.6707 | 9.8775 | 25.3799 | 10.4895 | 26.0745 | 20.7189 | 12.7904 | 12.0541 | 15.4769 |
Kurtosis | 209.4541 | 191.6730 | 90.6071 | 80.7537 | 151.3225 | 868.6006 | 175.7496 | 895.9773 | 625.6571 | 243.4969 | 242.6791 | 382.1494 |
Minimum | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
Maximum | 0.0192 | 0.0121 | 0.0070 | 0.0144 | 0.0117 | 0.0157 | 0.0063 | 0.0143 | 0.0126 | 0.0169 | 0.0142 | 0.0148 |
Financials | Energy | Health care | ||||||||||
BAC | C | WFC | CVX | SLB | XOM | JNJ | MRK | PFE | ||||
Mean | 0.0009 | 0.0011 | 0.0007 | 0.0003 | 0.0005 | 0.0002 | 0.0001 | 0.0003 | 0.0002 | |||
Std dev | 0.0026 | 0.0040 | 0.0017 | 0.0007 | 0.0009 | 0.0007 | 0.0003 | 0.0007 | 0.0004 | |||
Skewness | 7.9607 | 10.8488 | 5.7960 | 17.1272 | 8.3253 | 18.3961 | 18.5604 | 13.5083 | 8.8700 | |||
Kurtosis | 95.3976 | 166.7985 | 45.1057 | 435.1365 | 111.8150 | 490.6232 | 486.2773 | 263.8237 | 125.7655 | |||
Minimum | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | |||
Maximum | 0.0489 | 0.0866 | 0.0231 | 0.0207 | 0.0178 | 0.0205 | 0.0090 | 0.0165 | 0.0079 |
References
Allen, D. E., A. K. Singh, R. J. Powell, M. McAleer, J. Taylor, and L. Thomas. 2013. “Return-Volatility Relationship: Insights from Linear and Non-Linear Quantile Regression.” Tinbergen Institute Discussion Paper 13–020/III, Amsterdam and Rotterdam. urn:NBN:nl:ui:15–1765/38773.Search in Google Scholar
Andersen, T., T. Bollerslev, F. Diebold, and P. Labys. 2003. “Modeling and Forecasting Realized Volatility.” Econometrica 71 (2): 579–625.10.3386/w8160Search in Google Scholar
Berkowitz, J., P. Christoffersen, and D. Pelletier. 2011. “Evaluating Value-at-Risk Models With Desk-Level Data.” Management Science 57 (12): 2213–2227.10.1287/mnsc.1080.0964Search in Google Scholar
Bouyé, E. and M. Salmon. 2009. Dynamic Copula Quantile Regressions and Tail Area Dynamic Dependence in Forex Markets.” The European Journal of Finance 15 (7–8): 721–750.10.1080/13518470902853491Search in Google Scholar
Brownlees, C. T., and G. M. Gallo. 2010. “Comparison of Volatility Measures: A Risk Management Perspective.” Journal of Financial Econometrics 8 (1): 29–56.10.1093/jjfinec/nbp009Search in Google Scholar
Cappiello, L., B. Gérard, A. Kadareja, and S. Manganelli. 2014. “Measuring Comovements by Regression Quantiles.” Journal of Financial Econometrics 12 (14): 645–678.10.1093/jjfinec/nbu009Search in Google Scholar
Chen, X., and Y. Fan. 2006. “Estimation of Copula-Based Semiparametric Time Series Models.” Journal of Econometrics 130 (2): 307–335.10.1016/j.jeconom.2005.03.004Search in Google Scholar
Chen, X., R. Koenker, and Z. Xiao. 2009. “Copula-Based Nonlinear Quantile Autoregression.” Econometrics Journal 12: S50–S67.10.1920/wp.cem.2008.2708Search in Google Scholar
Chernozhukov, V., I. Fernández-Val, and A. Galichon. 2009. Improving Point and Interval Estimators of Monotone Functions by Rearrangement.” Biometrika 96 (3): 559–575.10.1093/biomet/asp030Search in Google Scholar
Chernozhukov, V., I. Fernández-Val, and A. Galichon. 2010. “Quantile and Probability Curves Without Crossing.” Econometrica 78 (3): 1093–1125.10.3982/ECTA7880Search in Google Scholar
Clements M. P., A. B. Galvão, and J. H. Kim. 2008. “Quantile Forecasts of Daily Exchange Rate Returns from Forecasts of Realized Volatility.” Journal of Empirical Finance 15: 729–750.10.1016/j.jempfin.2007.12.001Search in Google Scholar
Dette, H., and S. Volgushev. 2008. “Non-Crossing Non-Parametric Estimates of Quantile Curves.” Journal of the Royal Statistical Society: Series B (Statistical Methodology) 70 (3): 609–627.10.1111/j.1467-9868.2008.00651.xSearch in Google Scholar
Diebold, F. X., and R. S. Mariano. 2002. “Comparing Predictive Accuracy.” Journal of Business & economic statistics 20 (1): 134–144.10.3386/t0169Search in Google Scholar
Engle, R. F., and S. Manganelli. 2004. “Caviar: Conditional Autoregressive Value at Risk by Regression Quantiles.” Journal of Business & Economic Statistics 22 (4): 367–381.10.1198/073500104000000370Search in Google Scholar
Genest, C., K. Ghoudi, and L.-P. Rivest. 1995. “A Semiparametric Estimation Procedure of Dependence Parameters in Multivariate Families of Distributions.” Biometrika 82 (3): 543–552.10.1093/biomet/82.3.543Search in Google Scholar
Giacomini, R., and I. Komunjer. 2005. “Evaluation and Combination of Conditional Quantile Forecasts.” Journal of Business & Economic Statistics 23 (4): 416–431.10.1198/073500105000000018Search in Google Scholar
Koenker, R. 2004. “Quantile Regression for Longitudinal Data.” Journal of Multivariate Analysis 91 (1): 74–89. Special Issue on Semiparametric and Nonparametric Mixed Models.10.1016/j.jmva.2004.05.006Search in Google Scholar
Koenker, R., and G. Bassett, Jr. 1978. “Regression Quantiles.” Econometrica 46 (1): 33–50.10.2307/1913643Search in Google Scholar
Koenker, R., and B. J. Park. 1996. “An Interior Point Algorithm for Nonlinear Quantile Regression.” Journal of Econometrics 71 (1–2): 265–283.10.1016/0304-4076(96)84507-6Search in Google Scholar
Maheu, J. M., and T. H. McCurdy. 2011. “Do High-Frequency Measures of Volatility Improve Forecasts of Return Distributions?” Journal of Econometrics 160 (1): 69–76. Realized Volatility.10.1016/j.jeconom.2010.03.016Search in Google Scholar
Portnoy, S., and R. Koenker. 1997, 11. “The Gaussian Hare and The Laplacian Tortoise: Computability of Squared-Error Versus Absolute-Error Estimators.” Statistical Science 12 (4): 279–300.10.1214/ss/1030037960Search in Google Scholar
Xiao, Z. 2009. “Quantile Cointegrating Regression.” Journal of Econometrics 150 (2): 248–260. Recent Development in Financial Econometrics.10.1016/j.jeconom.2008.12.005Search in Google Scholar
Žikeš, F., and J. Baruník. 2016. “Semi-Parametric Conditional Quantile Models for Financial Returns and Realized Volatility.” Journal of Financial Econometrics 14 (1): 185–226.10.1093/jjfinec/nbu029Search in Google Scholar
Supplemental Material:
The online version of this article (DOI: 10.1515/snde-2016-0044) offers supplementary material, available to authorized users.
©2017 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Editorial
- Introduction: recent developments of switching models for financial data
- Research Articles
- On the estimation of regime-switching Lévy models
- RALS-LM unit root test with trend breaks and non-normal errors: application to the Prebisch-Singer hypothesis
- Modeling threshold effects in stock price co-movements: a vector nonlinear cointegration approach
- Specification analysis in regime-switching continuous-time diffusion models for market volatility
- A semiparametric nonlinear quantile regression model for financial returns
- A model of the euro-area yield curve with discrete policy rates
Articles in the same Issue
- Frontmatter
- Editorial
- Introduction: recent developments of switching models for financial data
- Research Articles
- On the estimation of regime-switching Lévy models
- RALS-LM unit root test with trend breaks and non-normal errors: application to the Prebisch-Singer hypothesis
- Modeling threshold effects in stock price co-movements: a vector nonlinear cointegration approach
- Specification analysis in regime-switching continuous-time diffusion models for market volatility
- A semiparametric nonlinear quantile regression model for financial returns
- A model of the euro-area yield curve with discrete policy rates