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Abstract: The paper aims at developing new Bayesian Vector Error Correction — Stochastic Volatility (VEC-SV)
models, which combine the VEC representation of a VAR structure with stochastic volatility, represented by
either the multiplicative stochastic factor (MSF) process or the MSF-SBEKK specification. Appropriate numer-
ical methods (MCMC-based algorithms) are adapted for estimation and comparison of these type of models.
Based on data coming from the Polish economy (time series of unemployment, inflation, interest rates, and
of PLN/EUR, PLN/USD and EUR/USD exchange rates) it is shown that the models and numerical methods
proposed in our study work well in simultaneous modelling of volatility and long-run relationships.
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1 Introduction

A frequently used model structure for macroeconomic time series is the vector autoregression with the error
correction mechanism and with a constant conditional covariance matrix. In turn, conditional heteroscedas-
ticity processes serve as typical models for the volatility of financial time series. However, some research has
shown that the variability of macroeconomic time series (measured, for example, by the conditional covari-
ance matrix) can vary over time, and also that on financial markets there exist long-term relationships. There-
fore, it appears essential to formulate such models in which the possible presence of long-run relationships
and time-variable volatility are simultaneously taken into account. A fast growing econometrics literature
(see, e.g. Cogley and Sargent 2005; Primiceri 2005; Sims and Zha 2006; Koop, Leén-Gonzalez, and Strachan
2009; Koop and Potter 2011; Koop 2012; Belmonte and Koop 2014) has mainly focused on two particular
extensions of a basic vector autoregressive (VAR) model: specifications with time-varying parameters and the
ones with time-varying conditional covariances. Our particular attention is paid to the vector error correction
(VEC) representation of VAR with the foregoing extensions (see, e.g. Seo 2007; Herwartz and Liitkepohl 2011;
Koop, Leén-Gonzalez, and Strachan 2011; Cavaliere et al. 2015). However, due to the lack of identification of
cointegrating vectors (only the space spanned by the cointegrating vectors can be identified), the literature
on the VEC models is much more limited than that on VAR. Also, studies on the Bayesian inference within the
corresponding VEC structures are quite rare. Therefore, it is desirable to fill this gap in the literature and to
develop Bayesian methods for VEC models allowing for stochastic volatility (SV).

The paper aims at developing new Bayesian Vector Error Correction — Stochastic Volatility (VEC-SV)
models, which combine the VEC representation of a VAR structure with stochastic volatility, represented by
either the multiplicative stochastic factor (MSF) process or the MSF-SBEKK specification. The MSF structure
is one of the simplest amongst the Multivariate Stochastic Volatility (MSV) models (since it features only one
latent process, and the conditional covariance matrix does not depend on the past information set), and it
can be used to describe time-varying volatility in a parsimonious manner. It is worth mentioning that this SV
specification has been used in constructing hybrid models combining multivariate stochastic volatility and
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multivariate generalized conditional heteroscedasticity structures (MSF-SBEKK, among others), proposed by
(Osiewalski 2009; Osiewalski and Pajor 2009), and further developed and extended by (Osiewalski and Pajor
2010; Pajor and Osiewalski 2012; Osiewalski and Osiewalski 2012).

Another objective of this paper is to develop Bayesian methodology for estimation and comparison of
the models in question. Bayesian statistical analysis in the class of proposed models requires using some
numerical methods, in particular Markov Chain Monte Carlo (MCMC) algorithms. Therefore, one of objectives
of the research is to adapt relevant numerical methods to allow the estimation, prediction and comparison of
such model structures. In particular, we employ the Gibbs sampler and the Metropolis-Hastings procedure.

The paper is organized as follows. In Section 2 the basic framework is set and the Bayesian models are formu-
lated. In Section 3 we elaborate on the numerical methods. Finally, Section 4 is devoted to an empirical study, in
which we use a standard set of the Polish macroeconomics variables (including the unemployment, inflation and
interest rates), and show that relaxing the usual assumption of conditional homoscedasticity by introducing the
MSF or the MSF-SBEKK structures is empirically valid. The resulting VEC-MSF and VEC-MSF-SBEKK models are
also used for the analysis of relationships and volatility of selected main official Polish exchange rates.

2 Bayesian VEC-SV models

Consider a linear n-variate and k-order vector autoregressive [VAR(k)] process with deterministic terms and
a stochastic volatility (SV) structure, represented in the form of a vector error correction (VEC) process, i.e.
Vector Error Correction with Stochastic Volatility (VEC-SV) process:

k-1

Ax,=TIx, +Y TAx,_ +®D +e, t=1,2,..,T, (1)
i=1

£[|w[719D[) q[90~N(07 2[)) (2)

where x, is an nx 1 random vector, I and I', are nxn matrices of real coefficients (i=1, ... k-1), matrix D,is
comprised of deterministic variables such as the constant and seasonal centred dummies, @ is a parameter
matrix, g, is a latent variable, 6 is a vector of parameters, i, | denotes the past of the process {x} up to time
t-1,and X =X(q, v, ,). Moreover, M= aB’, with « and B’ being some n x r matrices, where r <n is the number

of cointegration relationships (if they exist). The initial conditions x ,,, x , ., ..., X, are assumed to be known.

2.1 MSF and MSF-SBEKK structures in the VEC model

In this paper we consider two alternative stochastic volatility structures for matrix X : multiplicative stochas-
tic factor (MSF) and hybrid MSF-SBEKK (type I; see Osiewalski and Pajor 2009).
The multiplicative stochastic factor structure for matrix Z, is as follows:

Zt = th, (3)

withlng=¢Ing,_+op, {n }~iiN(0, 1).

Henceforth, this specification will be referred to as the VEC-MSF (VEC with Multiplicative Stochastic
Factor) process. Although the VEC-MSF process features non-zero time-varying conditional covariances, the
conditional correlations remain constant over time. Such a result is attributable to the fact that the very same
q, factor drives the dynamics of each element of X. The idea of the MSF structure dates back to (Quintana
and West 1987), who specified the scaling factors to be some known constants. Under a different name of the
stochastic discount factor (SDF) process, the MSF specification was then revived (though only conceptually,
without being used in any application) by (Jacquier, Polson, and Rossi 1995) in modelling financial time
series volatility. Later, the process was employed, e.g. by (Osiewalski and Pajor 2009; Pajor 2011; Pajor and
Osiewalski 2012; Osiewalski and Osiewalski 2013).
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As an alternative MSV specification we employ the MSF-SBEKK structure proposed by (Osiewalski 2009).
Following (Osiewalski and Pajor 2009), for matrix %, we assume the so-called type I hybrid MSF-SBEKK
process:

s =q= (4)

t?

2 =(1-a-b)=+b(e, e, )+aZ, , )
withlng=¢lng,, +o,1, {n}~iiN(0, 1), a,beR.

Matrix 3 ] is square, of order n and follows the scalar BEKK(1,1) structure. The specification resulting
from introducing MSF-SBEKK error term (e t) into the VEC model is further referred to as VEC-MSF-SBEKK. The
presence of the scalar BEKK(1,1) structure in the conditional covariance matrix allows us to model time-vary-
ing conditional correlations without introducing more latent processes. In the hybrid MSF-SBEKK model two
simple basic structures are nested. In the limiting case of 6,—0 and ¢ =0 we obtain the VEC-SBEKK process,
while setting b=0 and a=0 leads to the VEC-MSF case. As regards the initial conditions for X , we assume
€,=0, 2 = so,zln, where Soz> 0 and I denotes the identity matrix of size n.

Equation (1) can be decomposed and written as:

k-1
Ax,=d[p, cbl’]{ ;}+2F1Ax” +®,D% +e, =af'z, +T'z, +T 2, +e, (6)
i=1

X,
(1
Dt
where ' =[f, ], z, =[x,
a®'DY+®,DP =D,
In order to simplify the notation let us write the basic model (6) in a matrix form:

DMV, z, =(Ax [/, Ax. ), ...y XY, 2, =D, T=[l, T, .,T, /,T,=®/, and

t-1?

Z,=ZII'+ZI'+ZT +E, @)

where I=af’, Z =[Ax, Ax, ... AXT]'Z[ZOJ Zyy o ZO’T]', le[zh1 Z, zLT]', ZZ:[ZZ,1 Zyy e ZZ,T]', Z3:[z3’1 Zy, e ZB’T]',
E=[e,e,...e].

The conditional distribution of x, (given the past of the process, ¥, ,» the deterministic variables, D, the

k-1
parameters and the latent variable g,) is n-variate Normal with the mean u, =x,_, +1Ilx, | +ZFiAxH +®D,
and the covariance matrix X i1
p(thwt—l’ Dt’ a, ﬂ’ r’ Fs’ qt’ 2’ 02’ qO,Z)sz,n(Xt |Iuta Zt), (8)

where 6_and g, are the vectors of the stochastic volatility parameters: in the VEC-MSF model 6, = (o, OZ),’
and g,,=1In g, whereas in the VEC-MSF-SBEKK model we have 0, = (o, az, a, b)’ and 4oy =(In q,, So,z),' The
vector g, , is treated as an additional vector of parameters and is estimated jointly with other parameters. The
density of the data (given the parameters) is the mixture (over g=(q,, q,, ..., g,)’) distribution:

p(x|D, e, B, T, T, %, 0,,q,,)=[p(x|D,a, B, T, T,, %, 0, q, ,, 9)p(q|0y, q,,)dq, 9)

where x=[xx, ... x;]" denotes the full data set and D=[D D, ... D ]. The two densities on the right hand side of
(9) are given as:

T
p(x|D, &, B, T, T, Z,0,, q, 5 @)= [ . (x | 1,2,
t=1
and

T
p(ql0,, q,.)=]14;'f,,(ng,|plng,,, o2).
t=1
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2.2 The prior distribution and Bayesian VEC-MSF model

We are interested in making inference about both the parameter vector 6 =(veca’, vecf’, vecI”, vecI'/, vechY’,
0/, qO’Z)’ and the latent variables vector q. Within the Bayesian approach, parameters and latent variables are
treated as random variables. The joint density of the vector of observations, latent variables and parameters,
which determines the Bayesian model, can be written as follows:

p(x, q,0|D)=p(x|D, q, 0)p(q|0)p(6) =

O [Thu 6 =) | Tl 0 191, | (0)

where p(0) denotes the density of prior distribution. This density is also conditioned by certain initial obser-
vations, which are omitted from our notation. To complete the Bayesian models, we specify the prior distribu-
tion of the parameter vector 6:

p(0)=pla|B)p(B)p(T)p(T )p(Z)p(0,)p(q, )14 (| 4], (11)
where I

. b](.) denotes the indicator function of the interval [a, b] and A is the vector of the eigenvalues of the
companion matrix, that is the matrix of the form:

M+1+T, T,-T, - T,

k-1 k-2 k-1
I, 0 0 0
0 I, 0 o |,
0 0 I 0

which makes it possible to write the analysed process in the VAR(1) form.

According to (11), we assume that certain blocks of the parameters are a priori independent, and that the
stability condition is imposed on the parameters of the VEC process. Furthermore, for matrix IT the following
parameterisations are used (as proposed by Koop, Ledén-Gonzalez, and Strachan 2010):

af’ =(aM,)(aM ') = AB’,

where M, is an rxr symmetric positive-definite matrix, A and B are unrestricted matrices. Moreover,

1 1

a=A(B'B)?, and f=B(B'B) 2, so f3 has orthonormal columns, and it is an element of the Stiefel mani-
fold V, (represented by the matrix space of mxr matrices with orthonormal columns). The data inform
only about the cointegration space, which is the element of the Grassmann manifold G, , i.e. the space of
r-dimensional hyperplanes in R™ In order to take into account the many-to-one relationship between the
Stiefel and the Grassmann manifolds, we normalise the columns of 5 to have positive first elements (with the
help of a diagonal matrix whose elements are equal to either 1 or -1).

Next, we state the prior distributions (see Koop, Le6n-Gonzalez, and Strachan 2010 for the discussion).
—  For matrix B the matrix normal distribution is used:

pB|z,n=f (B|0,1I,P), which leads us to the matrix angular central Gaussian (MACG) distribution for

B: p(B)=f,,,..B | P) (see e.g. Chikuse 2002).

The prior information for the space spanned by 8 may be incorporated into the model via matrix P,
which is constructed as follows:

P=H,H/ +tH H;,

where H, is a matrix with orthonormal columns containing prior information about the cointegration
spaceand H ; represents its orthogonal complement. If we assume that parameter matrix P_in the MACG
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distribution is an identity matrix, we obtain the uniform distribution over the Stiefel manifold V , and
also the uniform distribution over the Grassmann manifold G, . Additionally, it is worth recalling that
unless the prior information about the cointegration space of the highest considered rank is available,
the researcher willing to perform Bayesian model selection (including inference about the cointegration
rank) should use the uniform prior over the Grassmann manifold.

— On matrix A we also impose the matrix normal distribution:

p(Alu,, Gov,N=f (Alu,, VI, G).

Parameters v and 7 control the degrees of informativeness of the distributions stated above, and may
be either set arbitrarily by the researcher or estimated. In the latter case, usually inverse gamma prior
distributions are used: p(v/s, n)=f,.(v|s,n)and p(r|s, n)=f(r|s, n) (see e.g. Koop, Ledn-Gonzalez,
and Strachan 2010). Such values of s_and n_should be set that almost all the resulting prior probability is
allocated close to zero. For 7 close to zero one imposes most of the prior probability to the spaces close to
those spanned by H,, whereas for 7 equal 1 one gets noninformative priors for the estimated spaces (see
Koop, Ledén-Gonzalez, and Strachan 2010 for the discussion).

The priors for the remaining parameters are as follows:

- p(C|u, H, h)=f (T|u, H, hl), where [=n(k - 1), H — an nx n positive-definite symmetric matrix,

- p(C |u,H,h)=f (T |u.,H,hlI), where H —an nxn positive-definite symmetric matrix, I - the
number of deterministic terms in D,, '
where p(h|n,, s,)=f,(h|n,s) and p(h |n,,s,)=f.(h|n,.,s,).

- p@)<f (@|u e ¢) I,,(9), - the normal density with mean u ,and variance Q , truncated by the restric-
tion |¢ | <1;

- p(@})=f,(02]a,, b,) - thedensity of the inverse gamma distribution with the mean b, /(a, - 1) and vari-
ance equal to b’ /[(a, —1)*(a, —2)];

- p(®=f,Z|Q,, u,, n) - the inverted Wishart distribution with mean Q /(u, -n-1), u,>n+1;

- pla,b) I(O,D(a +b) — the uniform distribution over the unit simplex;

- plng)=f, (Inq,|u,, Q);

- ps)= fEXp(sQz | /vtq,z) - the exponential distribution with mean 1/u .
Finally, for 6, we use the same priors as in (Osiewalski and Pajor 2009; Pajor and Osiewalski 2012).

3 MCMC methods for Bayesian estimation and model comparison

The joint posterior distribution, represented by p(q, 6| x), is too complicated to obtain a closed-form expres-
sion for any of its characteristics. To estimate these, we resort to MCMC methods, which allow one to generate
a (pseudo-) random sample from the considered distribution.

3.1 Gibbs and Metropolis-Hastings algorithms

In order to draw from the joint posterior distribution of unknown parameters and latent variables we use a
MCMC method, specifically, the Metropolis and Hastings algorithm within the Gibbs sampler. The procedure
generates drawings from a joint distribution (as a stationary distribution) by sequentially sampling from the full
conditional distributions (see, e.g. Gamerman 1997). Thus, we construct a Gibbs sampler with limiting distribu-
tion equal to the joint posterior distribution p(q, 6| x). The Gibbs sampler for the univariate stochastic volatility
models, presented by (Jacquier, Polson, and Rossi 1994), can be easily generalised to the VEC-SV models.

In the VEC-MSF model one has to draw the [T+nr+mr+1n+n*k - 1) +n(n+1)/2]-dimensional vector (¢’,
q’)’, which is split up into T + 12 separate Gibbs steps, 11 of which are quite straightforward, while the remain-
ing one poses more of a challenge.
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Before presenting the conditional posterior distributions for the model parameters, let us introduce some
additional notation:

Wi,l
W, . -2, .

W= *|withw, =% 7z fori=0,1,2,3,
w

i,T

where X2 denotes the matrix inverse of the Cholesky factor of X..
The equation for the observation t may be written as follows:

Wy, = wuvec(BA’) + wz,tvec(l“) + wltvec(l“s) +u,, {u}~iiN(,I ).

We can now move on to presenting the conditional distributions of the VEC form parameters. They are
either Normal (for the vectorisations of the matrix parameters) or inverse Gamma for the scalar ones:

- p(vec(A)|-, x) = f,(vec(A) |1, Q,), (12)

where
1 -1
Q, = [(Gl ®1rj+(1n ®BI)W, W, @B)] ,
14
R, = QA, KGl ® llr)vec(,u;) +I ® B’)Wl'[WO ~W,vec(I') —stec(FS)]},
v

- p(vec(B)|-, x) = f, (vec(B)| i, Q,), (13)
where

Q,=[(ml ®P,)+(A®I )W,/ W,(A®I )I",
iy, =Q(A'®1 W' [W, —W,vec(I')— W,vec(T'))],
- p(vec(D)[-, x) = f, (vec(D)| &y, Q) (14)
1 -1
where Q = {(Hl ®Ilj+Wz'WZ} ,
h

h.= QF {(Hl ® %II jvec(,ur) +W, [W, —W vec(BA") - W3vec(I“s)]},

- plvec(T")|, x)=f,(vec(T )| u,,, Q) (15)

-1
where QFS:[[HS‘1®;IIS]+W;W3} ,

_ = a1 , ,
U =9, {( H, 1®hIISJvec(uFS)+I/I/3 [W, —W,vec(BA )—Wzvec(l“)]},

S

- plvl, =1, (v In, +%, s, +;t7’[(A—ﬂA)'GI(A—MA)]), (16)

- p(hl, X)=f,6(h|nh +%l, S, +;tr[H1(F—/tr)’(F—ﬂr)]j, 17)
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nl,

1 - ,
2 4 Shs+§tr[Hs 1(1—‘3 _lul“s) (rs _lul"s)])’ (18)

p(hs|.’ X):fIG(hslnhs+

additionally, in the case of estimated 7 with an inverse gamma prior imposed [z ~IG(n,, s)], the full
conditional posterior distribution is of the form:

p(t], x)e| P[P exp{—l[sr + ;tr(mB’H;H;'B)}}. (19)
T

Distribution (19) does not belong to any standard distribution families. To obtain a sample from it, a
Metropolis-Hastings algorithm can be employed with the proposed values drawn from the inverse

e m 1 , . . .
gamma distribution: IG| n_ +7r, s, +5tr(mB'H ~H.'B) |. For a discussion about the meaning of 7 and

further recommendations for its estimation see e.g. (Koop, Leén-Gonzalez, and Strachan 2010).

The conditional posteriors of the MSF parameters are defined by the following inverse gamma, truncated
normal, inverted Wishart, and normal distributions:

plo; |, X)=f,;(0; |1, +T/2,8), (20)

T
with s =b, +0.5) (Ing, —¢lng, ,)’;

t=1

p(@l, )< fy (pla, 0, AT, (9), (21)

where
_ -1 7, 2 _ ” 2
a, =A"'"(W Q+aq§2¢u¢), A*l.]. =W W+049¢’

'-

W=(ng,,...,Inq, )’,Q=(ng,,...,Inq,)’;
P, x)e< £, (Z|Q, +TS,, uy +T), (22)

T
where S, =Ty g (x, —u,)(x,— 1,)';

t=1

p(ng, |, x)=f, (Inq,|bb", b"), (23)

where b1=¢2/02+1/9q, b, =¢lnql/afl+ﬂq/9q.

Sampling from all these conditional distributions is straightforward (also in the case of the truncated
ones, for which rejection sampling is applied).

The conditional posterior distributions of the unobserved variables in the VEC-MSF model are the
following:

—(n+2)/2

p(g, | x) o< q; " exp[—(2q,) " (x, — 1, ) =7 (x, — 1, )] ¥ (24)
xexp[-(207 )" (Ing, -s,,)’],

where for 1<t<T-1: s =[¢(ng, , +Ing, )I(1+¢°)", ofq = ofl(l+¢2)”, and for t=T: s =¢lng, ,
o’ =cd’.
*q q

Density kernel (24) is not standard, so in order to sample from p(g, |-, x) we use an acception-rejection Metrop-
olis-Hastings algorithm with the candidate generating distribution obtained by approximating the log-nor-
mal kernel in (24) by the kernel of the inverse gamma distribution with the same mean and variance as this
log-normal distribution (see Jacquier, Polson, and Rossi, 1994). This yields an inverse Gamma distribution
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from which direct draws are easily generated (the product of two inverse Gamma distributions is still an
inverse Gamma distribution). The candidate generating density is:

q(q,|) =g, " exp(-0g;"), (25)

(1-2¢") n ( n j ( 1, j .
————+—, 0= p——-1|exp|s, +=0, |+(x —pu)Z"(x — 2.
1oy T2 Y 9 Pl S, +500 JF O -1 Y (x — )]

Let us now describe the Gibbs sampler used in the VEC-MSF-SBEKK model. The numerical procedure is
much more computationally demanding and time-consuming. Because matrix i[ in the SBEKK structure is
a function of the past information set, the full conditional posterior distribution for the VEC structure is very

complicated:

where ¢ =

p(vecA’, vecB’, vecI”, vecl', v, h, h_, T|., x) o<

T
o< p(vecA’, vecB’, vecI”, vecI', v, h, h,, D[ | f, .(x, | > 4.2). (26)
t=1

Drawing from the above full conditional posterior is riddled with serious numerical obstacles, unless its
dimension (n) is small. In order to sample from (26) we implement the random walk Metropolis-Hastings
algorithm with normal and truncated normal distributions centred at the previous values of the chain. The
covariance matrix of the proposal distribution is a form of approximation of a specific part of the posterior
covariance matrix, and it is determined by initial draws. For data sets used in our empirical illustrations the
acceptance rate amounts to about 27%.

The conditional posterior distributions of ¢, a; and Ing, in the MSF-SBEKK structure are also truncated
normal, inverse gamma and normal, respectively, as in (19), (21) and (23). On the other hand, the conditional
posterior of the parameters featured by the SBEKK part of the model is very complicated:

T
— pla, b, s, 2|, x)e<pla, b, s, ., D[] f x| 15 Z)- Q7)
t=1

Parameters a, b, Soxs and elements of matrix ¥ can be sampled using the Metropolis-Hastings steps
within the Gibbs sampler. We implement the random walk Metropolis-Hastings algorithm with truncated
Student’s t distribution (with 3 degrees of freedom) centred at the previous values of the chain (similarly
to Osiewalski and Pajor 2009). The covariance matrix of the latter is determined by initial draws of the
algorithm. For large n sampling from this full conditional posterior distribution may be numerically more
demanding.

The conditional posterior distributions of the unobserved variables in the VEC-MSF-SBEKK model are of the
following form:

- p(qt |" X) o qflfw,l(lnqr |¢lan, sz)fN,l(lnqm |¢lnqt’ Otzz)fN,n(Xt |'ut’ qtit)’ (28)
for1<t<T-1,
= plg, | x)=q;'f,,(ng, |plng, , 02)f, (X, |ty 4, 2). (29)

In order to sample from (28) and (29) we also use the Metropolis-Hastings algorithm. Following (Osiewalski
and Pajor 2009), the candidate generating density is an inverse Gamma density:

q(g,1)o<q, " exp(-6{"q"), (30)

1-2¢"
where <p=w+ﬁ, 07"

_ n 1 2 1 ro-1
e 2 [—(go—z—ljexp(s*t+2a*q)+2(xt—/J[)2[ (x,—u,).
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We stress that the Metropolis-Hastings steps are implemented within the Gibbs sampler. Thus we create
Metropolis subchains within the Markov chain constructed by the Gibbs sampler to sample from the non-
standard distributions.

To summarise, Bayesian VEC-MSF or VEC-MSF-SBEKK models are analysed, using Gibbs sampling as a
tool for simulating samples from the posterior distributions. In the case of the VEC-MSF-SBEKK structure the
numerics is far more demanding even for small n. On the other hand, the forms of the full conditional poste-
rior distributions in the VEC-MSF model make steps of the Gibbs sampler easy even for large n. However, the
MSF specification is very restrictive since it assumes the same dynamics for all entries of X . This assumption
is a price to be paid for the ease of numerical calculations.

3.2 Harmonic mean estimator with Lenk’s correction

The marginal data densities are essential in the formal Bayesian model selection and model averaging.
(Newton and Raftery 1994) proposed a simple (and hence popular) method of estimation of the marginal data
density based on the harmonic mean. The harmonic mean estimator (HME) is given as:

. 1 1 B
a5, 00 o

where {Gm, q(p)}::1 are the draws generated from the posterior distribution of the parameters and latent
variables, using the MCMC methods.

Even though the HME is consistent (see Newton and Raftery 1994), the computed HME suffers from some
serious shortcomings, for example it overestimates the marginal data density. In the paper (Lenk 2009) the
source of this “simulation pseudo-bias” of the HME is identified, and several methods of estimating the
“bias” adjustment factor are proposed. The adjusted HME for the marginal data density, proposed by (Lenk
2009), is given by the formula:

f)AHME(X) = ﬁ(c)lili1):| ’ (32)

m33 p(x16,), 4,

where P(C) is an evaluation of the prior probability of subset C c© [i.e. P(C)], where © denotes the space

of parameters 6 and latent variables g. In Equation (32) {0@}, q(p)}'::1 are drawn from the posterior distribu-

tion of the vector (¢’, ¢')’ restricted to the subset C. Following (Lenk 2009) we assume that C={(¢", ¢")}:p(x|6,

q) =L}, where L=(9, , {gl'in, e p(x16, q). P(C) is approximated using importance sampling, drawing from
AT ENO ) (p)) T pr

the truncated [to the support of p(6)] multivariate normal distribution for all parameters and the prior dis-
tribution for the latent variables. Starting from the identity: P(C) =I p(q|0)p(0)I.(0, q) dO dq, we obtain:
(S}

p(6)
s(0)

of parameters, p(q | 0) is the density function of the prior distribution for the latent variables (given the para-
meters), s(f) is the probability density function of the truncated multivariate normal distribution. The last
identity yields the importance sampling estimator of P(C) with the importance function of the form: s(6)
p(q|6). The parameters of the truncated normal distribution (the mean and covariances) are obtained basing
on the MCMC draws from the posterior distribution.

The estimate of P(C) is:

P(C) :J 1.(0, @)s(0)p(q|0)do dq, where p(6) is the probability density function of the prior distribution
€]

- 1L PO, q))
P(C)== NTCG) 2G)
O= 72" )

()

) (33
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where {O(Sj), q(sj)}]’,:1 are drawn from the importance sampling distribution defined by the probability density
function p(q | 6) s(f). The normalising constants of probability density functions s(6) and p(6) are not known,

thus they are calculated, using the direct sampling method.

4 Empiricalillustrations

Data used in the paper come from the Polish economy. In the first example we analyse financial data of daily
quotations on three major exchange rates: PLN/EUR, PLN/USD and EUR/USD. The second one focuses on
macroeconomic data of unemployment, inflation and interest rates.

4.1 Long-run relationships among exchange rates

We start by modelling the exchange rates (where, on the ground of lack of arbitrage opportunities,
the cointegrating vector may be assumed to be known a priori) to show that our model and numerical
methods are suitable for modelling a long-run relationship in financial data. Let us consider two average
daily main Polish official exchange rates: the zloty (PLN) values of the US dollar, and the zloty (PLN)
values of the euro, over the period from January 3, 2005 to September 30, 2011 (downloaded from the
website of the National Bank of Poland). The dataset of the daily logarithmic growth rates (expressed
in percentage terms) consists of 1662 observations (for each series). The first observation is sacrificed
as an initial condition, thus T=1661. The Polish official exchange rates are linked to the exchange rates
quoted on Forex, the international currencies market. Thus, while building time-series models for the
two Polish exchange rates [EUR/PLN (xz,[) and USD/PLN (xlt)], we introduce some extra variable from
the international market — the euro value of the US dollar, EUR/USD (xu, downloaded from http://stooq.
com.).

We use the same dataset as in (Pajor 2011), where exogeneity in models with latent variables was consid-
ered, and the cointegrating vector was assumed to be known. The relationship: (EUR/PLN)/(USD/PLN)=EUR/
USD was introduced by assuming that this relation (in logarithmic terms) is a cointegration equation in the
sense of (Engle and Granger 1987). This yielded the cointegrating vector (1, -1, 1) and the long-run (equilib-
rium) relationship: In x,, - In x, =In x, . The assumption that Inx, , Inx, , and Inx, , are cointegrated has been
checked informally using the Phillips and Perron test applied to the series ECM,=100(In x, .~ In x, +Inx;, ). In
this paper the cointegrating vector is formally estimated.

The Polish official exchange rates with the addition of certain variables related to the foreign exchange
market were previously modelled by (Osiewalski and Pipieri 2004) within the VEC-GARCH structure, and
under assumption that the cointegrating vector is known.

The data are plotted in Figure 1, depicting the graphs of logarithms (multiplied by 100) of exchange
rates in terms of their levels and of their increments. It can be seen from the graphs that the growth rates
are centred around zero, and feature time-varying volatility and outliers. The series are more volatile in the
period of the financial crisis 2008-2009. Moreover, the official exchange rates of the National Bank of Poland
appear more volatile than the EUR/USD exchange rates.

A visual inspection of the data reveals that they do not satisfy the constant conditional variance assump-
tion, and therefore the conditional covariance matrix of the respective VAR models need to be stochastic.
Summary statistics for the analysed series are shown in Table 1. The arithmetic means of the growth rates of
the official Polish exchange rates are positive, but the standard deviations are relatively high. A much higher
than 3 value of the kurtosis pronounced leptokurtosis of the empirical distribution. As expected, the EUR/
PLN and USD/PLN exchange rates are positively correlated.
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Figure 1: Exchange rates of USD/PLN, EUR/PLN and EUR/USD (January 3, 2005 — September 30, 2011).

Due to the typical properties of daily growth rates of exchange rates, we consider the VEC-MSF and the

VEC-MSF-SBEKK models with one cointegrating vector (r

and the number of lags equal to 2 (k

1), containing an unrestricted vector of constants,

2).! We set the following values of hyperparameters:

1 The Lindley-type test indicates that such an autoregressive lag order is high enough to capture the autocorrelation of the series.

6,is a 9 x1vector. Then the quadratic form:

Oand H;: T, #0, where vec (I')
[6,—E(®, | x)]'V’l(G0 [x)[6, —E(6,|x)], where E(6,|x)and V(6,|x) are, respectively, the vector of posterior means of 6 and

the posterior covariance matrix, is a posteriori approximately (T — ) 2 distributed with 9 degrees of freedom. In the VEC-MSF-

We set the null and alternative hypotheses as: H: T,

F(6,)

0 is not rejected by the data.

0.86. Thus, the assumption that ", =

4.59, and p(F(6,) >F(0) | x) =

SBEKK model we obtain F(0)
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Table 1: Descriptive statistics of analyzed exchange rates (x; ) and of daily growth rates (y, ).

yi,t xi,t
USD/PLN EUR/PLN EUR/USD USD/PLN EUR/PLN EUR/USD
Mean 0.0047 0.0050 -0.0003 2.9319 3.9343 1.3513
SD 0.0280 0.0182 0.0172 0.0081 0.0067 0.0025
Skewness 0.4802 0.2530 -0.0113 -0.6198 -0.0419 0.3538
Kurtosis 7.6101 8.8404 4.9594 3.3365 3.8930 2.4680
Minimum -6.7485 -4.5895 -3.1163 2.0220 3.2026 1.1670
Maximum 6.2677 4.1467 3.4157 3.8978 4.8999 1.5995
Empirical correlations
USD/PLN 1 0.7502 -0.3082 1 0.8041 -0.8452
EUR/PLN 1 -0.1313 1 -0.3742
EUR/USD 1 1

- for matrix B: P =1, (the uniform distribution over the Stiefel manifold), 7=1;

- formatrixA: G=I,u,=0, ,s,=2,n =3;

- formatrixT:u =0, , H=1I,s,=2,n,=3;

- formatrixT:u =0, ,H=1I,s,=2,n, =3;

— for MSF parameters: m,= 0, Q¢ =100, a,=1, b, =0.005, M= o, Qq =100, u,=5,Q =1,
—  for SBEKK parameters: M =1

As mentioned above, the relationship: (EUR/PLN)/(USD/PLN)=EUR/USD indicates that the posterior cointe-
grating space can be spanned by the vector (1, -1, 1). One of the objectives of the study is to check whether
formal Bayesian estimation of the cointegrating space leads to the same cointegrating vector, which was a
priori assumed in our previous research.

The posterior means and standard deviations (in parentheses) of the cointegrating vector as well as
the adjustment coefficients are presented bellow. As suggested by (Villani 2006), the point estimates of the
cointegrating vectors are obtained with the use of a loss function based on the projective Frobenius dis-
tance 23: argmin E[I(, B)], where (3, B) = 2(r—tr(ﬁﬂ’ﬁﬁ’)). This function is minimised at fﬂz (Vv V),

BeGy s

wherev, (i=1, 2, ..., r) are the eigenvectors corresponding to the r largest eigenvalues of the matrix E(54"). The

r_z::/lf

rim-r)/m

measures of cointegration space variation are calculated as 7 , where A, is the i-th largest

2B~
eigenvalue of E(3f"). This measure takes values from O to 1. The lower is the value, the tighter is the posterior
distribution (see Villani 2006). To make comparison with the theoretical cointegrating vector more readable,
the point estimates of the cointegrating and the adjustment coefficient vectors are normalised in such a manner
that the first element of 8 equals 1. Note that in the case of one cointegrating vector such a procedure does not
alter the cointegration space. We obtained the following posterior means (and standard deviations) of # and a:

E(f|x, MSF)=[1.000 —0.997 0.999],7__. =0.0007,

sp(B)

E(a|x, MSF) =

(D(alx,MSF))

0.080 0.017 —0.961
(0.097) (0.094) (0.116)

E(f|x, MSF —SBEKK)=[1.000 —0.998 1.000], T = 0.0006,

E(a| x, MSF — SBEKK) =

(D(efx,MSF—SBEKK))

0.054 0314 -0.624
(0.081) (0.070) (0.090) |
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Overall, the results confirm that exchange rates of USD/PLN, EUR/PLN and EUR/USD are cointegrated
with coefficients (1, -1, 1).
In the VEC-MSF model the posterior means and standard deviations (in parentheses) of the VAR
parameters are:
AX,; 0.088 0.020 -1.602 1.000 Heo
A 2| 0119) (0.107) (0.624) | 0227 (00007 | xcip |+
Ax 0.999 X

t,3 t-1,3
[ -0.076 -0.040 —-0.013] [0.003 |
(0.050) (0.041) (0.030) (0.028)
~0.115 -0.072 0.020 Y -0.032|
™1 0.047) (0.039) (0.028) || V12 || 0.02) |7

~0.135 -0.042 0.006 |L"™*-13] |0.206

(0.060) (0.048) (0.035) (0.201)

and

Ing, =0.987Ing, , +10.02077, +1),,
(0.0063) (0.0063)

E(lng,|x, MSF)=0.055, D(Ing,|x, MSF)=0.488,

[ 0.552 -0.041 -0.230]
(0.223) (0.022) (0.095)
~0.041 0.503 0.534

E(Z|x, MSF) =
(D(SI,MSF)) (0.022) (0.204) (0.217)
-0.230 0.534 0.780
(0.095) (0.217) (0.315)

where (& t', 7,) is the vector of relevant residuals.
In turn, in the VEC-MSF-SBEKK model the posterior means and standard deviations of the VAR para-

meters are:

Ax 1.000 X 11
t1 0.054 0.314 -0.624 ’
—-0.998 (0.0006) || x

17| (0.081) (0.070) (0.090
x| (008D (0.070) (0.050) ), o X

t-1,2

t,3 t-1,3
[-0.080 -0.022 -0.027 0.014

(0.042) (0.040) (0.030) |r . (0.022)

—-0.295 -0.049 0.014 AX““ -0.100 »

+ + ,
(0.033) (0.028) (0.017) 121" (0.064) |
~0312 -0.021 0.006 |12] |0.109
(0.044) (0.043) (0.030) (0.121)

and

Ing, =0.664Ing, | +\0.162 5, +7),,
(0.086) (0.043)
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E(Ing, | x, MSF —SBEKK)=5.760, D(Inq,|MSF —SBEKK)=1.753,
E(a|x, MSF - SBEKK)=0.029, D(a|MSF —-SBEKK)=0.003,

E(b|x, MSF - SBEKK)=0.969, D(b|MSF—-SBEKK)=0.004,

E(q,, |x, MSF - SBEKK)=0.044, D(q,, |x, MSF~SBEKK)=0.026,

0.622 -0.018 -0.186 ]
(0.460) (0.134) (0.271)
-0.018 0.219 0.138
E(Z|x, MSF — SBEKK) = .
(D(SJx,MSF—SBEKK)) (0.134) (0.099) (0.124)
-0.186 0.138 0.414
(0.271) (0.124) (0.225)

Similar characteristics of posterior distributions were obtained in the VEC-SV models with the known coin-
tegration relation (therefore they are not presented here), with the marginal posterior distributions being only
less dispersed. The inference about the individual volatility of each time series (measured by the conditional
standard deviations) is also very similar in both considered VEC-SV models: with either the known or estimated
cointegrating vector. The time plots of conditional standard deviations (for each t=1, 2, ..., T; T=1661) are pre-
sented in Figure 2, where the upper line represents the posterior mean plus two standard deviations, and the
lower one — the posterior mean minus two standard deviations. The models produce volatility peaks at the
same time moments. Note that the dynamic pattern of the volatility for all returns is the same in the VEC-MSF
model, which is due to the fact that the dynamics of volatilities is governed by only one latent process. However,
in spite of the simplicity of the structure of the conditional covariance matrix, we allow the variances of multi-
variate returns to vary over time. The plots of the main posterior characteristics of conditional correlations are
presented in Figure 3. One can easily notice that the constant conditional correlation hypothesis (represented
by the MSF specification) is not supported be the data, which is consistent with the findings presented by (Osi-
ewalski and Osiewalski 2013). Due to numerical problems in calculating the marginal likelihoods, we do not
present formal Bayesian model comparison of the MSF and MSF-SBEKK specifications. The use of the Lindley-
type test (based on the highest posterior density region, see, e.g. Box and Tiao 1973; Bauwens, Lubrano, and
Richard 1999) would lead to rejection of the hypothesis. However, the assumption of constant conditional cor-
relations does not influence the inference about the cointegration relationship. The distance measures between
the estimated cointegrated spaces and the theoretical one [i.e. spanned by the vector (1, -1, 1)]?> obtained in the
VEC-MSF and the VEC-MSF-SBEKK models are very close to zero and almost the same (although they are slightly
lower in the VEC-MSF models). In the set of the VEC-MSF-SBEKK models the distance measure takes the highest
value in the model with five lags (5.5+107°) and they fall to 3.3%107¢ in the model with two lags.

Our application of the VEC-SV models to exchange rates yields results, which are consistent with the
theory. The cointegrating space appears indeed to be spanned by the vector (1, -1, 1). This illustration shows
that our methods can accurately estimate the long-run relationship in the VEC model with a time-variable
conditional covariance matrix.

4.2 A small model for monetary policy

In the second example the methods developed in the paper are applied to a system with three Polish macro-
economic variables. Before presenting the results, it is worth emphasizing that the papers cited in the intro-
duction pertain predominantly to the US economy. To the best of our knowledge, similar analyses for the

2 Following (Larsson and Villani 2001) we based this measure on the Frobenius matrix norm. We thank the Referee for this
suggestion.
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Figure 3: Conditional correlations (posterior mean +2 standard deviations). The results are obtained in the VEC-MSF and VEC-
MSF-SBEKK models with r=1 (cointegrating vector is estimated).

Polish economy, with the use of the (Bayesian) VEC-SV models, have not been carried out as yet. Therefore,
the paper aims to fill this gap.

In this study a so called small model of monetary policy is considered. The model is based on three major
macroeconomic variables: inflation of consumer prices, Ap,, unemployment rate, U, and short-term interest
rates, r.. The latter can be regarded as a proxy for the monetary policy.

The seasonally unadjusted data cover the period from 1995Q1 to 2012Q4. The seasonality of the analysed
series is modelled in a deterministic manner, via zero-mean seasonal dummies. The first 3 years are used as
a training sample to determine the hyperparameters of the prior distribution for the cointegration space (the
Johansen procedure in the model with two lags and r cointegrating vectors  has been used, which further
have been utilized to calculate P =8"+0.583 f’ ). The next five quarters are sacrificed as initial conditions.
Eventually, there are 55 modelled observations (see Figure 4).

As the analysed time series are rather short, it is very important to test whether the variances and covari-
ances are constant or not. A visual inspection of the time paths of the series suggests that one could expect
a time-varying covariance structure. The empirical validity of this presumption is to be formally tested via
Bayesian model comparison. The set of competing models include 72 non-nested specifications. Along with
the number of latent processes driving covariances (I=0 in the a VEC model, /=1 in the VEC-MSF and VEC-
MSF-SBEKK forms), the models can differ in the VAR order (k € {2, 3, 4, 5}), the type of incorporated determin-
istic term (d =4 denotes a restricted constant, d =3 — an unrestricted one) and the cointegration rank (r can be
equal to 1 or 2). Additionally, we consider VAR models for the first differences of the analysed processes (r=0)
and VAR models for the levels of these processes (r=3). We assume that the prior probability of each of the
specifications compared is equal to 0.0139, which is the reciprocal of the total number of models considered.

Table 2 summarizes the results of the model comparison. In all three considered cases of the covariance
structure (homoscedastic, MSF and MSF-SBEKK), the model that ranks first is the one that features two lags,
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Figure 4: The analysed macro-data series (1995Q1 - 2012Q4).

Table 2: Natural logarithm of estimates of marginal likelihoods, numerical standard errors and ranks.

_ 17

k, d, r VEC VEC-MSF VEC-MSF-SBEKK
In p(x) NSE Rank (under In p(x) NSE Rank (under In p(x) NSE Rank (under

all models) all models) all models)

2,3,0 -196.94 0.46 24 (23) -182.06 0.56 24 (5) -177.58 0.32 24 (3)
2,3,1 -198.69 0.50 4 (26) -185.61 0.50 3 (6) -181.39 0.50 3(4)
2,3,2 -203.16 0.98 7 (37) -187.89 0.75 5(8) -202.69 1.17 12 (36)
2,3,3 -214.66 1.03 19 (54) -204.34 0.89 20 (40) -225.80 1.30 17 (63)
2,4,1 -191.89 0.49 1(15) -177.38 0.42 102 -174.29 0.87 1(1)
2,4,2 -196.88 0.60 2(22) -190.41 1.04 7 (13) -202.45 1.03 11 (34)
3,3,0 -204.55 1.03 3(41) -190.55 0.87 2(14) -187.38 0.60 2(7)
3,3,1 -206.53 0.36 12 (45) -196.56 0.85 12(21) -201.64 1.02 10 (32)
3,3,2 -211.16 0.84 16 (49) -200.30 1.06 15 (30) -223.44 1.10 15 (61)
3,3,3 -220.83 1.09 23 (60) -212.93 0.88 22 (50) -238.38 1.16 21(67)
3,4,1 -199.04 0.52 5(27) -187.59 0.51 4(8) -189.79 0.64 6(12)
3,4,2 -206.57 0.74 13 (46) -193.21 0.70 10 (18) -231.97 0.68 19 (65)
4,3,0 -210.72 0.92 9 (48) -197.66 1.03 8 (24) -192.89 0.64 4(17)
4,3,1 -213.70 0.67 18 (52) -201.14 1.05 16 (31) -216.74 0.79 14 (57)
4,3,2 -216.67 0.66 21 (56) -206.40 1.23 21 (44) —247.65 1.37 22 (68)
4,3,3 -219.61 1.40 22 (59) -219.12 0.96 23 (58) -237.05 1.00 20 (66)
4,4,1 -203.21 0.81 8(38) -192.00 0.80 9(16) -193.77 0.55 8 (20)
4,4,2 -215.67 0.89 20 (55) -199.62 0.73 14 (28) -225.09 1.05 16 (62)
5,3,0 -205.24 1.15 15 (42) -193.25 1.04 13 (19) -188.09 1.05 79
5,3,1 -209.38 0.81 14 (47) -202.39 1.03 17 (33) -213.94 0.88 13 (53)
5,3,2 -212.96 0.75 17 (51) -204.08 0.75 19 (39) -253.58 1.18 23 (69)
5,4,1 -199.91 1.03 6(29) -188.61 0.60 6(11) -197.88 0.79 9 (25)
5,4,2 -205.82 1.25 11 (43) -202.46 1.11 18 (35) -231.00 1.11 18 (64)

k, VAR order; d, deterministic term; r, cointegration rank; r=3 - VAR for levels, r=0 — VAR for first differences. The P matrix is

determined with the help of the Johansen procedure employed in the model with r cointegrating relations.

one cointegrating relation and a constant restricted to the cointegration space. Generally, among the models
with the highest posterior probability are almost exclusively those with either no or only one cointegrating

relation, a time-varying covariance matrix and a short lag structure. Note that the number of lags

seems to

be less important than the cointegration rank. Due to high values of numerical standard errors of HME the
ranking positions of some models cannot be clearly identified, but even if we take into account the error for
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Table 3: The most probable models.

VAR order (k) Deterministic Cointegration Model (1) P(M(k_ d,,_n|x)
term (d) rank (r)
2 4 1 VEC-MSF-SBEKK 0.92261
2 4 1 VEC-MSF 0.04172
2 3 0 VEC-MSF-SBEKK 0.03435
2 3 1 VEC-MSF-SBEKK 0.00076
2 3 0 VEC-MSF 0.00039
2 3 1 VEC-MSF 0.00001
3 3 0 VEC-MSF-SBEKK 0.000002
3 4 1 VEC-MSF 0.000002
2 3 2 VEC-MSF 0.000001

The P_matrix is determined with the help of the Johansen procedure employed in the model with r cointegrating relations.

the VEC-MSF-SBEKK model with k=2, d=4 and r=1, there is no doubt that the marginal data density for this
specification is the highest. We can also observe high positive correlations between ordering of the models in
all considered cases of the covariance structure. Table 3 presents models with the highest posterior probabil-
ity. Among them there are only the VEC-MSF-SBEKK and VEC-MSF specifications, so there is a strong evidence
that the covariance matrix is time-varying. Only the first three models obtained higher posterior probability
than the assumed prior probability, and almost all posterior probability is gathered by the VEC-MSF-SBEKK
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Figure 5: Conditional standard deviations and correlations (posterior mean 2 standard deviations). The results are obtained in
the VEC-MSF-SBEKK model with r=2, k=1, d=4.
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model with two lags in the VAR form, one cointegration relation and a constant restricted to the cointegration
space. The second one is the model with the same VEC structure but with the MSF covariance structure, and
the third specification is the VAR-MSF-SBEKK model for the first differences.

Figure 5 displays the time plots of conditional standard deviation and the cross correlations of the inno-
vation processes in each of the three equations of the model with the highest posterior probability. Black lines
represent posterior means, and the grey ones — the means plus/minus two posterior standard deviations. The
posterior means of the conditional standard deviations lead us to the conclusion that all the error terms are
heteroscedastic, but the areas between grey lines representing the uncertainty suggest that the Lindley-type
test would probably indicate that the error term in the inflation equation could be homoscedastic. In the
unemployment equation we can observe a high pick of volatility in year 2003, when the unemployment rate
was the highest. The volatility of the interest rate shocks was clearly higher at the beginning of the analysed
sample (in years 1999-2002), when the interest rates were high.

The posteriors of conditional correlations are quite tight, and the presented figures clearly indicate that
these correlations keep changing during the analysed period. It can be seen that all the conditional correla-
tions of error terms for interest rate and for inflation are positive and relatively high (Figure 5, graph 5). The
conditional correlations between the error terms for the inflation and unemployment as well as for the unem-
ployment and interest rate change their signs (Figure 5, graphs 4 and 6). Also, they share similar patterns,
which probably results from positive correlations of the error terms in the equations of the interest rate and
inflation.

As has been mentioned before, the analysed series is rather short, therefore we have decided to perform
a sensitivity analysis of the Bayesian model comparison for two different prior specifications for the coin-
tegration space. Contrary to the previous approach of setting the P, matrix, now it is determined with the

Table 4: Natural logarithm of estimates of marginal likelihoods, numerical standard errors and ranks.

k, d, r VEC VEC-MSF VEC-MSF-SBEKK
In p(x) NSE Rank (under In p(x) NSE Rank (under In p(x) NSE Rank (under

all models) all models) all models)

2,3,0 -196.94 0.46 3(20) -182.06 0.56 1(2) -177.58 0.32 1(1)
2,3,1 -199.18 0.81 4 (23) -188.74 0.56 4(8) -196.39 0.35 7(17)
2,3,2 -203.16 0.98 5(30) -187.89 0.75 3(6) -202.69 1.17 10 (29)
2,3,3 -214.66 1.03 17 (50) -204.34 0.89 18 (33) -225.80 1.30 17 (63)
2,4,1 -195.25 1.09 1(15) -184.21 0.79 2(3) -187.70 0.88 3(5)
2,4,2 -196.88 0.60 2(19) -190.41 1.04 5(9) -202.45 1.03 9(27)
3,3,0 -204.55 1.03 6 (34) -190.55 0.87 6 (10) -187.38 0.60 2(4)
3,3,1 -209.50 0.83 13 (45) -198.11 0.74 12(22) -206.59 0.68 11 (40)
3,3,2 -211.16 0.84 15 (47) -200.30 1.06 14 (25) -223.44 1.10 14 (60)
3,3,3 -220.83 1.09 23 (58) -212.93 0.88 22 (48) -238.38 1.16 21(67)
3,4,1 -208.46 0.72 11 (43) -195.70 0.49 9(16) -193.88 0.80 6 (14)
3,4,2 -206.57 0.74 9(39) -193.21 0.70 7(12) -231.97 0.68 19 (65)
4,3,0 -210.72 0.92 14 (46) -197.66 1.03 11 (21) -192.89 0.64 5(11)
4,3,1 -215.76 0.82 19 (52) -207.44 1.06 21 (41) -222.85 0.88 13 (59)
4,3,2 -216.67 0.66 21 (54) -206.40 1.23 20 (38) —247.65 1.37 22 (68)
4,3,3 -219.61 1.40 22 (57) -219.12 0.96 23 (56) -237.05 1.00 20 (66)
4,4,1 -216.63 1.11 20 (53) -203.45 1.14 16 (31) -217.02 1.04 12 (55)
4,4,2 -215.67 0.89 18 (51) -199.62 0.73 13 (24) -225.09 1.05 16 (62)
5,3,0 -205.24 1.15 7 (35) -193.25 1.04 8(13) -188.09 1.05 4 (7)
5,3,1 -208.91 0.83 12 (44) -205.88 1.16 19 (37) -224.54 0.79 15 (61)
5,3,2 -212.96 0.75 16 (49) -204.08 0.75 17 (32) -253.58 1.18 23 (69)
5,4,1 -207.99 0.77 10 (42) -196.73 1.03 10 (18) -202.04 0.74 8 (26)
5,4,2 -205.82 1.25 8(36) -202.46 1.11 15(28) -231.00 1.11 18 (64)

k, VAR order; d, deterministic term; r, cointegration rank; r=3 - VAR for levels, r=0 - VAR for first differences. The P_matrix is
determined with the help of the Johansen procedure employed in the model with n -1 cointegrating relations.
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Table 5: The most probable models.

VAR order (k) Deterministic Cointegration Model (1) P(M(k, d’nnlx)
term (d) rank (r)
2 0 VEC-MSF-SBEKK 0.98737
2 3 0 VEC-MSF 0.01116
2 4 1 VEC-MSF 0.00130
3 3 0 VEC-MSF-SBEKK 0.00005
2 4 1 VEC-MSF-SBEKK 0.00004
2 3 2 VEC-MSF 0.00003
5 3 0 VEC-MSF-SBEKK 0.00003
2 3 1 VEC-MSF 0.000014
2 4 2 VEC-MSF 0.000003
3 3 0 VEC-MSF 0.000002

The P_matrix is determined with the help of the Johansen procedure employed in the model with n -1 cointegrating relations.

help of the Johansen procedure employed in the model with n-1 (rather than r) cointegrating relations.
Tables 4 and 5 summarize the obtained results. The ranking of the most probable models with the homo-
scedastic covariance structure remains almost unchanged, whereas in the two other cases under study (i.e.
VEC-MSF and VEC-MSF-SBEKK) we can observe some major differences in their performance. It emerges now
that the models with two lags and no cointegrating relations are superior. As for the covariance structure we
still have strong evidence for its time-variability, and almost all posterior model probability is gained by the
MSF-SBEKK specification. Summing up, our sensitivity analysis shows that, as it might have been expected,
in such richly parameterised models and with samples of so small sizes the prior assumptions affect the pos-
terior results quite considerably.

5 Concluding remarks

The paper is focused on the construction and estimation of Bayesian Vector Error Correction -Stochastic
Volatility (VEC-SV) models. As regards the stochastic volatility part of the specification we start with the
MSF structure, which is the simplest among the MSV structures, thereby allowing a parsimonious way of
modelling time-variability of volatility. Such a framework enables us to capture the long-run relationships
among processes, and also to formally examine the presence of time-variation in the conditional covari-
ance matrix.

The main conclusion of this paper is that both the heteroskedasticity and the long-run relationships have
to be taken into account simultaneously in macroeconomic models as well as in financial analyses. Our appli-
cation of the VEC-MSF and VEC-MSF-SBEKK models to exchange rates demonstrates that our methods can
accurately estimate the long-run relationships in the VEC model for daily market prices. The results of Bayes-
ian model comparison performed in the macroeconomic model example indicate that the ranking of different
VEC structures (covering various numbers of lags and cointegrating relations, and two types of incorporated
deterministic terms) is rather stable across different covariance matrix specifications.

The MSF structure allows conditional variances of the joint distribution of variables to change over time,
but conditional correlations remain constant. In the MSF-SBEKK structure the conditional covariance matrix
depends on the past of the process, as in the MGARCH models, which can lead to serious numerical obstacles.
Thus, we deem that further research should rather include an MSV specification with stochastic conditional
correlations based on more than one latent process.

On the other hand, time-variability of shocks has a potential effect on the propagation mechanism of the
innovations (see, e.g. Koop, Le6n-Gonzalez, and Strachan 2009), so allowing parameters in the conditional
mean of the process to be time-varying appear one of the most wanted generalisations.
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