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Abstract: This study proposes methods for estimating Bayesian vector autoregressions (VARs) with a (semi-) 
automatic variable selection and an informative prior on the unconditional mean or steady-state of the system. 
We show that extant Gibbs sampling methods for Bayesian variable selection can be efficiently extended to 
incorporate prior beliefs on the steady-state of the economy. Empirical analysis, based on three major US 
macroeconomic time series, indicates that the out-of-sample forecasting accuracy of a VAR model is consider-
ably improved when it combines both variable selection and steady-state prior information.
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1  Introduction
The seminal studies of Sims (1980), Doan, Litterman, and Sims (1984) and Litterman (1986) kick-started a 
flurry of research on Bayesian vector autoregressions (Bayesian VARs or BVARs hereafter) and their ability to 
generate accurate macroeconomic forecasts. Almost 30 years later, BVARs have been established as a stand-
ard forecasting tool in empirical macroeconomics (e.g. see Karlsson 2013 for a recent review and references 
therein).

A key element in the plethora of BVAR specifications is the shrinkage of dynamic parameters towards a 
specific representation of the data which reflects researchers’ prior beliefs and deals with the over-parame-
terization problem. A popular shrinkage method is the Minnesota (or Litterman) prior (Doan, Litterman, and 
Sims 1984; Litterman 1986) and its variants (Banbura, Giannone, and Reichlin 2010; Koop 2013; Giannone, 
Lenza, and Primiceri 2015) which allow for different levels of shrinkage on VAR coefficients and in some cases 
lead to conjugate posterior densities eliminating the need of posterior simulations. Recently, Bayesian least 
absolute shrinkage and selection operator (Lasso) has also been proposed for VAR shrinkage (Korobilis 2013; 
Gefang 2014).

Another strand of the literature has proposed Bayesian variable selection as an alternative way of VAR 
shrinkage. In general, variable selection techniques refer to a statistical procedure that decides stochastically 
which of the variables enter the VAR equation and which not, based on information provided by the data. 
Variable selection can be performed either by imposing a tight prior around zero on some of the VAR coef-
ficients (George, Sun, and Ni 2008; Korobilis 2008; Koop 2013) or via restricting coefficients to be exactly zero 
(Korobilis 2013). In the former case, all variables enter the VAR equations but some of them have coefficients 
very close, but not exactly, zero; whereas, in the latter case, some of the variables are actually excluded from 
the VAR system leading to a restricted VAR specification. The method of George, Sun, and Ni (2008) is gener-
ally faster and computationally more stable than Korobilis (2013) method (see also George and McCulloch 
1997). On the other hand, the method of Korobilis (2013) is considered more flexible since it is fully automatic 
and independent of the prior specified on the dynamic parameters, a feature that simplifies posterior simula-
tions and enables the adoption of the method in non-linear VAR models.
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Although the main bulk of the BVAR literature concentrates on prior specification and shrinkage tech-
niques about the dynamic VAR coefficients, Villani (2009) argues that the unconditional mean or the steady 
sate of the system is an equally, or even more, important aspect of BVARs forecasting performance. The 
rationale is that longer-term forecasts of a stationary VAR converge to their unconditional means and thus, 
their estimated level plays a crucial role in forecasting accuracy. Moreover, economists usually have a more 
crystallized view on the steady-state level of an economy than on its short-term fluctuations, implying that a 
VAR model that accounts for this kind of prior information can improve its forecasting behavior. Therefore, 
the author proposes a mean-adjusted representation of a VAR model that enables the incorporation of prior 
beliefs on steady-states. The empirical evidence, so far, suggests that steady-state VAR models outperform 
their counterparts with uninformative priors on constant terms (e.g. see Beechey and Österholm 2008; Villani 
2009; Clark 2011; Wright 2013). In Beechey and Österholm (2010), the authors also show that univariate 
steady-state AR models have better forecasting performance than AR models with traditional specifications.1

Against this background, this study extends those of Villani (2009), George, Sun, and Ni (2008) and 
Korobilis (2013) and proposes methods of estimating a VAR model that incorporates prior beliefs on the 
steady-state and also adopts a Bayesian variable selection method. More specifically, we show that extant 
Gibbs sampling algorithms for Bayesian variable selection proposed by George, Sun, and Ni (2008) or Korobi-
lis (2013) can be efficiently extended to allow for priors on the steady-state (Villani 2009). The essential steps 
include re-writing the VAR model in a mean-adjusted form, which allows prior elicitation for the uncondi-
tional mean, and adding an extra block to the Gibbs sampler of George, Sun, and Ni (2008) or Korobilis (2013) 
that draws from the full conditional posterior density of the steady-state parameters.

The proposed specification is evaluated in terms of an out-of-sample point forecasting exercise based on 
three US macroeconomic variables, namely, real gross domestic product (GDP) growth, inflation rate (con-
sumer price index, CPI) and short-term interest rates (Federal funds rate). The out-of-sample period covers 
almost 46  years from 1969:Q4 to 2015:Q1 and the suggested model is compared to alternative established 
specifications such us the steady-state VAR model of Villani (2009) and the VAR model with variable selec-
tion methods either à la George, Sun, and Ni (2008) or à la Korobilis (2013). Finally, as a robustness check, 
we use three alternative prior specifications on the dynamic VAR parameters and variables in both ‘gap’ form, 
i.e. deviations from the long-run expectations, and non-gap form. Nonetheless, we should mention that since 
our main purpose is to evaluate the alternative specifications in terms of point forecasting, we do not consider 
steady-state VAR specifications enhanced with stochastic volatility that materially improve density forecasts 
(Clark 2011).

The rest of the paper is organized as follows. Section 2 develops the steady-state VAR with variable selec-
tion techniques and the Gibbs sampling algorithms. Section 3 presents the empirical results while Section 4 
concludes this paper.

2  Steady-state VARs with variable selection
A reduced-form VAR is written as:

	 ε= +( ) t t tB L y cd � (1)

where yt is a m × 1 vector of time series at time t with t = 1, …, T observations, B(L) = Im–B1L–…–BpLp with Lyt = yt-1, 
εt are the errors distributed as N(0, Σ) with Σ being the m × m covariance matrix and dt is a q-dimensional vector 
of exogenous deterministic variables such as constants, dummies or time trends. Assuming stationarity for 
yt, the unconditional mean or steady-state of the VAR process in Eq. (1) is defined as E(yt) = μt = B(L)-1cdt. From 
the steady-state definition it is clear that it is hard to encapsulate prior opinions with respect to μt into Eq. (1).2 

1 Other studies that employ steady-state VARs are Adolfson et al. (2007), Jarociński and Smets (2008), Van Roye (2011), Österholm 
(2012).
2 Nonetheless, it is obvious that if one specifies a prior on c he also specifies implicitly a prior on μt.
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To circumvent this problem, Villani (2009) proposes a steady-state representation of the VAR model that is 
practically a deviations-from-mean parameterization, i.e.:

	 ϕ ε− =( )( )t t tB L y d � (2)

where ϕ = B(L)-1c and the long-run mean is μt = ϕdt. Therefore, a researcher can incorporate his prior beliefs on 
μt by directly specifying priors on ϕ. The steady-state VAR in Eq. (2) can be rewritten as:

	 ε− −= +…+ +� � �
1 1t t p t p ty B y B y � (3)

with ỹt = yt–ϕdt being the mean-adjusted times series of yt. It is straightforward to extend the steady-state VAR 
in Eq. (3) to allow for Bayesian variable selection. The alternative variable selection approaches are discussed 
in Sections 2.1 and 2.2 below.

2.1  Stochastic search variable selection of George, Sun, and Ni (2008)

Before proceeding to the description of the stochastic search variable selection (SSVS) method proposed by 
George, Sun, and Ni (2008) it is useful to we rewrite the steady-state VAR using matrix notation, i.e.:

	 = +� �Y XB E � (4)

where Ỹ and E are defined as a T × m matrices with their t-th row being = = …′� � � � �
1 2( , , , )t t t t mtY y y y y  and 

ε ε ε ε= = …′ 1 2( , , , ),t t t t mtE  respectively. �X  is a T × k matrix with its t-th row being − −= = …′ ′� � ��
1( , , )t t t t pX x y y  and 

k = mp being the number of explanatory variables in each VAR equation. The matrix of VAR coefficients is 
defined as B = (B1, …, Bp)′ with β = vec(B) being the n × 1 vector of regression coefficients and n = mk = m2p being 
the total number of VAR dynamic coefficients.

George, Sun, and Ni (2008) uses the insights of the hierarchical Bayesian modeling so as to specify the 
prior distribution on β as a mixture of two Normal distributions. More specifically:

	 β γ∼| ( , )nN b DD � (5)

with γ = (γ1, …, γn)′ being a n × 1 vector of dummy variables which take the values of 1 and 0 and D = diag(h1, …, hn) 
being a n × n diagonal matrix where:

	

τ γ

τ γ

 == =

0

1

 if 0
 if 1

j j
j

j j

h
�

(6)

Eqs. (5) and (6) imply the following prior on each of the j = 1, … n elements of β

	 β γ γ τ γ τ∼ − +2 2
0 1| (1 ) ( , ) ( , )j j j j j j j jN b N b � (7)

The prior in Eq. (7) is hierarchical since it depends on the unknown dummy parameter γj, for which 
we specify a prior and we estimate its posterior distribution using the available information. Obviously, the 
degree of shrinkage towards the prior means, bj, depends on the hyperparameters τ2

0 j  and τ2
1 j  which are pre-

selected by the researcher so that τ τ<2 2
0 1 .j j  Thus, if γj equals zero then βj is forced to take a value very close to 

its prior mean because it is drawn from the first ‘tight’ Normal with a very small prior variance. Obviously, if 
the prior mean is zero the dynamic coefficient is shrunk towards zero (but not exactly zero) and the variable 
is almost excluded from the model. Whereas, if γj equals one then βj is drawn from the second ‘loose’ Normal 
which is relatively uninformative due to its large prior variance.

The three alternative specifications used for hyperparamters b and D are discussed in Section 3 and in 
more detail in Appendix B. Moreover, the γj dummy variables are assumed to be independent of each other ∀j 
and their prior is defined as a Bernoulli density with πj prior probability, i.e.:

	 γ γ π− ∼\| Bernoulli( ),j j j � (8)

with Pr(γj = 1) = πj and Pr(γj = 0) = 1–πj and γ\-j denoting all elements of γ except for the j-th.
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We also follow George, Sun, and Ni (2008) and we impose restrictions on the inverse of the error covari-
ance matrix, Σ-1, via its Cholesky factor, Ψ. In particular, let Σ-1 = ΨΨ′ with Ψ being an upper triangular m × m 
matrix. The authors propose a Gamma prior for the squared elements of the main diagonal of Ψ, ψ = (ψ11, …, 
ψmm)′, i.e. ψ ∼2 gamma( , )jj j ja b  (with ψjj being independent of each other), and a mixture of two Normal distri-
butions for the non-zero off diagonal elements of Ψ. In particular, we define ηi = (ψ1i, …, ψi-1i)′ for i = 2, …, m 
and we assume that:

	 η ω −∼ 1| (0, )i i i i iN D D � (9)

where ωi = (ω1i, …, ωi-1i)′ is a vector of dummy variables and Di = diag(h1i, …, hi-1i) is a (i–1) × (i–1) matrix with:

	

κ ω

κ ω

 == =

0

1

 if 0
 if 1

ji ji
ji

ji ji

h
�

(10)

Hyperparameters κ0ji and κ1ji are predetermined constants with κ0ji < κ1ji. As in Eq. (7), Eqs. (8) and (9) imply the 
following mixture of Nomals for each element of ηi:

	 ψ ω ω κ ω κ∼ − +2 2
0 1| (1 ) (0, ) (0, )ji ji ji ji ji jiN N � (11)

Again each element of vector ω ω ω= …′ ′ ′2( , , )m  is independ of each other and has a Bernoulli prior density, 
i.e.:

	 ω ω − ∼\| Bernoulli( )ji ji jiq � (12)

with Pr(ωji = 1) = qji and Pr(ωji = 0) = 1–qji.
Finally, the prior on the steady-state parameter, ϕ, is ϕ~Nmq(bϕ

, V
ϕ
) assuming independence between ϕ 

and β as in Villani (2009).

2.1.1  �Posterior inference for the steady-state VAR with stochastic search variable selection

The posterior inference is based on the idea that conditional on the steady-state parameters, ϕ, the VAR 
specification in Eq. (4) is a standard SSVS VAR for the mean-adjusted time series ỹt, and therefore the Gibbs 
sampler framework of George, Sun, and Ni (2008) can be implemented.3 In fact, estimation of Eq. (4) requires 
only an extra block which samples the steady-state parameters from a normal density described in Villani 
(2009). A general Gibbs sampler algorithm for the steady-state VAR with stochastic search variable selection, 
which draws sequentially from the full conditional posterior density of the parameters, contains the follow-
ing steps:4

1.	 Draw ψ β ϕ η2 | , , ; jj D  from gamma(aj̅, b̅j);
2.	 Draw ηi|β, ϕ, ψ; D from Ni-1(hi̅, Δi̅);
3.	 Draw ωji|ω\-ji, β, ϕ, ψ; D from Bernoulli(qj̅i);
4.	 Draw β|γ, ϕ, Ψ; D from Nn(β ̅, V̅);
5.	 Draw γj|γ\-j, β, ϕ, Ψ; D from Bernoulli(πj̅);
6.	 Draw ϕ|β, Ψ; D from Nmq(bϕ̅

, V
ϕ̅
).

where D = {y1, …, yT, d1, …, dT} denote the data. The quantities aj̅, bj̅, hi̅, Δi̅, qj̅i, β̅, V̅, πj̅, bϕ̅
 and V

ϕ̅
 as well as the 

posterior sampling procedure are described in detail in Appendix A.

3 Alternatively, one can argue that conditional on γ and ω the model in (4) is a standard steady-state VAR and full conditional 
posterior distributions of Villani (2009) can be implemented. In both cases the posterior analysis is identical.
4 A full conditional posterior density of a parameter is the posterior density conditional on all other parameters.



D.P. Louzis: Steady-state priors and Bayesian variable selection in VAR forecasting      499

2.2  Variable selection of Korobilis (2013)

The steady-state VAR in Eq. (3) can also be extended to allow for variable selection (VS) in the form of Korobi-
lis (2013). In contrast to George, Sun, and Ni (2008), the Korobilis (2013) method does exclude variables, in a 
sense that the dynamic coefficients take a value exactly zero and not close to zero. This means that each of the 
VAR equations may have different lagged variables and the steady-state VAR in Eq. (3) should be re-written as 
a system of seemingly unrelated equations (SUR) i.e.:

	 β ε= +� �
t t ty z � (13)

Where = ⊗� �
t m tz I x  is a m × n matrix with n = m2p being, again, the total number of coefficients in Eq. (13), 

− −= …′ ′� ��
1( , , )t t t px y y  is a 1 × k (k = mp) vector containing all regressors at time t and β = vec(B) is the n × 1 vector of 

the VAR dynamic coefficients. The model in Eq. (13) is an unrestricted steady-state VAR since no restrictions 
are incorporated in the β =1[ ]nj j  elements of β. By contrast, the Bayesian variable selection method proposed 
by Korobilis (2013) restricts some of the βj coefficients to be zero as follows

	

β γ

β γ

 = =
 ≠ =

0 if 0
0 if 1

j j

j j �
(14)

where γj is an indicator variable and the j-th element of the vector γ = (γ1, …, γn)′. We define the steady-state 
VAR with variable selection as

	 θ ε= +� �
t t ty z � (15)

where θ = Γβ and Γ is a n × n diagonal matrix with the elements of γ on its main diagonal, i.e. Γjj = γj. The speci-
fication in Eq. (15) implies that for γj = 1 ∀j we get the unrestricted steady-state VAR of Eq. (13).

Bayesian estimation and inference on β, γ, ϕ and Σ requires the specification of prior distributions which 
are generally based on the propositions of Korobilis (2013) and Villani (2009). Accordingly, we define the 
prior density for the dynamic parameters, β, as a multivariate normal distribution, i.e. β~Nn(b, V), with hyper-
parameters b and V being further specified in Section 3 and Appendix B. The γj dummy variables are assumed 
to be independent of each other ∀j and their prior is defined as a Bernoulli density with πj prior probability, 
i.e. γj|γ\-j~Bernoulli(πj), where γ\-j denotes all elements of γ except for the j-th. Finally, the prior on Σ is taken 
to be the scale invariant improper Jeffreys prior, i.e. Σ∝|Σ|-(m+1)/2, while the prior on ϕ is ϕ~Nmq(bϕ

, V
ϕ
) assuming 

independence between ϕ and β.

2.2.1  Posterior inference for the steady-state VAR with variable selection

The posterior inference is based on the same idea already presented in Section 2.1.1 for the steady-state VAR 
with stochastic search variable selection. This means that we implement the Gibbs sampler framework of 
Korobilis (2013) for the mean-adjusted time series ỹt and then we add an extra fourth block which samples 
steady-state parameters from a normal density described in Villani (2009). A general Gibbs sampler algo-
rithm for the steady-state VAR with variable selection, contains the following four steps:
1.	 Draw β|γ, ϕ, Σ; D from Nn(β ̅, V̅);
2.	 Draw γj|γ\-j, β, ϕ, Σ; D from Bernoulli(πj̅);
3.	 Draw Σ-1|γ, β, ϕ; D from Wishart(T, S-1);
4.	 Draw ϕ|γ, β, Σ; D from Nmq(bϕ̅

, V
ϕ̅
).

Appendix A describes in detail the formulation of β̅, V̅, πj̅, S, b
ϕ̅
 and V̅

ϕ
 as well as the posterior sampling 

procedure.
In general, the extra block which draws the steady-state parameters requires only a very small portion 

of the total computing time, for both Gibbs sampling algorithms described in Sections 2.1.1 and 2.2.1, as also 
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pointed out in Villani (2009). In practice, the Gibbs sampler is proved to be very efficient and convergence 
problems may arise only under certain conditions. More specifically, the unconditional mean is not identified 
for a non-stationary VAR process and this may lead to convergence difficulties only if it is combined with an 
uninformative (i.e. very large prior variance) steady-state prior (Villani 2005; Villani 2009, 646–647). Villani 
(2005, 2009) shows theoretically how an informative prior on steady-state stabilizes the Gibbs sampler even 
if the VAR system approaches a unit root process. The author also uses a simulation exercise and shows 
that even moderately informative steady-state priors can produce acceptable posterior simulations. We 
also confirm the abovementioned findings for the proposed models by implementing a similar simulation 
exercise.5

3  Empirical analysis
We use three major US macroeconomic series, i.e. real GDP growth rate, CPI inflation rate and effective 
Federal funds rate, in order to estimate the proposed model and evaluate its forecasting performance (hence-
forth, we refer to these variables as GDP (rt), inflation (πt) and interest rate (it), respectively). The data series 
cover the period from 1954:Q2 to 2015:Q1 and were obtained from the St. Louis’ FRED database on a quarterly 
basis.6 Real GDP growth and CPI inflation rate are calculated as annualized quarter-on-quarter percentage 
changes, i.e. rt = 400 × ln(xt/xt-1) and πt = 400 × ln(pt/pt-1) where p and x are quarterly CPI inflation index and real 
GDP, respectively, while we use the interest rate in levels. Figure 1 shows the evolution of the variables for the 
full sample period.

The inflation graph reveals the well-known slowly moving trend component which rises during the 1970s 
(Great Inflation) and starts falling after a decade (Great Moderation). The main bulk of the macroeconomic 
forecasting literature argues that this trend has to be taken into consideration in terms of inflation forecasting, 
while others argue that it represents the agent’s perceptions of the Fed’s time varying long-run inflation target 
(see Faust and Wright 2013 and references therein). In the same vein, Chan and Koop (2014) find a structural 
break on the steady-state of inflation and interest rates during the 1970s, while Clark (2011) and Wright (2013) 
account for this time-varying local mean for inflation and interest rates by employing the long-term inflation 
expectations based on Blue Chip surveys.7 Moreover, a number of studies show that the survey based long-
run inflation expectations can be conveniently approximated by using a simple exponential smoothing (e.g. 
see Cogley 2002; Clark 2011; Faust and Wright 2013 among others).

Here, we consider a twofold approach. First, we estimate the alternative specifications using as endoge-
nous variables the raw figures, i.e. the vector of the endogenous variables is given by yt = (rt, πt, it)′. Second, we 
also use inflation and interests rates in a gap form, i.e. deviations from the long-run inflation expectations, 
where the long-run expectations are roughly proxied by the exponential smoothed counterpart of inflation, 
πt. More specifically, we estimate the exponential smoothed inflation as π απ α π−= + −1 (1 )es es

t t t  where exponen-
tial smoothing parameter is set equal to 0.95. Then, inflation and interest variables in a gap form are defined 
as π π π= −gap es

t t t  and π= −gap ,es
t t ti i  respectively, which are also depicted in Figure 1 along with the πes

t  variable. 
Therefore, now, the vector of endogenous variables is given by π= ′gap gap( , , )t t t ty r i  and the steady-state priors 
are set on the gap variables. Since the alternative VAR models provide forecasts only for the πgap

t  and gap
ti  

variables, we also assume a random walk process for the low frequency component of inflation, π ,es
t  in order 

5 Simulation results are available upon request.
6 More specifically, the series were downloaded from http://research.stlouisfed.org/fred2 and are defined in more detail as fol-
lows: Real gross domestic product (code: CDPC96), 3 decimal, billions of chained 2009 dollars, seasonally adjusted annual rate. 
Consumer Price Index (code: CPIAUCSL_PC1) for all urban consumers: all Items, percentage change from a year ago, seasonally 
adjusted. Effective Federal Funds Rate (code: FEDFUNDS), percent, not seasonally adjusted.
7 In particular, Clark (2011) uses the inflation and interest rate variables in a gap form taking the difference between the raw vari-
able and the long-run inflation expectations from the Blue Chip Consensus and sets steady-state priors on the gap variables. By 
contrast, Wright (2013) uses the raw variables and employs the Blue Chip long-term forecasts to set the steady-state priors on the 
endogenous variables. Both alternatives account for the trend uncertainty of inflation and interest rate.

http://research.stlouisfed.org/fred2
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Figure 1: Annualized real GDP growth rate, CPI inflation rate and Federal Funds rate in (%).

to get forecasts for the raw figures of inflation and interest rate, πt and it, respectively (Faust and Wright 2013). 
Although the two alternative approaches are mainly used as a robustness check for the alternative specifica-
tions, a comparison between gap and non-gap models is always interesting.

3.1  Prior specifications and alternative models

An initial first step in Bayesian estimation is to specify the hyperparameters in prior distributions described 
in Sections 2.1 and 2.2. In particular, we follow George, Sun, and Ni (2008), Koop (2013) and Korobilis (2013) 
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and we use three distinct prior specifications on the dynamic parameters vector, β. In particular for the SSVS 
VAR models we use (i) the default ‘semi-automatic’ approach of George, Sun, and Ni (2008) (standard prior 
hereafter), (ii) the combination of the SSVS method with the Minnesota prior of Koop (2013) and (iii) the 
combination of the SSVS method with the Ridge prior (see also Korobilis 2013). Similarly for the VS VARs 
we use (i) the ridge regression prior (ridge prior hereafter), (ii) the Minnesota prior and (iii) the hierarchical 
Bayes shrinkage prior (shrink prior hereafter); all three of them are based on the Normal distribution and are 
briefly described in Appendix B.8 As regards the VS specifications, we set the prior probability of the Bernoulli 
density equal to 0.8, i.e. πj = 0.8, while the standard non-informative prior |Σ|-(m+1)/2 is used for Σ. For the SSVS 
specifications we set πj = 0.5, qj = 0.7, κ0ji = 1, κ1ji = 5, aj = 0.01 and bj = 0.01.

In the steady-state version of VAR models we also have to specify the prior mean and standard deviation 
on steady-states coefficients, ϕ. Following the recent literature (e.g. see Clark 2011; Österholm 2012), we set 
the steady-state GDP growth and inflation rate equal to 3% and 2%, respectively, and the nominal interest 
rate equal to 4%, while we assume a 0.5 standard deviation for GDP and inflation and 0.7 for interest rate. 
Finally, the steady-state levels for inflation and interest rate variables in a gap form are set equal to 0% and 
2%, respectively (see Clark 2011).

The primary scope of the empirical analysis is to examine whether the forecasting ability of a Bayesian 
VAR model is improved when we incorporate prior beliefs with respect to the steady-state of the economy and 
we also allow for a (semi-) automatic Bayesian variable selection. To that end, we compare the forecasting 
ability of the following six alternative BVAR specifications (models’ names in parenthesis):
(i)	 a baseline BVAR without variable selection and steady-state priors (Standard),
(ii)	 a steady-state BVAR (Villani 2009) (SSP),
(iii)	a BVAR with variable selection (Korobilis 2013) (VS),
(iv)	 a BVAR with both variable selection and steady-state priors (VS-SSP),
(v)	 a BVAR with stochastic search variable selection (George, Sun, and Ni 2008) (SSVS),
(vi)	a BVAR with stochastic search variable selection and steady-state priors (SSVS-SSP).

These six alternative specifications are estimated using each of the three prior specifications on β meaning 
that we have in total 18 distinct BVAR models. For all models we use a lag length of 4. For comparison reasons 
we also estimate a standard VAR model using ordinary least squares (OLS) with one lag.

3.2  In-sample analysis

In this section we present some estimation results using the full data sample (1954:Q2–2015:Q1). We use the 
Gibbs samplers in Appendix A to sample 10,000 draws with a thinning of 5, i.e. we keep one every five draws, 
after discarding the first 2000 draws used for initial convergence (burn-in period). We evaluate the conver-
gence of the proposed Markov Chain Monte Carlo (MCMC) algorithm by implementing the inefficiency factors 
(IFs) metric proposed by Primiceri (2005). Table 1 presents a summary of the distribution for the inefficiency 
factors of the parameters posterior draws, while Figure 2 shows the IFs across all parameters. The empirical 
evidence reveals that the convergence of the Gibbs samplers is more than satisfactory with the majority of the 
IFs being well below the threshold value of 20 (see Primiceri 2005).9

Table 2 presents the posterior means and standard deviations for the steady-states across different priors 
and VAR specifications. Overall, the results show that neither different priors nor parameter restrictions 
(i.e. models with variable selection) have a significant impact on steady-states estimation. In particular, the 
steady-state growth rate of GDP is estimated to be close to 3% ranging between 2.99% and 3.06%. The average 

8 As pointed out in Korobilis (2013) all these specifications offer some kind of shrinkage but no exact zero shrinkage as in the 
variable selection methodology.
9 According to Primiceri (2005) a value of IF around or below 20 indicates that the convergence of the MCMC algorithm is 
satisfactory.
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Table 1: MCMC convergence diagnostics: summary of distribution of inefficiency factors.

  Median  Mean  Min  Max  10-th Percentile  90-th percentile

Min-VS-SSP   1.09  1.38  1.00  7.08  1.00  2.13
Ridge-VS-SSP   1.15  2.63  1.00  27.06  1.00  6.39
Shrink-VS-SSP   1.55  3.06  1.00  15.15  1.00  6.55
SSVS-SSP   1.00  1.02  1.00  1.64  1.00  1.02
Min-SSVS-SSP   1.00  1.02  1.00  1.37  1.00  1.06
Ridge-SSVS-SSP  1.00  1.05  1.00  1.50  1.00  1.20

This table presents a summary of the distribution of inefficiency factors (IFs) for the posterior estimates of the parameters. 
Models are estimated using the full sample and variables in a non-gap form. Inefficiency factors are defined as the inverse  
 of the relative numerical efficiency measure of Geweke (1992) and are calculated as ( )1

1 2 ,kk
ρ

∞

=
+ ∑  with ρk being the k-th 

autocorrelation of the posterior estimates chain. Following Primiceri (2005), we calculate IFs using a 4% tapered window for 
the estimation of spectral density at frequency zero. Min, Ridge and Shrink are the Minnesota, Ridge and Shrink priors for the 
dynamic coefficients, respectively. (prior)-VS-SSP is a steady-state BVAR(4) model with variable selection à la Korobilis (2013). 
(prior)-SSVS-SSP is a steady-state BVAR(4) model with stochastic search variable selection à la George, Sun, and Ni (2008). In 
SSVS-SSP we use the standard prior specification for the regression coefficients proposed in George, Sun, and Ni (2008).

Figure 2: MCMC convergence diagnostics: inefficiency factors.
Notes: The figures show the inefficiency factors for all parameters across the proposed specifications using the full sample and 
variables in a non-gap form. Min, Ridge and Shrink are the Minnesota, Ridge and Shrink priors for the dynamic coefficients, 
respectively. (prior)-VS-SSP is a steady-state BVAR(4) model with variable selection à la Korobilis (2013). (prior)-SSVS-SSP is a 
steady-state BVAR(4) model with stochastic search variable selection à la George, Sun, and Ni (2008). In SSVS-SSP we use the 
standard prior specification for the regression coefficients proposed in George, Sun, and Ni (2008).

CPI inflation across priors and specifications is close to 2.4% and 0.02% for the inflation in a gap form, while 
the steady-state of the Fed funds rate is estimated to be close to 3.85% (1.7% for the gap form).

In Table 3 we also present estimation results regarding the restriction parameters γj using the VS method. 
As pointed out in Korobilis (2013) the posterior mean of γj can be seen as an average probability of including 
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Table 2: Posterior means and standard deviations of the steady-states.

 
 
 

VAR dynamic coefficients prior

Ridge 
 

Minnesota 
 

Shrink 
 

Standard
SSVS

 
 

Minnesota
SSVS

 
 

Ridge
SSVS

no VS  with VS no VS  with VS no VS  with VS

Real GDP growth
 Posterior mean  3.03  3.03  3.02  3.03  3.04  3.04  3.06  3.06  3.02

  (3.02)  (3.00)  (3.02)  (3.01)  (2.99)  (3.01)  (2.99)  (2.99)  (3.04)
 St. deviation   0.30  0.29  0.29  0.29  0.27  0.27  0.30  0.29  0.27

  (0.26)  (0.27)  (0.27)  (0.27)  (0.25)  (0.25)  (0.27)  (0.26)  (0.16)
CPI Inflation
 Posterior mean  2.40  2.40  2.42  2.42  2.39  2.39  2.42  2.39  2.42

  (0.01)  (0.00)  (0.00)  (0.03)  (0.03)  (0.02)  (0.03)  (0.03)  (0.02)
 St. deviation   0.43  0.43  0.44  0.42  0.42  0.44  0.42  0.45  0.43

  (0.30)  (0.31)  (0.30)  (0.30)  (0.32)  (0.31)  (0.36)  (0.34)  (0.17)
Federal funds rates
 Posterior mean  3.85  3.86  3.83  3.84  3.84  3.85  3.83  3.89  3.84

  (1.69)  (1.71)  (1.68)  (1.69)  (1.70)  (1.71)  (1.61)  (1.65)  (1.89)
 St. deviation   0.58  0.57  0.58  0.56  0.57  0.58  0.55  0.55  0.57

  (0.51)  (0.50)  (0.51)  (0.50)  (0.52)  (0.53)  (0.46)  (0.46)  (0.44)

Models are estimated using the full sample period. Numbers in parenthesis show the steady-states estimates using inflation 
and Federal funds rate in a gap form. ‘no VS’ denotes the models without variable selection while ‘with VS’ denotes the models 
with variable selection using the method of Korobilis (2013). SSVS denotes the stochastic search variable selection method of 
George, Sun, and Ni (2008).

the respective βj parameter to the true model. Our intention is to examine whether the incorporation of 
steady-state priors in a restricted VAR model has a significant impact on γj’s estimations. Indeed, the results 
in Table 3 reveal that the differences in γj estimations between models with and without steady-state priors 
are negligible with the greatest divergences been observed among the models with different priors on the 
regression coefficients. We also see that the first own lag is always included in the model across variables and 
priors, as expected. Moreover, the estimation results with respect to the γj’s and ωji’s parameters of the SSVS 
method (not shown here due to space considerations) also show that the inclusion of the steady-state priors 
in a SSVS VAR model has an insignificant impact.

3.3  Out-of-sample forecasting analysis

We evaluate the alternative VAR specifications using a forecasting horizon of 12 quarters (3 years), h = 1, … 
12, and an out-of-sample period spanning from 1969:Q4 to 2015:Q1. The forecasts across all horizons are pro-
duced using a recursive forecasting scheme. This means that we use an initial sample (1954:Q2–1969:Q3) to 
generate forecasts from 1969:Q4 to 1972:Q3, i.e. 12 quarters ahead. Next, we allow the sample to expand and 
include one more period, i.e. 1954:Q2–1969:Q4, and generate forecasts from 1970:Q1 to 1972:Q4. This proce-
dure is continued till the end of the sample period. As mentioned in Section 3.2 estimation and forecasting 
results are based on 10,000 posterior simulations (after a burn-in period of 2000 simulations), keeping one 
every five draws, and forecasts are generated iteratively following Korobilis (2013, 215–216).

Before proceeding to the forecasting evaluation, we present the sequential GDP, inflation and interest 
rate out-of-sample forecasts along with the actual variables in Figures 3–5. The forecasts has been generated 
by five alternative models: a VAR(1) estimated with OLS, two VAR models with variable selection (VS and 
SSVS) and a Minnesota prior, and two steady-state VAR models with variable selection (VS and SSVS) and a 
Minnesota prior. Overall, the forecasts generated by the steady-state VARs tend to converge to the steady-state 
of each variable much faster than its counterparts, as expected. This phenomenon is particularly evident 
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Table 3: Posterior means of the γ vector elements using the method of Korobilis (2013).

 
 

Ridge 
 

Minnesota 
 

Shrink

Uninformative  Steady-state Uninformative  Steady-state Uninformative  Steady-state

Dependent variable: rt

 rt-1   1.00  1.00  1.00  1.00  1.00  1.00
 πt-1  0.13  0.12  0.24  0.28  0.74  0.68
 it-1   0.26  0.34  0.26  0.28  0.68  0.71
 rt-2   0.76  0.77  0.97  0.96  0.78  0.75
 πt-2  0.18  0.22  0.43  0.48  0.74  0.74
 it-2   1.00  1.00  0.98  0.99  0.81  0.78
 rt-3   0.09  0.09  0.64  0.64  0.67  0.68
 πt-3  0.31  0.21  0.64  0.57  0.70  0.70
 it-3   1.00  0.99  0.98  0.97  0.80  0.79
 rt-4   0.06  0.07  0.65  0.66  0.62  0.67
 πt-4  0.13  0.15  0.59  0.57  0.72  0.69
 it-4   0.34  0.30  0.58  0.59  0.68  0.67

Dependent variable: πt

 rt-1   0.06  0.07  0.34  0.37  0.62  0.70
 πt-1  1.00  1.00  1.00  1.00  1.00  1.00
 it-1   1.00  1.00  1.00  1.00  0.98  0.96
 rt-2   0.14  0.07  0.69  0.57  0.67  0.66
 πt-2  0.09  0.10  0.61  0.66  0.68  0.65
 it-2   0.86  0.96  0.88  0.96  0.78  0.87
 rt-3   0.05  0.06  0.55  0.59  0.62  0.67
 πt-3  1.00  1.00  1.00  1.00  1.00  1.00
 it-3   0.40  0.23  0.71  0.63  0.83  0.76
 rt-4   0.16  0.27  0.83  0.86  0.69  0.72
 πt-4  0.08  0.07  0.69  0.71  0.61  0.64
 it-4   0.21  0.20  0.61  0.59  0.71  0.69

Dependent variable: it

 rt-1   1.00  1.00  1.00  1.00  1.00  1.00
 πt-1  0.05  0.05  0.26  0.35  0.62  0.67
 it-1   1.00  1.00  1.00  1.00  1.00  1.00
 rt-2   0.22  0.19  0.80  0.84  0.71  0.71
 πt-2  0.92  0.70  0.99  0.94  0.98  0.92
 it-2   1.00  1.00  0.99  1.00  0.94  0.89
 rt-3   0.02  0.03  0.61  0.59  0.61  0.61
 πt-3  0.03  0.05  0.55  0.55  0.67  0.59
 it-3   1.00  0.98  1.00  1.00  0.79  0.79
 rt-4   0.02  0.03  0.64  0.60  0.64  0.58
 πt-4  0.04  0.04  0.57  0.58  0.60  0.61
 it-4   0.92  0.86  0.82  0.81  0.77  0.70

Models are estimated using the full sample and variables in a non-gap form. ‘Uninformative’ denotes models with uninformative 
priors on the steady-state.

during the Great Inflation period, i.e. 1970–1980; take as an example the inflation forecasts generated by the 
models at the end of 1979, during which the variable takes its maximum value. The models without a steady 
state prior seem to over-estimate the steady-state levels and their forecasts drift away in even higher levels. 
Another example is the GDP forecasts during the recession periods of the 1970s and 1980s during which the 
non steady-state models seem to under-estimate the unconditional means of the processes. Another interest-
ing point is that the differences in the forecast patterns between steady-state and non-steady-state models are 
mitigated when we use variables in a gap form (see the right columns of Figures 3–5) implying that these two 
distinct categories of models may also be closer in terms of forecasting evaluation when we use variables in a 
gap form (see also the discussion in Section 3.3.2).
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Figure 3: Out-of-sample forecasts for real GDP growth (%).
Notes: This figure presents the annualized GDP growth out-of-sample forecasts for 12 quarters ahead (dotted lines) along with 
the actual values (solid line). The left (right) column presents the forecasts generated by models with inflation and interest rates 
variables specified in “non-gap” (“gap”) form. MIN denotes the Minnesota prior, VS and SSVS denotes the variable selection 
and stochastic search variable selection as employed by Korobilis (2013) and George, Sun, and Ni (2008), respectively and SSP 
denotes the steady state prior. The forecasts are plotted every other quarter for clarity in presentation.

Our main research interest is to examine whether the abovementioned forecasting behavior leads to 
superior forecasting ability for the models that incorporate both steady-state priors and variable selection 
techniques. To that end, we use two popular forecasting evaluation metrics, namely, the root mean squared 
forecast error (RMSFE) and the mean absolute forecast error (MAFE). Following the usual convention, we use 
relative forecasting evaluation metrics, i.e. we present the RMSFE and MAFE metrics of the various compet-
ing models as proportion of the corresponding RMSFE and MAFE metrics of a random walk with drift (RW) 
process for the levels of the variables.



D.P. Louzis: Steady-state priors and Bayesian variable selection in VAR forecasting      507

Figure 4: Out-of-sample forecasts for CPI inflation (%).
Notes: This figure presents the annualized CPI inflation out-of-sample forecasts for 12 quarters ahead (dotted lines) along with 
the actual values (solid line). The left (right) column presents the forecasts generated by models with inflation and interest rates 
variables specified in “non-gap” (“gap”) form. MIN denotes the Minnesota prior, VS and SSVS denotes the variable selection 
and stochastic search variable selection as employed by Korobilis (2013) and George, Sun, and Ni (2008), respectively and SSP 
denotes the steady state prior. The forecasts are plotted every other quarter for clarity in presentation.
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where h = 1, …, 12 is the forecasting horizon, i is the variable of interest, i.e. GDP, inflation and interest rate, 
and j are the various competing models outlined is Section 3.1.. Values below one indicate that the corre-
sponding model outperforms the random walk process and vice versa.
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Figure 5: Out-of-sample forecasts for Federal Funds rate (%).
Notes: This figure presents the Federal Funds rate out-of-sample forecasts for 12 quarters ahead (dotted lines) along with the 
actual values (solid line). The left (right) column presents the forecasts generated by models with inflation and interest rates 
variables specified in “non-gap” (“gap”) form. MIN denotes the Minnesota prior, VS and SSVS denotes the variable selection 
and stochastic search variable selection as employed by Korobilis (2013) and George, Sun, and Ni (2008), respectively and SSP 
denotes the steady state prior. The forecasts are plotted every other quarter for clarity in presentation.

3.3.1  Forecasting results using variables in a non-gap form

Figures 6 and 7 present the relative RMSFE and MAFE out-of sample results for the (i) Standard, (ii) VS, (iii) 
SSP and (iv) VS-SSP models using variables in a non-gap form. Thus, Figures 6 and 7 examine the forecasting 
ability of the models that adopt variable selection technique as implemented in Korobilis (2013). On the other 
hand, Figures 8 and 9 compare models that employ the stochastic search variable selection of George, Sun, 
and Ni (2008). In particular, Figures 8 and 9 present the relative RMSFE and MAFE out-of sample results for 
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Figure 6: Relative RMSFE results for models using variable selection and variables in a non-gap form.
Notes: The figures show the relative RMSFE metric as a function of the forecasting horizon for three alternative priors for the VAR 
dynamic coefficients, i.e. Minnesota, Ridge and Shrink priors. OLS is a standard VAR(1) estimated using ordinary least squares. 
Standard is a BVAR(4) model, VS is BVAR(4) with variable selection à la Korobilis (2013), SSP is a BVAR(4) with steady-state prior 
and VS-SSP is a steady-state BVAR(4) model with variable selection. Inflation and Federal Funds rate are specified in a non-gap 
form.

the (i) Standard, (iii) SSP, (v) SSVS and (vi) SSVS-SSP models.10 The forecasting results from an OLS VAR(1) are 
always included in the figures for comparison reasons, while each row of the figure corresponds to a different 
prior specification with regard to the dynamic coefficients.11

Beginning from Figures 6 and 7 we see that, overall, the empirical findings indicate that the proposed 
model, i.e. the steady-state VAR model with variable selection (VS-SSP) (purple dashed line) is the best per-
forming model in the majority of the cases examined here, followed closely by the steady-state VAR (SSP) (red 
solid line). In some cases the differences between the two models are actually negligible, e.g. see the Inflation 

10 See also Section 3.1 for a description of the models.
11 The rationale behind this grouping is twofold: First, it facilitates the assessment of the proposed specification, i.e. steady state 
VARs with variable selection, against its counterparts. Recall that our main objective is to investigate whether the combination 
of steady-state priors and variables selection techniques can lead to superior forecasting behavior and not the comparison of the 
alternative variable selection techniques per se. Second, from a practical point of view it improves the readability of the figures.
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Figure 7: Relative MAFE results for models using variable selection and variables in a non-gap form.
Notes: The figures show the relative MAFE metric as a function of the forecasting horizon for three alternative priors for the VAR 
dynamic coefficients, i.e. Minnesota, Ridge and Shrink priors. OLS is a standard VAR(1) estimated using ordinary least squares. 
Standard is a BVAR(4) model, VS is BVAR(4) with variable selection à la Korobilis (2013), SSP is a BVAR(4) with steady-state prior 
and VS-SSP is a steady-state BVAR(4) model with variable selection. Inflation and Federal Funds rate are specified in a non-gap 
form.

forecasts for the Minnesota and Shrink priors; however, we should note that the SSP model clearly outper-
forms the proposed model only in the case of the interest rate variable for the Minnesota and Ridge priors 
and for horizons greater than six (6) and ten (10), respectively. These results also align with other studies that 
highlight the contribution of steady-state priors to the accuracy of macroeconomic forecasts (Beechey and 
Österholm 2008; Villani 2009; Clark 2011; Wright 2013).

Moreover, it is also evident that the degree of improvement for the VS-SSP over the SSP model clearly 
depends on the prior used for the dynamic coefficients and the level of information it carries (see also Korobi-
lis 2013). Thus, the improvement is substantial when we use the relative uninformative ridge prior (the figures 
in the middle row) and marginal or even negligible when we use priors that are more informative (Shrink or 
Minnesota priors), as expected.

As regards the rest of the models, their ranking for the GDP and Inflation variables is qualitatively 
similar with the VS-SSP and SSP models being followed by the VS (green dashed line) and Standard (blue 
solid line) Bayesian VAR models. Again, we find that, overall, the variable selection improves forecasting 
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Figure 8: Relative RMSFE results for models using stochastic search variable selection and variables in a non-gap form.
Notes: The figures show the relative RMSFE metric as a function of the forecasting horizon for three alternative priors for the VAR 
dynamic coefficients, i.e. Standard, Minnesota and Ridge priors. Standard prior is specified as in George, Sun, and Ni (2008). 
OLS is a standard VAR(1) estimated using ordinary least squares. SSVS is a BVAR(4) model with stochastic search variable selec-
tion à la George, Sun, and Ni (2008) and SSVS-SSP is a BVAR(4) with steady-state prior and stochastic search variable selection. 
Inflation and Federal Funds rate are specified in a non-gap form.

accuracy mainly when it is combined with less informative priors, while the OLS model is constantly 
the worst performer. By contrast, the forecasting results for the interest rates reveal that steady-state 
VAR models with or without variable selection (SSP or VS-SSP) and the OLS model are the main com-
petitors, since they produce overall the best forecasts. In particular, Bayesian models (SSP or VS-SSP) 
outperform the OLS model for forecasting horizons longer than four or five quarters, across evaluation 
metrics. In line with the literature, a RW process also provides good short-term forecasts for the interest 
rates (e.g. see Villani 2009; Banbura, Giannone, and Reichlin 2010; Korobilis 2013; Giannone, Lenza, and 
Primiceri 2015).12

12 In general, as regards interest rates, BVARs tend to produce better forecasts than the RW benchmark or the OLS model when 
the priors assume a random walk process for the raw variable (e.g. see Giannone, Lenza, and Primiceri 2015) or a white noise pro-
cess for the first differences (e.g. see Koop 2013). Using the raw interest rate and specifying a prior that assumes stationarity (white 
noise or an AR(1) with an 0.8 autoregression parameter as in our case) may lead to inferior forecasts. Nevertheless, as pointed out 
in Section 2 the stationarity assumption is necessary for the mean-adjusted VAR models.
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Figure 9: Relative MAFE results for models using stochastic search variable selection and variables in a non-gap form.
Notes: The figures show the relative MAFE metric as a function of the forecasting horizon for three alternative priors for the VAR 
dynamic coefficients, i.e. Standard, Minnesota and Ridge priors. Standard prior is specified as in George, Sun, and Ni (2008). 
OLS is a standard VAR(1) estimated using ordinary least squares. SSVS is a BVAR(4) model with stochastic search variable selec-
tion à la George, Sun, and Ni (2008) and SSVS-SSP is a BVAR(4) with steady-state prior and stochastic search variable selection. 
Inflation and Federal Funds rate are specified in a non-gap form.

We now turn to the evaluation of the models that adopt the stochastic search variable selection of George, 
Sun, and Ni (2008) and are presented in Figures 8 and 9. The overall picture is more or less the same with the one 
presented in Figures 6 and 7, with the proposed specification, i.e. the SSVS-SSP model, being the overall best per-
forming model. In particular, the SSVS-SSP is rarely outranked by some of its competitors, with the most striking 
examples being the GDP and the interest rate forecasts for horizons greater than eight (8) and smaller than four 
(4) quarters, where the proposed model is usually beaten by the SSVS and the OLS models respectively.

Moreover, in line with the findings of Koop (2013), we also find that the SSVS model tends to improve fore-
casting accuracy over the OLS and Standard Bayesian models for most of the cases examined here. Further-
more, the general ranking of the models is not that different from the one reported for Figures 6 and 7 with 
the most remarkable exception being the interest rate variable, where the SSVS model consistently outranks 
the Standard BVAR model (while the corresponding VS model in Figures 6 and 7 does not). Finally, a visual 
inspection of Figures 6–9 also reveal that, in general, SSVS models offer greater forecasting improvements 
compared to the VS models. A formal analysis for this issue as well as a comparison among all alternative 
specifications is provided in Section 3.3.3.
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3.3.2  Forecasting results using variables in a gap form

This section discusses the forecasting results produced by VAR models that employ the inflation and interest 
rate variables in gap form as described in Section 3. Figures 10 and 11 present the forecasting results for the 
relative RMSFE and MAFE evaluation metrics for the models using the variable selection technique à la Koro-
bilis (2013), while Figures 12 and 13 present the forecasting results for the models using the variable selection 
technique à la George, Sun, and Ni (2008).

The overall picture remains relatively unchanged with respect to the results presented in Figures 
6–9 for the models using variables in a non-gap form. Again the steady-state VARs combined with both 
types of variable selection can lead to forecasting improvements across variables, evaluation metrics 
and priors. In addition, we observe that the adoption of variable selection techniques lead to signifi-
cant forecasting improvements only in the case of relatively uninformative priors (e.g. the ridge prior), 
as expected, while the incorporation of steady-state priors is also usually beneficial for forecasting 
accuracy.

Figure 10: Relative RMSFE results for models using variable selection and variables in a gap form.
Notes: The figures show the relative RMSFE metric as a function of the forecasting horizon for three alternative priors for the VAR 
dynamic coefficients, i.e. Minnesota, Ridge and Shrink priors. OLS is a standard VAR(1) estimated using ordinary least squares. 
Standard is a BVAR(4) model, VS is BVAR(4) with variable selection à la Korobilis (2013), SSP is a BVAR(4) with steady-state prior 
and VS-SSP is a steady-state BVAR(4) model with variable selection. Inflation and Federal Funds rate are specified in a gap form.
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Figure 11: Relative MAFE results for models using variable selection and variables in a gap form.
Notes: The figures show the relative MAFE metric as a function of the forecasting horizon for three alternative priors for the 
VAR dynamic coefficients, i.e. Minnesota, Ridge and Shrink priors. OLS is a standard VAR(1) estimated using ordinary least 
squares. Standard is a BVAR(4) model, VS is BVAR(4) with variable selection à la Korobilis (2013), SSP is a BVAR(4) with 
steady-state prior and VS-SSP is a steady-state BVAR(4) model with variable selection. Inflation and Federal Funds rate are 
specified in a gap form.

Nonetheless, we should also note that the difference in the forecasting accuracy between the steady-
state models and the models with uninformative steady-state priors has been mitigated, especially for 
the inflation and interest rate variables, compared to the models using non-gap variables (see Figures 
6–9). This probably reflects the forecasting patterns presented in the right column of Figures 3–5 and 
show that the misestimation of steady-state levels from the Bayesian models with uninformative steady-
state priors is not that severe compared to the models using non-gap variables (left column of Figures 
3–5).

A possible explanation is that in the case of models with variables in a gap form, the two components 
of the variables, i.e. the smoothed and the gap component, are modeled separately. In particular, since the 
low-frequency component forecasts are common across all models, the potential improvement for the steady-
state models over the models with uninformative steady-state comes exclusively from the gap component of 
the variable. This is obviously a smaller portion of the final number to be forecasted and consequently, the 
prospective improvement would also be analogously smaller.
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Figure 12: Relative RMSFE results for models using stochastic search variable selection and variables in a gap form.
Notes: The figures show the relative RMSFE metric as a function of the forecasting horizon for three alternative priors for the VAR 
dynamic coefficients, i.e. Standard, Minnesota and Ridge priors. Standard prior is specified as in George, Sun, and Ni (2008). 
OLS is a standard VAR(1) estimated using ordinary least squares. SSVS is a BVAR(4) model with stochastic search variable selec-
tion à la George, Sun, and Ni (2008) and SSVS-SSP is a BVAR(4) with steady-state prior and stochastic search variable selection. 
Inflation and Federal Funds rate are specified in a gap form.

3.3.3  Model confidence set results

In this section, we employ the Model Confidence Set (MCS) method of Hansen, Lunde, and Nason (2003, 
2011) and we construct a set of models, ∗

− ⊆1 0M M ,a  that present statistically superior predictive ability at a 
given confidence level. The scope of this analysis is twofold: first, based on the RMSFE and MAFE metrics we 
discern that set of models that generate statistically significant superior forecasts and second, we evaluate 
the forecasting ability of the full set of models across priors and specifications. Next, we briefly describe the 
MCS methodology.

Assuming an initial set of M = M0 models, the MCS method is based on a specific loss function, Lm,t with 
m = 1, …, M, and applies an iterative process of sequential Equal Predictive Ability (EPA) tests of the form:

	 = ∈
00,M ,: ( ) 0 for all , Mmk tH E d m k � (16)

where dmk,t = Lm,t–Lk,t is the loss differential between models m and k and L•, t is one of the RMSFE or MAFE 
at each point in time, t. A rejection of the null hypothesis indicates that a model has inferior predictive 
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Figure 13: Relative MAFE results for models using stochastic search variable selection and variables in a gap form.
Notes: The figures show the relative MAFE metric as a function of the forecasting horizon for three alternative priors for the VAR 
dynamic coefficients, i.e. Standard, Minnesota and Ridge priors. Standard prior is specified as in George, Sun, and Ni (2008). 
OLS is a standard VAR(1) estimated using ordinary least squares. SSVS is a BVAR(4) model with stochastic search variable selec-
tion à la George, Sun, and Ni (2008) and SSVS-SSP is a BVAR(4) with steady-state prior and stochastic search variable selection. 
Inflation and Federal Funds rate are specified in a gap form.

ability and should not be included in the MCS at an a significance level. The EPA test in (16) is repeated for 
the remaining M1-a models, with M1-a⊂M, and this procedure continues until the null hypothesis cannot be 
rejected. The final set of surviving models forms the MCS at a 1–a confidence level, denoted by ∗

−1M .a  The 
models included in the MCS have equal predictive ability, but they outperform the eliminated models, while 
the MCS p-values indicate the probability of a model being a member of the MCS.13

Table 4 presents only a synopsis of the main MCS results for four selected forecasting horizons, i.e. h = 1, 
4, 8 and 12, while we refer the interested reader to Tables C.1–C.4 of Appendix C for a more detailed analysis. 
The first and second column for each of the variables in Table 4 presents the percentage of times a model is 
included in the MCS at 10% significance level across the selected forecasting horizons and evaluation metrics 
for models using variables in a gap and non-gap form, respectively. The third column repeats the MCS results 

13 For details on MCS technique and its implementation see Hansen, Lunde, and Nason (2003, 2011). The MCS is implemented 
using MULCOM 2.00 package for Ox, kindly provided by the authors. The MULCOM 2.00 package is available at http://mit.econ.
au.dk/vip_htm/alunde/mulcom/mulcom.htm.

http://mit.econ.au.dk/vip_htm/alunde/mulcom/mulcom.htm
http://mit.econ.au.dk/vip_htm/alunde/mulcom/mulcom.htm
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across all (gap and non-gap) models.14 The last three columns of Table 4, named Avg., show the average 
percentage of times a model is included in the MCS across all three variables. The initial set includes all 20 
models: the RW and OLS models, and all 18 BVARS.

In general, the synopsis of the MCS results in Table 4 confirms the graphical evidence presented in Sec-
tions 3.3.1 and 3.3.2, but also allows for several other comparisons among models that were not feasible 
before. The main conclusions emerge from Table 4 are discussed below.15

First, except for the interest rate variable for models with gap variables, in all other cases the best per-
forming model (denoted with bold faced entries), i.e. the model that maximizes the percentage of times 
included in the MCS, is a steady-state model with some kind of variable selection (VS or SSVS). Thus, we can 
state that, in general, the proposed specification which incorporates steady-state prior beliefs in a VAR model 
with Bayesian variable selection enhances the macroeconomic forecasting accuracy of small-scale VARs irre-
spective of the prior used on the dynamic parameters.

Second, the empirical evidence also confirms that, on average, there is an unambiguous ranking of the 
various Bayesian VAR models (see Avg. columns).16 Particularly, Standard BVARs are usually outranked by 
models with variable selection which, in turn, are consistently outperformed by BVARs with an informative 

Table 4: Synopsis of the Model confidence set (MCS) results.

Models\variables  
 

GDP 
 

CPI 
 

FFR 
 

Avg.

Gap  Non-gap  Total Gap  Non-gap  Total Gap  Non-gap  Total Gap  Non-gap  Total

1. RW (benchmark)   50  75  63  0  0  0  25  50  38  25  42  34
2. OLS   25  25  25  13  0  06  50  38  44  29  21  25
3. Min-Standard   38  13  25  25  13  19  25  38  31  29  21  25
4. Min-VS   50  38  44  25  25  25  38  38  38  38  34  36
5. Min-SSP   63  63  63  50  50  50  50  50  50  54  54  54
6. Min-VS-SSP   88  100  94  38  50  44  75  50  63  67  67  67
7. Ridge-standard   25  13  19  25  13  19  0  38  19  17  21  19
8. Ridge-VS   63  38  50  25  25  25  25  0  13  38  21  29
9. Ridge-SSP   50  25  38  50  38  44  25  38  31  42  34  38
10. Ridge-VS-SSP   88  100  94  100  63  81  50  50  50  79  71  75
11. Shrink-standard  25  38  31  13  13  13  25  13  19  21  21  21
12. Shrink-VS   25  38  31  13  13  13  38  13  25  25  21  23
13. Shrink-SSP   50  63  56  50  38  44  75  50  63  58  50  54
14. Shrink-VS-SSP   38  100  69  63  38  50  75  75  75  59  71  65
15. SSVS   50  50  50  13  50  31  75  63  69  46  54  50
16. SSVS-SSP   100  25  63  50  100  75  0  88  44  50  71  61
17. Min-SSVS   75  63  69  63  13  38  38  25  31  59  34  46
18. Min-SSVS-SSP   100  75  88  63  100  81  63  75  69  75  83  79
19. Ridge-SSVS   63  50  56  13  13  13  88  38  63  55  34  44
20. Ridge-SSVS-SSP  88  100  94  38  88  63  50  88  69  59  92  75

This table shows the percentage (%) of times a model is included in the MCS at 10% significance level across evaluation metrics 
and forecasting horizons. Bold faced numbers indicate the models with the highest (%) of times in the MCS. RW is random 
walk model with drift in levels. OLS is a standard VAR(1) estimated using ordinary least squares. Min, Ridge and Shrink are the 
Minnesota, Ridge and Shrink priors for the dynamic coefficients, respectively. Standard is a BVAR(4) model, VS is BVAR(4) with 
variable selection à la Korobilis (2013), SSP is a BVAR(4) with a steady-state prior, VS-SSP is a steady-state BVAR(4) model with 
variable selection, SSVS is a BVAR(4) with stochastic search variable selection à la George, Sun, and Ni (2008) and SSVS-SSP is 
a BVAR(4) with steady-state prior and stochastic search variable selection. For the SSVS (15) and SSVS-SSP (16) models the prior 
on the dynamic coefficients is that of George, Sun, and Ni (2008).

14 This is practically the average of Gap and Non-gap columns. 
15 The discussion of the results is based mainly on Avg. columns which effectively summarize the key findings of the paper.
16 Here, the ranking of the models is based on the percentage of times they are included in the MCS. Obviously, higher percent-
ages indicate better forecasting models.
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steady-state prior. Of course, as already mentioned, models that combine both steady-state priors and vari-
able selection outrank all the above mentioned specifications since the percentage of times included in the 
MCS is consistently higher compared to other specifications.

Third, the synopsis of the results presented in Table 4 give us the opportunity to compare the two alter-
native variable selection techniques, i.e. the variable selection as implemented in Korobilis (2013) and the 
stochastic search variable selection of George, Sun, and Ni (2008). Overall, the SSVS models tend to outper-
form the VS models irrespective of whether they incorporate a steady-state prior or not. More specifically, the 
average percentage of times a VS or a VS-SSP model is part of the MCS is 29% and 69%, while the correspond-
ing averages for the SSVS and SSVS-SSP models are 47% and 72%, respectively.

Fourth, evidence presented in Tables C.1–C.4 shows that controlling for the slowly moving local mean for 
inflation is beneficial for forecasting purposes as it has recurrently mentioned in the extant literature (e.g. 
see Faust and Wright 2013 and references therein). Indeed, the average relative RMSFE and MAFE metrics for 
inflation and interest rate are lower for models with variables in a gap form relative to models with raw vari-
ables. However, the difference in the forecasting accuracy for gap and non-gap models is greater when we use 
models with uninformative steady-state priors.

Finally, the overall best performing model is the SSVS-SSP model combined with the Minnesota prior 
which is included in the MCS in 79% of cases (see column Avg., Total) followed closely by the SSVS-SSP 
and VS-SSP models with a Ridge prior, which are both part of the MCS in 75% of cases. Therefore, empirical 
evidence also suggests that the simple and relatively uninformative ridge prior can also provide accurate 
forecasts when combined with variable selection techniques, compared to the more informative Minnesota 
or Shrink priors.

4  Conclusions
Empirical evidence in extant literature has highlighted the importance of steady-state prior beliefs in Bayes-
ian VAR forecasting. Moreover, Bayesian variable selection techniques have also been suggested as an 
efficient and automatic way of VAR shrinkage and model parsimony with beneficial effects on forecasting 
accuracy. In this paper, we propose Gibbs sampler algorithms for estimating Bayesian VAR models that effi-
ciently combine this two promising VAR specifications: informative priors on the steady state of the system 
and parameter restrictions based on Bayesian variable selection methods. We evaluate the proposed specifi-
cation in terms of an out-of-sample forecasting exercise using three major US macroeconomic variables and 
we find that it clearly outperforms alternative VAR models that encapsulate only one (or none) of the above-
mentioned specifications. Empirical evidence also suggests that these results are robust against alternative 
priors on dynamic parameters that carry different degree of information regarding VAR shrinkage.
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Appendix A: Posterior inference in the steady-state VARs with 
Bayesian variable selection
As already mentioned, conditional on the steady-state parameters, ϕ, the VAR models described in Section 
2 are standard VAR models with (stochastic search) variable selection for the mean-adjusted series � .ty  
Therefore, the first five and three blocks of the Gibbs samplers presented here, reproduce the George, 
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Sun, and Ni (2008) and Korobilis (2013) algorithm for the mean-adjusted series, respectively. The last 
extra block samples the steady-state parameters, ϕ, conditional on all other parameters, from a normal 
posterior density. Conditional on β and γ (or equivalently θ for the variable selection method) the model 
is a standard steady-state VAR model and can be written in a form so that we can apply Villani’s (2009) 
methodology.

Stochastic search variable selection à la George, Sun, and Ni (2008)
Next, we derive the full conditional posteriors of the six-block Gibbs sampler algorithm for the steady-

state VAR with stochastic search variable selection which employ the priors of Section 2.1. The notation used 
in this appendix is identical to the one used in Section 2.1. More specifically, the Markov Chain Monte Carlo 
(MCMC) algorithm comprises sequential drawing from the posterior distribution using the following steps.
Step 1.	� Draw ψ2 ,jj  j = 1, …, m, independently, from the following Gamma density:

	 ψ β ϕ η ∼2 | , , ; gamma( , )jj j jY a b � (A.1)

	 where = + 1
2j ja a T  and bj̅ is given by:

− −
−


+ ==

 + − + = …′

1 11

1 1
1

1  if 1
2  
1 { [ ( ) ] } if 2,  
2

j

jj jj j j j j j

b v j
b

b v v V D D v j m

	 where = − −′� � � �( ) ( )V Y XB Y XB  with vij elements, Vj is the upper left j × j block of V and vj = (v1j, …, vj-1j)′.
Step 2.	� Draw ηi, i = 2, …, m, independently of one another, from the following (i–1) -dimensional multivariate 

Normal distribution

	 η β ω ϕ ψ ∆−∼ 1| , , , ; ( , )i i i iY N h � (A.2)

	 where ∆ − −
−= + 1 1

1[ ( ) ]i i i iV D D  and ψ ∆=− .i ii i ih v
Step 3.	� Draw ωji, i = 2, …, m and j = 1, …, i–1, independently of one another, from the following Bernoulli 

distribution:

	 ω ω β ϕ ψ− ∼\| , , , ; Bernoulli( )ji ji jiY q � (A.3)

	 where 
η η η

κ κ κκ κ κ

        
   = − − + − −     
           

2 2 2
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1 1 1exp exp exp (1 ) .
2 2 2

ji ji ji
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ji ji jiji ji ji

q q q q

Step 4.	� Draw β from the following n-dimensional multivariate Normal distribution:

	 β γ ϕ Ψ β∼| , , ; ( , )nY N V � (A.4)

	 where β Σ− −= + ′� �1 1[( ) ( )]V DD b vec X Y  and Σ− − −= ⊗ +′� �1 1 1[ ( ) ( ) ] .V X X DD
Step 5.	� Draw γj, j = 1, …, n, independently of one another, from the following Bernoulli distribution:

	 γ γ β ϕ Ψ π− ∼\| , , , ; Bernoulli( )j j jY � (A.5)

	 where 
2 2 2

2 2 2
0 0 10 0 1

1 1 1exp exp exp (1 ) .
2 2 2

j j j
j j j j

j j jj j j

β β β
π π π π

τ τ ττ τ τ

        
   = − − + − −     
           

Step 6.	� Draw the steady-state coefficients ϕ from the following mq-dimensional multivariate Normal 
density

	 ϕ ϕ
ϕ β Ψ ∼| , ; ( , )mqY N b V � (A. 6)
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	 For this step the VAR model conditional on β is written as follows:

	 ϕ ϕ ϕ ε− − − −− = − +…+ − +1 1 1( ) ( ) ( )t t t t p t p t p ty d B y d B y d � (A.7)

	 Rearranging the terms in Eq. (A.7) we get:

	 ϕ ε ϕ ϕ ϕ ε− −= + = − −…− +1 1( ) ( )t t t t t p t p tB L y B L d d B d B d � (A.8)

	� where B(L) = Im–B1L–…–BpLp. Following Villani (2009) we define Y
ϕ
 as a T × m matrix with its t-th row 

being Y
ϕt = (B(L)yt)′, D as a T × (p+1)q matrix which t-th row is given by − −= − −… −′ ′ ′1( , , , )t t t t pD d d d  and 

Λ = [ϕ, B1ϕ, …, Bpϕ]′ as the (p+1)q × m matrix of coefficients. Therefore, the model in (A.8) can be 
written as Y

ϕ
 = DΛ+E and standard results for multivariate regressions can be applied (see Villani 

2009, 646–647). Thus, given that vec(Λ′) = Uvec(ϕ) with
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	 we define the mean, b
ϕ̅
, and variance, V

ϕ̅
, of the posterior distribution in (A.6) as

	
ϕ ϕ ϕ ϕ ϕ

Σ− −= +′ ′1 1( ( ) )b V U vec Y D V b  and 
ϕ ϕ

Σ− − −= ⊗ +′ ′1 1 1( )V U D D U V  respectively.

Variable selection à la Korobilis (2013)
We follow Korobilis (2013) and we re-write the VAR model in a vectorized form to exploit the computa-

tional efficiency of matrix multiplications. To this end, we define ỹ as a T × m matrix with its t-th row being 
= = …′� � � � �

1 2( , , , ),t t t t mtY y y y y  �X  as an T × k matrix with its t-th row being =� �
t tX x  and E as a T × m with its t-th row 

being ε ε ε ε= = …′ 1 2( , , , ).t t t t mtE  Then, ỹ = vec(ỹ) and ε = vec(E) are Tm × 1 vectors with vec() being the standard 
operator which stacks the columns of a matrix. Then, the VAR model can be written as

	 θ ε
× × ××

= +��
( ) ( 1) ( 1)( 1) Tm n n TmTm

y Z � (A. 9)

where = ⊗� �
mZ I X  is a Tm × n block diagonal matrix with �X  being repeatedly on its main diagonal, θ = Γβ is the 

n × 1 vector of coefficients with β = vec(B). To facilitate reading, we remind that m is the number of variables, 
k = mp is the number of explanatory variables in each VAR equation, and n = mk = m2p is the total number of 
VAR coefficients. Also recall that ỹt = yt–ϕdt and − −= …′ ′� ��

1( , , )t t t px y y  are the mean-adjusted time-series of yt and 
xt, respectively.

The full conditional posteriors for the steady-state VAR with variable selection using the priors specified 
in Section 2.2 are given below. More specifically, the four-block Gibbs sampler algorithm includes the follow-
ing steps:
Step 1.	� Draw the slope coefficients β from the following n-dimensional multivariate Normal density

	 | ,  ,  ,  ;  ( ,  )ny Z N Vβ γ ϕ Σ β∼ � (A.10)

	 where Σ− ∗ − ∗ −′= + ⊗� �1 1 1( ( ) ) ,TV V Z I Z  β Σ− ∗ −′= + ⊗� �1 1( ( ) )TV V b Z I y  and Γ∗ =� � .Z Z
Step 2.	 Draw γj in random order j with j = 1, …, n from

	 \| ,  ,  ,  ;  ,  Bernoulli( )j j jy Zγ γ β φ Σ π− ∼ � (A.11)

	� where π = +0 0 1/( ),j j j jl l l  θ Σ θ π θ∗ − ∗ ∗∗= − − ⊗ − = − −′ ′� � �� � �1
0 1exp( 0.5( ) ( )( )) , exp( 0.5( )j T j jl y Z I y Z l y Z  

Σ θ π− ∗∗⊗ − −��1( )( ))(1 )T jI y Z  with θ* and θ** being equal to θ but with their j-th element being equal to βj 
and 0, respectively.

Step 3.	� Draw Σ-1 from

	 1 1| ,  ,  ;  ,  ( ,  )y Z Wishart T SΣ β γ ϕ− −∼ � (A.12)
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	 For this step, re-write the VAR as

	 Θ
× × ××

= +� �
( ) ( ) ( )( )T m T k T mk m
Y X E � (A.13)

	� where Θ is a k × m matrix which ij-th element is given by Θij = θ(j-1)k+i for i = 1, …, k and j = 1, …, m. Then, 
S is given by Θ Θ= = − −′ ′� � � �( ) ( ).S E E Y X Y X

Step 4.	� Draw the steady-state coefficients ϕ from the following mq-dimensional multivariate Normal density

	 | ,  ,  ;  ,  ( ,  )mqy Z N b V
ϕ ϕ

ϕ β γ Σ ∼ � (A. 14)

	 For this step the VAR model conditional on β and γ (or equivalently θ) is written as follows

	 ϕ Θ ϕ Θ ϕ ε− − − −− = − +…+ − +1 1 1( ) ( ) ( )t t t t p t p t p ty d y d y d � (A.15)

	� where Θl, l = 1, …, p is a m × m matrix of coefficients which ij-th element is given by Θl,ij = Θ(l–1)m+j, i for 
l = 1, …, p and i, j = 1, …, m. Rearranging the terms in Eq. (A.15) we get

	 Θ Θ ϕ ε ϕ Θ ϕ Θ ϕ ε− −= + = − −…− +1 1( ) ( )t t t t t p t p tL y L d d d d � (A.16)

	� where Θ(L) = Im–Θ1L–…–ΘpLp. Following Villani (2009) I define Y
ϕ
 as a T × m matrix with its t-th row 

being Y
ϕt = (Θ(L)yt)′, D as a T × (p+1)q matrix which t-th row is given by − −= − −… −′ ′ ′1( , , , )t t t t pD d d d  and 

Λ = [ϕ, Θ1ϕ, …, Θpϕ]′ as the (p+1)q × m matrix of coefficients. Therefore, the model in Eq. (A.16) can 
be written as Y

ϕ
 = DΛ+E and standard results for multivariate regressions can be applied (see Villani 

2009, 646–647). Thus, given that vec(Λ′) = Uvec(ϕ) with
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	� we define the mean, b̅
ϕ
, and variance, V̅

ϕ
, of the posterior distribution in (A.14) as 

ϕ ϕ ϕ ϕ ϕ
Σ− −= +′ ′1 1( ( ) )b V U vec Y D V b  and 

ϕ ϕ
Σ− − −= ⊗ +′ ′1 1 1( )V U D D U V  respectively.

The Gibbs samplers described in this Appendix were implemented in Matlab and extend the 
Matlab codes for VAR models with variable selection and stochastic search variable selection 
kindly provided by Gary Koop and Dimitris Korobilis in their websites: personal.strath.ac.uk/
gary.koop/bayes_matlab_code_by_koop_and_korobilis.html and https://sites.google.com/site/
dimitriskorobilis/matlab.

Appendix B: Specifying priors on β
This appendix briefly describes the three different types of prior distribution on β used in the VS and SSVS 
models (for more details see George, Sun, and Ni (2008), Koop (2013), Korobilis (2013) and references therein). 
More specifically, for the VS models we use:
a)	 The Ridge regression prior which defines b = 0n×1 and V = λIn with the hyperparameter λ determining the 

degree of shrinkage on β. We choose λ = 100 for the intercepts (diffuse prior) and λ = 9 for the dynamic 
parameters.

b)	 The popular Minnesota prior which assumes that variables follow a AR(1) process implying that all ele-
ments of b are zero except for the parameter of the first own lag of each of the variables which is equal 
to δi.17 Here, we set the autoregressive parameter equal to 0.25 for the GDP and 0.8 for the inflation and 

17 Doan, Litterman, and Sims (1984) and Litterman (1986) originally proposed that all variables follow a random walk process 
meaning that δ = 1. However, if we work with stationary variables we can set δ < 1.

https://sites.google.com/site/dimitriskorobilis/matlab
https://sites.google.com/site/dimitriskorobilis/matlab
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interest rate variables. The prior covariance matrix V is assumed to be a n × n diagonal matrix with each 
of its diagonal elements being defined as
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�where l = 1, …, p denotes the lag. We define σ2
i  as the residual variance from a univariate AR(p) for vari-

able i estimated with OLS. We choose λ1 = 0.2 and λ2 = 0.5 as in Clark (2011).
c)	 The hierarchical Bayes shrinkage prior (Shrink) proposed by Korobilis (2013) is an hierarchical Normal-

Jeffreys prior which defines b = 0n×1 and Vjj = λj, j = 1, …, n with
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1/ otherwisej

j �
(B.2)

�where δ100(λ) is the Dirac delta function. Assuming a scale invariant Jeffreys prior on λj, its posterior value 
is solely data driven. This is in contrast to the previous two approaches where the shrinkage parameter λ 
is an ad hoc selection of the researchers.
For the SSVS models we use the following three priors on regression coefficients:

d)	 The Standard ‘semi-automatic’ prior of George, Sun, and Ni (2008) which defines τ β=0 0 var( )j jc  and 
τ β=1 1 var( ),j jc  where var(βj) is the OLS estimate of the variance of βj parameters, c0 = 1/10 and c1 = 10.

e)	 The conjunction of the Minnesota prior and the SSVS method proposed by Koop (2013) where 
τ β=0 0 var ( )j Min jc  and τ β=1 1 var ( ),j Min jc  with varMin(βj) being the variance of the βj parameters as 

defined by the Minnesota prior in (b) with c0 = 1/10 and c1 = 1. This prior specification implies that if γj = 1 
then we impose the same degree of shrinkage on βj as in the Minnesota prior, whereas if γj = 0 we impose 
additional shrinkage.

f)	 The conjunction of the ridge prior and the SSVS method where τ β=0 0 Ridgevar ( )j jc  and 
τ β=1 1 Ridgevar ( ),j jc  with varRidge(βj) being the variance of the βj parameters as defined by the Ridge 
prior above in (a) with c0 = 1/10 and c1 = 1. Again the prior suggests that if γj = 1 then we impose the same 
degree of shrinkage on βj as in the Ridge prior, whereas if γj = 0 we impose additional shrinkage.

We should note that the mean-adjusted form used in the steady-state VARs does not contain constant terms 
and the priors presented above are implemented only for the dynamic coefficients.
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