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Abstract: I consider complicated patterns of structural breaks in postwar quarterly US inflation rates based 
on the CPI and the GDP deflator over the period from 1953:Q1 to 2013:Q4. Bayesian model selection proce-
dures suggest that the two inflation measures had distinct structural changes in different parameters as well 
as at different dates. CPI inflation experienced a dramatic drop in persistence around the early 1980s, but 
GDP deflator inflation remains persistent throughout the postwar sample period. The residual variance for 
both inflation measures switched from a low volatility regime to a high volatility regime in the early 1970s, 
but returned to another low volatility regime at different dates: the early 1980s for GDP deflator inflation and 
the early 1990s for CPI inflation. The residual variance for CPI inflation has increased again since the early 
2000s, while GDP deflator inflation has remained less volatile. I do not find evidence of a structural shift in 
the unconditional mean of either measure of inflation. When reviewing the recent literature, considerable 
controversy exists over the structural break in inflation persistence around the early 1980s but this appears 
to be dependent on the measures of inflation, as highlighted by the empirical findings in this paper.

Keywords: Bayesian analysis; inflation dynamics; multiple-group changepoint; persistence; structural 
breaks; UC-SV model.
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1  Introduction
In this paper, I make inferences about complicated patterns of structural breaks in inflation dynamics. An 
autoregressive (AR) model is used for studying structural shifts in three parameter groups: the unconditional 
mean, a group of autoregressive coefficients, and the residual variance. The choice of parameter groups are 
potentially related to structural interpretations of changes in inflation dynamics. Some parameters could 
have a different number of structural breaks and/or at different dates from others. Also, structural breaks are 
modeled as abrupt changes to identify potential regime shifts in economic structure such as a long-run infla-
tion target, monetary policy, and price-setting behavior.1

Changes in the group of AR coefficients, related to inflation persistence, can be understood through 
shifts in structural parameters in the New Keynesian Phillips curve. Shifts in inflation persistence can be 
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1 Fuhrer (2010) examines whether various measures of US inflation have a unit root for several sets of sample periods using 
the ADF test and the Phillips-Perron test. He finds that the results are ambiguous but one may safely assume that inflation does 
not contain an important unit root for the period since the mid-1980s. Fuhrer (2010) claims that if the central bank has a stable 
inflation goal, inflation would not have a unit root and this can be the case of the US economy. When taking his argument into 
account, I focus on the possibility of abrupt changes in trend inflation as in Levin and Piger (2006) rather than stochastic trend 
which evolves as a driftless random walk as in Cogley, Primiceri and Sargent (2010).
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caused by changes in firms’ price setting behavior, marginal cost dynamics, or monetary policy.2 Shifts in 
inflation persistence have crucial implications for policymakers. For example, Solow (1968) and Tobin (1968) 
consider a test for the natural rate hypothesis using a simple Phillips curve with unemployment rate. When 
inflation is considered to be less persistent, the natural rate hypothesis is likely to be rejected. In such a case, 
policymakers may feel a strong temptation to exploit an illusory inflation-unemployment trade-off, resulting 
in high inflation as in the 1970s.3

The unconditional mean in AR models is associated with trend inflation, which is potentially set by the 
cental bank. Thus, one can make inferences about shifts in the central bank’s long-run inflation target when 
studying structural breaks in the unconditional mean. However, the changes in trend inflation would not be 
identified if we consider breaks in the intercept because the shifts in the intercept may provide mixed infor-
mation on breaks in the unconditional mean and persistence.

In addition, Stock and Watson (2003) and Kim, Nelson and Piger (2004) suggest the possibility of struc-
tural changes in the volatility of inflation as potentially related to real activity and supply shocks. This shift 
can be captured when taking into account the change in the residual variance.

In short, these complex patterns of structural breaks in different parameters reflect the possibility that 
the parameter changes are due to the shifts in structural parameters of macroeconomic models.4 To under-
stand the structural dynamics of inflation clearly, it is essential above all to investigate whether there have 
been breaks. If so, which parameters are subject to these shifts? Do they undergo these changes at the same 
time? To answer these questions, it is important to identify the parameters subject to changes at a particular 
time and distinguish them from unchanged parameters.

I take a Bayesian approach to estimate and compare the complex structural break models, which are 
potentially non-nested. However, in the literature all the parameters subject to the changes are assumed to 
have the structural shifts at the same date either in pure or partial structural change models.5 For example, 
Chib (1998) considers single-group changepoint models by interpreting structural changes for all the para-
meters as regime transitions that follow a first-order Markov processes. Wang and Zivot (2000) treat struc-
tural break dates as additional parameters and sample break dates from conditional distributions of break 
dates with flat priors.

Thus, these approaches in the literature are not suitable for making inferences about the complicated 
patterns of structural changes considered in this paper. To overcome the limitation I modify Chib’s (1998) 
approach, augmenting each parameter (group) with its corresponding independent regime indicator varia-
ble. Note that it is possible to sort several parameters into a group and make the group of parameters undergo 
structural changes at the same dates, as in the approach for persistence parameters adopted in this paper. 
The modified approach allows multiple parameters (groups) to undergo mutually independent structural 
breaks at different dates with the different number of breaks. This multiple-group changepoint model can 
explore all the possible patterns of structural breaks efficiently. The number of structural breaks and the form 

2 For the effect of monetary policy regime on persistence in inflation, see the discussion in Davig and Doh (2014) and references 
therein.
3 For a more detailed discussion, see Cogley and Sargent (2002), Pivetta and Reis (2007), and references therein.
4 For example, consider a simple New Keynesian Phillips curve (NKPC) which has the form 
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where ˆ t tπ π π= −  is the inflation gap defined by the difference between the inflation rate and steady sate inflation π  (potentially 
the inflation target set by the central bank) and mct is marginal cost. This hybrid NKPC can be derived with a full price indexa-
tion to trend inflation and is widely used in the literature (e.g. Smets and Wouters (2007)). When considering a reduced form 
regression from this model, a change in the trend inflation can be associated with a structural break in the unconditional mean 
of inflation and a change in the degree of price stickiness produces a shift in persistence of inflation dynamics. Also, a change in 
the residual variance can be interpreted as different sizes of economic shocks.
5 Giordani and Kohn (2008) consider an alternative model which allows structural breaks to come through mixture distributions 
in state innovations and shifts in variance occur independently of shifts in other parameters. However, this specification still can-
not distinguish breaks in the unconditional mean from shifts in persistence.
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of structural change are determined by a Bayesian model selection procedure using Bayes factors. For robust-
ness, I also calculate marginal probabilities for the number of structural breaks in each individual parameter 
group because the model selection procedure using the Bayes factors chooses only one model.

I employ the modified approach to an autoregressive model for postwar US GDP deflator inflation and 
CPI inflation by allowing for shifts in the unconditional mean, a group of persistence parameters, and/or 
the residual variance. The Bayesian model selection procedure shows distinct patterns of structural changes 
from two different measures of inflation. CPI inflation experienced a dramatic drop in persistence around 
the early 1980s, but GDP deflator inflation is still persistent. Also, the residual variance for both inflation 
measures switched from a low volatility regime to a high volatility regime in the early 1970s, but it returned 
to another low volatility regime at different dates: the early 1980s for GDP deflator inflation and the early 
1990s for CPI inflation. The residual variance for CPI inflation has increased again since the early 2000s, 
while GDP deflator inflation has remained less volatile. This different pattern of changes in the variance is 
also confirmed using unobserved components model with stochastic volatility in Stock and Watson (2007). 
However, I do not find evidence of a structural shift in the unconditional mean. The marginal probability 
calculations for the number of breaks in each individual parameter group also strongly support the model 
selection results based on the Bayes factors. The structural breaks at different dates reflect the possibility that 
parameter shifts might be caused by a variety of factors.

The remainder of this paper describes the methods and then discusses the empirical results and how 
they compare to existing results in the literature.

2  Model specification and Bayesian inference

2.1  Model specification

I consider a pth-order autoregressive model for an analysis of inflation dynamics and the AR(p) model allows 
for structural breaks in three parameter groups such as (i) the unconditional mean μ, (ii) persistence (φ1, …, 
φp) and (iii) the residual variance σ2. I focus on changes in the unconditional mean rather than the intercept 
because changes in the intercept may contain mixed information on changes in level and persistence. Sims 
(2001) and Stock (2001) note that allowing for changes in the residual variance helps avoid any potential 
distortions of identifying structural breaks in coefficients.6 The AR(p) model with structural breaks is given by

	 �
1, 2 , 1, 1 2 , 1, 3 ,

2
1, 1 ,( ) ( ) ,   (0, )

t t t t t p tt S S t S p S t p S t t Se e Nπ µ φ π µ φ π µ σ
− −− −= + − + + − + ∼ � (1)

where S1,t∈{1, …, M1+1}, S2,t∈{1, …, M2+1}, and S3,t∈{1, …, M3+1} represent the regimes for the unconditional 
mean parameter with M1 breaks, the persistence parameter group with M2 breaks and the residual variance 
with M3 breaks, respectively. The nature of the structural breaks in each parameter group is independent of 
one another in terms of the number and timing of structural changes.

To make inferences about multiple-group changepoint models, I modify Chib’s (1998) approach in which 
the structural breaks are interpreted as regime transitions. Chib (1998) assumes that all the parameters which 
undergo the structural changes have the structural shifts at the same dates.7 Thus, I propose an efficient 
Bayesian MCMC method that allows for a number of possibilities for the nature of structural breaks. This 
modified approach is developed to have the following attractive features: (i) model specification of con-
sidering multiple structural changes in multiple parameters; (ii) model flexibility in allowing the multiple 

6 In a similar spirit, Sims and Zha (2006) find that the best fitting vector autoregressive model does not require changes in coef-
ficients when regime switches in disturbance variances are allowed.
7 This type of model can be called a single-group changepoint model (e.g. both pure and partial structural change models in Bai 
and Perron 2003).
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structural breaks to occur mutually independently at different dates; and (iii) model selection procedure by 
comparing various potentially non-nested structural break models.

Suppose a multiple-group changepoint model which allows parameters to change at different dates with 
the different number of breaks.8 For example, in (1) the model for inflation dynamics may have one break in 
the unconditional mean, two breaks in persistence, and three breaks in the residual variance. In this case, the 
modified approach would require only augmentations with three independent latent regime indicator varia-
bles � � �

1, 2, 3,( , , ),T T TS S S  where � , ,1 ,2 , 1 ,[     ]i T i i i T i TS S S S S
−

′= …  for each parameter group i = 1, 2, 3, and three transition 
probability matrices (P1, P2, P3) corresponding to three parameter groups while the single-group changepoint 
model is augmented with only one regime indicator variable and one transition probability matrix. Since all 
the regime indicator variables are mutually independent in the multiple-group changepoint model, the date 
of regime transition in a parameter is allowed to occur close to that of regime transition in other parameters 
without any necessary minimum distance unlike the restriction in Levin and Piger (2007).

For a parameter group i, the latent state variable Si,t follows a first-order Markov process with the transi-
tion probabilities constrained: for k = 1, …, Mi

	 , , 1 , , , 1 , 1 ,Pr[ | ]  and Pr[ 1| ] 1i i i
i t i t k k i t i t k k k kS k S k p S k S k p p

− − +
= = = = + = = = − � (2)

and

	 , , 1Pr[ 1| 1] 1   for the last regime 1i t i i t i iS M S M M−= + = + = + � (3)

where ,
i
k kp  indicates the probability that a regime Si,t for the parameter group i stays in the current regime k. A 

transition probability matrix Pi for the parameter group i can then be formed as a (Mi+1)-by-(Mi+1) matrix with 
elements containing information about the first-order Markov process in (2) and (3).9

A joint posterior density can be obtained as being proportional to a product of a prior density and a likeli-
hood function of YT = [y1 … yT]′ such as

θ θ θ( , | ) ( , ) ( | , )T TY f Yπ π∝P P P

where π(·) denotes a density function; θ � �� 2( , , )µ φ σ=  is a collection of model parameters; 
�� … … …

1 2 21 1 1,1 ,1 1, 1 , 1( , , ), ( , , , , , , ),M p M p Mµ µ µ φ φ φ φ φ+ + += … =  and �
3

2 2 2
1 1( , , );Mσ σ σ += …  and P = (P1, P2, P3) is a 

collection of transition probability matrices. The model parameters, θ � �� 2( , , ),µ φ σ=  are then augmented with 
the transition probability matrices, P = (P1, P2, P3), and the latent regime indicators � � �

1, 2, 3,( , , ).T T TS S S  The MCMC 
sampler is developed through a hierarchical specification in which one draws the model parameters condi-
tional on the regime indicators and the observed data; the regime indicators conditional on the model param-
eters and the observed data; and finally the transition probabilities conditional on the regime indicators via 
Gibbs sampling. More details for the MCMC sampling algorithm are explained in the Appendix.

8 Pesaran, Pettenuzzo and Timmermann (2006) and Koop and Potter (2007) extend Chib’s (1998) approach to improve forecasting 
ability and Giordani and Kohn (2008) take a different approach of mixture models for making inference about structural breaks. 
The multiple-group changepoint approach may be also evaluated in terms of forecasting performance. However, Bauwens et al. 
(2015) recently examine the forecasting performance of various structural break models including approaches based on Pesaran, 
Pettenuzzo and Timmermann (2006), Koop and Potter (2007), and Giordani and Kohn (2008) and they find that there is no one 
single method which can be recommended universally. 
9 This restriction can be expressed in matrix form where pj,k is placed in the (j, k)th entry of the transition matrix
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I drop the superscript i for notational simplicity.
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2.2  Model selection procedures

I consider two different model selection procedures: (i) the Bayes factor comparison using the marginal likeli-
hoods and (ii) the posterior probability for the number of structural breaks in each individual parameter group 
by integration. Thus, I find not only the most preferred model based on the Bayes factor but also the marginal 
probability for the number of breaks in each parameter group for robustness to the model selection results. In 
this analysis, the maximum number of structural breaks is specified to four for each parameter group and in 
total, 125 different models for each inflation measure are considered including a model with no break (125 = 53).

The Bayes factor is presented in favor of the alternative model, M = (M1, M2, M3) versus the most preferred 
model, 1 2 3( , , )M M M∗ ∗ ∗ ∗=M  by

1 2 3

1 2 3

( | ( , , ) )
( | ( , , ) )

T

T

m Y M M M
BF

m Y M M M∗ ∗ ∗ ∗

=
=

=
M

M

where m(YT|M = (M1, M2, M3)) is the marginal likelihood for the model with structural breaks of (M1, M2, M3). I 
calculate the marginal likelihood at the posterior mean. The algorithm to compute the marginal likelihood is 
described in the Appendix.

I also calculate the posterior probability for the number of structural breaks in each individual parameter 
group by integrating out the number of breaks in other parameters. For example, the posterior probability for 
l structural breaks in the parameter � ,µ  denoted by M1 = l, is given by

	

1 1
1 4

1 1
0
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where
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is the integrated likelihood when M1 = l; π(M1 = l) is the prior probability for M1 = l; and π(M2 = j, M3 = k|M1 = l) is the 
joint prior probability for M2 = j and M3 = k conditional on M1 = l. Because all the models are considered a priori 
equally likely as well as independent, π(M1 = l) is equal to 1/5 and π(M2 = j, M3 = k|M1 = l) is equal to 1/25 when the 
maximum number of structural breaks is specified to four as in this analysis. In fact, the posterior probability 
of l structural breaks in the parameter �µ  is simply the sum of posterior probabilities for all the models such 
that M1 = l. For other parameters, �φ  and � 2

2, Pr( | )TM j Yσ =  and Pr(M3 = k/YT) can be easily obtained by using 
the same approach in (5). Note that all the terms in (5) are readily available when the marginal likelihood 
calculations are completed.

3  Structural breaks in inflation dynamics

3.1  Data and prior

I consider two different quarterly US inflation measures based on the consumer price index (CPI) and the 
GDP deflator.10 Each inflation is defined as 100 times the log change in the corresponding price index for the 
period of 1953:Q1–2013:Q4.

Figure 1 depicts the two inflation series. Both inflation measures appear to be less volatile for the “Great 
Moderation” period since the early 1980s but CPI inflation has been recently more volatile. Moreover, CPI 
inflation appears to be less persistent than GDP deflator inflation. Table 1 presents summary statistics over 

10 I use the CPI series for all urban consumers (CPIAUCSL) and the GDP implicit price deflator (GDPDEF) from the Federal Reserve 
Economic Database (FRED). They are all seasonally adjusted.
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the sample period. CPI inflation has a slightly higher mean, is less persistent, and more volatile than for GDP 
deflator inflation. In addition, the correlation between the two inflation measures is 0.78. Thus, the timing 
and the number of structural changes might be different across model parameters such as the unconditional 
mean, persistence, and the residual variance as well as across the different measures of inflation. In this case, 
the multiple-group changepoint model can effectively detect the structural changes in individual parameter 
groups.

In this analysis, the lag order p is set to two for both series by the Bayesian information criterion. The 
diffuse and same prior distributions across different regimes are chosen in order to avoid any distortions 
from the choice of specific prior distributions when estimating different structural break models. The priors 
for regression coefficients are distributed with mean zero and variance one (i.e., μ, φi~N(0, 1)) and the priors 

of variance parameters follow an Inverse Gamma distribution such as 2 5.0 1.5, 
2 2

IGσ
 

∼     for CPI inflation 

and 2 4.2 0.5, 
2 2

IG
 
 σ
 

∼  for GDP deflator inflation. The priors for the variance parameters are set differently 

reflecting the fact that GDP deflator inflation is more persistent and less volatile than CPI inflation so that 
the residual variance for the GDP inflation regression is much smaller than for the CPI inflation regression. 
See the summary statistics in Table 1. The prior of the transition probability that the current regime k stays in 
the same regime k in the next period is distributed as pkk~Beta(10, 0.1). The prior expected duration of a given 
regime is about 101 quarters and the prior expected number of breaks is 2.4 given the sample size of 241. All 
the estimations are based on 3000 Gibbs simulations after discarding 3000 burn-ins.11
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Figure 1: US inflation rates: CPI and GDP deflator (quarterly percentage change): 1953:Q1–2013:Q4.

Table 1: Summary statistics for inflation series: 1953:Q1–2013:Q4.

Series  Mean  SD  First order autocorr.

CPI   0.89  0.81  0.61
GDP   0.80  0.57  0.86
Corr   0.78   

CPI refers to CPI inflation and GDP refers to GDP deflator inflation.

11 Estimating multiple-group changepoint models does not require considerable computational time. For example, the most 
preferred model for CPI inflation with 1 2 3( 0, 1, 3)M M M∗ ∗ ∗ ∗= = = =M  runs about 3 min 2.78 s using Intel Core i7-4770 CPU. The code 
is written and run in GAUSS 10.
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3.2  Empirical findings for CPI inflation

I first discuss model selection results for CPI inflation. Table 2 presents the ten best models based on marginal 
likelihood calculations among 125 models. The comparison of the marginal likelihoods shows that the most 
preferred model has one structural break in persistence, three structural breaks in the residual variance, and 
no structural break in the unconditional mean. The most preferred model clearly dominates the other models 
in the sense that the Bayes factor is lower than 1/8 in favor of any alternative model.

Table 3 lists the marginal posterior probability of the number of structural breaks in individual parameter 
groups using (5). The highest probability of the number of breaks for each parameter is calculated as follows: 
0.89 for no break in the unconditional mean, 0.97 for one break in persistence, and 0.91 for three breaks in 
the residual variance. This finding from the marginal probability calculations is completely consistent with 
the model selection of 1 2 3( 0, 1, 3)M M M∗ ∗ ∗ ∗= = = =M  based on the Bayes factors.

Table 4 summarizes the posterior distributions with mean and standard deviation and Figure 2 plots 
the posterior mean and 90% credible band for each parameter group over the sample period. The sum 
of autoregressive coefficients is used for the measure of persistence. The posterior distributions clearly 

Table 2: US CPI inflation: model selection.

Model (# of breaks) M = (M1, M2, M3)  Log marginal likelihood  Bayes factor

(0, 1, 3)   –203.55  1.0000
(1, 1, 3)   –205.66  0.1206
(0, 1, 4)   –206.17  0.0728
(0, 2, 3)   –207.36  0.0221
(0, 1, 2)   –207.46  0.0200
(0, 0, 3)   –207.85  0.0135
(0, 1, 1)   –208.16  0.0099
(1, 1, 4)   –208.35  0.0082
(2, 1, 3)   –208.77  0.0054
(1, 1, 2)   –209.04  0.0041

M1, M2, and M3 denote the number of breaks in the unconditional mean (μ), the persistence (φ1, φ2), and the residual variance  
 
(σ2), respectively. Bayes factors are calculated in favor of the alternative model: ∗

=
=

( | )
.

( | (0, 1, 3))
T

T

m Y
BF

m Y
A

M

M

Table 3: US CPI inflation: posterior probability of the number of structural breaks in individual parameter group.

Parameter   # of breaks  Posterior probability

Uncond. mean   0  0.89
  1  0.11
  2  0.00
  3  0.00
  4  0.00

Persistence   0  0.01
  1  0.97
  2  0.02
  3  0.00
  4  0.00

Residual variance  0  0.00
  1  0.01
  2  0.02
  3  0.91
  4  0.06

Bold values indicate the highest posterior probability for individual parameter groups.
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show that persistence sharply decreased from 0.89 to 0.10 (posterior mean) in the early 1980s while the 
residual variance switched from a low volatility regime to a high volatility regime around the early 1970s, 
returned to another low volatility regime around the early 1990s, and then has increased again since the 

Table 4: US CPI inflation: posterior distributions for the most preferred model ∗ ∗ ∗ =1 2 3[#  of breaks ( , , ) (0, 1, 3)].M M M

Parameter 
 

Prior 
 

Posterior

Regime1  Regime2  Regime3  Regime4

μ   0.000  0.686     
  (1.000)  (0.070)     

φ1   0.000  0.436  0.086   
  (1.000)  (0.085)  (0.126)   

φ2   0.000  0.458  0.013   
  (1.000)  (0.085)  (0.116)   

p2,ii   0.990  0.992     
  (0.030)  (0.008)     

σ2   0.500  0.143  0.427  0.112  0.678
  (0.707)  (0.025)  (0.103)  (0.036)  (0.149)

p3,ii   0.990  0.987  0.986  0.981 
  (0.030)  (0.012)  (0.014)  (0.018) 

Standard deviations are reported in parentheses.
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Figure 2: US CPI inflation: posterior distribution of parameters over time.
(A) Unconditional mean, (B) persistence (sum of AR parameters), (C) residual variance.
Posterior mean and 90% band are plotted over time. The estimated break dates (posterior mode) are 1981:Q3 for persistence 
and 1972:Q4, 1991:Q1, and 2001:Q2 for the residual variance.
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early 2000s.12 The changes in the residual variance also appear to be abrupt. It is evident that the break 
point for persistence is different from the break points for the residual variance. Thus, these structural 
changes could be caused by different sources.

3.3  Empirical findings for GDP deflator inflation

Now, I apply the modified approach to an AR(2) model for GDP deflator inflation. Table 5 presents calcula-
tions for the marginal likelihood and Bayes factor. The marginal likelihood calculations select the model with 
two breaks in the residual variance only. The Bayes factor between M* = (0, 0, 2) and M = (0, 0, 1), the second 
preferred model, is 0.61. Table 6 shows the marginal probability for the number of breaks in each parameter 
group. The posterior probability for two breaks in the residual variance (σ2) is 0.60 and for one break is 0.37 
while the posterior probabilities for no break in the unconditional mean (μ) and in persistence (φ) are 0.99 

12 Giordani and Kohn (2008) consider an AR(1) model of CPI inflation for the sample period of 1951–2004 and also find a struc-
tural break in the early 1990s rather than the mid 1980s, the so-called “Great Moderation” breakpoint.

Table 5: US GDP deflator inflation: model selection.

Model (# of breaks) M = (M1, M2, M3)  Log marginal likelihood  Bayes factor

(0, 0, 2)   –23.30  1.0000
(0, 0, 1)   –23.80  0.6105
(0, 1, 2)   –26.18  0.0561
(0, 0, 3)   –26.42  0.0441
(0, 1, 1)   –26.77  0.0311
(1, 0, 1)   –27.88  0.0103
(1, 0, 2)   –27.98  0.0093
(0, 1, 3)   –29.14  0.0029
(0, 0, 4)   –29.73  0.0016
(0, 2, 2)   –30.02  0.0012

For the proposed approach, M1, M2, and M3 denote the number of breaks in the unconditional mean (μ), the persistence (φ1, φ2), and  
 
the residual variance (σ2), respectively. Bayes factors are calculated in favor of the alternative model: 
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Table 6: US GDP deflator inflation: posterior probability of the number of structural breaks in individual parameters.

Parameter   # of breaks  Posterior probability

Uncond. mean   0  0.99
  1  0.01
  2  0.00
  3  0.00
  4  0.00

Persistence   0  0.95
  1  0.05
  2  0.00
  3  0.00
  4  0.00

Residual variance   0  0.00
  1  0.37
  2  0.60
  3  0.03
  4  0.00

Bold values indicate the highest posterior probability for individual parameter groups.
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and 0.95, respectively. Thus, not only the marginal likelihood comparisons but also the posterior probability 
calculations produce very strong evidence that the autoregressive model for GDP deflator inflation has no 
break in the unconditional mean and persistence but the specification for two breaks in the residual variance 
is slightly more preferred than for one break.13 This result is also consistent with the finding that evidence for 
shifts in persistence for GDP deflator inflation is not statistically significant, particularly once allowing for 
shifts in the residual variance as in Pivetta and Reis (2007) and Stock (2002).

Table 7 summarizes posterior distributions for the parameters in the most preferred model and Figure 3 
plots posterior mean and 90% credible band for each parameter group. The residual variance switched from 
a low volatility regime to a high volatility regime around the early 1970s and then returned to another low 
volatility regime around the early 1980s. In addition, the residual variance for the first regime appears to be 
bigger than that for the third regime. The changes in the residual variance are also abrupt and this implies 
that the multiple-group changepoint model provides precise information about the timing of the structural 
breaks in the residual variance. Note also that GDP deflator inflation is highly persistent in the sense that the 
sum of the autoregressive coefficients (posterior mean) is 0.88. This finding on high inflation persistence is 
consistent with that in the literature (e.g. Fuhrer and Moore (1995)). However, the 90% credible band does 
not cover the unit root.14

4  Robustness

4.1  Comparison with Chib’s (1998) approach

For robustness, I consider Chib’s approach, a single-group changepoint model, in which all the parameters 
including the residual variance undergo breaks at the same time. The models are estimated using the same 
priors as in the multiple-group changepoint models. The results for the Bayes factor calculations are sum-
marized for both measures of inflation in Table 8. Based on Chib’s approach, the values of the highest (log) 

Table 7: US GDP deflator inflation: posterior distributions for the most preferred model 1 2 3[# of breaks ( , , ) (0, 0, 2)].M M M∗ ∗ ∗ =

Parameter   Prior   Posterior

Regime 1  Regime 2  Regime 3

μ   0.000  0.611   
  (1.000)  (0.205)   

φ1   0.000  0.494   
  (1.000)  (0.064)   

φ1   0.000  0.387   
  (1.000)  (0.062)   

σ2   0.227  0.078  0.174  0.038
  (0.719)  (0.014)  (0.041)  (0.005)

p3,ii   0.990  0.985  0.980 
  (0.030)  (0.013)  (0.017) 

Standard deviations are reported in parentheses.

13 The break date for the autoregressive model with one break in the residual variance is consistent with the second break date 
around the early 1980s for the model with two breaks. As shown in Table 7, the difference in the residual variances is more pro-
nounced in the second break. 
14 I have conducted robustness checks by doubling the standard deviations of priors as well as considering an AR(4) model. I 
found that the posterior distributions and the timing of the structural breaks are broadly identical and they are robust to the alter-
native specifications. Also, additional coefficients for higher-order lags in the AR(4) models appear to be insignificant.
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Figure 3: GDP deflator inflation: posterior distribution of parameters over time.
(A) Unconditional mean, (B) persistence (Sum of AR parameters), (C) residual variance.
Posterior mean and 90% band are plotted over time. The estimated break dates (posterior mode) are 1970:Q2 and 1981:Q2 for 
the residual variance.

Table 8: Comparison to Chib’s (1998) approach: model selection.

Model (# of breaks)   Log marginal likelihood  Bayes factor

(a) CPI inflation    
0   –233.43  0.0000
1   –212.13  0.0002
2   –211.67  0.0003
3   –208.54  0.0068
4   –215.94  0.0000
(b) GDP deflator inflation    
0   –34.61  0.0000
1   –31.43  0.0003
2   –32.55  0.0001
3   –39.22  0.0000
4   –49.25  0.0000

Bayes factors are calculated in favor of the alternative model: ∗
=

( | )
( | )

T

T

m Y
BF

m Y
A

M

M
 for each measure of inflation. m(YT|M*) is 

the most preferred model based on the multiple-group changepoint approach for each measure of inflation.

marginal likelihood are equal to –208.54 (three breaks) for CPI inflation and –31.43 (one break) for GDP 
deflator inflation, respectively. However, these marginal likelihood values are significantly lower than those 
based on the multiple-group changepoint approach.
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I also consider another modified approach in which the unconditional mean and persistence parameters 
(i.e. conditional mean) undergo co-breaks at the same time, which are independent of the breaks in the resid-
ual variance. I estimate the model with one break in the conditional mean and three breaks in the residual 
variance in accordance with the empirical finding in the previous section. The log marginal likelihood for this 
modified model is calculated to be –204.81, which is lower than that for the most preferred model (–203.55) 
based on the multiple-group changepoint approach. The Bayes factor is then equal to 0.28 (alternatively 3.53 
in favor of the most preferred model, M* = (0, 1, 3)), which shows substantial evidence for one break in per-
sistence and three breaks in the residual variance when adopting Jeffreys’s (1961) interpretation.15 Note that 
the most preferred model for GDP deflator inflation has no break in the unconditional mean and persistence. 
Therefore it is not required to estimate the modified model additionally.

4.2  Unobserved components models with stochastic volatility

The empirical results reported in Section 3 show that there have been large changes in the variance, but 
two measures of inflation exhibit the different evolution of the residual variance in terms of the number 
and timing of the breaks. Following Stock and Watson (2007), I consider an unobserved components model 
with stochastic volatility (UC-SV) and further examine whether these empirical findings on the shifts in the 
residual variance are robust.16

Stock and Watson (2007) estimate an UC-SV model for GDP deflator inflation from 1953:Q1 to 2004:Q4. 
They find that there have been substantial movements over time in the standard deviation of the permanent 
component while there is little change in the standard deviation of the transitory innovation. I examine CPI 
inflation in addition to GDP deflator inflation using the longer sample period of 1953:Q1–2013:Q4, which is 
used in Section 3, in comparison to Stock and Watson (2007). The UC-SV model specification is exactly the 
same as in Stock and Watson (2007):
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where ξt = (ξn,t, ξε,t)′ is i.i.d. N(0, I2); vt = (v
η,t, vε,t)′ is i.i.d. N(0, γI2); ξt and vt are independently distributed; and γ 

determines the smoothness of the stochastic volatility process. The scalar parameter γ is set to 0.2 as in Stock 
and Watson (2007) and the posterior distributions of stochastic volatility are estimated by MCMC. Figures 4 
and 5 plot the smoothed estimates (posterior mean and 67% band) of 2

,tσ
ε

 and 2
,tη

σ  from the UC-SV models 
for GDP deflator inflation and CPI inflation, respectively. The empirical results for GDP deflator inflation 
are similar to Stock and Watson’s (2007) results. The standard deviation of the permanent disturbance was 
moderate from the mid 1950s through the early 1970s, it was large during the 1970s through the mid 1980s, 
and it declined sharply in the mid-1980s, whereas the volatility of the transitory disturbance appears to have 
remained stable. This low-high-low volatility pattern on the permanent innovations is consistent with the 
regime changes in the residual variance based on the multiple-group changepoint model in Section 3. Note 
also that the changepoint model analysis finds that GDP inflation has been highly persistent for the whole 
sample period and this high persistence for GDP deflator inflation implies that the evolution of inflation 
volatility would be mostly attributed to the permanent innovations. This conjecture is confirmed by the sub-
stantial changes in the standard deviations of the permanent innovations and the relatively stable volatility 
of the transitory innovations. In contrast to GDP deflator inflation, the volatility of the transitory innovations 
for CPI inflation shows substantial movements while the permanent innovations for CPI inflation exhibit a 

15 I thank an anonymous referee for suggesting this robustness analysis.
16 I thank an anonymous referee for suggesting this robustness check.
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similar pattern of the low-high-low volatility shifts for GDP deflator inflation. The high volatility of the transi-
tory innovations appears to contribute to the large fluctuations since the early 2000s because the volatility 
of the permanent innovations is moderate during this period. This empirical finding is consistent with the 
result based on the multi-group changepoint model in the sense that CPI inflation experienced a dramatic 
drop in persistence around the early 1980s and the permanent innovations would not play an important role 
in generating high levels of CPI inflation volatility since the early 2000s.

5  Summary and comparison with the literature
To summarize, two different measures of inflation undergo distinct structural changes in different para-
meters as well as at different dates. Both measures of inflation switched from a low volatility regime to a high 
volatility regime in the early 1970s but switched to another low volatility regime at different dates: the early 
1980s for GDP deflator inflation and the early 1990s for CPI inflation. Moreover, the residual variance for CPI 
inflation has increased again since the early 2000s but GDP deflator inflation has remained less volatile. The 
empirical results on the changes in volatility for two measures of inflation are robust to the alternative speci-
fication of stochastic volatility. CPI inflation experienced a dramatic drop in persistence around the early 
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Figure 4: CPI inflation: stochastic volatility in UC-SV model.
(A) Permanent innovations, (B) transitory innovations.
Posterior mean and 67% band are plotted over time.

0

0.5

1

1.5

2

2.5

3

0

0.5

1

1.5

2

2.5

3

1950 1960 1970 1980 1990 2000 20101950 1960 1970 1980 1990 2000 2010

A B

Figure 5: GDP deflator inflation: stochastic volatility in UC-SV model.
(A) Permanent innovations, (B) transitory innovations.
Posterior mean and 67% band are plotted over time.



224      Y. Eo: Structural changes in inflation dynamics

1980s but GDP deflator inflation is still persistent. The correlations between CPI inflation and GDP deflator 
inflation are calculated for the periods before and after 1981:Q3, which is the break date (posterior mode) for 
persistence of CPI inflation. The correlation has dropped substantially from 0.88 to 0.44 and this decrease 
also supports the different dynamics of the two inflation measures since the early 1980s. These findings 
about the complex patterns of structural changes reflect the possibility that the parameter shifts are caused 
by a variety of sources.

When reviewing recent findings in the literature,17 there appears to be controversy surrounding changes 
in inflation persistence. The mixed statistical evidence on inflation persistence in this paper seems to be 
along the lines of the disagreement in the literature. However, there seems to be an interesting pattern of 
results in reading recent studies in the literature regardless of persistence measures and econometric models. 
That is, whether there was a change in persistence around the early 1980s depends on the measure of infla-
tion used in the analysis.

For example, Pivetta and Reis (2007) use GDP deflator inflation and conclude that inflation persistence 
has been roughly constant and high over the past 40 years, which is the same as the empirical finding in this 
paper.18 Pivetta and Reis (2007) conduct extensive research and robustness checks to support their findings. 
They first consider a Bayesian time-varying parameter model which allows for time-varying intercept and 
persistence parameters. They then calculate median unbiased estimates using local-to-unity asymptotics for 
different measures of persistence. Based on the various empirical models and estimates, they conclude that 
there has been no evidence of a change in persistence since 1965. For CPI inflation, Kim, Nelson and Piger 
(2004) find a persistence fall in 1979:Q2 and Leybourne et al. (2003) detected a change in inflation dynamics 
from I(1) to I(0) in 1982:Q2.

While most studies focus on only a particular measure of inflation, some papers examine multiple 
measures of inflation.19 Stock (2002) finds no evidence of a structural break for GDP deflator inflation 
but detects a single structural break in the regression coefficients for CPI inflation around 1981 using 
the Quandt likelihood ratio test at a 10% level. This break date is consistent with the estimated (poste-
rior mode) break date based on the multiple-group changepoint approach. Benati (2008) and Fuhrer 
(2010) consider a broad range of inflation measures for various subsamples, which are determined by 
monetary regimes and the so-called “Great Moderation” break, respectively. Benati (2008) documents 
that there was a fall in persistence for CPI inflation during the post-Volcker stabilization period since 
1982:Q4, while other measures of inflation including GDP deflator inflation continued to be persistent. 
Finally, Fuhrer (2010) finds that since the early 1980s CPI inflation has very different dynamics from 
other inflation measures such as the GNP deflator, the GDP deflator, the PCE deflator, the core CPI, and 
the core PCE deflator. He confirms this difference by considering “grid-bootstrap” median-unbiased esti-
mates of persistence, results for structural break test in persistence, first-order autocorrelation, and LAR 
estimates.

17 Recently, Cogley, Primiceri and Sargent (2010) and Kang, Kim and Morley (2009) study the persistence of inflation gap defined 
by the difference between inflation and its stochastic trend which evolves as a driftless random walk and find that there are 
changes in inflation gap persistence. Note that this model specification implies that inflation is assumed to have a unit root. Thus, 
their focus is different from that in this paper and other studies in the literature discussed here. Also, see the discussion in Benati 
(2008).
18 One exception in the recent literature is Taylor’s (2000) study which calculates the median-unbiased estimate for the 
largest autoregressive root (LAR). He finds that the LAR estimate for the period of 1960:Q2–1979:Q4 (0.94) was much higher 
than for the period of 1982:Q1 to 1999:Q4 (0.74). However, However, Pivetta and Reis (2007) argue that Taylor’s (2000) finding 
could be driven by the anomaly of having the sample period of 1982–1983, in which there was the minor exception of a pos-
sible short-lived change, because their 14-year window LAR estimate in 1999:Q4 is very close to the estimate for the period of 
1960:Q2–1979:Q4.
19 Levin and Piger (2006) estimate autoregressive models with structural breaks for various measures of inflation: GDP deflator, 
CPI, CPI core, and PCE using the sample period of 1984:Q3–2005:Q2. Note that their sample period starts after the persistence 
break date (1981:Q3) for CPI inflation found in this paper. They cannot reject the null of structural break in the intercept for 
individual measures, but they are able to reject the null of no shift in the intercept for a multivariate model considering all the 
measures of inflation with the estimated break date in 1991:Q1 by using a seemingly unrelated regression model.
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6  Conclusion
In this paper, I employ a Bayesian approach to making inferences about complicated patterns of structural 
breaks in inflation dynamics. I modify Chib’s (1998) approach by allowing multiple parameters to undergo 
mutually independent structural breaks at different dates with the different number of breaks. Structural 
breaks are modeled as abrupt changes to identify potential regime shifts in economic structure such as a 
long-run inflation target, monetary policy, and price-setting behavior. I examine postwar quarterly US infla-
tion rates based on the CPI and the GDP deflator. Both inflation measures show multiple structural breaks in 
the residual variance but they show quite distinctive patterns in terms of timing and the number of breaks, 
which are confirmed by the empirical results based on the UC-SV model.

Another interesting finding is that CPI inflation experienced a dramatic drop in persistence around the 
early 1980s, but GDP deflator inflation is still persistent. However, I do not find evidence of a structural 
shift in the unconditional mean for both measures of inflation. The marginal probability calculations for the 
number of breaks in each individual parameter group also strongly support the model selection results based 
on the Bayes factors.

When reviewing the recent literature, considerable controversy exists over the structural break in infla-
tion persistence around the early 1980s but the existence of the structural break appears to be dependent on 
the measures of inflation, as highlighted by the empirical findings in this paper. The structural breaks at dif-
ferent dates reflect the possibility that the parameter shifts are caused by a variety of factors.
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A. Appendix

A.1 Sampling posteriors

I describe how to sample the latent regime indicators, � � �
1, 2, 3,( , , )T T TS S S  and the posterior of model parameters 

conditional on the regime transition probabilities, P = (P1, P2, P3) in the case of three parameter groups based 
on MCMC sampling algorithm in Section 2.

A.1.1 Simulation of latent regime indicator ,
�
g TS  for g=1, 2, 3

The discrete latent regime indicators {Sg,t} for t = 1, …, T and g = 1, 2, 3 are simulated in each step. The objective 
is to sample the indicators from the mass discrete function θ� �

, ,( | , , , )g T g T Tp S S Y− P  where p(·) denotes a dis-
crete mass function and � � � � �

, 1, 1, 1, ,( , , , , , ).g T T g T g T G TS S S S S− − += … …  The mass function can be expressed as a joint 
density in reverse time order as follows.
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P P � (A.1)

where 1
, 1 ,[   ] .t

g g t g TS S S+
+= … ′  Notice that the first regime and the last regime are always one and Mg+1, respec-

tively. These imply that for g = 1, 2, 3
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θ θ� �
, , ,1 ,( 1| , , , ) 1   and   ( 1| , , , ) 1.g T g g T T g g T Tp S M S Y p S S Y− −= + = = =P P

Thus, the regimes Sg,t for t = 2, …, t−1 are recursively simulated from t = T−1 to t = 2 in reverse time order.
As discussed in Section 2, the regime transition follows a first order Markov process. It is also independ-

ent of its own parameter as well as both other parameters and their latent regime indicators, as shown in Chib 
(1996). Thus, a term in (A.1) can be written that for g = 1, 2, 3

θ θ� �1
, , , , , 1 ,( | , , , , ) ( | , , , ) ( | , ).t

g t T g g T g t t g T g t g t gp S Y S S p S Y S p S S P+
− − +∝ ×P P

The first term in the proportion of the regime distribution is calculated recursively. Suppose 
θ�

, 1 1 ,( | , , , )g t t g Tp S Y S− − − P  is known. Then, Bayes’ rule can be applied for k = 1, …, Mg+1 regimes,
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and p(Sg,t = k|Sg,t−1 = l, Pg) is the (l, k)th entry of the transition matrix Pg.
In sum, the probabilities of the regimes over dates are sampled through MCMC simulations:

, ,Pr( | ) ( | , , ) ( , | ) ( , )g t T g t T TS k Y p S k Y Y dπ= = =∫ P P Pθ θ θ

and in practice with J simulations

θ( ) ( ) ( )
, ,

1

1Pr( | ) ( | , , ).
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j j j
g t T g t T

j
S k Y p S k Y

J =

= = =∑ P

A.1.2 Simulation of transition probability matrix Pg

The transition probability matrices (P1, P2, P3) are sampled only conditional on their regime indicators 
� � �

1, 2, 3,( , , ),T T TS S S  respectively. The reason is that the full conditional distribution θ � �
, ,| , , , , g g T g T g TP S S P Y− −  is 

independent of θ � ,( , , , )g T g TS P Y− −  where P−g = (P1, …, Pg−1, Pg+1, …, PG) for g = 1, 2, 3. Thus, it can be shown that

θ � � �
, , ,( | , , , , ) ( | ).g g T g T g T g g TP S S P Y P Sπ π− − =

If Beta priors for pi,i, i = 1, …, Mg, are employed as

, , , 1( , )i i i i i ip Beta u u +∼

where ui,i and ui,i+1 are the hyper-parameters, the posterior distribution can be derived as

�
, , , , , 1 , 1| ( , )i i g T i i i i i i i ip S Beta u n u n+ +∼ + +

where ni,j refers to the total number of transitions from regime i to regime j. Note that ni,i+1, for i = 1, …, Mg, 
is always equal to one since every regime never comes back to the previous regimes and moves to the next 
regime only once. For details, see Albert and Chib (1993).

A.1.3 Sampling of the unconditional mean μ

Consider an AR(2) model with structural breaks in the unconditional mean, persistence coefficients, and the 
residual variance independently as follows:
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1,t 2 , 1, 1 2 , 2 1, 2 3 ,

2
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Conditional on � � � �
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3

2 2 2
1 1( , , ),Mσ σ σ += …  the unconditional 

mean for the regime j, μj, for j = 1, …, (M1+1) can be sampled as follows.
(a) Prior

( , )
jj jjN D

µ
µ µ∼
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A.1.4 Sampling of persistence coefficients φ

Conditional on � � � �
1, 2, 3,( , , ), ,T T TS S S µ  and � 2 ,σ  persistence parameters for regime j, φj = (φ1,j, φ2,j)′, for j = 1, …, 

(M2+1) can be sampled as follows.
(a) Prior

( , )
jj jjN D

φ
φ φ∼

(b) Posterior

� � ��� 2
1, 2, 3,| , , , , ( , )

jj T T T jS S S N D
φ

φ µ σ φ∼

where

3 , 3 ,
2 , 2 ,

3 ,
2 ,

1,

1
1 2 1 2

2, 2 , 2, 2,
{ } { }

1
1 2

2, 2 ,
{ }

2,

/ / ,

/ ,

,

j t j t
t t

j j t
t

t

j t t S j t t S
S j S j

t t S
S j

t t S

D x x D x y

D D x x

y

−
− −
φ φ

= =

−
−

φ φ
=

   ′φ = + σ φ + σ   
   

 ′= + σ 
 

=π −µ

∑ ∑

∑

and

1, 1 1, 22, 1 2[( )( )] .
t tt t S t Sx π µ π µ
− −− −= − − ′

A.1.5 Sampling of the residual variance σ2

Conditional on � � � �
1, 2, 3,( , , ), ,T T TS S S µ  and � ,φ  residual variance for regime 2, ,jj σ  for j = 1, …, (M3+1) can be 

sampled as follows.



228      Y. Eo: Structural changes in inflation dynamics

(a) Prior

2 , 
2 2
j j

j IG
 ν δ
 σ
 

∼

(b) Posterior

� � ��� 3 ,

2

{ }2
1, 2, 3,| , , , , , 

2 2
t

j t
S jj j

j T T T

e
n

S S S IG
δ

ν
σ µ φ

=

 +
+ ∼   

∑

where 3,1
1( ).T

j tt
n S j

=
= =∑

A.2 Marginal likelihood calculation

Let m(YT|M) is the marginal likelihood or the marginal density of the data YT under model M. The marginal 
likelihood of model M can be easily calculated through the method of Chib (1995) for Gibbs sampling based 
on the Bayes rule identity:

	
ψ ψ

ψ

( | , ) ( | )
( | )

( | , )
T

T
T

f Y
m Y

Y
π

π
=

M M
M

M
� (A.2)

where ψ = (θ, P). The above identity holds for any point ψ in the parameter space since the left hand side is 
free of ψ. Taking the logarithm of the marginal likelihood for computational convenience, the estimate of the 
marginal density at any particular point ψ* is given by

	
ˆln ( | )

ln ( | , , ) ln ( , | ) ln ( , | , ).
T

T T

m Y
f Y Yπ π∗ ∗ ∗ ∗ ∗ ∗= + −P P Pθ θ θ

M

M M M � (A.3)

I explain all the terms in equation (A.3) in the following subsections. For simplicity, I drop the model indica-
tor M from now on.

A.2.1 Likelihood function

The logarithm of likelihood function is given by

ψ ψ1
1

ln ( | ) ln ( | , )
T

T t t
t

f Y f y Y∗ ∗
−

=

=∑

where

31 2

1, 1 2 , 1 3 , 1

11 1

1 1 1, 2, 3, 1, 2, 3, 1( | , ) ( | , , , , ) ( , , | , )
t t t

MM M

t t t t t t t t t t t
S S S

f y Y f y Y S S S p S S S Y
= = =

++ +
∗ ∗ ∗

− − −= ×∑ ∑ ∑ψ ψ ψ

is the one-step ahead prediction density and f(yt|Yt−1, S1,t, S2,t, S3,t, ψ*) is the conditional density of yt given the 
composite of regimes (S1,t, S2,t, S3,t) as well as the posterior mean ψ*. Define a composite of regimes for all the 
parameters by St = (S1,t, S2,t, S3,t). Then, p(S1,t, S2,t, S3,t|Yt−1, ψ*) is the joint discrete mass function of the composite 
St = (S1,t, S2,t, S3,t) and the transition probability matrix for the composite of regimes St is given by P1⊗P2⊗P3 
where ⊗ indicates the Kronecker product, P is a m-by-m square matrix, and the number of the composite of 
regimes St is given by m = (M1+1) × (M2+1) × (M3+1). For more details, see Kim and Nelson (1999).
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A.2.2 Prior density

All the parameters are a priori assumed to be independent of one another and the logarithm of prior density 
is given by

2
1 2 3ln ( | ) ln ( ) ln ( ) ln ( ) ln ( ) ln ( )  ( ).M P P ln Pπ π µ π φ π σ π π π∗ ∗ ∗ ∗ ∗ ∗ ∗= + + + + +� ��ψ

A.2.3 Posterior density

In order to estimate the posterior ordinate π(θ*, P*|YT), I consider the conditional decomposition of the poste-
rior density as in Chib (1998). Note that the latent variables � � �

1, 2, 3,( , , )T T TS S S  are integrated out in the calcula-
tion of the posterior density in each step and throughout this reduced Gibbs run, � �� 2

1, , , ,P∗ ∗ ∗ ∗µ φ σ  and 2P
∗  are 

set equal to their posterior mean.

θ � �� � � �
� �� �� �

1 1 2 1
2 2

1 2 3 1 2

( , | ) ( | ) ( | , ) ( | , , ) ( | , , , )
( | , , , , ) ( | , , , , , )

T T T T T

T T

Y Y P Y P Y P P Y
P P Y P P P Y

π π µ π µ π φ µ π µ φ

π σ µ φ π µ φ σ

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

= × × ×
×

P

where
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Y P P P S S S Y
P P P S S S Y d d dPdP dP dS dS dS

π µ π µ φ σ

π φ σ φ σ

∗ ∗=

×
∫
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∫
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1 1 2 3 1, 2, 3,
2 2
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∫
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2 1 2 1 3 1, 2, 3,
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∫
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∫

and
� � �� �� �� �

� � � � � �� ��

2 2
3 1 2 3 1 2 1, 2, 3,

2
1, 2, 3, 1 2 1, 2, 3,
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∫

The decomposition of the posterior density shows that the first ordinate �( | )TYπ µ∗  can be 
calculated based on draws from the full Gibbs run, and �� �1 1( | , ), ( | , , ),T TP Y P Yπ µ π φ µ∗ ∗ ∗ ∗ ∗  

� ��� �2
2 1 1 2( | , , , ), ( | , , , , ),T TP P Y P P Yπ µ φ π σ µ φ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗  and � �� 2

3 1 2( | , , , , , )TP P P Yπ µ φ σ∗ ∗ ∗ ∗ ∗ ∗  can be calculated from 
appropriate reduced Gibbs runs. The Monte Carlo estimate of each decomposition component based on 
draws from each Gibbs run is calculated as follows.
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where the superscript (j) refers to the jth draw of the full Gibbs run and the superscript (ji), i = 1, …, 5, refers 
to the jith draw from the appropriate reduced Gibbs run. Thus, in addition to the full Gibbs run for the usual 
estimation of parameters, it is required to have five additional Gibbs runs (5 × J iterations). For example, 

�� �2
1 2( | , , , , )TP P Yπ σ µ φ∗ ∗ ∗ ∗ ∗  is calculated by additional J iterations from the following reduced j4th Gibbs run.

Algorithm for �� �2
1 2( | , , , , )TP P Yπ σ µ φ∗ ∗ ∗ ∗ ∗

(i)	 Generate � 42(j )σ  from �� � 4 4 4 4( 1) ( 1) ( 1) ( 1)2
1 2 3 1, 2, 3,( | , , , , , , , , )j j j j

T T T TP P P S S S Y− − − −∗ ∗ ∗ ∗π σ µ φ
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3
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