## Clinical Pain Research

Christina Titze\*, Daniela Fett, Katharina Trompeter, Petra Platen, Hannah Gajsar and Monika I. Hasenbring

# Psychosocial subgroups in high-performance athletes with low back pain: eustress-endurance is most frequent, distress-endurance most problematic!

https://doi.org/10.1515/sjpain-2020-0053 Received April 10, 2020; accepted July 25, 2020; published online September 7, 2020

### **Abstract**

**Objectives:** In non-athletes, fear-avoidance and endurance related pain responses appear to influence the development and maintenance of low back pain (LBP). The avoidance-endurance model (AEM) postulates three dysfunctional pain response patterns that are associated with poorer pain outcomes. Whether comparable relationships are present in athletes is currently unclear. This cross-sectional case-control study explored frequencies and behavioral validity of the AEM-based patterns in athletes with and without LBP, as well as their outcome-based validity in athletes with LBP. **Methods:** Based on the Avoidance-Endurance Fast-Screen, 438 (57.1% female) young adult high-performance athletes with and 335 (45.4% female) without LBP were categorized as showing a "distress-endurance" (DER),

\*Corresponding author: Christina Titze, Department of Medical Psychology and Medical Sociology, Ruhr-University of Bochum, Universitätsstr. 150, 44801 Bochum, Germany, Phone: +49 234 32 25438, Fax: +49 234 32 14203, E-mail: christina.titze@rub.de

Daniela Fett, Department of Sports Medicine and Sports Nutrition, Ruhr-University of Bochum, Bochum, Germany; Federal Institute of Sports Science (BISp), Bonn, Germany, E-mail: daniela.fett@bisp.de

Katharina Trompeter and Petra Platen, Department of Sports

Medicine and Sports Nutrition, Ruhr-University of Bochum, Bochum, Germany, E-mail: Katharina.Trompeter@rub.de (K. Trompeter), petra.platen@rub.de (P. Platen)

Hannah Gajsar, Department of Medical Psychology and Medical Sociology, Faculty of Medicine, Ruhr-University of Bochum, Bochum, Germany, E-mail: hannah.gajsar@rub.de

Monika I. Hasenbring, Department of Medical Psychology and Medical Sociology, Faculty of Medicine, Ruhr-University of Bochum, Bochum, Germany; Faculty of Health Science, University of Southern Denmark, J.B. Winsløws Vej 19, 3, DK-5000, Odense, Denmark, E-mail: monika.hasenbring@rub.de

"eustress-endurance" (EER), "fear-avoidance" (FAR) or "adaptive" (AR) pattern.

**Results:** Of the athletes with LBP, 9.8% were categorized as FAR, 20.1% as DER, 47.0% as EER, and 23.1% as AR; of the athletes without LBP, 10.4% were categorized as FAR, 14.3% as DER, 47.2% as EER, and 28.1% as AR. DER and EER reported more pronounced endurance- and less pronounced avoidance-related pain responses than FAR, and vice versa. DER further reported the highest training frequency. In athletes with LBP, all dysfunctional groups reported higher LBP intensity, with FAR and DER displaying higher disability scores than AR.

**Conclusions:** The results indicate that also in athletes, patterns of endurance- and fear-avoidance-related pain responses appear dysfunctional with respect to LBP. While EER occurred most often, DER seems most problematic.

**Implications:** Endurance-related pain responses that might be necessary during painful exercise should therefore be inspected carefully when shown in response to clinical pain.

**Keywords:** athletes; disability; endurance; fear-avoidance; pain; pain responses.

## Introduction

With 12-month prevalence rates between 35 and 63%, athletes are similarly or possibly even more affected by low back pain (LBP) as non-athletes [1–5], leading to considerable losses of training or playing time [6]. In non-athletes, psychosocial variables such as pain catastrophizing, fear-avoidance beliefs and depressive mood [7–11], and endurance-related pain responses with pronounced task persistence despite pain [7, 12, 13] seem to influence the course of recovery. Corresponding research in athletes, however, is required to improve the understanding of clinical pain beyond sports-related injury [14].

The avoidance-endurance model (AEM) postulates three dysfunctional pain response patterns which facilitate the chronicity of musculoskeletal pain [15, 16]. Distressendurance responses (DER) are characterized by pronounced pain-related thought suppression, the attempt to simply not think on pain [15, 16]. As thought suppression is often ineffective, it may be accompanied by depressive mood [17-21]. Eustress-endurance responses (EER), in contrast, comprise cognitions of focused distraction from pain that succeed more often and are associated with positive mood [22, 23]. Both endurance patterns share the feature of task persistence despite severe pain, presumably resulting in an overuse of physical structures [24]. Fear-avoidance responses (FAR) include catastrophizing, fear of pain, and the avoidance of pain-exacerbating activities, the latter potentially leading to muscular disuse [15, 16]. The AEM further describes an adaptive (AR) pattern with a healthy balance between activity and rest [15, 16]. AEM-based subgroups can be detected by different psychosocial screenings, such as the Avoidance-Endurance Fast-Screen (AE-FS) [25, 26]. In non-athletes with LBP, increased pain ratings have been reported for those subgroups showing a dysfunctional pain response pattern [7, 12, 13, 27], with higher levels of accelerometer-assessed daily-life activity in DER and EER compared to FAR or AR [12, 28]. However, it is unclear whether these AEM-based subgroups also exist in athletes with LBP, and whether their outcome-based validity is given, as demonstrated by poorer pain and disability outcomes in the dysfunctional groups.

During training and competitions, or due to injuries [29-31], athletes are regularly exposed to pain [32]. The development of endurance-related pain responses might therefore be particularly important to maintain or increase their level of performance [33, 34]. Indeed, "playing through" pain [35, 36] or "playing hurt" [37, 38] appear to be common characteristics among athletes, and some studies demonstrated more endurance-related strategies in athletes compared to non-athletes [39, 40], although others reported no such differences [41-43]. One disadvantage of these studies is, however, that they do not distinguish between more complex patterns of pain responses. Knowledge about the frequency of dysfunctional patterns is necessary to determine the number of athletes with clinical pain who may benefit from psychosocial treatment modules. Furthermore, aspects of behavioral validity are of interest, i.e. to investigate whether the AEM-based subgroups differ in their regular training frequency or other measures of avoidance and endurance to prevent a reduction in performance due to clinical pain.

The purposes of this cross-sectional study were therefore to explore (a) frequencies and (b) aspects of behavioral validity of AEM-based patterns in athletes with LBP compared to LBP-free controls. Based on previous research, the endurance patterns were expected to occur most frequently. Concerning behavioral validity, athletes with a DER or EER pattern were expected to show lower avoidance and higher training frequency, irrespective of the presence of LBP. Furthermore, (c) regarding outcomebased validity in the sample of athletes with LBP, we hypothesized that the dysfunctional subgroups displayed poorer outcomes compared to AR.

# Materials and methods

## Study sample and procedure

The current cross-sectional case-control study was part of a larger study investigating the effects of demographic, sports-related and psychosocial variables on back pain in German high-performance athletes. Data were obtained using a computer-based questionnaire format. Information on the objectives of the study and a hyperlink to the online survey were send via email to the approximately 4.000 high-performance athletes included in the database by the German Olympic Sports Confederation. High-performance athletes were defined as athletes at the highest German competition level who were members of their federal sports association or participants in the first or second national divisions of their discipline. According to their age group and performance level, they belonged to A- (federal level, national teams), B- (potential to join the national team), C- or D-squads (excellent new talents; junior-age athletes).

Athletes were included in the current investigation if they had experienced LBP during the last three months, and if they were between 18 and 35 years of age. The lower limit of 18 years was selected as the AEM has been tested primarily in adult populations [7, 12, 13, 27], and due to some evidence that certain pain coping strategies change as a function of age [44] or that there are age-related differences in the impact of pain coping on pain outcomes [45, 46]. The upper limit enhances comparability with previous studies in athletes [47, 48].

All participants gave their informed and written consent. The study was approved by the German Olympic Sports Confederation as well as the local ethics committee and conducted in accordance with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

## Patient and public involvement statement

There was no direct patient and public involvement in this study.

## Measures

Demographics and pain history. Sex, age, stage of sporting season, total LBP duration and pain comorbidities during the last three months were obtained with a general demographic and pain history checklist. LBP duration was categorized as "1-7 days", "8-30 days", "more than 30 days, but not every day", and "everyday".

Depression. Depression was measured using the German version [49] of the Beck Depression Inventory for Primary Care (BDI-PC), a self-report questionnaire that comprises seven items assessing cognitive and affective responses associated with depression [50]. The sum score ranges from 0 to 21 and displays an index of depressive symptom severity, with higher scores representing higher levels of depressive symptoms. Its psychometric properties have been thoroughly investigated [51].

Psychosocial pain responses. Psychosocial pain responses were assessed using the Avoidance-Endurance Questionnaire (AEQ) [52], a 49-item self-report questionnaire measuring endurance- and avoidance-related cognitive, affective and behavioral responses to acute pain. The AEQ comprises four endurance-related (positive mood despite pain, thought suppression, humor/distraction, pain persistence) and five avoidance-related subscales (anxiety/depression, help-/hopelessness, catastrophizing thoughts, avoidance of social activities, and avoidance of physical activities). Patients are instructed to rate on a 7-point scale from "0" (never) to "6" (always) how often they have experienced specific endurance- or avoidance-related thoughts and actions during the last two weeks. All items addressing behavioral responses are to be answered for the experience of "mild pain" and "severe pain", respectively, the latter used in this study. Mean scores of the respective items are calculated separately for each subscale. High validity and reliability (Cronbach's  $\alpha$ =0.76-0.91) have been demonstrated for all subscales [52].

Pain and disability measures. LBP intensity and pain-related disability during the preceding three months were assessed by the Chronic Pain Grade [53], a 7-item self-administered questionnaire measuring the severity of chronic pain. The two resulting scores - the Characteristic Pain Intensity and the Disability Score - range from 0 to 100, with higher scores reflecting higher levels of LBP intensity or pain-related disability, respectively. For the Characteristic Pain Intensity - a score integrating present pain intensity as well as worst and average pain intensity during the last three months - good validity and moderate internal consistency (Cronbach's  $\alpha$ =0.68) have been demonstrated. The Disability Score depicts the overall functional disability with respect to daily, social and work activities and has been shown to be a valid and reliable measure (Cronbach's  $\alpha$ =0.88) [54]. Training- and competition-related disability were measured using corresponding questions ("In the last three months, how much has your back pain interfered with your high-performance training?", "In the last three months, how much has your back pain interfered with your participation in high-performance competitions?") with a range from 0 ("no interference") – 100 ("unable to carry on any activities").

Training frequency. Training frequency was assessed by asking how many hours per week, on average, a participant was engaged in sports activities including competitions, regeneration, gymnastics etc.

## Classification of AEM-based patterns

Patterns were classified using the AE-FS [25]. This short screening tool is based on the 7-item Pain Persistence Scale (PPS; e.g., "When I am in pain, I carry on doing what I am doing no matter what.") from the AEQ [52] and the item "loss of pleasure" from the German version [49] of the BDI-PC [50]. PPS scores greater than or equal to the mean scale score of 3 indicate that an athlete's pain responses occurred "sometimes", "often", "most of the time" or "always". Scores lower than 3 indicate that an athlete's pain responses occurred "seldom", "almost never" or "never". Regarding the item "loss of pleasure", a cut-off score of ≥1 has been shown to indicate mild or more severe depression with a sensitivity of 0.77 [26]. Athletes were labeled as showing a FAR pattern if their loss of pleasure score was ≥1 and their PPS score was <3, a DER pattern if their loss of pleasure score was ≥1 and their PPS score was ≥3; an EER pattern if their loss of pleasure score was =0 and their PPS score was ≥3, and an AR pattern if their loss of pleasure score was =0 and their PPS score was <3. For the AE-FS, adequate validity has been reported regarding the prediction of pain intensity and disability after 6 months in patients with subacute LBP [25].

### **Statistics**

Data preparation and pre-analyses. If data on continuous variables were missing in less than 5% of all cases, they were replaced by the respective mean score of the total sample; if data were missing in more than 5% of all cases, athletes with missing values were excluded from the respective analysis. Data were visually examined using box plots; potential outlier values were checked for plausibility (e.g., errors in data entry). Outcome variables were analysed for (multivariate) normality using the Shapiro-Wilk test and probability-probability plots; yet, in case of non-normally distributed outcome variables, the central limit theorem justifies the normality assumption in analysis of variance (ANOVA) in samples of n>30.

Sample characteristics. Means and standard deviations, or absolute and relative frequencies of sociodemographic, sports-related and pain history variables were calculated separately for athletes with LBP and the LBP-free control group, as appropriate. Potential group differences in sex, age, stage of sporting season and pain comorbidities during the last three months were analysed with Student's t-test for normally distributed continuous variables, Mann-Whitney U test for non-normally distributed continuous variables, and Pearson chisquare test for categorical variables.

Frequencies of AEM-based patterns and pattern characteristics. Absolute and relative frequencies of AEM-based patterns were generated separately for athletes with LBP and controls. Possible group differences in the proportions of the patterns were compared by means of Pearson chi-square test. To further characterize the AEM-based patterns in athletes with LBP and controls, means and standard deviations, or absolute and relative frequencies of sex proportions, age and (in case of athletes with LBP) pain duration categories were calculated, as appropriate. Possible pattern differences in sex proportions were analysed using Pearson chi-square test. With respect to age, patterns were compared by one-way ANOVA, followed by Student's t-tests.

Behavioral validity of AEM-based patterns. To examine behavioral validity of the patterns in athletes with LBP and controls, patterns were compared with respect to the other endurance- and avoidancerelated psychosocial variables from the AEQ [52] that were not part of the classification, depression, and self-reported training frequency. Following a previous study [7], two separate multivariate analyses of variance (MANOVA) were performed with pattern (FAR/DER/EER/AR) and LBP presence during the last 3 months (yes/no) as fixed factors, and the endurance- or the avoidance-related variables as dependent variables, respectively. Regarding depression and training frequency, two separate two-factorial ANOVAs were calculated, with pattern (FAR/DER/EER/AR) und LBP presence during the last three months (yes/no) as between-subjects factors.

Outcome-based validity of AEM-based patterns. Following previous studies [7, 27], a univariate approach was chosen to analyse possible differences between patterns in pain intensity, pain-related disability, training-related disability and competition-related disability [55]. A two-factorial ANOVA was performed for each outcome variable, with *pattern* (FAR/DER/EER/AR) und *LBP presence* during the last three months (yes/no) as between-subjects factors.

Homoscedasticity was tested using Levene's test; homogeneity of covariance matrices was tested using Box's M test. Pillai's trace was used as the test statistic as it has been shown more robust against violations of normality and homogeneity of covariance matrices [56]. In case of significant main effects or interactions, MANOVA was followed by separate one-way ANOVAs that were followed by Bonferroni-Holm corrected post-hoc t-tests to control for multiple comparisons. The p-values < 0.05 were considered statistically significant. Effect sizes of group effects were calculated as partial eta squared  $(\eta_p^2)$ , with  $\eta_p^2 \le 0.06$  representing a small,  $\eta_p^2 \le 0.14$  representing a medium, and  $\eta_p^2 \ge$  representing a large effect [57]; effect sizes for pairwise comparisons were calculated as Cohen's d, with d=0.2 reflecting a small, d=0.5 a medium and d=0.8 a large effect [58]. All statistical analyses were conducted using the Statistical Package for Social Sciences (SPSS, version 25.0) for Windows.

# **Results**

## Sample characteristics

Responses were received from 1.065 athletes, participating in the first or second national divisions and fulfilling an A, B, C, or D grade. 277 athletes were excluded due to age (260 due to age < 18; 15 due to age>35; two due to missing information on age), nine athletes were excluded due to missing information on LBP presence during the last three months, and seven athletes were excluded due to missing BDI-PC or PPS scores necessary for the classification of the AEM-based patterns, leading to a sample of n=773. Various sports disciplines were represented among the remaining sample, with highest percentages found for track and field sports (10.1%), rowing (9.6%), hockey (6.0%), canoeing (4.1%), judo (3.6%), dancing (3.4%), and ice hockey (3.1%).

Three hundred thirty five (43.3%) athletes reported no occurrence of LBP during the last three months, whereas LBP had been present in 438 (56.6%) athletes. Of the latter, 259 (33.5%) had suffered from LBP for 1–7 days, 130 (16.8%) for 8–30 days, and 49 (6.3%) for more than 30 days during the last three months. Athletes with LBP did not significantly differ from the control group in age (F(1,771)=0.64, p=0.423,  $\eta_p^2$ =0.001), but in the proportions of sex ( $\chi^2$ (1)=10.46, p=0.001), with a significantly higher female-to-male ratio in athletes with LBP than in the control group. Descriptive data regarding sociodemographic, sports-related and pain history variables for athletes with LBP and controls are summarized in Table 1.

# AEM-based patterns in athletes with LBP and controls

Frequencies. Of the athletes with LBP, 43 (9.8%) were categorized as FAR, 88 (20.1%) as DER, 206 (47.0%) as EER,

**Table 1:** Means (± standard deviations) or absolute frequencies (%) for sociodemographic and sports-related variables, separately for athletes with low back pain during the last three months and controls.

| Variable                | Athletes with<br>LBP (n=438) | Control<br>group (n=335) | Group<br>difference |
|-------------------------|------------------------------|--------------------------|---------------------|
| Female                  | 249 (57.1%)                  | 152 (45.4%)              | p=0.001             |
| Age                     | 22.08 (3.99)                 | 22.31 (3.99)             | n.s.                |
| Stage of sporting seaso | n <sup>a</sup>               |                          |                     |
| General preparation     | 204 (46.6%)                  | 157 (46.9%)              | n.s.                |
| Specific preparation    | 66 (15.1%)                   | 53 (15.8%)               | n.s.                |
| Competition             | 145 (33.1%)                  | 90 (26.9%)               | n.s.                |
| Transition              | 50 (11.4%)                   | 50 (14.9%)               | n.s.                |
| Others                  | 17 (3.9%)                    | 15 (4.5%)                | n.s.                |
| Pain comorbidities duri | ng the last three            | months (yes)             |                     |
| Neck                    | 209 (49.3%)                  | 100 (31.1%)              | p < 0.001           |
| Shoulders               | 165 (39.2%)                  | 98 (30.0%)               | p=0.009             |
| Elbows                  | 55 (13.1%)                   | 18 (5.6%)                | p=0.001             |
| Wrists/hands            | 84 (20.1%)                   | 60 (18.5%)               | p=0.579             |
| Upper back              | 174 (41.5%)                  | 60 (18.3%)               | p < 0.001           |
| Hips/thighs             | 122 (29.2%)                  | 40 (12.4%)               | p < 0.001           |
| Knees                   | 151 (35.4%)                  | 97 (29.6%)               | p=0.089             |
| Ankles/feet             | 115 (27.3%)                  | 64 (19.9%)               | p=0.019             |

LBP, Low back pain; p, Level of statistical significance; n.s., Not significant (p>0.05). *Note*. Athletes with missing values were excluded from the respective analysis.

and 101 (23.1%) as AR. Of the control group, 35 (10.4%) were categorized as FAR, 48 (14.3%) as DER, 158 (47.2%) as EER, and 94 (28.1%) as AR. Athletes with LBP and controls did not significantly differ with respect to the proportions of the patterns ( $\chi^2$ (3)=5.54, p=0.136).

The patterns further did not significantly differ with respect to age (F(3,769)=0.30, p=0.827,  $\eta_p^2$ =0.001), but regarding the proportions of sex ( $\chi^2(3)$ =11.99, p=0.007), with significantly more women showing an EER pattern, and significantly more men showing an AR pattern (p's=0.005). Moreover, in athletes with LBP, there were no pattern differences regarding LBP duration ( $\chi^2(3)$ =12.13, p=0.059).

*Behavioral validity.* A detailed overview about descriptive statistics as well as the results of the (post-hoc) ANOVAs and significant pairwise comparisons is provided in Table 2.

Endurance-related variables. The MANOVA indicated significant multivariate effects of pattern (V=0.263, F(9,2295)=24.54, p < 0.001,  $\eta_{\rm p}^2$ =0.088) and LBP presence (V=0.020, F(3,763)=5.26, p=0.001,  $\eta_{\rm p}^2$ =0.020), but no significant pattern\*LBP presence interaction (V=0.008, F(9,2295)=0.670, p=0.737,  $\eta_{\rm p}^2$ =0.003). Subsequent ANOVAs showed that the AEM-based patterns differed significantly in all endurance-related variables. Post-hoc

<sup>&</sup>lt;sup>a</sup>Multiple answers were possible.

 
 Table 2: Behavioral validity of pain response patterns based on the avoidance-endurance model, as analysed by means (± standard
 deviations), one-way (post-hoc) analyses of variance (ANOVA) and Bonferroni-Holm corrected post-hoc t-tests.

| Variable                           | Total<br>sample | DER              | EER    | FAR    | AR     | Main effect<br>pattern <sup>a</sup> | Main effect<br>LBP<br>presence <sup>a</sup> | Significant<br>pairwise<br>comparisons <sup>b</sup> |
|------------------------------------|-----------------|------------------|--------|--------|--------|-------------------------------------|---------------------------------------------|-----------------------------------------------------|
| Classification vari                | iables          |                  |        |        |        |                                     | ,                                           | •                                                   |
| Loss of pleasure (                 |                 |                  |        |        |        |                                     |                                             |                                                     |
| Athletes with                      | 0.35            | 1.16             | 0.00   | 1.16   | 0.00   | _                                   | _                                           | _                                                   |
| LBP                                | (0.57)          | (0.37)           | (0.00) | (0.37) | (0.00) |                                     |                                             |                                                     |
| Controls                           | 0.28            | 1.17             | 0.00   | 1.09   | 0.00   |                                     |                                             |                                                     |
|                                    | (0.52)          | (0.38)           | (0.00) | (0.28) | (0.00) |                                     |                                             |                                                     |
| Pain persistence (                 |                 |                  |        |        |        |                                     |                                             |                                                     |
| Athletes with                      | 3.39            | 3.93             | 3.96   | 2.19   | 2.29   | _                                   | _                                           | _                                                   |
| LBP                                | (1.01)          | (0.66)           | (0.65) | (0.54) | (0.57) |                                     |                                             |                                                     |
| Controls                           | 3.12            | 3.76             | 3.77   | 2.17   | 2.07   |                                     |                                             |                                                     |
|                                    | (1.04)          | (0.60)           | (0.66) | (0.55) | (0.71) |                                     |                                             |                                                     |
| Endurance-related                  | d variables (AE | (Q)              |        |        |        |                                     |                                             |                                                     |
| Thought suppress                   | ion             |                  |        |        |        |                                     |                                             |                                                     |
| Athletes with                      | 3.28            | 3.72             | 3.64   | 2.39   | 2.52   | F(3,765)=43.80                      | F(1,765)=4.91                               | DER/EER>FAR/AR                                      |
| LBP                                | (1.41)          | (1.28)           | (1.23) | (1.22) | (1.47) | p < 0.001                           | p=0.027                                     | $(d_{Cohen} = 0.83 -$                               |
| Controls                           | 3.39            | 3.98             | 3.77   | 2.87   | 2.65   | $\eta_p^2 = 0.147$                  | $\eta_{p}^{2}=0.006$                        | 0.95)                                               |
|                                    | (1.46)          | (1.14)           | (1.30) | (1.47) | (1.51) |                                     |                                             |                                                     |
| Humor/Distraction                  | n               |                  |        |        |        |                                     |                                             |                                                     |
| Athletes with                      | 2.78            | 3.02             | 3.02   | 2.13   | 2.34   | F(3,765)=46.26                      | F(1,765)=5.86                               | DER/EER>FAR/AR                                      |
| LBP                                | (0.93)          | (0.94)           | (0.85) | (0.89) | (0.82) | p < 0.001                           | p=0.016                                     | $(d_{Cohen}=0.70 -$                                 |
| Controls                           | 2.62            | 2.73             | 3.01   | 1.85   | 2.19   | $\eta_p^2 = 0.154$                  | $\eta_{p}^{2}=0.008$                        | 1.12)                                               |
|                                    | (1.05)          | (0.96)           | (1.00) | (0.70) | (0.98) |                                     |                                             |                                                     |
| Positive mood des                  | spite pain      |                  |        |        |        |                                     |                                             |                                                     |
| Athletes with                      | 3.71            | 3.69             | 3.81   | 3.13   | 3.75   | F(3,765)=6.77                       | n.s.                                        | DER/EER/AR>FAR                                      |
| LBP                                | (1.11)          | (1.06)           | (1.06) | (1.15) | (1.16) | p < 0.001                           |                                             | $(d_{Cohen}=0.42 -$                                 |
| Controls                           | 3.81            | 3.78             | 3.96   | 3.38   | 3.74   | $\eta_p^2 = 0.026$                  |                                             | 0.59)                                               |
|                                    | (1.17)          | (1.03)           | (1.09) | (1.10) | (1.35) |                                     |                                             |                                                     |
| Avoidance-related                  |                 | (Q) <sup>c</sup> |        |        |        |                                     |                                             |                                                     |
| Anxiety/Depression                 |                 |                  |        |        |        | -4                                  |                                             |                                                     |
| Athletes with                      | 2.11            | 2.55             | 1.95   | 2.70   | 1.84   | F(3,722)=14.28                      | n.s.                                        | DER/FAR>EER/AR                                      |
| LBP                                | (1.13)          | (1.14)           | (1.07) | (1.26) | (0.99) | p < 0.001                           |                                             | $(d_{Cohen} = 0.51 -$                               |
| Controls                           | 2.03            | 2.55             | 1.91   | 2.35   | 1.87   | $\eta_p^2 = 0.056$                  |                                             | 0.64)                                               |
|                                    | (1.24)          | (1.01)           | (1.31) | (1.12) | (1.19) |                                     |                                             |                                                     |
| Help-/Hopelessne                   |                 |                  |        |        |        | 5(0.700) 10.00                      | 5(4 - 22) 42 25                             | DED/54D 55D/4D                                      |
| Athletes with                      | 1.64            | 2.08             | 1.49   | 2.18   | 1.34   | F(3,722)=10.02                      | F(1,722)=10.85                              | DER/FAR>EER/AR                                      |
| LBP                                | (1.07)          | (1.13)           | (0.95) | (1.30) | (0.95) | p < 0.001                           | p=0.001                                     | $(d_{Cohen} = 0.31 - 0.31)$                         |
| Controls                           | 1.42            | 1.72             | 1.37   | 1.46   | 1.33   | $\eta_p^2 = 0.040$                  | $\eta_p^2 = 0.015$                          | 0.62)                                               |
| C-44                               | (1.02)          | (0.97)           | (1.04) | (1.13) | (0.98) |                                     |                                             |                                                     |
| Catastrophizing th                 | =               | 0.07             | 0.74   | 0.00   | 0.20   | F(2, 722), 44,00                    |                                             | DED/FAD, FED/AD                                     |
| Athletes with                      | 0.56            | 0.94             | 0.41   | 0.90   | 0.38   | F(3,722)=11.08                      | n.s.                                        | DER/FAR>EER/AR                                      |
| LBP                                | (0.96)          | (1.33)           | (0.72) | (1.24) | (0.73) | p < 0.001                           |                                             | ( <i>d</i> <sub>Cohen</sub> =0.39 -                 |
| Controls                           | 0.54            | 0.79             | 0.43   | 0.86   | 0.50   | $\eta_p^2 = 0.044$                  |                                             | 0.55)                                               |
| Avoidance of socia                 | (0.84)          | (0.99)           | (0.74) | (0.87) | (0.87) |                                     |                                             |                                                     |
| Athletes with                      |                 | 2 21             | 1 40   | 2 22   | 1 02   | F(3,722)=20.66                      | E(1 722)_6 10                               | EAD, DED, AD, EED                                   |
|                                    | 1.77            | 2.21             | 1.40   | 2.33   | 1.92   |                                     | F(1,722)=6.10                               | FAR>DER>AR>EER                                      |
| LBP                                | (1.28)          | (1.33)           | (1.04) | (1.53) | (1.35) | p < 0.001                           | p=0.014                                     | $(d_{Cohen}=0.20 - 0.01)$                           |
| Controls                           | 1.98            | 2.23             | 1.71   | 3.06   | 1.95   | $\eta_p^2 = 0.079$                  | $\eta_{p}^{2}=0.008$                        | 0.91)                                               |
| Avoidance of phys                  | (1.31)          | (1.25)           | (1.11) | (1.53) | (1.37) |                                     |                                             |                                                     |
| Avoidance of phys<br>Athletes with |                 |                  | 2 01   | 3 42   | 3 20   | F(3 722)-27 21                      | F(1 722)-10 /-F                             | FAR>AR>DER/EER                                      |
| LBP                                | 3.02            | 2.80             | 2.81   | 3.63   | 3.39   | F(3,722)=27.31                      | F(1,722)=19.45                              | •                                                   |
|                                    | (1.12)          | (1.07)           | (0.99) | (1.06) | (1.24) | p < 0.001<br>$\eta_p^2 = 0.102$     | p < 0.001<br>$\eta_p^2 = 0.026$             | $(d_{Cohen}=0.30 - 0.00)$                           |
| Controls                           | 3.40            | 3.17             | 3.06   | 4.37   | 3.76   | Ilb =0.102                          | 11p =0.026                                  | 0.99)                                               |
|                                    | (1.20)          | (1.14)           | (1.08) | (0.97) | (1.21) |                                     |                                             |                                                     |

Table 2: (continued)

| Variable           | Total<br>sample | DER     | EER    | FAR    | AR     | Main effect<br>pattern <sup>a</sup> | Main effect<br>LBP<br>presence <sup>a</sup> | Significant<br>pairwise<br>comparisons <sup>b</sup> |
|--------------------|-----------------|---------|--------|--------|--------|-------------------------------------|---------------------------------------------|-----------------------------------------------------|
| Depression (BDI-P  | C)              |         |        |        |        |                                     |                                             |                                                     |
| Athletes with      | 2.10            | 4.55    | 1.23   | 4.32   | 0.86   | F(3,765)=133.26                     | n.s.                                        | DER/FAR>EER/AR                                      |
| LBP                | (2.53)          | (2.75)  | (1.72) | (3.18) | (1.36) | p < 0.001                           |                                             | $(d_{Cohen} = 1.51 -$                               |
| Controls           | 1.70            | 4.62    | 0.93   | 3.74   | 0.76   | $\eta_p^2 = 0.343$                  |                                             | 1.68)                                               |
|                    | (2.35)          | (3.38)  | (1.41) | (2.12) | (1.47) | ·                                   |                                             |                                                     |
| Training frequency | y (h/week)      |         |        |        |        |                                     |                                             |                                                     |
| Athletes with      | 18.96           | 22.09   | 18.58  | 17.67  | 17.55  | F(3,765)=5.01                       | n.s.                                        | DER>EER/AR                                          |
| LBP                | (7.87)          | (10.67) | (6.53) | (7.43) | (7.04) | p=0.002                             |                                             | $(d_{Cohen} = 0.33 -$                               |
| Controls           | 18.33           | 19.68   | 18.39  | 19.24  | 17.20  | $\eta_p^2 = 0.019$                  |                                             | 0.44)                                               |
|                    | (8.22)          | (9.99)  | (8.16) | (7.55) | (7.49) | •                                   |                                             |                                                     |

BDI-PC, Beck Depression Inventory for Primary Care; AEQ, Avoidance-Endurance Questionnaire; DER, Distress-endurance pattern; EER, Eustressendurance pattern; FAR, Fear-avoidance pattern. AR: Adaptive pattern; F, F statistic; p, Level of statistical significance; n.s., Not significant (p > 0.05);  $\eta_p^2$ , Effect sizes of group effects were calculated as partial eta squared, with  $\eta_p^2 \le 0.06$  representing a small,  $\eta_p^2 \le 0.14$  representing a medium, and  $\eta_0^2 \ge$  representing a large effect [57].  $d_{Cohen}$ , Effect sizes for pairwise comparisons were calculated as Cohen's d, with d=0.2 reflecting a small, d=0.5 a medium and d=0.8 a large effect [58]. Note. and the main effects are presented, as the interactions between pattern and LBP presence were not significant in the M(ANOVA) models, respectively. bSignificant pairwise comparisons after Bonferroni-Holm correction accounting for six comparisons, with the level of significance set at p < 0.05. For Anxiety/Depression, values were missing for 28 athletes with LBP and 15 athletes of controls, these athletes were excluded from the MANOVA and subsequent one-way ANOVAs. Therefore, means and standard deviations for the avoidance-related variables are presented only for n=410 athletes with LBP and n=320 controls.

tests demonstrated significantly more positive mood despite pain in DER, EER and AR compared to FAR, as well as more pronounced thought suppression and humor/ distraction in DER and EER than in FAR and AR. Furthermore, the ANOVAs demonstrated significantly less thought suppression and more humor/distraction in athletes with LBP than in controls. No differences were found for positive mood despite pain.

Avoidance-related variables. For anxiety/depression, values were missing for 28 athletes with LBP and 15 controls, representing 5.6% of the sample; therefore, these athletes were excluded from the MANOVA and subsequent ANOVAs. The MANOVA indicated significant multivariate effects of pattern (V=0.214, F(15,2160)=11.04, p < 0.001,  $\eta_p^2=0.071$ ) and LBP presence (V=0.046, F(5,718)=6.87, p < 0.001,  $\eta_p^2=0.046$ ), but no significant pattern\*LBP presence interaction  $(V=0.027, F(15,2160)=1.31, p=0.186, \eta_p^2=0.009)$ . Subsequent univariate ANOVAs showed that the AEM-based patterns differed significantly in all avoidance-related variables. Posthoc tests indicated significantly higher scores in anxiety/ depression, help-/hopelessness, and catastrophizing in FAR and DER than in EER and AR. FAR further displayed significantly higher scores on both avoidance of physical and social activities than the other patterns. Furthermore, the ANOVAs revealed that athletes with LBP and controls differed significantly with respect to help-/hopelessness, avoidance of social activities, and avoidance of physical activities, with more pronounced help-/hopelessness and less pronounced avoidance in athletes with LBP than in controls. No differences were observed regarding anxiety/ depression and catastrophizing.

Depression. A significant main effect of pattern emerged. Post-hoc tests showed significantly higher depression scores in FAR and DER compared to EER and AR. Neither the main effect of LBP presence nor the pattern\*LBP presence interaction reached significance.

Training frequency. A significant main effect of pattern emerged. Post-hoc tests showed significantly higher training frequency in DER compared to EER and AR. Neither the main effect of LBP presence nor the pattern\*LBP presence interaction were significant.

# Outcome-based validity of AEM-based patterns in athletes with LBP

The results of the ANOVAs and significant pattern differences in pain outcomes in athletes with LBP are presented in Table 3.

Pain intensity. The ANOVA revealed a significant main effect of pattern. Post-hoc tests indicated significantly higher pain intensity in FAR, DER and EER compared to AR, and significantly higher pain intensity in DER compared to EER.

Pain-related disability. The ANOVA indicated a significant main effect of pattern. Post-hoc tests indicated

| <b>Table 3:</b> Outcome-based validity of pain response patterns based on the avoidance-endurance model in athletes suffering from low back |
|---------------------------------------------------------------------------------------------------------------------------------------------|
| pain, as analysed by means (± standard deviations), univariate analyses of variance (ANOVA) and Bonferroni-Holm corrected post-hoc t-tests. |

| Pain outcome variable          | Total<br>sample | DER     | EER     | FAR     | AR      | Main effect<br>pattern | Significant pairwise comparisons <sup>a</sup> | Effect size<br>d <sub>Cohen</sub> |
|--------------------------------|-----------------|---------|---------|---------|---------|------------------------|-----------------------------------------------|-----------------------------------|
| Pain intensity (0-100)         | 35.51           | 42.46   | 35.42   | 38.68   | 28.28   | F(3,434)=10.99         | DER/EER/FAR>AR                                | 0.85/0.43/0.61                    |
|                                | (17.97)         | (18.40) | (17.24) | (20.54) | (15.17) | p < 0.001              |                                               |                                   |
|                                |                 |         |         |         |         | $\eta_p^2 = 0.071$     | DER>EER                                       | 0.40                              |
| Pain-related disability (0-    | 12.05           | 18.58   | 9.93    | 16.95   | 8.61    | F(3,434)=11.81         | DER>EER/AR                                    | 0.61/0.66                         |
| 100)                           | (14.48)         | (17.93) | (12.16) | (17.02) | (11.92) | p < 0.001              |                                               |                                   |
|                                |                 |         |         |         |         | $\eta_{p}^{2}=0.075$   | FAR>EER/AR                                    | 0.54/0.61                         |
| Training-related disability    | 2.57            | 3.08    | 2.38    | 3.60    | 2.10    | F(3,434)=5.76          | DER/FAR>AR                                    | 0.41/0.66                         |
| (0-10)                         | (2.43)          | (2.77)  | (2.28)  | (2.76)  | (2.05)  | p=0.001                |                                               |                                   |
|                                |                 |         |         |         |         | $\eta_p^2 = 0.038$     | FAR>EER                                       | 0.52                              |
| Competition-related disability | 1.71            | 2.26    | 1.46    | 2.91    | 1.24    | F(3,434)=6.81          | DER>EER/AR                                    | 0.33/0.41                         |
| (0-10)                         | (2.51)          | (2.85)  | (2.26)  | (3.15)  | (2.15)  | p < 0.001              |                                               |                                   |
|                                |                 |         |         |         |         | $\eta_p^2 = 0.045$     | FAR>EER/AR                                    | 0.59/0.67                         |

DER, Distress-endurance pattern; EER, Eustress-endurance pattern; FAR, Fear-avoidance pattern; AR, Adaptive pattern; F, F statistic; p: Level of statistical significance;  $\eta_p^2$ , Effect sizes of group effects were calculated as partial eta squared, with  $\eta_p^2 \le 0.06$  representing a small,  $\eta_p^2 \le 0.14$ representing a medium, and  $\eta_0^2$  representing a large effect [57];  $d_{Cohen}$ , Effect sizes for pairwise comparisons were calculated as Cohen's d, with d=0.2 reflecting a small, d=0.5 a medium and d=0.8 a large effect [58]. Note. <sup>a</sup>Significant pairwise comparisons after Bonferroni-Holm correction accounting for six comparisons, with the level of significance set at  $p \le 0.05$ .

significantly higher disability scores in FAR and DER compared to EER and AR.

Training-related disability. The ANOVA revealed a significant main effect of pattern. Post-hoc tests indicated significantly higher training-related disability in FAR and DER compared to AR, and in FAR compared to EER.

Competition-related disability. The ANOVA revealed a significant main effect of pattern. Post-hoc tests revealed that FAR and DER displayed significantly higher disability scores than EER and AR.

# **Discussion**

This study for the first time investigated the frequency and validity of different psychosocial pain response patterns in high-performance athletes with and without low back pain (LBP). Based on the avoidance-endurance model (AEM), three dysfunctional patterns (fear-avoidance, FAR; distress-endurance, DER; eustress-endurance, EER) were distinguished, beside an adaptive pattern (AR). EER occurred most frequently, irrespective of the presence of LBP. Among the athletes with LBP, all subgroups with a dysfunctional pattern reported significantly higher LBP intensity than AR, with FAR and DER further reporting highest disability in daily life, training, and competition. Despite highest pain and disability scores, DER also revealed the highest training frequency, indicating DER as the most problematic pattern. These results show that the dysfunctionality of FAR, DER, and EER is based on

different features of their responses to pain, emphasizing the need for individualized LBP management in athletes.

# Athletes showing a eustress-endurance pattern

As expected, EER occurred most frequently in both athletic groups. This is in contrast to studies in non-athletic LBP samples that have consistently reported EER to be among the least frequent patterns [7, 12, 27] (Table 4).

In athletes, acquiring the willingness to accept pain is suggested as a way to gain success [59]. "Playing through" pain [33, 35, 36] – as an example of endurance behavior – is not only accepted, but also reinforced within the athletes' social network [60]. Moreover, despite long-term detrimental

Table 4: Relative frequencies of patterns based on the avoidanceendurance model in samples suffering from low back pain, as reported in previous studies and the current study.

| Study                           | Sample size           | DER   | EER   | FAR   | AR    |
|---------------------------------|-----------------------|-------|-------|-------|-------|
| Fehrmann et al.                 | 137 chronic<br>LBP    | 34.0% | 17.0% | 24.0% | 25.0% |
| Hasenbring et al. [7]           | 177 subacute<br>LBP   | 19.2% | 16.4% | 9.6%  | 54.8% |
| Plaas et al. [12]               | 49 LBP                | 18.4% | 12.2% | 8.2%  | 61.2% |
| Titze et al.<br>(Current study) | 438 LBP<br>(athletes) | 20.1% | 47.0% | 9.8%  | 23.1% |

LBP. Low back pain: DER. Distress-endurance pattern: EER. Eustressendurance pattern; FAR, Fear-avoidance pattern; AR, Adaptive pattern. effects [7, 15], endurance behavior seems to have particular short-term benefits. For example, it has been associated with a reduced stress reaction to experimental pain [61]. Thus, the high frequency of EER among athletes might be a consequence of operant learning processes, conceptualizing the relationship between pain and reward [62].

According to the AEM [15, 16], certain cognitive and affective pain responses can facilitate such endurance behavior, which accords well with the current findings on behavioral validity, i.e. more endurance- and less avoidancerelated pain responses in athletes with an EER pattern. These athletes not only showed more positive mood despite pain than FAR and more pronounced thought suppression and distraction than FAR and AR, but also less anxiety/depression, help-/hopelessness and catastrophizing than FAR and DER, and least self-reported avoidance behavior.

Moreover, as expected, EER appeared to be dysfunctional only with respect to pain intensity, but did not differ from AR in training frequency or disability outcomes, which is also in line with studies in non-athletes with LBP [7, 12, 27]. The AEM proposes that, in EER, the observed tendencies to distract oneself from pain and maintain a positive mood can lead to low levels of perceived disability despite severe pain [15, 16]. Importantly, in this study, the majority of the athletes with LBP suffered from acute or intermittent pain, which highlights the crucial role of dysfunctional pain responses already at an early stage of pain development. Our findings therefore emphasize the need to focus more strongly on endurance-related pain responses in LBP management in athletes.

Still, the definition of dysfunctional endurance behavior remains a future challenge, as it may not only depend on the mode or amount of activity despite pain, but also on the type of pain, i.e. whether pain occurs as part of a sports activity or as a consequence of an illness/injury. For example, Diehl et al. [37] reported that 43.8% of German junior athletes were willing to participate in a competition despite acute joint pain under rest. These alarming results imply a careful distinction between severe clinical pain and temporary pain during training to prevent endurance behavior when it is not useful.

# Athletes showing a distress-endurance pattern

In comparison to EER, DER occurred less often, even in the athletes suffering from LBP. This is in contrast to previous studies that indicated higher frequencies of DER than EER in LBP samples [7, 12, 27]. A possible explanation for the lower frequency of DER might be a selection effect, as our samples represent an extraordinarily successful

population concerning athletic achievement, possibly protecting them from depressive mood. Indeed, although mood does not seem to predict overall athletic achievement, there is some evidence for an association between successful performance and less pre-performance depression [63]. This is in line with our finding that athletes with a DER pattern also displayed higher levels of depression than EER and AR, concomitantly with more anxiety, help-/ hopelessness and catastrophizing. Another reason for our results may be the mood-enhancing effects of exercise [64, 65], counteracting depressive mood.

Interestingly, athletes with a DER pattern reported more weekly training hours than EER and AR despite highest levels of pain and disability. Our results resemble the findings of a study showing highest levels of accelerometer-assessed daily-life activity despite more pronounced pain and disability in non-athletic DER patients with LBP [12]. We assume that individuals with a DER pattern may underestimate their real training behavior and suffer from supposed "low levels" of training frequency, perhaps because they may have shown signs of overactivity before the onset of LBP. Verbunt et al. [66] have discussed this hypothesis for non-athletes with LBP.

In sum, athletes with a DER pattern appear as the most problematic subgroup, not only with more pain and disability in daily-life, training and competition despite extensive training behavior, but also regarding depressive mood and help-/hopelessness.

## Athletes showing a fear-avoidance pattern

FAR was found least often which corroborates findings in non-athletes with LBP [7, 12]. Given the literature on the reinforcement of endurance behavior in sports [60], it is surprising that FAR even exists among athletes. With respect to behavioral validity, athletes with a FAR pattern reported not only more anxiety/depression, help-/hopelessness and catastrophizing than EER and AR, but also most behavioral avoidance. This is in line with some evidence for FAR responses in athletes [43, 67, 68], particularly during or after injury [69-71]. However, FAR in this study reported similar training frequencies as EER and AR, which was unexpected and is in contrast to a study showing lowest levels of physical activity, constant strain postures and standing time, and highest levels of lying time in non-athletic FAR patients with LBP [12]. An explanation for this discrepancy could be that the minimum amount of training in high-performance athletes is rather standardized than self-selected, leaving few options for training reduction. Beside more pain and pain-related

disability than AR, FAR also reported highest levels of training- and competition-related disability, suggesting them to be a group that needs extra attention in pain management, e.g., by decreasing avoidance behavior while maintaining or increasing activity pacing [72].

## Athletes showing an adaptive pattern

Athletes suffering from LBP with an AR pattern were of relatively low frequency in this study. With respect to behavioral validity, they revealed lowest levels of painrelated anxiety and depressive mood, lowest cognitions of help/hopelessness and catastrophizing, but moderate levels in avoidance and endurance behavior. Concerning outcome-based validity, AR displayed lowest pain intensity, and less disability in daily life, training and competitions than DER and FAR. They further seemed to maintain their training frequency despite pain, as there was no difference between athletes with and without LBP. Hence, AR might be characterized by a recently proposed mindset of resilience that should be communicated in LBP management in athletes, i.e. to experience exercise as not dangerous, to maintain load to the extent possible, and to maintain fitness, performance and resilience to further pain or injury [73].

## Limitations

Several limitations of this study deserve consideration. First, as we assessed pain duration using a categorical division, we were unable to distinguish between acute, subacute and chronic LBP states [74]. However, the AEM-based patterns did not differ in pain duration. Biases in outcome variables due to unbalanced pain state frequencies among the patterns are therefore less likely. Second, while investigating differences in training frequency, we neither assessed training intensity parameters nor the amount of daily or treatment-related physical activity. It will be an important goal for future research to identify further activity-related variables associated with particular AEM-based patterns. Third, different sports disciplines may have been unequally represented among the AEM-based patterns. It thus seems necessary to reexamine the patterns separately for different disciplines. Fourth, pain outcomes were assessed retrospectively, and for some athletes, the occurrence of LBP may have deviated from the time of survey completion, raising the possibility of memory bias. Longitudinal studies are required to validate our results during more immediate experiences of pain. Last, we cannot rule out that, in athletes with LBP. pain ratings may have been biased by other spine-related symptoms, such as upper back pain.

# **Conclusions**

This study provides evidence for AEM-based patterns in high-performance athletes with LBP. EER seems to be highly overrepresented in this population, compared to studies in non-athletes. As endurance-related pain responses occur frequently among athletes and - at least in athletes with a DER pattern - appear to be associated with poor outcome in pain and disability, our results demonstrate the need to incorporate cognitive-behavioral interventions into LBP management programs. They further indicate that psychological training concepts [75, 76] may be extended by targeting an optimal balance between performance and pain regulation.

**Research funding:** This article was conducted within the MiSpEx (National Research Network for Medicine in Spine Exercise) research consortium. The authors are thankful to the German Olympic Sports Confederation (DOSB) for their help in the collection of data. This work was financially supported by the Federal Institute of Sports Science (BISp), Germany (ZMVI1-080102A/11-18).

**Competing interests:** Authors state no conflict of interest.

Informed consent: Informed consent has been obtained from all individuals included in this study.

Ethical approval: The research related to human use complies with all the relevant national regulations, institutional policies and was performed in accordance with the tenets of the Helsinki Declaration, and has been approved by the authors' institutional review board or equivalent committee.

# References

- 1. Bahr R, Andersen SO, Loken S, Fossan B, Hansen T, Holme I. Low back pain among endurance athletes with and without specific back loading-a cross-sectional survey of cross-country skiers, rowers, orienteerers, and nonathletic controls. Spine 2004;29:449-54.
- 2. Foss IS, Holme I, Bahr R. The prevalence of low back pain among former elite cross-country skiers, rowers, orienteerers, and nonathletes: a 10-year cohort study. Am J Sports Med 2012;40:2610-16.
- 3. Jonasson P, Halldin K, Karlsson J, Thoreson O, Hvannberg J, Swärd L, et al. Prevalence of joint-related pain in the extremities and spine in five groups of top athletes. Knee Surg Sports Traumatol Arthrosc 2011;19:1540-46.

- 4. Schulz SS, Lenz K, Büttner-Janz K. Severe back pain in elite athletes: a cross-sectional study on 929 top athletes of Germany. Eur Spine J 2016;25:1204-10.
- 5. Trompeter K, Fett D, Platen P. Prevalence of back pain in sports: a systematic review of the literature. Sports Med 2016;47:1183-207.
- 6. Mortazavi J, Zebardast J, Mirzashahi B. Low back pain in athletes. Asian J Sports Med 2015;6:e24718.
- 7. Hasenbring MI, Hallner D, Klasen B, Streitlein-Böhme I, Willburger R, Rusche H. Pain-related avoidance versus endurance in primary care patients with subacute back pain: psychological characteristics and outcome at a 6-month follow-up. Pain 2012; 153:211-7.
- 8. Linton SJ. A review of psychological risk factors in back and neck pain. Spine 2000;25:1148-56.
- 9. Pincus T, Burton AK, Vogel S, Field AP. A systematic review of psychological factors as predictors of chronicity/disability in prospective cohorts of low back pain. Spine 2002;27:E109-20.
- 10. Vlaeyen JW, Linton SJ. Fear-avoidance and its consequences in chronic musculoskeletal pain: a state of the art. Pain 2000;85: 317-32.
- 11. Meyer K, Tschopp A, Sprott H, Mannion AF. Association between catastrophizing and self-rated pain and disability in patients with chronic low back pain. J Rehabil Med 2009; 41:620-25.
- 12. Plaas H, Sudhaus S, Willburger R, Hasenbring MI. Physical activity and low back pain: the role of subgroups based on the avoidance-endurance model. Disabil Rehabil 2014;36:749-55.
- 13. Scholich SL, Hallner D, Wittenberg RH, Rusu AC, Hasenbring MI. Schmerzverarbeitungspattern bei chronischen Rückenschmerzen Pilotstudie. Der Einfluss von "Avoidance-Endurance"-Modell-Pattern auf die Lebensqualität, Schmerzintensität und Beeinträchtigung. Schmerz 2011;25:184-90.
- 14. Hainline B, Turner JA, Caneiro JP, Stewart M, Moseley GL. Pain in elite athletes-neurophysiological, biomechanical and psychosocial considerations: a narrative review. Br J Sports Med 2017:51:1259-64.
- 15. Hasenbring MI, Verbunt JA. Fear-avoidance and endurancerelated responses to pain: new models of behavior and their consequences for clinical practice. Clin J Pain 2010;26:747-53.
- 16. Hasenbring M. Attentional control of pain and the process of chronification. In: Sandkühler J, Bromm B, Gebhart GF, editors Nervous system plasticity and chronic pain. Amsterdam, Oxford: Elsevier; 2000.
- 17. Wenzlaff RM, Wegner DM. Thought suppression. Annu Rev Psychol 2000;51:59-91.
- 18. Rassin E. The White Bear Suppression Inventory (WBSI) focuses on failing suppression attempts. Eur J Pers 2003;17:285-98.
- 19. Wegner DM, Zanakos S. Chronic thought suppression. J Pers 1994;62:616-40.
- 20. Beevers C, Meyer B. Brief report thought suppression and depression risk. Cognit Emot 2004;18:859-67.
- 21. Wenzlaff RM, Luxton DD. The role of thought suppression in depressive rumination. Cognit Ther Res 2003;27:293-308.
- 22. Biss RK, Hasher L, Thomas RC. Positive mood is associated with the implicit use of distraction. Motiv Emot 2010;34:73-7.
- 23. Privitera GJ, Antonelli DE, Szal AL. An enjoyable distraction during exercise augments the positive effects of exercise on mood. J Sports Sci Med 2014;13:266-70.
- 24. Hasenbring MIH, Andrews NE, Ebenbichler G. Overactivity in chronic pain, the role of pain related endurance and

- neuromuscular activity an interdisciplinary, narrative review. Clin J Pain 2020;36:162-71.
- 25. Wolff SV, Willburger R, Hallner D, Rusu AC, Rusche H, Schulte T, et al. Avoidance-endurance fast screening (AE-FS) Content and predictive validity of a 9-item screening instrument for patients with unspecific subacute low back pain. Schmerz 2020;34:1-7.
- 26. Wolff SV, Willburger R, Hallner D, Rusu AC, Rusche H, Schulte T, et al. Avoidance-Endurance Fast-Screen (AE-FS) Inhalts- und Vorhersagevalidität eines 9-Item-Screeninginstruments für Patienten mit unspezifischen subakuten Rückenschmerzen. Schmerz 2018;32:283-92.
- 27. Fehrmann E, Tuechler K, Kienbacher T, Mair P, Spreitzer J, Fischer L, et al. Comparisons in muscle function and training rehabilitation outcomes between avoidance-endurance model-subgroups. Clin J Pain 2017:33:912-20.
- 28. Hasenbring MI, Plaas H, Fischbein B, Willburger R. The relationship between activity and pain in patients 6 months after lumbar disc surgery: do pain-related coping modes act as moderator variables?. Eur J Pain 2006;10:701-09.
- 29. Addison T, Kremer J, Bell R. Understanding the psychology of pain in sport. Ir J Psychol 1998;19:486-503.
- 30. Cook DB, Koltyn KF. Pain and exercise. Int J Sport Psychol 2000; 31:256-77.
- 31. Pawlak M. Aspects of pain in sport. Trends in Sport Sciences 2013;20:123-34.
- 32. Thornton C, Sheffield D, Baird A. A longitudinal exploration of pain tolerance and participation in contact sports. Scand J Pain 2017:16:36-44.
- 33. Deroche T, Woodman T, Stephan Y, Brewer BW, Le Scanff C. Athletes' inclination to play through pain: a coping perspective. Hist Philos Logic 2011;24:579-87.
- 34. Tesarz J, Schuster AK, Hartmann M, Gerhardt A, Eich W. Pain perception in athletes compared to normally active controls: a systematic review with meta-analysis. Pain 2012;153:1253-62.
- 35. Gauron EF, Bowers WA. Pain control techniques in college-age athletes. Psychol Rep 2016;59:1163-69.
- 36. Jessiman-Perreault G, Godley J. Playing through the pain: a university-based study of sports injury. Adv Phys Educ 2016;06:
- 37. Diehl K, Mayer J, Thiel A, Zipfel S, Schneider S. "Playing hurt": der Umgang jugendlicher Leistungssportler mit Gelenkschmerzen. Der Schmerz 2019;33:49-56.
- 38. Roderick M, Waddington I, Parker G. Playing hurt managing injuries in English professional football. Int Rev Sociol Sport 2016;35:165-80.
- 39. Sharma P, Sandhu JS, Shenoy S. Variation in the response to pain between athletes and non-athletes. Ibnosina J Med Biomed Sci 2011;3:165-71.
- 40. Ghazaie M, Tajikzadeh F, Sadeghi R, Saatchi LR. The comparison of pain perception, coping strategies with pain and self-efficacy of pain in athlete and non-athlete women. J Fundam Mental Health 2015;17:159-63.
- 41. Azevedo DC, Samulski DM. Assessment of psychological pain management techniques: a comparative study between athletes and non-athletes. Rev Bras Med Esporte 2003;9:214-22.
- 42. Kontos AP, Elbin RJ, Newcomer Appaneal R, Covassin T, Collins MW. A comparison of coping responses among high school and college athletes with concussion, orthopedic injuries, and healthy controls. Res Sports Med 2013;21:367-79.

- Gajsar H, Titze C, Levenig C, Kellmann M, Heidari J, Kleinert J, et al. Psychological pain responses in athletes and non-athletes with low back pain: avoidance and endurance matter. Eur J Pain 2019; 23:1649–62.
- Crombez G, Bijttebier P, Eccleston C, Mascagni T, Mertens G,
   Goubert L, et al. The child version of the pain catastrophizing
   scale (PCS-C): a preliminary validation. Pain 2003;104:639–46.
- 45. Tran ST, Jastrowski Mano KE, Hainsworth KR, Medrano GR, Anderson Khan K, Weisman SJ, et al. Distinct influences of anxiety and pain catastrophizing on functional outcomes in children and adolescents with chronic pain. J Pediatr Psychol 2015;40:744-55.
- 46. Feinstein AB, Sturgeon JA, Darnall BD, Dunn AL, Rico T, Kao MC, et al. The effect of pain catastrophizing on outcomes: a developmental perspective across children, adolescents, and young adults with chronic pain. J Pain 2017;18:144–54.
- Pazzinatto MF, De Oliveira Silva D, Pradela J, Coura MB, Barton C, de Azevedo FM. Local and widespread hyperalgesia in female runners with patellofemoral pain are influenced by running volume. J Sci Med Sport 2017;20:362–67.
- 48. Tesarz J, Gerhardt A, Schommer K, Treede R-D, Eich W. Alterations in endogenous pain modulation in endurance athletes: an experimental study using quantitative sensory testing and the cold-pressor task. Pain 2013;154:1022–29.
- Pietsch K, Hoyler A, Frühe B, Kruse J, Schulte-Körne G, Allgaier A-K. Früherkennung von depressionen in der Pädiatrie: Kriteriumsvalidität des beck depressions-inventar revison (BDI-II) und des beck depressions-inventar-fast screen for medical patients (BDI-FS). Psychother Psychosom Med Psychol 2012;62:418–24.
- Beck AT, Guth D, Steer RA, Ball R. Screening for major depression disorders in medical inpatients with the Beck depression inventory for primary care. Behav Res Ther 1997;35:785-91.
- 51. Kliem S, Mößle T, Zenger M, Brähler E. Reliability and validity of the beck depression inventory-fast screen for medical patients in the general German population. J Affect Disord 2014;156:236–39.
- Hasenbring MI, Hallner D, Rusu AC. Fear-avoidance- and endurance-related responses to pain: development and validation of the avoidance-endurance questionnaire (AEQ). Eur J Pain 2009;13:620–28.
- 53. Von Korff M, Ormel J, Keefe FJ, Dworkin SF. Grading the severity of chronic pain. Pain 1992;50:133–49.
- 54. Klasen BW, Hallner D, Schaub C, Willburger R, Hasenbring M. Validation and reliability of the German version of the Chronic Pain Grade questionnaire in primary care back pain patients. Psycho Soc Med 2004;1:7.
- 55. Huberty CJ, Morris JD. Multivariate analysis versus multiple univariate analyses. Psychol Bull 1989;105:302–8.
- 56. Olson CL. Comparative robustness of six tests in multivariate analysis of variance. J Am Stat Assoc 1974;69:894–908.
- 57. Richardson JTE. Eta squared and partial eta squared as measures of effect size in educational research. Educ Res Rev 2011;6:135–47.
- Cohen J. Statistical power analysis for the behavioral sciences,
   2nd ed. Hillsdale, NJ: Erlbaum; 1988.
- Nixon HL. Accepting the risks of pain and injury in sport: mediated cultural influences on playing hurt. Sociol Sport J 1993; 10:183–96.

- Nixon HL. A social network analysys of influences on athletes to play with pain and injuries. J Sport Soc Issues 1992;16: 127-35.
- Sudhaus S, Held S, Schoofs D, Bültmann J, Dück I, Wolf OT, Hasenbring MI. Associations between fear-avoidance and endurance responses to pain and salivary cortisol in the context of experimental pain induction. Psychoneuroendocrinology 2015;52:195–99.
- 62. Becker S, Gandhi W, Schweinhardt P. Cerebral interactions of pain and reward and their relevance for chronic pain. Neurosci Lett 2012;520:182-87.
- 63. Beedie CJ, Terry PC, Lane AM. The profile of mood states and athletic performance: two meta-analyses. J Appl Sport Psychol 2000;12:49–68.
- 64. Hoffman MD, Hoffman DR. Does aerobic exercise improve pain perception and mood? A review of the evidence related to healthy and chronic pain subjects. Curr Pain Headache Rep 2007;11:93-7.
- Morgan WP. Affective beneficence of vigorous physical activity.
   Med Sci Sports Exerc 1985;17:94–100.
- Verbunt JA, Sieben JM, Seelen HAM, Vlaeyen JWS, Bousema EJ, van der Heijden GJ, Knottnerus JA. Decline in physical activity, disability and pain-related fear in sub-acute low back pain. Eur J Pain 2005;9:417–25.
- 67. Jones MI, Parker JK. Mindfulness mediates the relationship between mental toughness and pain catastrophizing in cyclists. Eur J Sport Sci 2018;18:872–81.
- Sullivan MJL, Tripp DA, Rodgers WM, Stanish W. Catastrophizing and pain perception in sport participants. J Appl Sport Psychol 2000;12:151–67.
- 69. Dover G, Amar V. Development and validation of the athlete fear avoidance questionnaire. J Athl Train 2015;50:634-42.
- Kvist J, Ek A, Sporrstedt K, Good L. Fear of re-injury: a hindrance for returning to sports after anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 2005;13:393–97.
- 71. Tripp DA, Stanish W, Ebel-Lam A, Brewer BW, Birchard J. Fear of reinjury, negative affect, and catastrophizing predicting return to sport in recreational athletes with anterior cruciate ligament injuries at 1 year postsurgery. Rehabil Psychol 2007;52:74–81.
- Cane D, Nielson WR, Mazmanian D. Patterns of pain-related activity: replicability, treatment-related changes, and relationship to functioning. Pain 2018:10. https://doi.org/10. 1097/i.pain.00000000000001357.
- 73. O'Sullivan K, O'Sullivan PB, Gabbett TJ, O'Keeffe M. Advice to athletes with back pain-get active! Seriously?. Br J Sports Med 2019;53:324-25.
- 74. van Tulder M, Becker A, Bekkering T, Breen A, del Real MT, Hutchinson A, et al. Chapter 3. European guidelines for the management of acute nonspecific low back pain in primary care. Eur Spine J 2006;15:91.
- Gardner FL, Moore ZE. Mindfulness and acceptance models in sport psychology: a decade of basic and applied scientific advancements. Can Psychol/Psychologie canadienne 2012;53: 309–18.
- Harmison RJ. Peak performance in sport: identifying ideal performance states and developing athletes' psychological skills. Prof Psychol Res Pract 2006;37:233-43.