Topical review

Marzia Malcangio*

Role of the immune system in neuropathic pain

https://doi.org/10.1515/sjpain-2019-0138 Received October 21, 2019; accepted October 22, 2019; previously published online November 14, 2019

Abstract

Background: Acute pain is a warning mechanism that exists to prevent tissue damage, however pain can outlast its protective purpose and persist beyond injury, becoming chronic. Chronic Pain is maladaptive and needs addressing as available medicines are only partially effective and cause severe side effects. There are profound differences between acute and chronic pain. Dramatic changes occur in both peripheral and central pathways resulting in the pain system being sensitised, thereby leading to exaggerated responses to noxious stimuli (hyperalgesia) and responses to non-noxious stimuli (allodynia).

Critical role for immune system cells in chronic pain: Preclinical models of neuropathic pain provide evidence for a critical mechanistic role for immune cells in the chronicity of pain. Importantly, human imaging studies are consistent with preclinical findings, with glial activation evident in the brain of patients experiencing chronic pain. Indeed, immune cells are no longer considered to be passive bystanders in the nervous system; a consensus is emerging that, through their communication with neurons, they can both propagate and maintain disease states, including neuropathic pain. The focus of this review is on the plastic changes that occur under neuropathic pain conditions at the site of nerve injury, the dorsal root ganglia (DRG) and the dorsal horn of the spinal cord. At these sites both endothelial damage and increased neuronal activity result in recruitment of monocytes/macrophages (peripherally) and activation of microglia (centrally), which release mediators that lead to sensitisation of neurons thereby enabling positive feedback that sustains chronic pain.

Immune system reactions to peripheral nerve injuries: At the site of peripheral nerve injury following chemotherapy treatment for cancer for example, the occurrence

of endothelial activation results in recruitment of CX3C chemokine receptor 1 (CX₂CR₃)-expressing monocytes/ macrophages, which sensitise nociceptive neurons through the release of reactive oxygen species (ROS) that activate transient receptor potential ankyrin 1 (TRPA1) channels to evoke a pain response. In the DRG, neuroimmune cross talk following peripheral nerve injury is accomplished through the release of extracellular vesicles by neurons, which are engulfed by nearby macrophages. These vesicles deliver several determinants including microRNAs (miRs), with the potential to afford long-term alterations in macrophages that impact pain mechanisms. On one hand the delivery of neuron-derived miR-21 to macrophages for example, polarises these cells towards a proinflammatory/pro-nociceptive phenotype; on the other hand, silencing miR-21 expression in sensory neurons prevents both development of neuropathic allodynia and recruitment of macrophages in the DRG.

Immune system mechanisms in the central nervous system: In the dorsal horn of the spinal cord, growing evidence over the last two decades has delineated signalling pathways that mediate neuron-microglia communication such as $P_2X_4/BDNF/GABA_A$, $P_2X_7/Cathepsin S/Fractalkine/CX_3CR_1$, and CSF-1/CSF-1R/DAP12 pathway-dependent mechanisms.

Conclusions and implications: Definition of the modalities by which neuron and immune cells communicate at different locations of the pain pathway under neuropathic pain states constitutes innovative biology that takes the pain field in a different direction and provides opportunities for novel approaches for the treatment of chronic pain.

Keywords: microglia; monocytes; macrophages; cytokines; chemokines; purinoreceptors; microRNAs.

List of abbreviation: P_2X_4 P_2X_7 purinoreceptor 4/purinoreceptor 7.

E-mail: marzia.malcangio@kcl.ac.uk

1 Introduction

An increased occurrence of pain has drastic and costly effects on the European population in terms of their

^{*}Corresponding author: Marzia Malcangio, Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK,

performance at work and daily quality of life. Specifically, moderate to severe chronic pain occurs in 19% of adult Europeans and in 50% of these cases, patients receive inadequate treatment for their chronic pain [1]. Novel, more effective treatments are therefore required, and the identification of new mechanisms and pathways provide essential guidance to drug-discovery programmes.

Lesions or disease of the nervous system may result in pain persisting beyond the resolution of damage. Such pathological pain is a maladaptive mechanism that remains difficult to treat with current medicines. An emerging concept in the pain research area is that the *immune response* associated with damage in the central nervous system (CNS) and peripheral nervous system (PNS) may contribute to a variety of pain states, encompassing those that have either a peripheral or CNS origin [2]. Indeed, although the pain research field initially focused on the role of neurons in pain mechanisms, it has now shifted focus onto the role of non-neuronal cells, including their communication with neurons, that occurs as a consequence of their response to altered neuronal activity [3, 4].

We know that peripheral nerve damage results in neuronal sensitization and inflammatory reactions locally through macrophage accumulation and cyto(chemo) kine production, which activate the vascular endothelium and alter the sensory transduction properties of nociceptive axons, causing recurrent activity (peripheral sensitization) [5].

Moreover, this peripheral damage also results in increased neuronal firing in the spinal cord (central sensitization), remotely from the injury. Both central and peripheral sensitizations are fundamental for the generation of allodynia, hyperalgesia and spontaneous pain [2]. In the spinal cord, an excessive neuronal firing causes significant activation of immune cells, namely microglia, which leads to neuroinflammation [6, 7]. Spinal microglial activity plays an important role in central sensitisation, as attenuation of microglial activation correlates with reduced pain-like behaviours in models of chronic pain [8].

2 Microglia and neuropathic pain

The causal role of microglia in neuropathic pain was initially established following the observation that ipsilateral dorsal horn microglia *de novo* express purinoreceptor P_2X_4 following nerve injury [9]. Adenosine triphosphate (ATP)-induced activation of P_2X_4 in microglia causes release of

brain-derived neurotrophic factor (BDNF), which by acting on the tropomyosin receptor kinase B (TrkB) receptors in dorsal horn neurons downregulates the chloride transporter chloride potassium transporter (KCC2) so that intracellular chloride concentration increases. As consequence of this shift, ionotropic receptor for GABA (GABA_A) receptors activation results in anions flooding out of neurons and GABAergic inhibition becomes less effective in superficial laminae. The overall effect is an enhanced nociceptive transmission [10]. Modulation of this P₂X₄/ BDNF microglial pathway through enhancing KCC2 activity and blocking P2X4 with a centrally-penetrant monoclonal antibody or intrathecally delivered-small molecule antagonists has shown significant antinociceptive effects in the neuropathic pain models [11–13]. However, topical evidence indicates this pathway is more relevant in male than in female mice [14].

Whilst the release of ATP that engages this pathway is likely to occur from dorsal horn neurons [15], sensory neuron central terminals communicate with microglia via release of the cytokine colony-stimulating factor 1 (CSF1), which is *de novo* expressed in injured neurons after nerve injury. In the spinal cord CSF1 activates CSF1 receptor in microglia via the transmembrane protein (DAP-12) (P_2X_4 independent pathway) and up-regulates genes that are critical to development of allodynia [16], suggesting that DAP12 is a microglial target that could be considered for neuropathic pain.

A neuron-microglia signalling pathway that plays a role in the maintenance of neuropathic pain mechanisms also requires a purinoreceptor, which is however the low affinity P_2X_7 receptor whose activation causes release of the enzyme Cathepsin S (CatS) by microglia. Extracellular CatS cleaves the chemokine domain of neuronal membrane-bound fractalkine, which in turn interacts with microglia CX3C chemokine receptor 1 (CX $_3$ CR $_1$) receptor and promotes release of cytokines that sensitise neurons in the dorsal horns [17–21]. As CatS inhibitors, P_2X_7 receptor antagonists and CX_3CR_1 receptor antibodies exert antinociceptive effects, they can all be microglia-expressed targets for neuropathic pain [22, 23].

This suggestion is strengthen by intriguing evidence which suggests that FKN activation of CX₃CR₁ receptor as well as CSF-1 signalling via CSF-1R in spinal microglia regulate nociceptive synaptic strength independently of neuronal activity [24], and microglia is a critical determinant for the occurrence synaptic plasticity associated with persistent neuropathic allodynia [25].

The mounting preclinical evidence on the role of microglial activity in the establishment and maintenance of neuropathic allodynia has been substantiated and validated by clinical studies, including imaging studies, which demonstrate glial cells activation in the brain of chronic low back pain patients [26] and in chronic pain conditions such as fibromyalgia (FM) [27]. Relevantly, in FM patients there is generalised cortical activation of microglia [27], and elevation of fractalkine levels in the cerebrospinal fluid [28] suggesting that microglial activation of CX₂CR₂ receptors may contribute to the symptoms of FM, and specifically widespread pain.

3 Monocytes/macrophages and neuropathic pain

Moving scenario from spinal cord to peripheral nerves, the FKN-CX₃CR₄ signalling pathway still plays a role in the establishment of nociception that is the major dose-limiting side-effect of chemotherapy treatment for cancer. Notably, in the periphery the location of FKN and CX₂CR₄ is different from the CNS as FKN is expressed by endothelial cells and CX₂CR₃ receptors by circulating monocytes that infiltrate peripheral nerves following

Neuropathy, occurring in excess of 85% of patients, constitutes the major dose-limiting side-effect of chemotherapy. The key symptom of this condition reported by patients is pain, which is poorly controlled by available analgesics, thus there is an unmet clinical need for the development of new strategies that ideally prevent the onset of chemotherapy-induced neuropathy by interfering with the mechanism by which the neuropathy occurs, without altering the cancer fighting abilities of anti-neoplastic agents [29].

Chemotherapeutics, such as the vinca alkaloid vincristine, can cross the blood-nerve-barrier and as a result they promote peripheral nerve toxicity which manifests clinically as pain and sensory dysfunction. In rodents, treatments with vincristine are associated with allodynia and concomitant infiltration of macrophages in the sciatic nerve [30, 31]. Specifically, vincristine induces alteration in endothelial cell adhesion properties, which promote the infiltration of CX₂CR₁-expressing monocyte/ macrophages into the sciatic nerve. In macrophages, endothelial-derived FKN promotes formation of reactive oxygen species (ROS) in a CX,CR,-dependent fashion and ROS then activate transient receptor potential ankyrin 1 (TRPA1) channels on sensory neurons, which evokes a pain response [30]. Therefore, the inhibition of monocyte trafficking into the sciatic nerve with CX₂CR₄ antagonists provides a strategy for the prophylactic treatment of chemotherapy-induced pain that is based on a target expressed by immune cells.

4 Role of microRNAs in neuronmacrophage communication in neuropathic pain

A consequence of nerve injury which has received significant attention in recent years is the substantial dysregulation of non-coding RNAs, including microRNAs, expression in the cell bodies of sensory neurons in the dorsal root ganglia (DRG). MicroRNAs are non-coding RNAs of 19-25 nucleotides that regulate gene expression by RNA interference, and their own expression is altered in pain related areas under chronic pain states. MicroR-NAs target many genes and co-target genes both within and between pathways [32]. A number of miRNAs have been shown to regulate neuronal processes in chronic pain states [33-35], and in DRG neurons miR-lethal-7b binds toll-like-receptor-7 (TLR7) coupled to TRPA1 receptor to exerts a pro-nociceptive effect [36] whilst miR-21 activates TLR8 and increases nociceptive neuron activity and induces pain hypersensitivity [37].

Besides being recognised by nucleic acid sensor TLR8 and exert a pro-nociceptive role in DRG neurons where it is up-regulated after axonal injury, miR-21 also promotes neuronal axon growth [38], and upon noxious stimulation miR-21 is released by DRG neuron cell bodies packaged in extracellular vesicles, namely exosomes, a unique feature not shared by sensory axons [39]. Exosomes are readily engulfed by macrophages and the transfer of miR-21 polarises these immune cells towards a pro-inflammatory and pro-nociceptive phenotype. Critically, intrathecal delivery of a miR-21 antagomir or conditional deletion of miR-21 expression in sensory neurons (miR-21 cKO) both prevent the development of neuropathic allodynia and macrophage infiltration in DRG. Based on these observations, the suggestion is that sensory neuron-derived miR-21 regulates the nature of macrophage infiltrate in the DRG and facilitates pain signalling following peripheral nerve injury [39]. Thus miR-21 can be regarded as a target for neuropathic pain with the caution that neuronal miR-21 should not be affected whilst macrophageexpressed miR-21 would constitute a safer option. The delivery of nanoparticles containing miR-21 antagomir in a tissue-specific manner to target neuron-macrophage communication may prove to be an innovative strategy to prevent neuropathic pain development. There is a substantial effort in establishing the clinical application of miRs with diagnostic and therapeutic potentials in endocrine-related cancer as a single miR can address a multitude of genetic and epigenetic changes that occur in cancer patients [40]. So far, phase I trials with miR-34 and miR-16 mimics, encapsulated in nanoparticle-based formulation to enhance drug availability, have shown that drugs were well tolerated (NCT01829971). Thus, companies developing miR-based strategies for cancer may find a rationale for exploring miRs with an application for chronic pain.

5 Conclusions

In the last two decades pre-clinical research has provided compelling evidence in support of the role of immune cell infiltration in peripheral nerve and microglial activation in spinal cord dorsal horn in mechanisms for chronic neuropathic pain. Neuroimaging studies in humans have led to the suggestion that investigation of neuroimmune dysfunction offers scope for therapeutic option for chronic pain [27].

Therefore, further examinations of neuro-immune interactions could reveal new pathogenic mechanisms operative in chronic pain and offer novel and effective therapeutic approaches.

Author's statements

Research funding: Current work In MM lab is supported by the Medical Research Council UK (MR/M023893/1 and MR/T002883/1), Versus Arthritis (grant 21961); European Union's Horizon 2020 research and innovation programme "TOBeATPAIN" under the Marie Skłodowska-Curie grant agreement No 764860.

Conflicts of interest: The author declares no conflict of interest.

Informed consent: Not applicable. Ethical approval: Not applicable.

References

- [1] Breivik H, Collett B, Ventafridda V, Cohen R, Gallacher D. Survey of chronic pain in Europe; prevalence, impact on daily life, and treatment. Eur J Pain 2006;10:287-333.
- [2] Costigan M, Scholz J, Woolf CJ. Neuropathic pain: a maladaptive response of the nervous system to damage. Annu Rev Neurosci 2009;32:1-32.
- [3] Malcangio M. Microglia and chronic pain. Pain 2016;157:1002-3.
- [4] Ji RR, Berta T, Nedergaard M. Glia and pain: is chronic pain a gliopathy? Pain 2013;154:S10-28.

- [5] Austin PJ, Moalem-Taylor G. The neuro-immune balance in neuropathic pain: involvement of inflammatory immune cells, immune-like glial cells and cytokines. J Neuroimmunol 2010;229:26-50.
- [6] Xanthos DN, Sandkuhler J. Neurogenic inflammation:inflammatory CNS reactions in response to neuronal activity. Nat Rev Neurosci 2015;15:43-53.
- [7] Ji RR, Chamessian A, Zhang YQ. Pain regulation by nonneuronal cells and inflammation. Science 2016;354:527-77.
- [8] Clark AK, Gentry C, Bradbury EJ, McMahon SB, Malcangio M. Role of spinal microglia in rat models of periheral injury and inflammation. Eur J Pain 2007;11:223-30.
- [9] Tsuda M, Shigemoto-Mogami Y, Koizumi S, Mizokoshi A, Kohsaka S, Salter MW, Inoue K. P2X4 receptors induced in spinal micoglia gate tactile allodynia after injury. Nature 2003;424:778-83.
- [10] Coull JA, Beggs S, Boudreau D, Boivin D, Tsuda M, Inoue K, Gravel C, Salter MW, De Koninck Y. BDNF from microglia causes the shift in neuronal anion gradient underlying neruopathci pain. Nature 2005;438:1017-21.
- [11] Gagnon M, Bergeron MJ, Lavertu G, Castonguay A, Tripathy S, Bonin RP, Perez-Sanchez J, Boudreau D, Wang B, Dumas L, Valade I, Bachand K, Jacob-Wagner M, Tardif C, Kianicka I, Isenring P, Attardo G, Coull JA, De Koninck Y. Chloride extrusion enhancers as novel therpeutics fro neruological diseases. Nat Med 2013;19:1524-8.
- [12] Matsumura Y, Yamashita T, Sasaki A, Nakata E, Kohno K, Masuda T, Tozaki-Saitoh H, Imai T, Kuraishi Y, Tsuda M, Inoue K. A novel P2X4 receptor-selective antagonist produces antiallodynic effect in a mouse model of herpetic pain. Sci Rep 2016;6:32461.
- [13] Williams WA, Linley JE, Jones CA, Shibata Y, Snijder A, Button J, Hatcher JP, Huang L, Taddese B, Thornton P, Schofield DJ, Thom G, Popovic B, Dosanjh B, Wilkinson T, Hughes J, Dobson CL, Groves MA, Webster CI, Billinton A, et al. Antibodies binding the head domain of P2X4 inhibit channel function and reverse neuropathic pain. Pain 2019;160:1989-2003.
- [14] Sorge RE, Mapplebeck JC, Rosen S, Beggs S, Taves S, Alexander JK, Martin LJ, Austin JS, Sotocinal SG, Chen D, Yang M, Shi XQ, Huang H, Pillon NJ, Bilan PJ, Tu Y, Klip A, Ji RR, Zhang J, Salter MW, et al. Different immune cells mediate mechanical pain hypersensitivity in male and female mice. Nat Neurosci 2015;18:1081-3.
- [15] Masuda T, Ozono Y, Mikuriya S, Kohro Y, Tozaki-Saitoh H, Iwatsuki K, Uneyama H, Ichikawa R, Salter MW, Tsuda M, Inoue K. Dorsal horn neurons release extracellular ATP in a VNUT-dependent manner that underlies neuropathic pain. Nat Commun 2016;7:12529.
- [16] Guan Z, Kuhn JA, Wang X, Colquitt B, Solorzano C, Vaman S, Guan AK, Evans-Reinsch Z, Braz J, Devor M, Abboud-Werner SL, Lanier LL, Lomvardas S, Basbaum Al. Injured sensory neuronderived CSF1 induces microglial proliferation and DAP12dependent pain. Nat Neurosci 2016;19:94-101.
- [17] Clark AK, Yip PK, Grist J, Gentry C, Staniland AA, Marchand F, Dehvari M, Wotherspoon G, Winter J, Ullah J, Bevan S, Malcangio M. Inhibition of spinal microglial cathepsin S for the reversal of neuropathic pain. Proc Natl Acad Sci USA 2007;104:10655-60.
- [18] Clark AK, Yip PK, Malcangio M. The liberation of fractalkine in the dorsal horn requires microglial cathepsin S. J Neurosci 2009;29:6945-54.

- [19] Clark AK, Wodarski R, Guida F, Sasso O, Malcangio M. Cathepsin S release from primary cultured microglia is regulated by the P2X7 receptor. Glia 2010;58:1710-26.
- [20] Zhuang ZY, Kawasaki Y, Tan PH, Wen YR, Huang J, Ji RR. Role of the CX3CR1/p38 MAPK pathway in spinal microglia for the development of neuropathic pain following nerve injury-induced cleavage of fractalkine. Brain Behav Immun 2007;21:642-51.
- [21] Gu N, Peng J, Murugan M, Wang X, Eyo UB, Sun D, Ren Y, DiCicco-Bloom E, Young W, Dong H, Wu LJ. Spinal microgliosis due to resident microglial proliferation is required for pain hypersensitivity after peripheral nerve injury. Cell Rep 2016;16:605-14.
- [22] Hewitt E, Pitcher T, Rizoska B, Tunblad K, Henderson I, Sahlberg BL, Grabowska U, Classon B, Edenius C, Malcangio M, Lindström E. Selective Cathepsin S inhibition with MIV-247 attenuates mechanical allodynia and enhances the antiallodynic effects of gabapentin and pregabalin in a mouse model of neuropathic pain. J Pharmacol Exp Ther 2016;358:387-96.
- [23] Chessell IP, Hatcher JP, Bountra C, Michel AD, Hughes JP, Green P, Egerton J, Murfin M, Richardson J, Peck WL, Grahames CB, Casula MA, Yiangou Y, Birch R, Anand P, Buell GN. Disruption of the P2X7 purinoceptor gene abolishes chronic inflammatory and neuropathic pain. Pain 2005;114:386-96.
- [24] Clark AK, Gruber-Schoffnegger D, Drdla-Schutting R, Gerhold KJ, Malcangio M, Sandkühler J. Selective activation of microglia facilitates synaptic strength. J Neurosci 2015;35:4552-70.
- [25] Zhou LJ, Peng J, Xu YN, Zeng WJ, Zhang J, Wei X, Mai CL, Lin ZJ, Liu Y, Murugan M, Eyo UB, Umpierre AD, Xin WJ, Chen T, Li M, Wang H, Richardson JR, Tan Z, Liu XG, Wu LJ. Microglia are indispensable for synaptic plasticity in the spinal dorsal horn and chronic pain. Cell Rep 2019;27:3844-59.
- [26] Loggia ML, Chonde DB, Akeju O, Arabasz G, Catana C, Edwards RR, Hill E, Hsu S, Izquierdo-Garcia D, Ji RR, Riley M, Wasan AD, Zürcher NR, Albrecht DS, Vangel MG, Rosen BR, Napadow V, Hooker JM. Evidence for brain glial activation in chronic pain patients. Brain 2015;138:604-15.
- [27] Albrecht DS, Forsberg A, Sandström A, Bergan C, Kadetoff D, Protsenko E, Lampa J, Lee YC, Höglund CO, Catana C, Cervenka S, Akeju O, Lekander M, Cohen G, Halldin C, Taylor N, Kim M, Hooker JM, Edwards RR, Napadow V, et al. Brain glial activation in fibromyalgia - A multi-site positron emission tomography investigation. Brain Beh Immun 2019;75:72-83.
- [28] Bäckryd E, Tanum L, Lind AL, Larsson A, Gordh T. Evidence of both systemic inflammation and neuroinflammation in fibromyalgia patients, as assessed by a multiplex protein panel

- applied to the cerebrospinal fluid and to plasma. J Pain Res 2017;10:515-25.
- [29] Sisignano M, Baron R, Scholich K, Geisslinger G. Mechanismbased treatment for chemotherapy-induced peripheral neuropathic pain. Nat Rev Neurol 2014;10:694-707.
- [30] Old EA, Nadkarni S, Grist J, Gentry C, Bevan S, Kim KW, Mogg AJ, Perretti M, Malcangio M. Monocytes expressing CX, CR, orchestrate the development of vincristine-induced pain. J Clin Invest 2014:124:2023-36.
- [31] Montague K, Simeoli R, Valente J, Malcangio M. A novel interaction between CX₃CR₄ and CCR₅ signalling in monocytes constitutes an underlying mechanism for persistent vincristineinduced pain. J Neuroinflammation 2018;15:101.
- Adilakshmi T, Sudol I, Tapinos N. Combinatorial action of miRNAs regulates transcriptional and post-transcriptional gene silencing following in vivo PNS injury. PLoS one 2012;7:e39674.
- [33] Kress M, Hüttenhofer A, Landry M, Kuner R, Favereaux A, Greenberg D, Bednarik J, Heppenstall P, Kronenberg F, Malcangio M, Rittner H, Uçeyler N, Trajanoski Z, Mouritzen P, Birklein F, Sommer C, Soreg H. MicroRNAs in nociceptive circuits as predictors of future clinical applications. Front Mol Neurosci 2013:6:33.
- [34] Bali KK, Selvaraj D, Satagopam VP, Lu J, Schneider R, Kuner R. Genome-wide identification and functional analyses of micro-RNA signatures associated with cancer pain. EMBO Mol Med 2013;5:1740-58.
- [35] Niederberger E, Kynast K, Lotsch J, Geisslinger G. MicroRNAs as new players in the pain game. Pain 2011;152:1455-8.
- [36] Park CK, Xu ZZ, Berta T, Han Q, Chen G, Liu XJ, Ji RR. Extracellular microRNAs activate nociceptor neurons to elicit pain via TLR7 and TRPA1. Neuron 2014;82:47-54.
- [37] Zhang ZJ, Guo JS, Li SS, Wu XB, Cao DL, Jiang BC, Jing PB, Bai XQ, Li CH, Wu ZH, Lu Y, Gao YJ. TLR8 and its endogenous ligand miR-21 contribute to neuropathic pain in murine DRG. J Exp Med 2018;215:3019-37.
- [38] Strickland IT, Richards L, Holmes FE, Wynick D, Uney JB, and Wong LF. Axotomy-induced miR-21 promotes axon growth in adult dorsal root ganglion neurons. PLoS One 2011;6:e23423.
- Simeoli R, Montague K, Jones HR, Castaldi L, Chambers D, Kelleher JH, Vacca V, Pitcher T, Grist J, Al-Ahdal H, Wong LF, Perretti M, Lai J, Mouritzen P, Heppenstall P, Malcangio M. Exosomal cargo including microRNA regulates sensory neuron to macrophage communication after nerve trauma. Nat Commun 2017;8:1778.
- [40] Smith JB, Agarwall P, Bhowmick NA. MicroRNA applications for prostate, ovarian and breast cancer in the era of precision medicine. Endocrine-Related Cancer 2017;24:R157-72.