Systematic review

Clare Bartholomew, Simon Lack* and Bradley Neal

Altered pain processing and sensitisation is evident in adults with patellofemoral pain: a systematic review including meta-analysis and meta-regression

https://doi.org/10.1515/sjpain-2019-0079 Received May 22, 2019; revised August 14, 2019; accepted August 15, 2019; previously published online September 27, 2019

Abstract

Background and aims: Previous systematic reviews have reported manifestations of pain sensitisation as a feature of painful knee disorders, in particular osteoarthritis, with moderate evidence for pain sensitisation in patellofemoral pain (PFP). However, despite past studies recruiting female mostly adolescent PFP patients, it is unclear if sex or age plays a role. Investigation is required to determine if altered pain processing is a key feature of PFP and if a subgroup of patients is at an increased risk to help provide targeted management. The primary aim of this systematic review was to examine evidence investigating pain processing in PFP. Secondary aims were to evaluate the relationship between pain processing and (1) sex, (2) age and (3) symptom duration.

Methods: The protocol was prospectively registered with PROSPERO (CRD42019129851). PubMed, CINAHL, Web of Science and EMBASE were systematically searched from inception to April 2019 for studies investigating pain processing in PFP patients compared to controls using quantitative sensory testing. Each included paper was assessed for methodological quality using a modified version of Downs and Black. Means and standard deviations were extracted to calculate standardised mean differences (SMD) and 95% confidence intervals (95% CI). Where possible meta-analysis and meta-regression were performed using a random effects model.

Results: Eleven studies were identified, two medium and nine high quality. Meta-analysis indicates moderate evidence for decreased pressure pain thresholds (SMD -0.68, 95% CI -0.93 to -0.43), increased tactile detection thresholds (SMD 1.35, 95% CI 0.49-2.22) and increased warmth detection thresholds (SMD 0.61, 95% CI 0.30-0.92) in PFP patients compared to controls. Secondary analysis indicates moderate evidence for decreased pressure pain thresholds in female compared to male patients (SMD -0.75, 95% CI -1.34 to -0.16). Meta-regression indicates a moderate correlation between decreasing local and distal pressure pain thresholds and decreasing patient age (local $R^2 = 0.556$, p = 0.0211; distal $R^2 = 0.491$, p = 0.0354) but no correlation with symptom duration (p > 0.05).

Conclusions: Evidence from this systematic review with meta-analysis and meta-regression appears to suggest the presence of altered pain processing and sensitisation in patients with PFP with increased sensitivity indicated in female patients and younger patients.

Implications: With evidence of altered pain processing and sensitisation in PFP, it may be beneficial for clinicians to consider management approaches that aim specifically at adressing neuropathic pain, for example neuroscience education, to improve patients outcomes. With female patients and vounger patients indicated as experiencing greater degree of sensitivity, this may be a good demographic to start screening for sensitisation, in order to better identify and treat those most affected.

Keywords: patellofemoral pain syndrome; pain processing; sensitisation; quantitative sensory testing.

*Corresponding author: Simon Lack, PhD, Centre for Sports and Exercise Medicine, William Harvey Research Institute, Bart's and the London School of Medicine and Dentistry, Queen Mary University of

London, London, UK; and Pure Sports Medicine, London, UK, E-mail: s.lack@gmul.ac.uk

Clare Bartholomew: Centre for Sports and Exercise Medicine, Queen Mary University of London, London, UK

Bradley Neal: Centre for Sports and Exercise Medicine, Queen Mary University of London, London, UK; and Pure Sports Medicine, London, UK

1 Introduction

Patellofemoral pain (PFP) is a challenging clinical condition seen regularly in primary and secondary care settings, with prevalence reported to be 22.7% in the general population [1–3]. PFP is characterised by insidious onset anterior or retropatellar knee pain that is exacerbated by activities associated with patellofemoral joint loading such as squatting, kneeling, stair ambulation, running

and jumping [4]. Symptoms often result in reduced participation in both activities of daily living and sports, with many experiencing recurrent or persistent pain [5, 6]. Long-term, only one in three persons with PFP are pain free after 12 months of treatment, with the potential risk of patellofemoral joint osteoarthritis development in later life in those with persistent pain [7–11]. With such chronicity, development of a greater understanding as to why pain persists is crucial to further current literature.

Despite the reported high prevalence and persistence of PFP there is little consensus concerning its aetiology [12]. Previous research often focusses on biomechanical deficits despite pain presentations varying considerably between patients and emerging evidence to suggest the contribution of neuropathic pain components [13–23]. Prolonged nociceptive firing may lead to manifestations of both peripheral sensitisation (increased responsiveness and reduced threshold of the nociceptive neurones in the periphery to stimulation of their receptive field) and central sensitisation (increased responsiveness of the nociceptive neurones in the central nervous system to their normal or subthreshold afferent input) causing pain hypersensitivity in patients [24, 25].

No tool currently exists to directly measure pain processing, with evidence of sensitisation identified through the use of quantitative sensory testing (QST) [25, 26]. QST uses a variety of non-noxious and noxious stimuli to evaluate the function of individual sensory responses, both peripherally and centrally [27, 28]. Pressure pain thresholds (PPTs) are commonly used, reflecting the function of myelinated A β -fibres and A δ -fibres both around the painful knee (local hyperalgesia) and at remote sites (distal hyperalgesia) [28, 29]. Conditioned pain modulation (CPM) and temporal summation (TS) are two psychophysical tests to assess anti-nociceptive and pro-nociceptive elements of central sensitisation respectively [15]. CPM is thought to reflect the descending endogenous inhibitory system, a key contributor to persistent pain, through the net sum of inhibition and facilitation which normally allows painful stimuli to inhibit other painful stimuli [27, 30]. TS is related

to "wind-up" of central nervous system neurones producing an increasing response to repeated C-fibre nociceptive input of the same intensity [27].

Previous systematic reviews by Fingleton et al. [28] and subsequently de Oliveira Silva et al. [31] have reported manifestations of pain sensitisation in knee osteoarthritis and painful knee disorders, respectively. Although the review by de Oliveira Silva et al. [31] explored pain sensitisation in PFP, it also investigated knee osteoarthritis, patellar tendinopathy and post-meniscectomy, lacking specificity to PFP with new publications emerging since this review was published [15, 32]. It remains unclear if females and males with PFP are affected by altered pain processing to the same degree or if changes are related to factors such as age or symptom duration. Addressing these knowledge gaps may help to determine if a particular patient demographic is greater affected allowing implementation of a more targeted management approach.

The primary aim of this systematic review was to examine evidence investigating pain processing in PFP. Secondary aims were to evaluate the relationship between pain processing and (1) sex, (2) age and (3) symptom duration.

2 Methods

This review was completed in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) statement [33] and was prospectively registered with PROSPERO (CRD42019129851).

2.1 Search strategy

PubMed, CINAHL, Web of Science and EMBASE were systematically searched by one reviewer (CB) from inception to April 2019 using a comprehensive and reproducible search strategy outlined in Table 1. Each database was searched using two groups of keyword combinations,

Table 1: Search strategy.

Group one keywords	AND	Group two keywords
Patellofemoral pain OR PFP OR patellofemoral pain syndrome OR patellofemoral syndrome OR patellofemoral joint pain OR anterior knee pain OR retropatellar pain OR peripatellar pain OR parapatellar pain OR chondromalacia patellae		Pain sensitisation OR central sensitisation OR peripheral sensitisation OR hyperalgesia OR central hypersensitivity OR allodynia OR pain processing OR pain modulation OR pain threshold OR pressure pain threshold OR pain pathophysiology OR somatosensory OR neuropathic pain OR neuropathic-like pain OR central pain OR peripheral pain OR central nervous system sensitisation OR peripheral nervous system sensitisation

relating to PFP and pain processing, to identify all relevant literature. The electronic search was complemented by hand searching the reference lists of retrieved articles and the completion of citation tracking using Google Scholar.

2.2 Inclusion and exclusion criteria

Studies were eligible for inclusion if they investigated pain processing using QST in PFP participants compared to controls. QST measures included pressure pain thresholds, tactile detection thresholds, thermal detection thresholds (warmth and cold detection thresholds), vibration detection thresholds, CPM and TS. PFP participants were required to meet the diagnostic criteria of insidious onset anterior or retropatellar knee pain, exacerbated by activities associated with patellofemoral joint loading including squatting, kneeling, stair ambulation, running and jumping [4]. Mixed-sex and single-sex participant groups of all ages were included. Studies were required to involve only human subjects, full-text cohort, cross-section or case-control studies and published in peer-review journals in the English language.

Studies were excluded if they did not contain a control group or included participants with additional knee pathologies (including internal derangement or ligamentous instability) or previous knee surgery. The exclusion criteria also ruled out unpublished, non-peer reviewed, animal and studies not in the English language, in addition to case studies, reviews, letters, opinion articles, conference proceedings and thesis papers.

2.3 Review process

Studies identified through the search strategy were downloaded into Endnote X7.5 (Thomson Reuters Cooperation, New York, NY, USA), with duplicates subsequently deleted. Titles and abstracts were screened for eligibility with the full-texts of potentially relevant articles obtained for further review by one reviewer (CB). Full-texts were screened where eligibility could not be determined by the abstract alone, with any uncertainties resolved at a consensus meeting with a second reviewer (SL).

2.4 Quality assessment

Study methodological quality was evaluated using a modified version of the Downs and Black checklist [34] and a PFP diagnostic checklist [35]. Downs and Black [34] is a validated tool that is widely used in literature, with good

reliability and validity reported [36, 37]. The modified version contained 16 criteria following the removal of criteria 4, 8, 9, 13, 14, 17, 19, 23, 24, 26 and 27 which have previously been deemed inappropriate for non-randomised studies [38]. As described by Hootman et al. [39], studies were scored out of a maximum of 17 points, with the score converted into a percentage to allow banding into low (≤33.3%), moderate (33.4–66.7%) or high (≥66.8%) quality. Studies scoring below 50% were excluded from subsequent analysis to prevent the inclusion of studies with a high risk of bias [35]. The PFP diagnostic checklist is a seven-item scale developed by Barton et al. [35] that identifies key inclusion and exclusion criteria for the diagnosis of PFP. A higher score indicates a higher number of criteria having been reported thus a more comprehensive diagnosis made. Both quality assessment tools were completed by two independent reviewers (CB and BN) with any discrepancies resolved at a consensus meeting. A third reviewer (SL) was available but not required.

2.5 Data extraction

Study details (primary author, year, study design), participant demographics (sample size, sex, age, height, weight, BMI), symptom duration and QST measures of pain processing (PPTs, tactile detection thresholds, vibration detection thresholds, thermal detection thresholds, CPM, TS), both locally and distally, were extracted and analysed from each study. Means and standard deviations were sourced from the papers or through contacting the authors via email. One study [16] presented data as median and interquartile range which were converted into mean and standard deviation following guidance from the Cochrane Handbook [40].

2.6 Data analysis

Data analysis was performed using the review manager software package RevMan 5.3.5 (The Nordic Cochrane Centre, The Cochrane Collaboration, 2014). Meta-analysis was completed where a minimum of two studies recorded comparable QST measures in PFP cases and controls. Data which could not be pooled was summarised in a narrative format and presented within tables. Means and standard deviations were inputted into RevMan to allow calculation of standardized mean difference (SMD) and 95% confidence interval (95% CI). SMDs were calculated for both pooled and unpooled data as all studies presented data as continuous scale.

A random effects model was used for meta-analysis. Calculated SMDs were categorised as small (≤0.59), medium (0.60-1.19) or large (≥ 1.20) effect sizes, as recommended by Hume et al. [41]. The level of statistical heterogenicity for pooled data was established using χ^2 and I^2 statistics with the level of significance set at p < 0.05. PPT locations were categorised into local and distal sites, with the following definitions constructed to standardize analysis. Local was defined as either the most painful site reported at the patella or the site closest to the central patella, since this is thought to be the most prevalent site of pain in PFP [23]. Distal was defined as the site most anatomically distant from the primary area of pain [28].

Levels of evidence were established for each finding with the definitions based on the van Tulder Criteria [42].

- (i) Strong: results derived from multiple studies, including at least two HQ studies, which are statistically homogenous (I² < 50%).
- (ii) Moderate: results derived from multiple studies, including at least one HQ study, which are statistically heterogeneous (I²>50%); or from multiple LQ studies which are statistically homogenous (I² < 50%).
- (iii) Limited: results derived from multiple LQ studies which are statistically heterogeneous (I2>50%); or from one HQ study.
- (iv) Very limited: results derived from one LQ study.
- (v) Conflicting: insignificant results derived from multiple statistically heterogeneous studies ($I^2 > 50\%$).

Initial planned analysis was to consider the relationship between PPTs before and after treatment, however, due to a paucity of studies presenting data for both time points this analysis was not possible. Instead, a random effects meta-regression was performed to explore the relationship between the SMDs of individual studies PPTs and both age and symptom duration. Meta-regression was completed using the comprehensive analysis and graphic software programme Prism 8.1.0 (GraphPad, San Diego, CA, USA). An α level was set a priori at <0.05. Calculated correlation coefficients (R2) were categorised as negligible (0.00-0.10), weak (0.10-0.39), moderate (0.4-0.69), strong (0.7–0.89) and very strong (0.90–1.00) correlations, as outlined by Schober et al. [43].

3 Results

3.1 Search strategy

The results of the database searches are displayed in Fig. 1. The search identified 3,286 relevant papers and following the deletion of duplicates, 2,689 papers remained.

After subsequent title and abstract screening, 21 papers remained and full-text assessment for eligibility identified 11 studies meeting the inclusion criteria [15-23, 32, 44]. The most common reasons for exclusion were a lack of specificity to PFP or the absence of a control group.

3.2 Study characteristics

Study characteristics are outlined in Table 2. All 11 included studies investigated pain processing in PFP patients compared to controls using QST measures. Three studies were case-control [18, 23, 32], six were cross-sectional [15, 19-22, 44] and two were cohort [16, 17].

3.3 Quality assessment

The results of the Downs and Black checklist [34] and PFP diagnostic checklist [35] are presented in Tables 3 and 4. The Downs and Black scores ranged from 64.7% [16, 18] to 88.2% [20–23], with nine studies rated high quality (HQ) [15, 17, 19–23, 32, 44] and two studies rated medium quality (MQ) [16, 18]. All studies exceeded the 50% threshold for inclusion. The most common reasons for methodological compromise were lack of detail concerning the population characteristics, lack of assessor blinding and inadequate adjustment for confounders. The PFP diagnostic checklist scores ranged from 3/7 points [17] to 7/7 points [21, 22, 32, 44]. Commonly, studies did not provide a clear definition of the location of pain or state that pain should be of insidious onset, unrelated to trauma.

3.4 Quantitative sensory testing measures

Data pooling for meta-analysis was possible for PPTs, tactile detection thresholds and thermal detection thresholds with forest plots displayed in Figs. 2-4, respectively. Results that could not be pooled are summarised in a narrative format in Table 5.

3.4.1 Pressure pain thresholds

Nine studies (8 HQ [15, 19-23, 31, 44] and 1 MQ [18]) assessed local and distal PPTs using handheld algometry (Fig. 2). Moderate evidence (8 HQ [15, 19–23, 31, 44] and 1 MQ [18]) of medium effect indicates decreased PPTs locally in PFP patients compared to controls (n = 567, SMD -0.80, 95% CI -1.21 to -0.39, p = 0.0001; $I^2 = 80\%$, p < 0.00001). Moderate

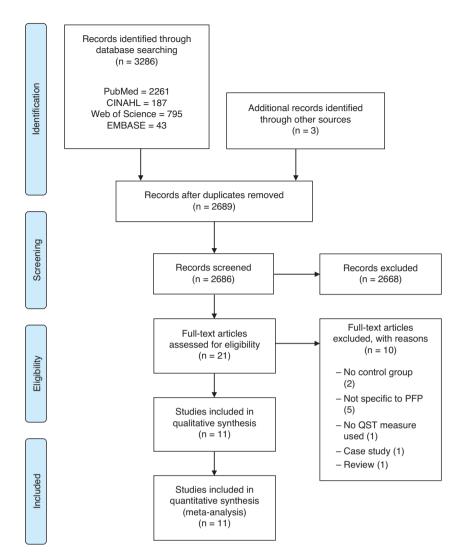


Fig. 1: PRISMA flow diagram.

evidence (8 HO [15, 19-23, 31, 44] and 1 MO [18]) of small effect indicates decreased PPTs distally in PFP patients compared to controls (n=567, SMD -0.55, 95% CI -0.85to -0.25, p = 0.0003; $I^2 = 64\%$, p = 0.0004). Overall, moderate evidence of medium effect indicates decreased PPTs in PFP patients compared to controls (n = 567, SMD -0.68, 95% CI -0.93 to -0.43, p < 0.00001; $I^2 = 75\%$, p < 0.00001).

3.4.2 Tactile detection thresholds

Three studies (1 HQ [17] and 2 MQ [16, 18]) assessed local tactile detection thresholds with two studies also assessing distal tactile detection thresholds (1 HO [17] and 1 MO [16]) using monofilament pressure. Moderate evidence (1 HQ[17] and 2 MQ[16, 18]) of large effect indicates increased tactile detection thresholds locally in PFP patients compared to controls (n=225, SMD 1.67, 95% CI 0.33-3.01,

p = 0.01; $I^2 = 94\%$, $p \le 0.00001$). Moderate evidence (1 HQ [17] and 1 MQ [16]) of medium effect indicates increased tactile detection thresholds distally in PFP patients compared to controls (n = 225, SMD 0.82, 95% CI 0.46–1.17, p < 0.00001; $I^2 = 16\%$, p = 0.27). Overall, moderate evidence of large effect indicates increased tactile detection thresholds in PFP patients compared to controls (n = 225, SMD 1.35, 95% CI 0.49–2.22, p = 0.002; $I^2 = 93\%$, p < 0.00001).

3.4.3 Thermal detection thresholds

Two studies (1 HQ [17] and 1 MQ [16]) assessed warmth detection thresholds (WDTs) and cold detection thresholds (CDTs) using an adjustable thermal stimulator. Moderate evidence (1 HQ [17] and 1 MQ [16]) of medium effect indicates increased WDTs in PFP patients compared to controls (n = 185, SMD 0.61, 95% CI 0.30-0.92, p = 0.0001;

Table 2: Study characteristics.

Primary author, year, study design	S _t	Sample size (female:male)	Mean age	Mean age±SD (years)	Mean height±SD (m)	ESD (m)	Mean weight±SD (kg)	±SD (kg)	Mean BMI±SD (kg/m²)) (kg/m²)
	Cases	Controls	Cases	Controls	Cases	Controls	Cases	Controls	Cases	Controls
Bartholomew, 2019, case-control [32]	11:2	10:10	30.0ª	23.0ª	1.69±0.09	1.74±0.09	68.9±9.27	71.1±15.5	23.9±2.14	23.1±2.83
Holden, 2018, cross-sectional [15]	36:0	29:0	22.8 ± 1.1	23.1 ± 1.2	1.69 ± 0.08	1.67 ± 0.06	69.2 ± 13.8	63.3 ± 11.1	24.1 ± 4.1	22.7 ± 4.1
Jensen, 2007, cohort [16]	16:9	12:11	32.2ª	29.1^{a}	NR	NR	NR	NR	23.8ª	23.4ª
Jensen, 2008, cohort [17]	35:56	12:11	31.2ª	29.1ª	NR	NR	NR	NR	25.3ª	23.4ª
Noehren, 2016, case-control [18]	20:0	20:0	23.2 ± 5.6	22.7 ± 5.0	1.64 ± 0.09	1.65 ± 0.06	67.2 ± 9.3	60.5 ± 8.0	NR	NR
Pazzinatto, 2016, cross-sectional [19]	20:0	20:0	25.6 ± 4.1	27.0 ± 5.6	1.63 ± 0.06	1.62 ± 0.04	58.3±6.9	60.0 ± 7.4	NR	NR
Pazzinatto, 2017, cross-sectional [20]	38:0	33:0	21.6 ± 2.6	22.4 ± 3.5	1.64 ± 0.06	1.65 ± 0.10	61.9 ± 9.9	62.3 ± 10.6	NR	NR
Rathleff, 2013, cross-sectional [21]	57:0	22:0	17.3 ± 1.1	17.1 ± 0.9	1.68 ± 0.05	1.69 ± 0.05	58.5 ± 6.7	60.6 ± 9.0	$20.5\!\pm\!1.9$	21.4 ± 3.1
Rathleff, 2016, cross-sectional [22]	20:0	20:0	20.0ª	20.5^{a}	1.70 ± 0.05	1.69 ± 0.05	63.8±8.3	61.7 ± 7.4	NR	NR
Rathleff, 2017, cross-sectional [44]	23:10	22:10	28.5 ± 5.3	27.1 ± 5.2	1.69 ± 0.11	1.70 ± 0.09	69.7 ± 16.3	63.9 ± 13.1	24.2 ± 3.6	21.9 ± 3.0
van der Heijden, 2018, case-control [23]	35:29	41:29	23.4±7.0	23.1 ± 5.9	NR	NR	NR	NR	23.6±3.8	22.3 ± 3.0

SD = standard deviation; BMI = body mass index; NR = not recorded; ano SD value provided.

Table 3: Downs and Black quality assessment.

	1 2 3 5 6 7	2	۳, د	5	, 7	10	11	12	15	16	18	20	21	22	25	Total score (out of 17)	Percentage score	Quality band
Bartholomew, 2019 [32]	1	1	1	1 1	1	1	1	1	0	1	1	1	0	1	1	14	82.4	원
Holden, 2018 [15]	1	1	1	1 1	1	0	1	1	П	1	7	7	1	1	0	14	82.4	Ä
Jensen, 2007 [16]	1	1	1 (0 1	1	0	1	1	0	1	1	0	1	0	1	11	64.7	MQ
Jensen, 2008 [17]	1	1	1 (0 1	1	0	1	1	0	1	1	_	1	0	1	12	70.6	НО
Noehren, 2016 [18]	1	7	٦,	1 1	1 1	1	0	0	0	1	7	7	0	0	1	11	64.7	MQ
Pazzinatto, 2016 [19]	1	1	1 (0 1	1	1	1	1	0	1	1	1	1	1	1	14	82.4	HQ
Pazzinatto, 2017 [20]	1	1	1 (0 1	1 1	1	1	1	_	1	1	1	1	1	1	15	88.2	얼
Rathleff, 2013 [21]	1	7	1	1 1	1 1	1	1	1	0	1	1	1	1	1	1	15	88.2	НQ
Rathleff, 2016 [22]	1	1	1	1 1	1	0	1	1	Т	1	1	1	1	1	1	15	88.2	НQ
Rathleff, 2017 [44]	1	1	1 (0 1	1	1	1	1	Т	1	1	7	1	0	1	14	82.4	HQ
van der Heijden, 2018 [23]	1	1	1	1 1	1	1	1	1	0	1	7	7	1	1	1	15	88.2	НQ

1 = hypothesis/aim/objective clearly described; 2 = main outcomes clearly described in introduction or methods section; 3 = characteristics of included patients clearly described; 5 = distributions assess the main outcomes; 20 = accurate (valid and reliable) main outcome measures used; 21 = cases and controls recruited from same population; 22 = cases and controls recruited over the probability values reported for main outcomes; 11 = subjects representative of entire population from which they were recruited; 12 = subjects prepared to participate representative of entire population from which they were recruited; 15 = blinding of those measuring main outcomes; 16 = any results based on "data dredging" made clear; 18 = appropriate statistical tests used to of principal confounders in each group to be compared clearly described; 6=main findings clearly described; 7=estimates for random variability for main outcomes provided; 10=actual same time period; 25 = adequate adjustment for confounders in analyses from which main findings drawn; UTD = unable to determine (scores 0); HQ = high quality; MQ = medium quality.

Table 4: PFP diagnostic checklist.

Primary author, year		Inclusion	ı items			Exclusion	ı items	Total score (out of 7)
	1	2	3	4	5	6	7	
Bartholomew, 2019 [32]	1	1	1	1	1	1	1	7
Holden, 2018 [15]	1	1	1	0	0	0	1	4
Jensen, 2007 [16]	1	1	1	1	1	1	0	6
Jensen, 2008 [17]	0	0	0	1	1	1	0	3
Noehren, 2016 [18]	0	0	0	1	1	1	1	4
Pazzinatto, 2016 [19]	0	1	1	1	1	1	1	6
Pazzinatto, 2017 [20]	0	1	1	1	1	1	1	6
Rathleff, 2013 [21]	1	1	1	1	1	1	1	7
Rathleff, 2016 [22]	1	1	1	1	1	1	1	7
Rathleff, 2017 [44]	1	1	1	1	1	1	1	7
van der Heijden, 2018 [23]	0	0	1	1	1	0	1	4

1= clear definition of location; 2= insidious onset unrelated to trauma; 3 = symptoms consistent with diagnosis; 4 = previous knee surgery; 5 = internal derangement; 6 = ligamentous instability; 7 = other sources of anterior knee pain.

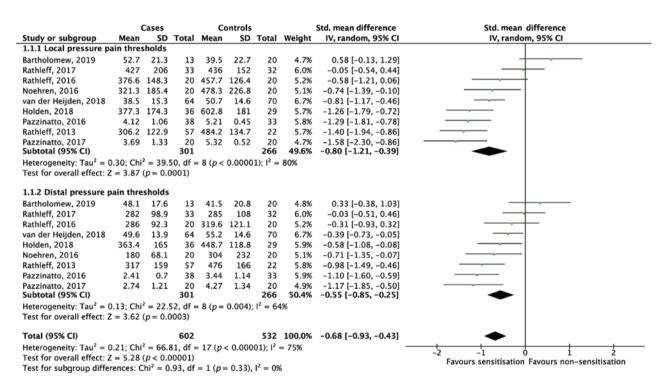


Fig. 2: Meta-analysis of local and distal pressure pain thresholds.

 $I^2 = 0\%$, p = 0.85). Moderate evidence (1 HQ [17] and 1 MQ [16]) indicates no significant difference in CDTs in PFP cases compared to controls.

3.4.4 Vibration detection thresholds

One study (HQ [17]) assessed local vibration detection thresholds using a handheld vibrameter but only testing

the painful and contralateral knee of patients and not controls. Very limited evidence (1 HQ [17]) indicates increased vibration detection thresholds in the painful compared to contralateral knee of patients (n = 91, painful knee median 1.9 μm, IQR 1.3–2.7; contralateral knee median 1.8 μm, IQR 1.0–2.2, p = 0.003). Twelve percent of patients reported an uncomfortable sensation descending distally in the leg when testing the vibration detection threshold on the painful side which was not experienced contralaterally.

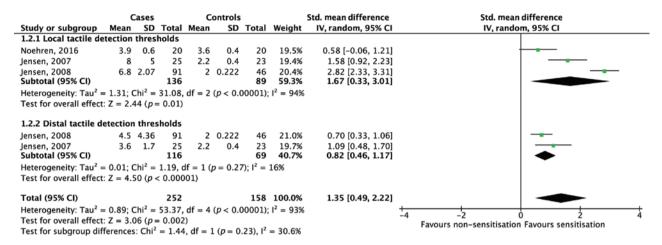


Fig. 3: Meta-analysis of local and distal tactile detection thresholds.

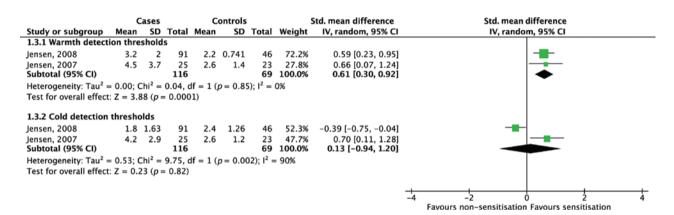


Fig. 4: Meta-analysis of warmth and cold detection thresholds.

3.4.5 Conditioned pain modulation

Three studies (3 HQ [15, 22, 44]) assessed CPM by measuring the change in pressure tolerance threshold (PTT) and pressure detection thresholds (PDT) from baseline to application of a painful stimulus. Different methodological approaches were utilised with Holden et al. [15] and Rathleff et al. [15, 22] using cuff algometry to induce pain and Rathleff et al. [44] using cold water immersion. Holden et al. [15] reported no significant difference in CPM between current-PFP patients compared to controls (n = 65, effect size Cohen's d = 0.4, 95% CI -0.1-0.5, p > 0.05). However, CPM effect was found to be reduced in current-PFP patients compared to recovered-PFP patients (n = 58, effect size Cohen's d = 0.7, 95% CI 0.2-1.3, p < 0.05).Rathleff et al. [22] reported a reduced CPM effect, based on PTTs, in PFP patients compared to controls (n=40,percentage difference=78%, 95% CI 4–151, p<0.04). Similarly, results showed a reduced CPM effect, based on PDTs, in PFP patients compared to controls (n=40,

percentage difference = 20%, 95% CI 1–39%, p < 0.04) [22]. Rathleff et al. [44] reported no significant difference in CPM between PFP patients compared to controls (n = 65, F(1,189) = 0.39, p = 0.89).

3.4.6 Temporal summation

Two studies (2 HQ [15, 22]) assessed TS by delivering 10 cuff pressure stimuli at the level of the PTT with pain intensity rated using an electronic visual analogue scale. Holden et al. [15] reported that the current-PFP patients had a facilitated TS effect compared to controls (n=65, mean difference 0.8 cm, 95% CI 0.3–1.4, p<0.01). A similarly facilitated TS effect was identified in recovered-PFP patients compared to controls (n=51, mean difference 0.7 cm, 95% CI 0.08–1.4, p<0.05) with no significant difference between the current-PFP and recovered-PFP patients (n=58, mean difference 0.1 cm, 95% CI –0.7 to 0.6, p=0.5) [15]. Rathleff et al. [22] reported no significant difference in

Table 5: Main findings of each study.

Primary author, year	Peripheral sensitisation measures	Central sensitisation measures	Results summary
Bartholomew, 2019 [32]	 PPTs using pressure algometry at six sites – five local (four peripatellar, one ipsilateral tibialis anterior) and one distal (contralateral tibialis anterior) 	NR	 No significant difference in PPTs in PFP patients compared to controls
Holden, 2018 [15]	 PPTs using pressure algometry at three sites – two local (centre of patella, ipsilateral tibialis anterior) and one distal (contralateral lateral epicondyle) 	2. CPM provoked by cuff-induced pain to arm. Change in cuff PDT and PTT recorded before and during stimulus 3. TS using computer-controlled cuff algometry to lower leg	Significantly decreased PPTs in PFP patients compared to controls No significant difference in CPM in current-PFP patients compared to controls. Significantly decreased CPM effect in current-PFP patients compared to recovered-PFP patients 3. Significantly increased TS effect in both current-PFP and recovered-PFP patients
Jensen, 2007 [16]	 TDTs using von Frey monofilaments at two sites (most painful area of knee and same site contralaterally) ThDTs (WDT, CDT) using computer-controlled thermotesting at two sites (most painful area of knee and same site contralaterally) 	NR.	Significantly increased TDTs in PFP patients compared to controls Significantly increased WDTs in PFP patients compared to controls. Significantly increased CDTs in PFP patients compared to controls
Jensen, 2008 [17]	 TDTs using von Frey monofilaments at two sites (most painful area of knee and same site contralaterally) ThDTs (WDT, CDT) using computer-controlled thermotesting at two sites (most painful area of knee and same site contralaterally) VDTs using a handheld vibrameter at two sites bilaterally (patella and medial malleolus) 	Z.	 Significantly increased TDTs in PFP patients compared to controls Significantly increased WDTs in PFP patients compared to controls. Significantly decreased CDTs in PFP patients compared to controls Significantly increased VDTs in painful knee compared to non-painful knee of PFP patients. No significant difference at medial mall-polus site.
Noehren, 2016 [18]	 PPTs using pressure algometry at three sites – two local (centre of patella, lateral retinaculum) and one distal (right lateral epicondyle of elbow) TDTs using Semmes-Weinstein monofilaments at two sites (central patella, lateral retinaculum) 	Z.	Significantly decreased PPTs at all sites in PFP patients compared to controls Significantly increased TDTs at the central patella site in PFP patients compared to controls. No significant difference at lateral retinaculum site
Pazzinatto, 2016 [19]	 PPTs using pressure algometry at five sites – four local (all peripatellar) and one distal (contralateral upper limb) 	N.	 Significantly decreased PPTs at all local sites in PFP patients compared to controls. No significant difference at distal site

Table 5 (continued)

Primary author, year	Peripheral sensitisation measures	Central sensitisation measures	Results summary
Pazzinatto, 2017 [20]	PPTs using pressure algometry at five sites – four local (all peripatellar) and one remote (contralateral upper limb)	NR	 Significantly decreased PPTs at all sites in PFP patients compared to controls
Rathleff, 2013 [21]	PPTs using pressure algometry at five sites locally (four peripatellar, one ipsilateral tibialis anterior)	NR	 Significantly decreased PPTs at all sites in PFP patients compared to controls
Rathleff, 2016 [22]	 PPTs using pressure algometry at three sites – two local (central patella, ipsilateral tibialis anterior) and one distal (contralateral lateral epicondyle of elbow) 	CPM provoked by cuff-induced pain to arm. Change in cuff PDT and PTT recorded before and during stimulus TS using computer-controlled cuff algometry to lower leg	Significantly decreased PPTs at all sites in PFP patients compared to controls No significant difference in CPM in PFP patients compared to controls No significant difference in TS in PFP patients
Rathleff, 2017 [44]	 PPTs using pressure algometry at three sites – two local (central patella, ipsilateral tibialis anterior) and one distal (contralateral lateral epicondyle of elbow) 	 CPM provoked by cold water immersion of hand. Change in PPT recorded before and after stimulus 	No significant difference in PPTs in PFP patients compared to controls 2. No significant difference in CPM in PFP patients compared to controls
van der Heijden, 2018 [23]	 PPTs using pressure algometry at three sites – one local (most painful area of knee) and two distal (same site on contralateral knee, contralateral dorsolateral midshaft of forearm) 	NR	 Significantly decreased PPTs at all sites in PFP patients compared to controls

PPT = pressure pain threshold; NR = not recorded; PFP = patellofemoral pain; CPM = conditioned pain modulation; PDT = pain detection threshold; PTT = pain tolerance threshold; TS = temporal summation; TDT=tactile detection threshold; ThDT=thermal detection threshold; WDT=warmth detection threshold; CDT=cold detection threshold; VDT= vibration detection threshold.

TS between the PFP patients compared to controls (n = 40, mean difference 0.9 cm, 95% CI -0.5 to 2.3, p = 0.15).

3.5 Relationship between pressure pain thresholds and sex

Three studies (3 HO [23, 31, 44]) included mixed sex participants measuring local and distal PPTs. Results from these studies were pooled for PFP patients vs. controls (Fig. 5) and female vs. male PFP patients (Fig. 6).

Moderate evidence (3 HQ [23, 31, 44]) indicates no significant difference in PPTs locally (n = 222; SMD -0.14, 95% CI -0.92 to 0.64; p = 0.72; $I^2 = 86\%$, p = 0.0007) or distally (n = 222; SMD -0.12, 95% CI -0.51 to 0.27; p = 0.56; $I^2 = 48\%$, p = 0.15) in the mixed sex PFP patients compared to controls. The overall effect also indicates no significant difference (n = 222; SMD 0.13, 95% CI -0.52 to 0.26; p = 0.51; $I^2 = 74\%$, p = 0.002).

Moderate evidence (3 HQ [23, 31, 44]) indicates no significant difference in PPTs locally (n = 91; SMD -0.85, 95% CI –1.72 to 0.01; p = 0.05; $I^2 = 62\%$, p = 0.07) or distally (n = 91; SMD -0.59, 95% CI -1.62 to 0.43; p = 0.26; $I^2 = 74\%$, p = 0.02) in the female compared to male PFP patients. However, considering the overall effect, moderate evidence of medium effect indicates decreased PPTs in the female patients (n = 91; SMD -0.75, 95% CI -1.34 to -0.16; p = 0.01; $I^2 = 63\%$, p = 0.02).

3.6 Relationship between pressure pain thresholds and age

All nine studies (8 HQ [15, 19-23, 31, 44] and 1 MQ [18]) assessing local and distal PPTs provided mean ages of patients. Meta-regression was possible to evaluate the relationship between PPTs and age. Findings indicate a moderate correlation between decreasing local PTTs and

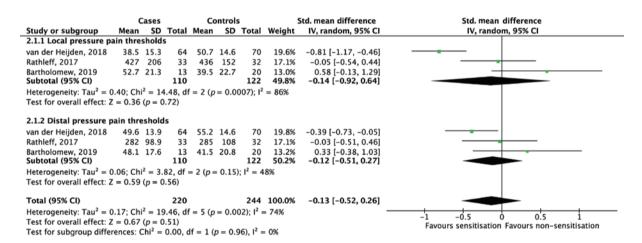


Fig. 5: Meta-analysis pressure pain thresholds in mixed sex studies.

	Fem	ale case	es	Mal	es case	s		Std. mean difference	Std. mean difference
Study or subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, random, 95% CI	IV, random, 95% CI
2.2.1 Local pressure pa	ain thres	sholds							
van der Heijden, 2018	33.2	10	21	50.6	15.7	23	21.1%	-1.29 [-1.94, -0.63]	
Rathleff, 2017	403.2	142.4	24	608.8	229	10	18.8%	-1.17 [-1.97, -0.38]	
Bartholomew, 2019 Subtotal (95% CI)	55	19.8	11 56	39.9	34.1	2 35	9.8% 49.6%	0.65 [-0.88, 2.19] -0.85 [-1.72, 0.01]	
Heterogeneity: $Tau^2 = 0$.35: Chi	² = 5.31	. df =	2(p = 0)).07): I²	= 62%		,,	
Test for overall effect: Z				- 0	,, .	02/0			
2.2.2 Distal pressure p	ain thre	sholds							
van der Heijden, 2018	42.6	9.7	21	58.6	11.7	23	20.8%	-1.46 [-2.13, -0.78]	
Rathleff, 2017	275.9	96.8	24	307	111.2	10	19.6%	-0.30 [-1.04, 0.44]	
Bartholomew, 2019 Subtotal (95% CI)	49.3	19	11 56	41.7	0.424	2 35	9.9% 50.4%	0.39 [-1.13, 1.91] -0.59 [-1.62, 0.43]	
Heterogeneity: $Tau^2 = 0$.58: Chi	$^{2} = 7.76$. df =	2(p = 0)).02): I ²	= 74%			
Test for overall effect: Z	= 1.13	(p = 0.2)	6)	"					
Total (95% CI)			112			70	100.0%	-0.75 [-1.34, -0.16]	-
Heterogeneity: $Tau^2 = 0$.32; Chi	$^{2} = 13.5$	9, df =	5 (p =	0.02); 1	$^{2} = 639$	%		
Test for overall effect: Z	= 2.48	(p = 0.0)	1)						Females more sensitised Males more sensitised
Test for subgroup differ	rences: C	$chi^2 = 0.$	14, df	= 1 (p = 1)	= 0.70),	$I^2 = 09$	6		remaies more sensitised males more sensitised

Fig. 6: Meta-analysis pressure pain thresholds in female cases compared to male cases in mixed sex studies.

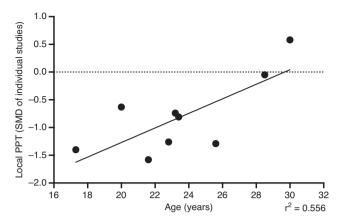
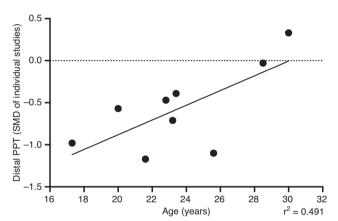



Fig. 7: Meta-regression scatterplot of local pressure pain thresholds and age.

Fig. 8: Meta-regression scatterplot of distal pressure pain thresholds and age.

decreasing patient age (R²=0.556, β =-3.90, 95% CI -6.40 to -1.40, p=0.0211) (Fig. 7). Similarly, findings indicate a moderate correlation between decreasing distal PTTs and decreasing patient age (R²=0.491, β =-2.63, 95% CI -4.54 to -0.728, p=0.0354) (Fig. 8).

3.7 Relationship between pressure pain thresholds and symptom duration

All nine studies (8 HQ [15, 19–23, 31, 44] and 1 MQ [18]) assessing local and distal PPTs provided mean symptom durations of patients. Meta-regression analysis was possible to evaluate the relationship between PPTs and symptom duration. No significant association was identified between local pressure pain sensitivity and symptom duration (R^2 =0.170, β =-0.323, 95% CI -1.41 to 0.759, p=0.270) (Fig. 9). No significant association was identified between distal pressure pain sensitivity and symptom

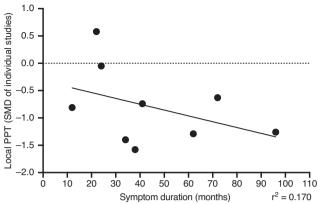
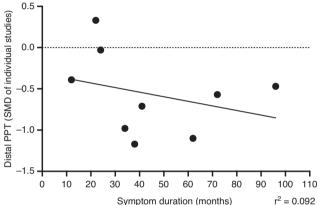



Fig. 9: Meta-regression scatterplot of local pressure pain thresholds and symptom duration.

Fig. 10: Meta-regression scatterplot of distal pressure pain thresholds and symptom duration.

duration (R²=0.092, β =-0.318, 95% CI -1.12 to 0.484, p=0.428) (Fig. 10).

4 Discussion

This systematic review synthesises existing evidence from 11 studies investigating pain processing in PFP [15–23, 32, 44]. Findings addressed the primary aim, presenting moderate evidence to suggest altered pain processing and sensitisation, in agreement with current level one evidence that reported similar manifestations of pain sensitisation in other painful knee conditions including PFP, knee osteoarthritis, patellar tendinopathy and post-meniscectomy [28, 31]. Using meta-regression, the secondary aims were explored, indicating reduced PPTs in female patients with a correlation between decreasing PPTs and decreasing patient age.

4.1 Quantitative sensory testing measures

4.1.1 Pressure pain thresholds

The most robust evidence generated by this review is for pressure pain sensitivity providing moderate evidence for decreased local and distal PPTs in PFP patients compared to controls. This suggests the presence of widespread hyperalgesia which has been postulated to be the underlying reason for the longevity associated with PFP and other persistent pain conditions [17, 45]. Widespread hyperalgesia is common in other painful knee disorders and indicates an upregulation of the patient's nervous system beyond the painful area in isolation [28, 31].

4.1.2 Tactile detection thresholds

Similarly, we found moderate evidence for increased tactile detection thresholds in PFP patients compared to controls, indicating a reduced sensitivity to touch. It is thought that skin mechanoreceptors provide information about skin strain patterns induced by various joint positions, which can be used by the central nervous system to determine proprioception and joint movement [46–48]. Jensen et al. hypothesized that the cause of abnormal proprioception and disturbed muscle recruitment in some patients with PFP may be due to a dysfunction in mechanoreceptors which is possibly reflected in tactile detection thresholds [16, 49, 50]. Interventions that aim to address proprioceptive deficits, such as proprioceptive neuromuscular facilitation [51], have reported efficacy within the PFP population, and plausibly have these positive effects through modification of this pain mechanism.

4.1.3 Thermal detection thresholds

Results found moderate evidence for increased WDTs but no significant difference for CDTs in PFP patients compared to controls. Other reviews have found no evidence of significant thermal sensitivity in similar painful knee conditions [28, 31]. With just two studies reporting thermal detection thresholds, the extent to which thermal sensitivity contributes to the persistence of PFP is not well explored.

4.1.4 Vibration detection thresholds

One study found increased vibration detection thresholds on the painful compared to contralateral knee of PFP patients [17]. With no comparable control group this provides little insight as to whether vibration detection thresholds are altered in PFP patients with future studies required.

4.1.5 Conditioned pain modulation

Findings regarding CPM differed, with Holden et al. [15] and Rathleff et al. [44] finding no between-group difference but Rathleff et al. [22] finding a reduced CPM response in PFP patients compared to controls. This may be explained by the methodological variation used to evoke a conditioning stimulus with Holden et al. [15] and Rathleff et al. [22] using cuff algometry and Rathleff et al. [44] using cold water immersion. These variations mean the studies are not easily comparable and highlight the need to standardise methods of CPM assessment. Alternatively, this inconsistency may suggest a variable presence of impaired CPM amongst PFP patients which has been indicated in other painful knee conditions [31, 52]. Interestingly, Holden et al. [15] reported a more efficient CPM response in recovered-PFP patients compared to current-PFP patients. This was proposed to be potentially protective acting as a "buffer" against pain.

4.1.6 Temporal summation

Like CPM, findings regarding TS were not consistent, with Holden et al. [15] reporting an increased facilitation of TS in PFP patients compared to controls but Rathleff et al. [22] reporting no between-group difference. Remarkably, both studies recruited participants from the same population-based cohort (APA2011). With central pain mechanisms reported to worsen with increasing pain duration [15, 53], one reason for the differing findings may be the longer symptom duration in patients of Holden et al.'s study (median difference 2 years; Holden median 8 years, IQR 7-10; Rathleff et al. median 6 years, IQR 4.5-7) [15, 22]. Holden et al. also noted a similarly facilitated TS effect in current-PFP and recovered-PFP patients [15]. This suggests that features of central sensitisation may remain after treatment and symptom recovery, postulated to be due to the involvement of neuroplasticity of central pain mechanisms during pain-free periods [15]. This may explain why in other recurrent pain conditions, such as lower back pain [54] and musculoskeletal pain [52, 55], a history of pain is associated with an increased risk of new pain episodes [15]. With many studies reporting increased facilitation of TS in knee osteoarthritis [56–59]

it is likely that further research exploring TS in PFP may prove insightful.

4.2 Relationship between pressure pain thresholds and sex

With the prevalence of PFP twice as high in females compared to males [60], past research has often focused on females. Out of the nine studies assessing PPTs, just three studies recruited both female and male participants [23, 32, 44], with the remaining six studies recruiting female participants only [15, 18-22]. Interestingly, the mixed sex studies reported the lowest effect sizes, with two studies finding no significant difference in local or distal pressure pain thresholds in the PFP cases compared to controls [32, 44]. When data from these studies were pooled, this was confirmed, with the overall effect indicating no significant difference between the two groups. Extraction of PPT scores for female and male patients separately indicates an overall effect of reduced pressure pain thresholds in the female patients, hence increased pain sensitivity. Females with knee osteoarthritis are well documented to experience greater pain sensitivity to painful stimuli such as pressure pain thresholds when compared to male populations [61-63], with evidence suggesting less efficient endogenous pain mechanisms in females [64]. Certainly, further research to explore this potential link between increased pain sensitivity and sex is required to confirm findings and provide a more robust evidence base.

4.3 Relationship between pressure pain thresholds and age

A significant association was identified between decreasing PPTs and decreasing patient age, suggesting younger patients are more likely to experience pressure pain sensitivity. Evidence suggests that childhood and adolescence are critical periods where pain experience can prime nociceptors inducing long-lasting effects not seen amongst adults [65]. Consequently, pain sensitivity may be age dependent and amplified in a younger population [21, 22]. These findings further highlight the importance of effectively managing this common pain complaint within younger populations possibly to include components aimed at therapeutic neuroscience education [19] with involvement of the full multidisciplinary team to guide appropriate pain management interventions [66].

4.4 Relationship between pressure pain thresholds and symptom duration

No significant association was identified between pressure pain sensitivity and symptom duration. This remains in common with literature which reports symptom duration to be both positively and negatively associated with manifestations of hyperalgesia [21, 57]. Furthermore, the time taken to develop hyperalgesia varies greatly between conditions, for example, 1 month in whiplash [67] vs. 5 years in rheumatoid arthritis, but this time remains unclear in PFP.

4.5 Limitations and future research directions

This review is not without limitations, which must be considered when interpreting the results. Due to methodological heterogeneity and limited number of studies assessing pain processing in PFP, meta-analysis was not possible for all sensitisation measures. I² values were consistently high indicating significant heterogeneity between studies, however, a random effects model was used to help account for this. Due to a lack of available evidence, meta-analysis of tactile and thermal detection thresholds involved only several studies resulting in a high risk of bias and reduced methodological quality. The Downs and Black methodological quality assessment identified nine HQ studies [15, 17, 19-23, 32, 44] and two MQ studies [16, 18]. One common reason for methodological compromise was a lack of detail concerning the population characteristics which may introduce the risk of population bias. Furthermore, only four studies blinded the assessor during group assignment increasing the risk of detection bias [15, 20, 22, 44]. But despite these suggestions of bias, no study scored less than 50% during quality assessment requiring exclusion from subsequent analysis. However, there is no formally accepted quality assessment tool recommended for systematic reviews. Whilst Down and Black is a validated and widely used checklist, it is possible that using alternative tools may have generated different levels of evidence. PFP diagnostic checklist scores varied, ranging from 3/7 [23] to 7/7 points [16, 17, 19, 20], indicating large heterogeneity in the definition of PFP. Ensuring that the diagnostic approach is more uniform in future studies would be advisable to avoid the possibility of confounding pathologies. Furthermore, with sensitisation identified as a contributing factor, further research to consider whether manifestations of sensitisation are associated with treatment or prognosis may prove insightful to guide management approaches.

4.6 Conclusion

This systematic review presents moderate evidence to suggest the presence of altered pain processing and sensitisation in patients with PFP. Results indicate decreased PPTs, increased tactile detection thresholds and increased WDTs in PFP patients compared to controls. Furthermore, PPTs were found to be reduced in female patients with a correlation between decreasing PPTs and decreasing patient age. Although the exact aetiology of PFP remains elusive it is plausible that a combination of biomechanical and neuropathic dysfunction is responsible, possibly with the neuropathic elements contributing to the chronicity of PFP. With female patients and younger patients identified as being more likely to experience increased pressure pain sensitivity, this population may benefit most from a more targeted management approach incorporating components aimed specifically at neuropathic pain, including neuroscience education.

Authors' statements

Research funding: No funding.

Conflict of interest: No conflicts of interest.

Informed consent: Not applicable. **Ethical approval:** Not applicable.

References

- [1] van Middelkoop M, van Linschoten R, Berger MY, Koes BW, Bierma-Zeinstra SM. Knee complaints seen in general practice: active sport participants versus non-sport participants. BMC Musculoskelet Disord 2008;9:36.
- [2] Baquie P, Brukner P. Injuries presenting to an Australian sports medicine centre: a 12-month study. Clin J Sport Med 1997;7:28-31.
- [3] Smith BE, Selfe J, Thacker D, Hendrick P, Bateman M, Moffatt F, Rathleff MS, Smith TO, Logan P. Incidence and prevalence of patellofemoral pain: a systematic review and meta-analysis. PLoS One 2018;13:e0190892.
- [4] Crossley KM, Stefanik JJ, Selfe J, Collins NJ, Davis IS, Powers CM, McConnell J, Vicenzino B, Bazett-Jones DM, Esculier JF, Morrissey D, Callaghan MJ. 2016 Patellofemoral pain consensus statement from the 4th international patellofemoral pain research retreat, Manchester. Part 1: terminology, definitions, clinical examination, natural history, patellofemoral osteoarthritis and patientreported outcome measures. Br J Sports Med 2016;50:839-43.
- [5] Petersen W, Ellermann A, Gosele-Koppenburg A, Best R, Rembitzki IV, Bruggemann GP, Liebau C. Patellofemoral pain syndrome. Knee Surg Sports Traumatol Arthrosc 2014;22:2264-74.
- [6] Witvrouw E, Crossley K, Davis I, McConnell J, Powers CM. The 3rd international patellofemoral research retreat: an international expert consensus meeting to improve the scientific understanding and clinical management of patellofemoral pain. Br J Sports Med 2014;48:408.

- [7] Thomas MJ, Wood L, Selfe J, Peat G. Anterior knee pain in younger adults as a precursor to subsequent patellofemoral osteoarthritis: a systematic review. BMC Musculoskelet Disord 2010;11:201.
- [8] Collins NJ, Bierma-Zeinstra SM, Crossley KM, van Linschoten RL, Vicenzino B, van Middelkoop M. Prognostic factors for patellofemoral pain: a multicentre observational analysis. Br J Sports Med 2013;47:227-33.
- [9] Crossley KM. Is patellofemoral osteoarthritis a common sequela of patellofemoral pain? Br J Sports Med 2014;48:
- [10] Wyndow N. Collins N. Vicenzino B. Tucker K. Crosslev K. Is there a biomechanical link between patellofemoral pain and osteoarthritis? A narrative review. Sports Med 2016;46: 1797-808.
- [11] Eijkenboom JFA, Waarsing JH, Oei EHG, Bierma-Zeinstra SMA, van Middelkoop M. Is patellofemoral pain a precursor to osteoarthritis? Patellofemoral osteoarthritis and patellofemoral pain patients share aberrant patellar shape compared with healthy controls. Bone Joint Res 2018;7:541-7.
- [12] Neal BS, Lack SD, Lankhorst NE, Raye A, Morrissey D, van Middelkoop M. Risk factors for patellofemoral pain: a systematic review and meta-analysis. Br J Sports Med 2019;53:270-81.
- [13] Loudon JK. Biomechanics and pathomechanics of the patellofemoral joint. Int J Sports Phys Ther 2016;11:820-30.
- [14] Dye SF. The pathophysiology of patellofemoral pain: a tissue homeostasis perspective. Clin Orthop Relat Res 2005:100-10.
- [15] Holden S, Straszek CL, Rathleff MS, Petersen KK, Roos EM, Graven-Nielsen T. Young females with long-standing patellofemoral pain display impaired conditioned pain modulation, increased temporal summation of pain, and widespread hyperalgesia. Pain 2018;159:2530-7.
- [16] Jensen R, Hystad T, Kvale A, Baerheim A. Quantitative sensory testing of patients with long lasting Patellofemoral pain syndrome. Eur J Pain 2007;11:665-76.
- [17] Jensen R, Kvale A, Baerheim A. Is pain in patellofemoral pain syndrome neuropathic? Clin J Pain 2008;24:384-94.
- [18] Noehren B, Shuping L, Jones A, Akers DA, Bush HM, Sluka KA. Somatosensory and biomechanical abnormalities in females with patellofemoral pain. Clin J Pain 2016;32:915-9.
- [19] Pazzinatto MF, de Oliveira Silva D, Barton C, Rathleff MS, Briani RV, de Azevedo FM. Female adults with patellofemoral pain are characterized by widespread hyperalgesia, which is not affected immediately by patellofemoral joint loading. Pain Med 2016;17:1953-61.
- [20] Pazzinatto MF, de Oliveira Silva D, Pradela J, Coura MB, Barton C, de Azevedo FM. Local and widespread hyperalgesia in female runners with patellofemoral pain are influenced by running volume. J Sci Med Sport 2017;20:362-7.
- [21] Rathleff MS, Roos EM, Olesen JL, Rasmussen S, Arendt-Nielsen L. Lower mechanical pressure pain thresholds in female adolescents with patellofemoral pain syndrome. J Orthop Sports Phys Ther 2013;43:414-21.
- [22] Rathleff MS, Petersen KK, Arendt-Nielsen L, Thorborg K, Graven-Nielsen T. Impaired conditioned pain modulation in young female adults with long-standing patellofemoral pain: a single blinded cross-sectional study. Pain Med 2016;17:980-8.
- [23] van der Heijden RA, Rijndertse MM, Bierma-Zeinstra SMA, van Middelkoop M. Lower pressure pain thresholds in

- patellofemoral pain patients, especially in female patients: a cross-sectional case-control study. Pain Med 2018;19:184-92.
- [24] Taxonomy ITFo. Classification of Chronic Pain. 2nd ed. Seattle: IASP Press, 1994.
- [25] Woolf CJ. Central sensitisation: implications for the diagnosis and treatment of pain. Pain 2011;152(3 Suppl):S2-15.
- [26] Pavlakovic G, Petzke F. The role of quantitative sensory testing in the evaluation of musculoskeletal pain conditions. Curr Rheumatol Rep 2010:12:455-61.
- [27] Starkweather AR, Heineman A, Storey S, Rubia G, Lyon DE, Greenspan J, Dorsey SG. Methods to measure peripheral and central sensitisation using quantitative sensory testing: a focus on individuals with low back pain. Appl Nurs Res 2016;29:237-41.
- [28] Fingleton C, Smart K, Moloney N, Fullen BM, Doody C. Pain sensitisation in people with knee osteoarthritis: a systematic review and meta-analysis. Osteoarthritis Cartilage 2015;23:1043-56.
- [29] Graven-Nielsen T, Arendt-Nielsen L. Assessment of mechanisms in localized and widespread musculoskeletal pain. Nat Rev Rheumatol 2010;6:599-606.
- [30] Arendt-Nielsen L, Morlion B, Perrot S, Dahan A, Dickenson A, Kress H. Assessment and manifestations of central sensitisation across different chronic pain conditions. Eur J Pain 2018;22:216-41.
- [31] De Oliveira Silva D, Rathleff MS, Petersen K, Azevedo FM, Barton CJ. Manifestations of pain sensitisation across different painful knee disorders: a systematic review including metaanalysis and metaregression. Pain Med 2018. doi: 10.1093/ pm/pny177. [Epub ahead of print].
- [32] Bartholomew C, Edwards L, Lack S. Pressure pain thresholds in adults with patellofemoral pain and patellofemoral joint osteoarthritis: a case-control study. Scand J Pain 2019;19: 713-23.
- [33] Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gotzsche PC, Ioannidis JP, Clarke M, Devereaux PJ, Kleinjnen J, Moher D. The PRISMA statement for reporting systematic reviews and metaanalyses of studies that evaluate healthcare interventions: explanation and elaboration. BMJ 2009;339:b2700.
- [34] Downs SH, Black N. The feasibility of creating a checklist for the assessment of the methodological quality both of randomised and non-randomised studies of health care interventions. J Epidemiol Community Health 1998;52:377-84.
- [35] Barton CJ, Lack S, Malliaras P, Morrissey D. Gluteal muscle activity and patellofemoral pain syndrome: a systematic review. Br J Sports Med 2013;47:207-14.
- [36] Saunders LD, Soomro GM, Buckingham J, Jamtvedt G, Raina P. Assessing the methodological quality of nonrandomized intervention studies. West J Nurs Res 2003; 25:223-37.
- [37] Deeks JJ, Dinnes J, D'Amico R, Sowden AJ, Sakarovitch C, Song F, Petticrew M, Altman DG, International Stroke Trial Collaborative Group, European Carotid Surgery Trial Collaborative Group. Evaluating non-randomised intervention studies. Health Technol Assess 2003;7:iii-x, 1-173.
- [38] Kemp JL, MacDonald D, Collins NJ, Hatton AL, Crossley KM. Hip arthroscopy in the setting of hip osteoarthritis: systematic review of outcomes and progression to hip arthroplasty. Clin Orthop Relat Res 2015;473:1055-73.
- [39] Hootman JM, Driban JB, Sitler MR, Harris KP, Cattano NM. Reliability and validity of three quality rating instruments for systematic reviews of observational studies. Res Synth Methods 2011;2:110-8.

- [40] Higgins J, Green S. Cochrane Handbook for Systematic Reviews of Interventions. The Cochrane Collaboration 2011 [cited 13th April 2019]; Version 5.1.0 [Available at: www.handbook. cochrane.org].
- [41] Hume PA, Gerrard DF. Effectiveness of external ankle support. Bracing and taping in rugby union. Sports Med 1998;25:285-312.
- [42] van Tulder M, Furlan A, Bombardier C, Bouter L. Updated method guidelines for systematic reviews in the Cochrane Collaboration Back Review Group. Spine 2003;28:1290-9.
- [43] Schober P, Boer C, Schwarte LA. Correlation coefficients: appropriate use and interpretation. Anesth Analg 2018;126:1763-8.
- [44] Rathleff MS, Rathleff CR, Stephenson A, Mellor R, Matthews M, Crossley K, Vicenzino B. Adults with patellofemoral pain do not exhibit manifestations of peripheral and central sensitization when compared to healthy pain-free age and sex matched controls - an assessor blinded cross-sectional study. PLoS One 2017;12:e0188930.
- [45] Carli G, Suman AL, Biasi G, Marcolongo R. Reactivity to superficial and deep stimuli in patients with chronic musculoskeletal pain. Pain 2002;100:259-69.
- [46] Edin BB, Johansson N. Skin strain patterns provide kinaesthetic information to the human central nervous system. J Physiol 1995;487:243-51.
- [47] Collins DF, Prochazka A. Movement illusions evoked by ensemble cutaneous input from the dorsum of the human hand. J Physiol 1996;496 (Pt 3):857-71.
- [48] Edin BB. Quantitative analyses of dynamic strain sensitivity in human skin mechanoreceptors. J Neurophysiol 2004;92:3233-43.
- [49] Baker V, Bennell K, Stillman B, Cowan S, Crossley K. Abnormal knee joint position sense in individuals with patellofemoral pain syndrome. J Orthop Res 2002;20:208-14.
- [50] Cowan SM, Bennell KL, Hodges PW, Crossley KM, McConnell J. Delayed onset of electromyographic activity of vastus medialis obliquus relative to vastus lateralis in subjects with patellofemoral pain syndrome. Arch Phys Med Rehabil 2001;82:183-9.
- [51] Alba-Martín P, Gallego-Izquierdo T, Plaza-Manzano G, Romero-Franco N, Núñez-Nagy S, Pecos-Martín D. Effectiveness of therapeutic physical exercise in the treatment of patellofemoral pain syndrome: a systematic review. J Phys Ther Sci 2015:27:2387-90.
- [52] Petersen KK, Graven-Nielsen T, Simonsen O, Laursen MB, Arendt-Nielsen L. Preoperative pain mechanisms assessed by cuff algometry are associated with chronic postoperative pain relief after total knee replacement. Pain 2016;157:1400-6.
- [53] Arendt-Nielsen L, Skou ST, Nielsen TA, Petersen KK. Altered central sensitisation and pain modulation in the CNS in chronic joint pain. Curr Osteoporos Rep 2015;13:225-34.
- [54] da Silva T, Mills K, Brown BT, Herbert RD, Maher CG, Hancock MJ. Risk of Recurrence of low back pain: a systematic review. J Orthop Sports Phys Ther 2017;47:305-13.
- [55] El-Metwally A, Salminen JJ, Auvinen A, Kautiainen H, Mikkelsson M. Prognosis of non-specific musculoskeletal pain in preadolescents: a prospective 4-year follow-up study till adolescence. Pain 2004;110:550-9.
- [56] King CD, Sibille KT, Goodin BR, Cruz-Almeida Y, Glover TL, Bartley E, Riley JL, Herbert MS, Sotolongo A, Schmidt J, Fessler BJ, Redden DT, Staud R, Bradley LA, Fillingim RB. Experimental pain sensitivity differs as a function of clinical pain severity

- in symptomatic knee osteoarthritis. Osteoarthritis Cartilage 2013;21:1243-52.
- [57] Arendt-Nielsen L, Nie H, Laursen MB, Laursen BS, Madeleine P, Simonsen OH, Graven-Nielsen T. Sensitization in patients with painful knee osteoarthritis. Pain 2010;149:573-81.
- [58] Finan PH, Buenaver LF, Bounds SC, Hussain S, Park RJ, Haque UJ, Campbell CM, Haythornthwaite JA, Edwards RR, Smith MT. Discordance between pain and radiographic severity in knee osteoarthritis: findings from quantitative sensory testing of central sensitization. Arthritis Rheum 2013;65:363-72.
- [59] Skou ST, Graven-Nielsen T, Rasmussen S, Simonsen OH, Laursen MB, Arendt-Nielsen L. Widespread sensitisation in patients with chronic pain after revision total knee arthroplasty. Pain 2013;154:1588-94.
- [60] Boling M, Padua D, Marshall S, Guskiewicz K, Pyne S, Beutler A. Gender differences in the incidence and prevalence of patellofemoral pain syndrome. Scand J Med Sci Sports 2010;20:725-30.
- [61] Bartley EJ, King CD, Sibille KT, Cruz-Almeida Y, Riley JL, Glover TL, Goodin BR, Sotolongo AS, Herbert MS, Bulls HW, Staud R, Fessler BJ, Redden DT, Bradley LA, Fillingim RB. Enhanced pain sensitivity among individuals with symptomatic knee osteo-

- arthritis: potential sex differences in central sensitization. Arthritis Care Res 2016;68:472-80.
- [62] Speed TJ, Richards JM, Finan PH, Smith MT. Sex moderates the effects of positive and negative affect on clinical pain in patients with knee osteoarthritis. Scand J Pain 2017;16:66-73.
- [63] Glass N, Segal NA, Sluka KA, Torner JC, Nevitt MC, Felson DT, Bradley LA, Neogi T, Lewis CE, Frey-Law LA. Examining sex differences in knee pain: the multicenter osteoarthritis study. Osteoarthritis Cartilage 2014;22:1100-6.
- [64] Racine M, Tousignant-Laflamme Y, Kloda LA, Dion D, Dupuis G, Choinière M. A systematic literature review of 10 years of research on sex/gender and experimental pain perception - part 1: are there really differences between women and men? Pain 2012;153:602-18.
- [65] La Hausse de Lalouvière L, Ioannou Y, Fitzgerald M. Neural mechanisms underlying the pain of juvenile idiopathic arthritis. Nat Rev Rheumatol 2014;10:205-11.
- [66] Kalso E, Aldington DJ, Moore RA. Drugs for neuropathic pain. BMJ 2013;347:f7339.
- [67] Sterling M, Jull G, Vicenzino B, Kenardy J. Sensory hypersensitivity occurs soon after whiplash injury and is associated with poor recovery. Pain 2003;104:509-17.