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Abstract

Background and aims: There is high level evidence for 
physical activity (PA) improving outcomes in persistent 
pain disorders and one of the mechanisms proposed is 
the effect of exercise on central nociceptive modulation. 
Although laboratory studies and small field intervention 
studies suggest associations between physical activity 
and pain sensitivity, the association of objectively meas-
ured, habitual PA and sedentary behaviour (SB) with 
pain sensitivity requires further investigation. Current 
evidence suggests PA typically lowers pain sensitivity in 
people without pain or with single-site pain, whereas PA 
is frequently associated with an increase in pain sensitiv-
ity for those with multisite pain. The aim of this study was 
to explore the relationships of PA and SB with pain sensi-
tivity measured by pressure pain thresholds and cold pain 
thresholds, considering the presence of single-site and 
multisite pain and controlling for potential confounders.
Methods: Participants from the Western Australian Preg-
nancy Cohort (Raine) Study (n = 714) provided data at age 
22-years. PA and SB were measured via accelerometry 
over a 7-day period. Pain sensitivity was measured using 
pressure pain threshold (4 sites) and cold pain threshold 

(wrist). Participants were grouped by number of pain 
areas into “No pain areas” (n = 438), “Single-site pain” 
(n = 113) and “Multisite pain” (n = 163) groups. The asso-
ciation of PA and SB variables with pain sensitivity was 
tested separately within each pain group by multivariable 
regression, adjusting for potential confounders.
Results: For those with “Single-site pain”, higher levels 
(>13  min/day) of moderate-vigorous PA in ≥10  min 
bouts was associated with more pressure pain sensitiv-
ity (p = 0.035). Those with “Multisite pain” displayed 
increased cold pain sensitivity with greater amounts of 
vigorous PA (p = 0.011). Those with “No pain areas” dis-
played increased cold pain sensitivity with decreasing 
breaks from sedentary time (p = 0.046).
Conclusions: This study was a comprehensive investiga-
tion of a community-based sample of young adults with 
“No pain areas”, “Single-site pain” and “Multisite pain” 
and suggests some associations of measures of PA and SB 
with pain sensitivity.
Implications: The findings suggest that the pattern of 
accumulation of PA and SB may be important to inform 
improved clinical management of musculoskeletal pain 
disorders. This study provides a baseline for follow-up 
studies using the Raine Study cohort. Future research 
should consider temporal influences of PA and SB on pain 
sensitivity, pain experience and consider using a broader 
range of pain sensitivity measures.

Keywords: pain sensitivity; accelerometry; musculoskel-
etal; Raine Study; physical activity; sedentary behaviour.

1  �Introduction
There is high level evidence for increased levels of physi-
cal activity (PA) reducing disability and associated costs 
for persistent musculoskeletal disorders including lower 
limb osteoarthritis [1], chronic low back pain [2] and fibro-
myalgia syndrome [3]. Longitudinal general population 
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studies further suggest higher PA may reduce the risk for 
the onset of persistent musculoskeletal pain [4, 5]. Addi-
tionally, young adults spend much of their awake time 
sedentary [6], and links between sedentary behaviour 
(SB) and increased risk of musculoskeletal pain have 
been reported in adolescents [7] and adults [8]. One of 
the mechanisms proposed for PA improving outcomes in 
musculoskeletal pain disorders, is the effect of exercise on 
efficient central nociceptive modulation [9]. Measurement 
of pain sensitivity maybe important to improve the under-
standing of the relationship between physical activity and 
sedentary behaviour with pain disorders. Understand-
ing this relationship in young adulthood is of particular 
importance as this life stage is a transition period when 
trajectories for persistent pain become established [10, 11] 
and there is already a significant burden from persistent 
musculoskeletal pain [12, 13].

Alterations in pain sensitivity in response to 
laboratory-based, acute bouts of exercise is variable, with 
evidence of transient decreases in pressure and cold pain 
sensitivity in pain-free, healthy participants [14], and 
both increases and decreases in participants with per-
sistent pain [14–16]. This variability in participants with 
persistent pain may reflect different central nociceptive 
modulatory responses to exercise [9, 16]. Importantly, 
increased pressure pain sensitivity following exercise is 
more prevalent in people with persistent, multisite pain 
disorders, such as fibromyalgia, consistent with evidence 
of the presence of augmented central nociceptive process-
ing [15, 17]. Based on laboratory studies, the optimal dose 
of prescribed exercise to improve pain sensitivity is incon-
clusive for persistent pain conditions [14].

While laboratory based exercise studies have meas-
ured immediate changes in pain sensitivity in response 
to single exercise sessions, the association of exercise 
interventions and habitual PA with pain sensitivity may 
provide more insight into the longer-term associations of 
PA with pain sensitivity in both clinical and community-
based settings. Findings from a limited number of short 
to medium term (1–10  weeks) exercise intervention field 
studies, suggest the potential for increased PA to produce 
a medium term beneficial reduction of pressure pain sen-
sitivity [18–20]. In healthy people, when habitual PA was 
measured via self-report, evidence suggests an associa-
tion between higher levels of PA and decreased pressure 
and cold pain sensitivity [21, 22]. Observational studies 
using objective measurement of PA via accelerometry to 
investigate the association of habitual PA and pain sensi-
tivity have inconclusive findings with either very limited 
participant numbers (n = 21) [23] or only using partici-
pants without pain [24].

There is little investigation of the association of objec-
tively measured, habitual PA and SB with pain sensitivity 
in community based cohorts. The aim of this study was 
to explore the relationships of PA and SB with pain sen-
sitivity measured by pressure pain thresholds (PPT) and 
cold pain thresholds (CPT), considering the presence of 
single-site and multisite pain and controlling for potential 
confounders.

2  �Methods

2.1  �Participants

Cross-sectional data for this study were obtained from 
the Western Australian Pregnancy Cohort (Raine) Study 
(http://www.rainestudy.org.au). This is an ongoing birth 
cohort study that commenced with 2900  women who 
enrolled in the study before the 18th gestation week with 
2,868 children born entering the initial birth cohort. Data 
has been collected at 1, 2, 3, 5, 8, 10, 14, 17, 20 and 22-years. 
The current study used data obtained at the 22-year follow 
up that ran between March 2012 and July 2014, 2,086 were 
still “active” and contacted for participation. Of these, 
1,234 took part in some aspect of the 22-year follow up that 
included an extensive range of questionnaires and physi-
cal assessments [25, 26]. The characteristics of the active 
participants were compared with census data collected in 
2011 on all similarly aged young adults in Western Australia 
and showed that the sample remains widely representative 
on a range of variables including education level, employ-
ment status, income, marital status, number of offspring, 
hours worked and occupation [25]. The ethnicity of the 
active participants was 85.0% Caucasian, 0.9% Aboriginal 
and Torres Strait Islander, and 14.1% non-Caucasian.

2.2  �Recruitment, sampling and data 
collection

Data for this study were collected as part of 4 h of testing fol-
lowed by an overnight sleep study [25]. Questionnaires were 
completed before physical assessments and were checked 
for completion by a research assistant. Anthropometry 
measures, and pressure and cold pain threshold testing 
were part of the physical assessment protocol conducted by 
12 Raine research staff, all of who were thoroughly trained 
in the data collection procedures and used standardised 
protocols. For this follow up, 773 (389 female and 384 male) 
participants wore Actigraph GT3X +  monitors 24 h/day over 

http://www.rainestudy.org.au


Waller et al.: Associations of physical activity or sedentary behaviour with pain sensitivity      681

a 1-week period. Participants were eligible for analysis if 
they had data for at least one “valid” day (≥10 h of waking 
wear time) and completed the Orebro Musculoskeletal 
Pain Questionnaire. The minimum of one “valid” day was 
chosen in order to maximize statistical power and to mini-
mize selection bias. Of these, 714 individuals had valid PPT 
data and 702 individuals had valid CPT data.

2.3  �Physical activity and sedentary behaviour

Physical activity and sedentary behaviour were objectively 
measured over a 1-week period using the Actigraph GT3X +  
accelerometer (Actigraph, Pensacola, FL, USA) worn 
continuously on the right hip, except during bathing or 
aquatic activities. The GT3X +  was programmed to record 
raw data at a frequency of 30 Hz which were later reduced 
to vertical axis movement counts “per 60 s epoch” for the 
purpose of the current analyses. Accelerometer data were 
downloaded and processed in SAS (version 9.3, SAS Insti-
tute, Cary, NC, USA). The protocol and measured patterns 
of PA and SB in the Raine Study have previously been 
comprehensively described [6]. The “60 s epoch” was used 
as cut points in this age group have been validated for this 
length of epoch and this allows comparisons with other 
accelerometer data also processed using a 60  s epoch 
[27]. Common thresholds were used to class each minute 
as sedentary [<100 counts per minute (cpm)], light inten-
sity (100–1951 cpm), moderate intensity (1952–5724 cpm) 
or vigorous intensity (>5,724 cpm) [6, 28]. All minutes in 
continuous periods of ≥90 min of zero cpm, allowing for 
<3 min with counts 1–50 cpm, were classed as non-wear. 
The algorithm used for identifying waking wear time has 
been reported as mostly good, and better than evaluated 
published alternatives [27]. Variables representing mod-
erate PA, vigorous PA, combined moderate/vigorous PA 
(MVPA), sedentary time in minutes per day and sedentary 
time as a percentage of non-MVPA time during wake time 
were derived from these classifications. A further five vari-
ables captured the pattern of accumulation PA and SB as 
follows; MVPA min/day in ≥10  min bouts (allowing for 
2 min below the cut-point), sedentary min/day in ≥20 min 
bouts and ≥30 min bouts, proportion of sedentary time per 
day accumulated in ≥20 min bouts and number of breaks 
from sedentary time per day.

2.3.1  �Quantitative sensory testing

Due to the already significant time burden required of the 
participants in the broader Raine Study, pain sensitivity 

measures were limited to PPT and CPT. A standardised 
protocol (“method of limits”) consistent with current best 
practice recommendations [29] was used to measure PPT 
and CPT at a constant room temperature. The protocol has 
been published previously and is also described below 
[24]. All testing was done in the early evening, minimis-
ing the influence of circadian rhythms on pain sensitivity 
[30]. All pain threshold measurements were taken from 
the right side of the body as it has been shown there is 
side to side consistency in pain sensitivity measurement 
in people with [31] and without pain [32]. PPT was tested 
first, followed by CPT, to minimise the risk of mechanical 
hyperalgesia [33]. Both PPT and CPT have demonstrated 
inter-examiner and intra-subject reliability with reasona-
ble levels of standard error of measurement [34]. Excellent 
interrater and intrarater reliability for PPT testing by the 
Raine research staff has been demonstrated [35].

2.3.2  �Pressure pain thresholds

Pressure pain threshold was established using a pressure 
algometer (Somedic AB, Sweden) with a contact area of 
1 cm2 applied perpendicularly to the skin with a ramp rate 
of 50 kPa/s. PPT was defined as the moment the sensation 
of pressure becomes one of pressure and pain. Standard-
ised instructions were read to participants: “The moment 
the pressure increases to a point where it first feels uncom-
fortable or painful, press and release the button. This 
means the very first onset of discomfort or pain and not 
the most pressure that you can bear”. A cut-off pressure 
value of 1,000 kPa was set for safety purposes. Four trials 
were performed with a minimum 10 s rest between trials. 
The mean threshold was calculated for each site from the 
last three trials. Four standardised sites were tested in 
the following sequence; the dorsal wrist, tibialis anterior, 
upper trapezius and lumbar spine. The wrist was tested 
at the middle of the dorsal aspect of the wrist joint line. 
The leg was tested at the muscle belly of tibialis anterior, 
approximately 2.5 cm lateral and 5 cm distal to the tibial 
tubercle. The upper trapezius was tested at the mid-point 
between the C7 spinous process and the lateral acromion. 
The lumbar spine was tested at the erector spinae, 2 cm 
lateral to the L4/L5 interspinous space.

2.3.3  �Cold pain threshold

A Modular Sensory Analyzer (MSA) thermal stimulator 
(Somedic AB, Sweden) using a 12.5 cm2 (25 mm × 50 mm) 
probe was used to obtain the CPT at one standardised body 
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site, on the skin at the middle of the dorsal aspect of the wrist 
joint line. The starting temperature was set as 32 °C with a 
cut off temperature of 5 °C. The temperature decreased at 
1 °C/s until the participant first perceived pain and pressed 
the control switch to terminate the test. For CPT, the follow-
ing instructions were given to participants “Allow the tem-
perature to drop until the moment it reaches a point where 
it feels uncomfortably or painfully cold, and then press the 
button. This means the very first onset of discomfort or pain 
and not the most cold that you can bear”. Four trials were 
performed with a 10 s rest period between trials. The mean 
threshold was calculated from the last three trials.

2.4  �Musculoskeletal pain status

Pain experience was determined using items from the 
Örebro Musculoskeletal Pain Questionnaire (ÖMPQ). The 
number of musculoskeletal pain areas was determined 
from an individual question asking “Where do you have 
pain?” with instruction to select appropriate sites from 
the options of neck, shoulder, arm, upper back, lower 
back, leg and other (“please state”). In the Örebro ques-
tionnaire, pain was defined as “musculoskeletal (muscle 
and bone) aches or pains, such as back, shoulder or neck 
pain”. Participants were classified by number of pain 
areas endorsed into “No pain areas”, “Single-site pain” 
and “Multisite pain” (i.e. two or more pain areas) groups. 
Pain chronicity was categorized from the ÖMPQ question 
“How long have you had your current pain problem?” into 
less than 3 months, 3–12 months and >12 months. Pain fre-
quency was determined using the ÖMPQ question “How 
often would you say that you have experienced pain epi-
sodes, on average, during the past three months?”, using a 
numerical rating scale (NRS) with 1 indicating “never” and 
10 indicating “always”. Pain intensity was calculated from 
the mean of two ÖMPQ questions “How would you rate the 
pain that you have had during the past week?” and “In the 
past three months, on average, how bad was your pain on 
a 0–10 scale?”, using an NRS with 1 indicating “no pain” 
and 10 indicating “pain as bad as it could be”.

2.5  �Other variables

A number of other variables were collected at 22-years to 
provide a profile of participants and to control for confound-
ers of pain sensitivity. Potential confounders of the asso-
ciation between pain sensitivity and PA/SB measures were 
considered based on a previous investigation of correlates 
of PPT and CPT in the Raine cohort at the 22-year follow-up 
[24]. Statistically significant, known, independent correlates 
of increased pressure pain sensitivity measures were test 

site, sex (female), higher waist-hip ratio (WHR) and poorer 
mental health [as measured by the Mental Component 
Summary (MCS) of the Short Form-12, version 2 (SF-12)] [24]. 
Statistically significant, known, independent correlates of 
increased cold pain sensitivity measures were sex (female), 
poorer mental health and smoking [24].

Waist and hip circumference were measured using a 
metric tape measure and standard protocol, to calculate 
the WHR. Health-related quality of life was measured 
using the SF-12 [36], a validated and reliable measure of 
health related quality of life. Twelve questions produce 
two summary measures: a MCS; and Physical Component 
Summary (PCS) [36]. Each SF-12  scale is a norm-based 
score with a mean of 50 and standard deviation of 10, with 
higher scores indicating better quality of life [36]. The MCS 
and PCS of the SF12  were categorised into those with a 
score ≥50 and <50. Subjects were asked, “Do you currently 
smoke cigarettes/cigars?” and were classified accordingly 
as smokers or non-smokers.

2.6  �Statistical analysis

Multivariable regression models were used to examine the 
association between PPT and CPT measures (outcome vari-
able) with each of the 10 PA and SB measures (independent 
variables). For these models, PA and SB measures were 
parameterised as continuous variables with the exception of 
moderate PA and MVPA which were categorized into deciles 
due to left-skew distribution, and vigorous PA and MVPA 
accumulated in ≥10  min bouts, which were categorized 
into three groups with one-third of participants registering 
zero activity and the remaining values split at the median 
of the non-zero values (1.75 and 13 min/day, respectively). 
The analyses for all variables were adjusted for waking 
wear time per day (mean of daily totals on valid days, min/
day, except for “Proportion of sedentary time ≥20  min”) 
and number of days of valid wear time (>10  h/day).  
The analysis of breaks from sedentary time was adjusted for 
total sedentary time to reflect a break rate based on total 
sedentary time per day. All models were stratified by pain 
area groups in keeping with the aim of the study to esti-
mate associations between PA and SB with pain sensitiv-
ity separately for people with “no pain areas”, “single-site 
pain” and “multisite pain”. The sample size of smallest of 
these groups (“single-site pain”, n = 112) gave 80% power to 
detect increases in R2 of at least 0.05 due to addition of a PA 
or SB variable to a base model of relevant covariates with 
R2 of 0.15 at α = 0.05. Estimates are presented with 95% con-
fidence intervals and p-values. All models were examined 
for linearity of effects and absence of influential outliers, 
and with non-linearity modelled by addition of a quadratic 
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term. For PPT models, linear regression models utilising 
generalized estimating equations with an exchangeable 
correlation structure to account for the repeated meas-
ures over four sites were used. PPT models were adjusted 
for potential confounders [24] of sex, test site, waist-hip 
ratio and MCS. For CPT models, Tobit regression models 
were used as measures were left-censored due to the lower 
limit of the testing equipment being 5 °C. CPT models were 
adjusted for potential confounders [24] of sex, smoking and 
MCS. A sensitivity analysis was performed, to test if results 
of the main analysis were potentially biased by atypical 
activity levels as some participants with only a few valid 

days of accelerometer wear were included. Thus, the sen-
sitivity analysis included only data from those participants 
with at least 3 valid weekdays and 1 valid day of weekend 
data in PPT and CPT regression models.

3  �Results
The demographic, pain, physical, quality of life and psy-
chological data of the 714 participants (by pain groups) 
are summarised in Table 1. Summary statistics for PA and 
SB are presented in Table 2 and for PPT (by site) and CPT 

Table 1: Summary statistics for demographic, pain, physical, quality of life, psychological and smoking measures.

Variable  
 

No pain areas (n = 438)  
 

Single-site pain (n = 113)  
 

Multisite pain (n = 163)

Mean (SD) or 
number (%)

  Range Mean (SD) or 
number (%)

  Range Mean (SD) or 
number (%)

  Range

Age (years)   22.1 (0.6)   21.0–24.4   22.1 (0.6)   20.7–24.3   22.1 (0.7)   21.0–24.2
Sex (female)   187 (42.7%)     57 (50.5%)     119 (73.0%)  
Pain chronicity
 <3 months       54 (47.8%)     46 (28.2%)  
 3–12 months       23 (20.4%)     30 (18.3)  
 >12 months       36 (31.8%)     87 (53.4)  
Pain frequency       4.2 (2.3)     5.4 (2.4)  
Pain intensity       4.1 (1.9)     4.8 (2.0)  
Waist-hip ratio   0.83 (0.07)   0.66–1.09   0.83 (0.07)   0.65–1.00   0.81 (0.08)   0.68–1.09
SF-12a

 PCS   55.3 (4.9)   24.6–66.5   52.7 (6.0)   34.8–65.4   51.1 (8.2)   14.6–70.9
 PCS ≥ 50   343 (86.8%)     73 (70.0%)     104 (65.8%)  
 MCS   50.0 (9.5)   11.7–62.5   47.7 (9.2)   24.4–62.4   43.0 (11.4)   −0.8–62.2
 MCS ≥ 50   201 (50.9%)     55 (50.4%)     51 (32.3%)  
Smokingb (yes)   66 (15.1%)     20 (17.9%)     29 (17.9%)  

Missing data (all participants): a52; b4; PCS = physical component summary; MCS = mental component summary.

Table 2: Summary statistics for physical activity and sedentary behaviour measures.

Variable  
 

No pain areas (n = 438)  
 

Single-site pain (n = 113)  
 

Multisite pain (n = 163)

Mean (SD) or 
median (IQR)

  Range Mean (SD) or 
median (IQR)

  Range Mean (SD) or 
median (IQR)

  Range

Valid days   5.3 (2.5)   1–15   5.3 (2.3)   1–10   5.4 (2.5)   1–9
Moderate PA (min/day)   28.5 (17.8, 46)   0–214.0   31.8 (19.0, 49.1)   2.3–175.0   25.6 (14.5, 37.8)   1–112.9
Vigorous PA (min/day)   0.3 (0, 2.5)   0–31.2   0.3 (0, 1.4)   0–33.0   0 (0, 1.4)   0–25.0
MVPA (min/day)   30.4 (19.0, 48.9)   0–243.2   35.0 (19.5, 53)   2.3–175.5   28.0 (15.2, 41.5)   1.0–114.3
MVPA in ≥10 min bouts (min/day)   9.2 (1.3, 20.0)   0–170.7   9.3 (1.5, 23.2)   0–99.5   6.6 (0, 14.7)   0–77.6
Sedentary time per day (min)   547.4 (94.0)   201.0–775.6   553.0 (99.9)   112.5–794.0   562.4 (96.1)   279.8–815
Sedentary time as percentage of  
non-MVPA time

  63.6 (9.7)   28.7–87.4   63.8 (10.0)   23.0–82.5   64.6 (9.4)   29.2–83.8

Sedentary time ≥20 min (min/day)   185.3 (80.2)   0–480.0   203.0 (85.4)   30.5–445.6   193.5 (81.8)   41.0–488.0
Sedentary time ≥30 min (min/day)   115.3 (66.9)   0–406.0   130.1 (72.4)   10.3–364.6   120.5 (68.0)   0–389.0
Proportion of Sedentary time ≥20 min  
(percent)

  32.9 (11.6)   0–80.3   35.8 (11.6)   10.8–64.8   33.6 (11.1)   11.0–73.7

Number of breaks from sedentary time  
per day

  96.8 (18.7)   27.0–152.5   93.8 (17.6)   34.0–139.1   97.8 (18.4)   42.0–138.0

PA = physical activity; MVPA = moderate vigorous physical activity.
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in Table 3. The participants’ were asked to wear the accel-
erometer for 1 week, but the number of valid days wearing 
the accelerometer ranged from 1 to 15 with a mean (SD) of 
5.3 (2.4).

Multivariable regression models for the association 
of PA and SB measures with PPT stratified by number 
of pain areas are shown in Table 4. For the “Single-site 

pain”, those categorized with median amounts of MVPA 
accumulated in ≥10  min bouts greater than 13  min/day 
were associated with more pressure pain sensitivity 
(p = 0.035), with PPT estimated to be 95.0 kPa (95% CI: 
−171.0, −19.9, p = 0.013) lower compared with partici-
pants with a value between >0 and ≤13 min/day and 75.3 
kPa (95% CI: −160.8, 10.3, p = 0.085) lower than those 

Table 3: Summary statistics for pressure and cold pain threshold measures.

Variable  
 

No pain areas (n = 438)  
 

Single-site pain (n = 113)  
 

Multisite pain (n = 163)

Median (IQR)   Range Median (IQR)   Range Median (IQR)   Range

PPT lumbar spine (kPa)   421.7 (288.7, 606.0)   69.3–1000   389.3 (280.3, 600.3)   85.3–1000   338.0 (247.2, 511.2)   82.0–1000
PPT tibialis anterior (kPa)   415.5 (284.0, 577.0)   74.0–1000   392.3 (325.0, 566.0)   86.6–1000   362.7 (275.7, 528.3)   84.0–1000
PPT upper trapezius (kPa)   261.0 (185.7, 384.3)   44.3–1000   260.3 (179.0, 392.7)   61.0–1000   228.7 (165.7, 332.7)   25.0–1000
PPT wrist (kPa)   390.7 (281.3, 530.3)   91.7–1000   398.3 (288.3, 527.0)   105.3–1000   363.0 (274.3, 532.3)   40.3–1000
CPT (°C)   9.2 (5, 20.3)   5–28.9   9.2 (5, 22.7)   5–30.3   11.5 (5, 22.7)   5–29.8

PPT = pressure pain threshold; CPT = cold pain threshold.

Table 4: Multivariable regression models for PPT (kPa) measures.

Variable  
 

No pain areas (n = 438)  
 

Single-site pain (n = 113)  
 

Multisite pain (n = 163)

Regression 
coefficient (95% CI)d

  p-Value Regression 
coefficient (95% CI)d

  p-Value Regression 
coefficient (95% CI)d

  p-Value

Moderate PA (min/day)a,b

 Linear term   0.7 (−23.7, 25.1)   0.998e  10.7 (−35.8, 57.2)   0.179e  −18.6 (−48.1, 10.8)   0.121e

 Quadratic term   −0.1 (−2.6, 2.5)     −2.2 (−7.0, 2.6)     3.0 (−0.5, 6.5)  
Vigorous PA (min/day)a,b

 Zero   Ref.   0.669e  Ref.   0.854e  Ref.   0.543e

 <1.75 min/day   −17.7 (−64.4, 28.9)   0.455  −23.6 (−109.0, 61.8)  0.588  28.1 (−32.9, 89.2)   0.367
 ≥1.75 min/day   −19.4 (−66.1, 27.4)   0.417  −15.7 (−99.7, 68.2)   0.713  28.5 (−32.6, 89.5)   0.361
MVPA (min/day)a,b

 Linear term   −5.6 (29.8, 18.5)   0.897e  10.4 (−35.4, 56.2)   0.204e  −16.4 (−46.1, 13.3)   0.172e

 Quadratic term   0.6 (−1.9, 3.1)     −2.1 (−6.9, 2.6)     2.7 (−0.9, 6.3)  
MVPA in ≥10 min bouts (min/day)a,b

 Zero   Ref.   0.607e  Ref.f   0.035e  Ref.   0.536e

 ≤13 min/day   16.6 (−32.8, 66.1)   0.509  20.1 (−67.0, 107.3)   0.650  −0.9 (−59.8, 57.9)   0.976
 >13 min/day   −3.3 (−53.0, 46.3)   0.895  −75.3 (−160.8, 10.3)  0.085  29.3 (−35.2, 93.9)   0.373
Sedentary time per day (min)a,b   −1.2g (−3.3, 0.9)   0.264  −0.4g (−4.3, 3.5)   0.847  −1.5g (−4.3, 1.3)   0.287
Sedentary time as percentage of  
non-MVPA timea,b

  −12.0h (−31.0, 7.1)   0.217  −4.6h (−38.3, 29.0)   0.787  −9.7h (−35.1, 15.7)   0.453

Sedentary time ≥20 min (min/day)a,b   −1.2g (−3.4, 1.1)   0.298  −0.3g (−4.3, 3.6)   0.865  −2.5g (−5.4, 0.4)   0.094
Sedentary time ≥30 min (min/day)a,b   −1.2g (−3.9, 1.5)   0.375  0.0g (−4.7, 4.7)   0.996  −2.6g (−6.1, 0.9)   0.150
Proportion of sedentary time ≥20 min  
(percent)b

  −8.1i (−23.5, 7.3)   0.302  4.0i (−24.6, 32.5)   0.786  −18.1i (−39.6, 3.4)   0.100

Number of breaks from sedentary  
time/daya,b,c

  1.1j (−14.1, 11.9)   0.867  −4.7j (−30.2, 20.8)   0.718  0.2j (−18.5, 18.0)   0.982

aAdjusted for awake wear time; badjusted for number of days of valid wear time; cadjusted for sedentary time per day; dAdjusted for sex, 
site, waist-hip ratio, SF12-mental component summary; eOverall p-value; fContrast of group 2 vs. 1: −95.4 (−171.0, −19.9), p = 0.013; 
gDifference estimate represents the expected change for a 10 min change in sedentary or sitting time; hDifference estimate represents the 
expected change for a 10% change in sedentary time as % of non-MVPA time; i Difference estimate represents the expected change for a 
10% change in proportion of sedentary time ≥20 min; jDifference estimate represents the expected change for 10 breaks in sedentary time; 
CI = confidence interval; PA = physical activity; MVPA = moderate vigorous physical activity.
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subjects with 0  min/day. There were no other associa-
tions observed between PA and SB and PPT. A sensitivity 
analysis including only those participants with at least 3 
valid weekdays and 1 valid day of weekend data (n = 460, 
“No pain areas”: n = 281, n = 157 excluded, “Single-site 
pain”: n = 69, n = 44 excluded, “Multisite pain”: n = 110, 
n = 53 excluded) returned similar strength and direction 
of regression coefficients (Appendix 1).

Multivariable regression models for the associa-
tion of PA and SB with CPT stratified by number of pain 
areas are shown in Table 5. In the “Multisite pain group”, 
higher levels of vigorous PA was associated with higher 
cold pain sensitivity (p = 0.011) with CPT of participants 
with ≥1.75 min/day estimated to be 5.1 °C (95% CI: 0.7, 9.4, 
p = 0.022) higher (more cold pain sensitivity) compared 
with participants with zero min/day, and 7.2 °C (95% CI: 
2.4, 12.2, p = 0.004) higher that those participants with 
<1.75 min/day. In the “No pain areas” group, more breaks 
from sedentary time (adjusted for minutes of sedentary 
time per day) were significantly associated with lower 

cold pain sensitivity, with CPT estimated to be 0.8 °C 
(95% CI: −1.5, −0.1, p = 0.046) less (i.e. less cold pain sensi-
tivity) for each 10-break increment per day. There were no 
other associations observed between PA and SB and CPT. 
A sensitivity analysis including only those participants 
with at least 3 valid weekdays and 1 valid day of weekend 
data (n = 454, “No pain areas”: n = 277, n = 153 excluded, 
“Single-site pain”: n = 68, n = 54 excluded, “Multisite 
pain”: n = 109, n = 51 excluded) returned similar strength 
and direction of regression coefficients (Appendix 2).

4  �Discussion
To our knowledge, this study is the largest community-
based, comprehensive investigation into the association 
of objectively measured, habitual PA and SB with tissue 
sensitivity to noxious pressure and cold stimuli in young 
adults. Overall, little was detected in the way of asso-
ciations between PA and SB with pressure and cold pain 

Table 5: Multivariable Tobit regression models for CPT (°C) measures.

Variable  
 

No pain areas (n = 430)  
 

Single-site pain (n = 112)  
 

Multisite pain (n = 160)

Regression 
coefficient (95% CI)d

  p-Value Regression 
coefficient (95% CI)d

  p-Value Regression 
coefficient (95% CI)d

  p-Value

Moderate PA (min/day)a,b

 Linear term   0.4 (0.0, 0.8)   0.073  0.0 (−0.8, 0.8)   0.978  −0.1 (−0.7, 0.6)   0.783
Vigorous PA (min/day)a,b

 Zero   Ref.   0.199e  Ref.   0.146e  Ref.f   0.011e

 <1.75 min/day   2.4 (−0.4, 5.1)   0.092  1.5 (−3.7, 6.6)   0.577  −2.2 (−6.6, 2.2)   0.320
 ≥1.75 min/day   2.0 (−0.8, 4.7)   0.162  −3.9 (−9.0, 1.2)   0.133  5.1 (0.7, 9.4)   0.022
MVPA (min/day)a,b

 Linear term   0.4 (0.0, 0.8)   0.059  −0.1 (−0.9, 0.6)   0.756  0.0 (−0.7, 0.6)   0.966
MVPA in ≥10 min bouts (min/day)a,b

 Zero   Ref.   0.118e  Ref.   0.835e  Ref.   0.383e

 ≤13 min/day   1.9 (−1.1, 4.8)   0.216  1.6 (−3.9, 7.2)   0.560  0.2 (−4.1, 4.5)   0.930
 >13 min/day   3.1 (0.1, 6.1)   0.040  1.3 (−4.1, 6.6)   0.642  2.8 (−1.9, 7.4)   0.241
Sedentary time per day (min)a,b   0.0g (0.0, 0.2)   0.472  0.1g (−0.2, 0.3)   0.569  0.1g (−0.1, 0.3)   0.596
Sedentary time as percentage of  
non-MVPA timea,b

  0.7h (−0.4, 1.9)   0.226  0.7h (−1.4, 2.9)   0.503  0.4h (−1.5, 2.2)   0.704

Sedentary time ≥ 20 min (min/day)a,b   0.1g (−0.1, 0.2)   0.267  0.0g (−0.3, 0.2)   0.931  0.0g (−0.2, 0.3)   0.742
Sedentary time ≥30 min (min/day)a,b   0.1g (−0.1, 0.2)   0.287  0.0g (−0.3, 0.3)   0.854  0.0g (−0.3, 0.3)   0.963
Proportion of sedentary time ≥20 min  
(percent)b

  0.6i (−0.3, 1.4)   0.215  0.0i (−1.8, 1.9)   0.968  0.0i (−1.6, 1.6)   0.996

Number of breaks from sedentary  
time/daya,b,c

  −0.8j (−1.5, −0.0)   0.046  0.4j (−1.2, 2.0)   0.595  0.3j (−1.1, 1.6)   0.684

aAdjusted for awake wear time; badjusted for number of days of valid wear time; cadjusted for sedentary time per day; dadjusted for sex, 
smoking, SF12-mental component summary; eOverall p-value; fContrast of group 2 vs. 1: 7.2 (2.4, 12.2), p = 0.004: gDifference estimate 
represents the expected change for a 10 min change in sedentary or sitting time; hDifference estimate represents the expected change 
for a 10% change in sedentary time as % of non-MVPA time; iDifference estimate represents the expected change for a 10% change in 
proportion of sedentary time ≥20 min; jDifference estimate represents the expected change for an additional 10 breaks in sedentary time; 
CI = confidence interval; PA = physical activity; MVPA = moderate vigorous physical activity.
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sensitivity. However, there were some interesting asso-
ciations of note for the “Single-site pain” group between 
PA and pressure pain sensitivity, for the “Multisite pain” 
group for PA and cold pain sensitivity and for the “No pain 
areas” group for more breaks from sedentary time and 
cold pain sensitivity.

4.1  �Strengths and limitations

Strengths of the study include sample size, age specific 
population, consideration of number of pain sites, control 
for potential correlates of pressure and cold pain sensitiv-
ity and the use of accelerometry to objectively measure 
PA and SB, including intensity, frequency, duration and 
pattern of accumulation over time [6]. The large sample 
at one age results in good power to estimate associations 
at this particular age, but the limitation is that the results 
may not be generalizable across age groups. Importantly, 
PA as measured in this study reflects habitual activity, 
providing a different capture of associations between pain 
sensitivity and PA when compared to laboratory controlled 
exercise protocols [14]. While previous studies using self-
report measurement of PA suggest an association between 
higher levels of PA and decreased pressure and cold pain 
sensitivity [21, 22], they are limited by small participant 
numbers (n < 72), recall bias of activity by using self-report 
measurement [37], and the poor correlation of self-report 
with objective measurement of PA [38]. Previously, only 
one study considered objective measurement of SB and 
this only included pain-free participants (n = 444), finding 
no association between pressure and cold pain sensitivity 
and total daily sedentary time [24].

Affective factors potentially influence the relationship 
between PA and pain sensitivity, however a previous study 
reported that major depression did not moderate this rela-
tionship [39]. The multivariable regression models in our 
study were adjusted for mental health as previous inves-
tigations of the Raine cohort have reported an association 
of the MCS with PPT and CPT [24].

There were limitations in this study. Accelerometers 
were worn on the hip, therefore not measuring arm move-
ment, were not worn while swimming and were insensi-
tive to cycling and gradients while walking or running 
[40]. The authors acknowledge the limitations of an inclu-
sion criteria of at least 1 valid day of wear time, however 
the sensitivity analysis including only participants with 
more valid days of wear time returned similar strength 
and direction of regression coefficients. Therefore, the 
inclusion criteria for wear time did not limit the results of 
this study.

The pressure and cold pain threshold measures used 
in this study may not be ideal to specifically capture the 
relationship of habitual PA and SB with pain sensitiv-
ity. PA can result in exercise induced hypoalgesia, with 
potential underlying mechanisms including acute recruit-
ment of descending inhibitory control systems [41]. In this 
context, the use of dynamic quantitative sensory testing 
measures such as conditioned pain modulation or tempo-
ral summation may be more appropriate to capture evoked 
sensitivity modulation associated with PA [42]. However, 
conditioned pain modulation and exercise induced 
hypoalgesia have been found to be partially impaired in 
chronic pain patients with high versus low pressure pain 
sensitivity [16].

The literature suggests the number of pain sites is an 
important factor to consider when investigating the rela-
tionship between PA and pain sensitivity [15, 17], hence in 
the current study, participants were categorized according 
to their current pain status, so chronicity of pain was not 
considered, meaning the “Single-site pain” and “Multisite 
pain” groups contained participants with pain of varying 
duration. Table 1 reports the “Multisite pain” group con-
tained participants with higher levels of pain chronicity, 
pain frequency and pain intensity when compared to the 
“Single-site pain” group.

Numerous statistical contrasts were performed 
without adjustment of the type I error rate, adopting the 
philosophy of Sterne et al. [43] of the unadjusted p-value 
as strength of evidence against the null hypothesis, and 
the 95% confidence interval as the range of credible values 
for the population parameter. It is possible that the few 
associations observed in this study occur by chance only, 
and the confidence intervals for these estimates indicate 
that differences may not be of a meaningful magnitude. 
Furthermore, the associations detected are only cross-
sectional, and give us no information as to how PA and SB 
behaviours might temporally heighten or lower pressure 
and cold pain sensitivity. The following discussion of the 
associations identified by this study is therefore presented 
with this caveat in mind.

4.2  �Pain sensitivity, physical activity and 
sedentary behaviour

With respect to findings regarding pressure pain sensi-
tivity, for the “Single-site pain” group, participants with 
higher levels of MVPA accumulated in ≥10  min bouts 
(>13 min/day) demonstrated greater pressure pain sensi-
tivity compared with those participants with ≤13 min/day 
MVPA accumulated in ≥10 min bouts, but not compared 
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to those with no MVPA accumulated in ≥10 min bouts. 
These findings suggest that for participants with “single 
site pain”, how MVPA is accumulated (min accumu-
lated in longer bouts of MVPA) may be important in the 
context of heightened pressure pain sensitivity. The 
mechanisms underlying heightened pressure pain sen-
sitivity and PA in the “single site pain” group are likely 
complex, potentially involving both neuronal [44] and 
non-neuronal factors (e.g. immune) [45]. Given pres-
sure pain sensitivity was measured across four sites and 
models were adjusted for site, this association might 
plausibly reflect changes in central nociceptive process-
ing or modulation (for example, altered endogenous 
descending control system efficiency) [14] or facilitated 
spatial/temporal summation in response to PA [16], 
rather than primarily peripheral sensitisation (as this 
would manifest in a more localised site sensitivity). 
However, it is unclear why this association would be 
detected for the single-site pain group, but not multisite 
pain. Variable effects of PA on pressure pain sensitivity 
in both clinical and experimental pain populations have 
been reported [15], but interpretation is complicated  
by differences in study quality, design, exercise pro-
tocols, measurement tools, clinical populations and 
outcomes [14].

With respect to findings on cold pain sensitivity, for 
those with “multisite pain”, participants falling within the 
highest tertile of vigorous PA (VPA) had greater cold pain 
sensitivity when compared with participants with lower or 
no vigorous PA. It is unclear what this association might 
reflect, as in this “multisite pain group”, similar differences 
between VPA levels for pressure sensitivity would also be 
expected, given the potential for facilitated (temporal and 
spatial) nociception from deep tissues following exercise 
in multisite pain (for example in chronic widespread pain, 
or fibromyalgia [16, 17]. Notwithstanding this point, differ-
ences in cold sensitivity levels have been demonstrated 
previously in a non-clinical cohort drawn from the Raine 
Study (young females), with heightened cold pain sensitiv-
ity evident in those females reporting moderate to severe 
menstrual pain [46] and an association between low corti-
sol response to stress and musculoskeletal pain in females 
with heightened cold pain sensitivity [13]. These authors 
suggest that cold hypersensitivity may reflect changes in 
central regulatory systems linked to homeostasis (includ-
ing thermosensation and thermoregulation). It is also pos-
sible that VPA in this group may differentially influence 
cold and pressure pain sensitivity, as these psychophysi-
cal tests are designed for nociceptors located in skin and 
muscle tissue, respectively [32]. Collectively, these findings 
allude to potentially important dose-relationships between 

PA/exercise and pain sensitivity, suggesting that higher 
amounts of VPA may not be ideal for all musculoskeletal 
pain conditions, particularly for clinical populations with 
two or more pain areas [15, 17].

The association of lower cold pain sensitivity with an 
increase in the number of breaks from sedentary time for 
participants in the “No pain areas” group also suggests the 
way sedentary time is accumulated may be related to pain 
sensitivity. Increased breaks in sedentary time, independ-
ent of total sedentary time, have demonstrated associations 
with lower waist circumference [47, 48], lower inflammatory 
marker concentration [47] and improved plasma glucose 
levels [47, 48]. These physiological effects may suggest 
mechanisms whereby more breaks from sedentary time 
could be associated with lower cold pain sensitivity partly 
through mechanisms including improved energy meta-
bolism and lower circulating inflammatory markers. Young 
adults spend most of the waking day being sedentary [6] 
and targeted interventions for pain prevention and also 
for improving other life-course health trajectories, should 
consider the accumulation patterns of sedentary time.

5  �Conclusions
This study was a comprehensive investigation into the 
association of pressure and cold pain sensitivity with 
habitual, objectively measured PA and SB in young adults. 
In this community-based sample of young adults with 
“No pain areas”, “Single-site pain” and “Multisite pain” 
few associations between PA and SB with pressure and 
cold pain sensitivity were demonstrated. These findings 
suggest that consideration of patterns of accumulation of 
PA and SB are important for future research, and highlight 
the need for high quality longitudinal studies that would 
enable better characterisation of the pain sensitivity of 
cohorts over time, and related temporal influences of PA 
and SB on tissue sensitivity.
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Appendix 1: Multivariable regression models for PPT (kPa) measures with at least 3 valid weekdays and 1 valid weekend day.

Variable   No pain areas (n = 281)  
 

Single-site pain (n = 69)  
 

Multisite pain (n = 110)

  Regression 
coefficient (95% CI)d

  p-Value Regression 
coefficient (95% CI)d

  p-Value Regression 
coefficient (95% CI)d

  p-Value

Moderate PA (min/day)a,b

 Linear term   4.0 (−36.6, 28.7)   0.721e  37.6 (−16.6, 91.9)   0.091e  −12.2 (−49.2, 4.7)   0.441e

 Quadratic term   0.0 (−3.4, 3.4)     −5.1 (−10.7, 0.5)     2.1 (−2.2, 6.5)  
Vigorous PA (min/day)a,b

 Zero   Ref.   0.582e  Ref.   0.527e  Ref.   0.544e

 <1.75 min/day   −30.1 (−87.3, 27.1)  0.302  −55.3 (−43.1, 153.6)  0.271  38.1 (−30.0, 106.3)   0.273
 ≥1.75 min/day   −21.5 (−80.5, 37.6)  0.541  −19.6 (−83.2, 122.4)  0.709  20.7 (−53.7, 95.1)   0.586
MVPA (min/day)a,b

 Linear term   −10.2 (−42.9, 22.5)  0.560e  52.5 (−0.5, 105.5)   0.038e  −7.2 (−44.5, 30.2)   0.170e

 Quadratic term   0.6 (−2.7, 3.9)     −6.5 (−12.0, −1.0)     1.3 (−3.1, 5.7)  
MVPA in ≥10 min bouts (min/day)a,b

 Zero   Ref.   0.630e  Ref.   0.084e  Ref.   0.897e

 ≤13 min/day   −0.9 (−70.7, 69.1)   0.980  83.1 (−28.4, 194.7)   0.144  −12.8 (−60.8, 86.3)  0.734
 >13 min/day   −22.8 (−93.5, 47.9)  0.527  −9.7 (−118.3, 98.6)   0.858  19.3 (−62.6, 101.2)   0.644
Sedentary time per day (min)a,b   −0.6f (−3.4, 2.3)   0.702  −1.1f (−4.2, 6.3)   0.694  −0.5f (−4.2, 3.1)   0.770
Sedentary time as percentage of  
non-MVPA timea,b

  −7.7g (−34.0, 18.6)   0.568  −2.2g (−43.9, 48.3)   0.926  −1.1g (−35.2, 33.1)   0.951

Sedentary time ≥20 min (min/day)a,b   −1.2f (−4.1, 1.8)   0.432  −0.2f (−5.0, 5.5)   0.928  −0.9f (−4.9, 3.2)   0.677
Sedentary time ≥30 min (min/day)a,b   −1.8f (−5.4, 1.7)   0.315  0.4f (−5.4, 6.1)   0.892  −1.4f (−6.5, 3.6)   0.574
Proportion of sedentary time ≥20 min  
(percent)b

  −12.8h (−34.0, 8.4)   0.237  4.3h (−34.2, 42.7)   0.828  −9.9h (−39.4, 19.5)   0.508

Number of breaks from sedentary  
time/daya,b,c

  2.4i (−14.3, 19.1)   0.779  −7.7i (−40.3, 25.0)   0.645  −1.8i (−25.1, 21.5)   0.878

aAdjusted for awake wear time; badjusted for number of days of valid wear time; cadjusted for sedentary time per day; dAdjusted for sex, 
site, waist-hip ratio, SF12-mental component summary; eOverall p-value; fDifference estimate represents the expected change for a 10 min 
change in sedentary or sitting time; gDifference estimate represents the expected change for a 10% change in sedentary time as % of  
non-MVPA time; hDifference estimate represents the expected change for a 10% change in proportion of sedentary time ≥20 min; iDifference 
estimate represents the expected change for 10 breaks in sedentary time; CI = confidence interval; PA = physical activity; MVPA = moderate 
vigorous physical activity.
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