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Abstract: The aim of this article is to investigate the failure
and enhancement mechanism of bolt-strengthening glass
fiber-reinforced polymer (GFRP) T-joints under quasi-static
tension. One-step molding technology based on the vacuum-
assisted resin infusion process is carried out to fabricate the
GFRP T-joints structures. Then, a special fixture and con-
straint condition are set up to take the quasi-static tensile
test with high reliability. Moreover, it is demonstrated that
the T-joints structures may decrease their bearing capacity,
resulting in interlaminar delamination at the corner region.
Further, to strengthen the T-joints, the bolts are employed to
effectively prevent the initiation and propagation of interla-
minar delamination in the tensile loading. At the same time,
as their enhancement and failure mechanisms are revealed
deeply, the strengthening method is optimized as well.

Keywords: GFRP T-joints, bolt reinforcement, failure
mechanism, optimizing on enhancement location

1 Introduction

Because of composite structures’ remarkable advantages,
such as high stiffness, low weight ratio, and low cost,
they are widely utilized in aircraft, manufacturing, and
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other industries [1-4]. In various joining methods, the
adhesive bonding technique [5,6], low weight and fewer
components, bolt joint technique [7-9], and higher relia-
bility are the commonly used technologies for composite
constructions. Adhesive bonds have increasingly been
utilized in industrial applications, for their various super-
iorities, including higher strength, sealing, and ability to
join different materials, over other joining methods such
as fastened, welded, and riveted joints [10].

On the other hand, in the field of manufacturing,
complex or large structures are always assembled with
a significant number of parts, leading to a higher dete-
rioration in productivity and cost. One particular and
widespread application of adhesive bonding in aircraft
composite structures, the very subject of the present
research, is the skin-to-stiffener joint, with stiffeners
being adhesively connected to skin sections such as the
fuselage or wings [11,12].

However, the T-joints structure has fewer parts.
However, due to its complex geometric shape and ply con-
figuration, the T-joints structures are quite different from
the panel structures in the failure mechanism. According
to the study by Barzegar et al. [13], the failure behavior
of T-joints is significantly changed with different fiber
volume fractions of adherents, the strength of adherents,
and curvature at the corner. Besides, instead of the matrix
crush as the rock [14-17], refs. [18-20] reported that the
interlaminar delamination is the principal failure model of
a T-joints. As a result, the strength between the layers is
one of the most critical properties of the T-joints composite
structure. Further, in general, the primary methods to
improve the interlaminar strength can be classified into
three categories: (i) higher interfacial strength between
the fiber and matrix by mechanical or chemical treatments
[21,22], (ii) the addition of coupling agent, such as sol/gel
[23] as well as multiwalled carbon nanotube [24-26] at the
fiber-matrix interface, and (iii) mechanical enhancement
along the normal direction of the T-joints surface, for
instance, Z-pin reinforcement [27,28].
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In this study, glass fiber-reinforced polymer (GFRP)
T-joints, a typical integrated T-shape composite structure
(see Figure 1), consisting of a laminate (named as web)
perpendicular to another (named as skin), are manufac-
tured by the novel method based on vacuum-assisted resin
infusion (VARI). This type of T-joints is enhanced along
the normal vector of the skins with the help of bolts.
As their failure mechanism is investigated and revealed
by analyzing the response history, including the force—
displacement curves and damage evolution of morphology,
the strengthen schemes are also optimized further.

2 Experimental methodology

2.1 Materials and fabrication

The conventional VARI process added with two angle
iron benches, as described in refs. [29,30], is employed
to manufacture the T-joints specimens. The process can
be mainly summed as following steps: (1) lay the fiber
layers, diversion net, and release cloth on the mold; (2)
fix the mold by the bolts and make confined space for the
fiber layers with the help of the vacuum bag and sealant;
(3) pump the air out by vacuum pump and fill the room
with resin via atmospheric pressure; and (4) the curing of
the resin at room temperature.

Moreover, both the skin and web laminate have 12
layers of woven glass fiber, 300 g/mz, and a total thickness
of 3mm. Due to its high flowability and curing at room
temperature, vinyl epoxy resin is used in the VARI process.

5 Air
Air
H Vacuum bag [
| \f

Glass fiber layer III

Failure and enhancement mechanism of bolt-strengthening GFRP T-joint

Rubber
MAMMAIAMATAMATANA

Angle steel
Release

cloth

— 467

In the first step, for clamping, at both sides of all cases, two
rectangle blocks are laid on the surface of the benches,
and then are released after the curing of T-joints struc-
tures. As a result, at both sides of the T-joints, the fixture
has less effect on the web layers. Further, the effect of the
fixture can be sharply reduced in our experiments. As
shown in Figure 1, all T-joints cases are cut into a uniform
size of 180 mm length with 25mm * 2 clamping area,
80 mm height, and 25 mm width.

2.2 Enhancement with bolts and the set-up
in the test

As shown in Figure 2, we examine four types of speci-
mens, control group, that is, T-joints without reinforce-
ment (named as T-Raw), skin-bolt-reinforcement group
(named as T-S), web-bolt-reinforcement group (named as
T-W), and skin-web-bolt-reinforcement group (named as
T-SW). Besides, the distance between the bolt hole and
the corner is marked at the end of the specimen’s name.
For instance, T-S-2 cm means the T-joints with bolt
strengthening, 2cm away from the corner, at the skin
laminate. In the experiments, M8 hex socket head bolts
with two gaskets at both sides are chosen and applied a
uniform torsion of 8 Nm. Finally, all cases are fixed on a
T-shape fixture by four M12 bolts. A universal experi-
mental machine is employed to conduct the tensile test
with a loading speed of 1 mm/min. At the same time, the
failure process of morphology is recorded by a digital
video camera.
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Figure 1: The configuration, fabrication progress, and dimension of the T-joints.
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Figure 2: The setup of tensile loading, varying in the enhancement methods.

3 Results and discussion

3.1 The failure evolution of T-Raw specimens

Three curves of force versus displacement of T-Raw speci-
mens and typical primary failure morphologies are shown
in Figure 3. In the tests, first, a short significant linear
growth in the force is observed. Then, the force keeps
increasing to the ultimate value of about 500 N. During
this period, there is no obvious unrecoverable damage,
but there is elastic deformation, until the initiation of dela-
mination at the skin interface. At the same time, the force
reaches the ultimate value. With the extension of the inter-
laminar delamination at both skin and web, the degenera-
tion of their carrying capacity is seen.

3.2 The effect of reinforcement location

Typical force-displacement curves, consisting of T-Raw,
T-W-2 cm, T-S-2 cm, and T-SW-2 cm, are compared in
Figure 4. In addition, their first and second peak-force
values, as well as their increased ratio to T-Raw, are listed
in Table 1. Compared to T-Raw, T-W-2 cm exhibit a gentle
linear increase in the force until reaching the ultimate

force of about 458.46 N, which is even smaller than that
of T-Raw, 492.3 N. This is because the addition of bolt
reinforcement at the web region reduces the strength
of web laminate, rather than preventing the extension
of interlaminar delamination at the skin. For this season,
T-W-2 cm has a similar ultimate force and failure mechanism
as the performance of T-Raw. When the bolt reinforcement is
applied at the skin laminate 2 cm away from web laminate,
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Figure 3: Force—displacement curves of the T-Raw group.
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Figure 4: Comparison of various types of T-joints in the force—dis-
placement curves.

Table 1: Comparison of peak force and their increased percentage
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named as T-S-2 cm, even though it has a lower first peak
force, 446.79 N, than T-Raw and T-W-2 cm, its strength of
interlaminar delamination is increased dramatically, resulting
in a higher ultimate force, 1032.63N, and displacement,
23.86 mm. Besides, T-S-2 cm is its first peak force with the
initiation of delamination at the corner as T-Raw and T-W-2
cm, see Figure 5. However, after a small slide of tensile force,
the enhancing bolts can prevent the interlaminar delamina-
tion at the skin region from extending beyond the blot holes.
Therefore, with the increase in tensile force, up to the ultimate
value of 1032.63 N, there is an extension of interlaminar dela-
mination at the web region, as well as the fiber broken at the
blot region, shown in Figure 5.

Although, as shown in Figure 4, the bolt strength-
ened at the web of T-Raw cases, T-W-2 cm, can hardly
improve its bearing capacity along the normal vector of

Case First peak force (N) Second peak force (N) Increased percentage of
ultimate force over T-Raw (%)

T-Raw 492.30 (+83.62) 0 0

T-W-2cm 458.46 (+53.69) 340.20 (+72.63) -6.87

T-S-2cm 446.79 (+36.16) 1032.63 (+153.62) 109.75

T-S-3cm 457.38 (+49.13) 1416.93 (+121.62) 187.82

T-SW-2cm 413.60 (+£50.33) 2015.28 (+130.62) 309.36

T-SW-3cm 469.49 (£63.62) 2332.80 (+174.62) 373.86

Figure 5: Comparison of various kinds of T-joints in the damage morphology at point A, before the first peak force, point B, the first peak

force, point C, and the second peak force.
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Figure 6: Comparison of force—displacement of the cases, varying in
the strengthened location at the skin laminate.

skin laminate. As for T-SW-2 cm cases, their ultimate
bearing capacity increased dramatically from 2015.28 N to
492.3 N of T-Raw, and even more than double of T-S-2 cm.
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On the basis of the typical damage evolution of T-SW-2 cm
cases shown in Figure 5, they reach the first peak force
when the delamination is found at the corner. Then, after
a small slide, the tensile force increases significantly again
up to the ultimate value until there is fiber broken around
the bolt hole at the web laminate. Hence, only if the inter-
laminar strength of skin laminate is enough, the reinforce-
ment in the web is useful.

3.3 The effect of the reinforcement distance
from the corner

To investigate the effect of bolt location on skin lami-
nates, in Figure 6 and Table 1, we experimentally com-
pare the performance of both T-S and T-SW cases with
two bolts at the location 2 or 3 cm away from web lami-
nates. On the whole, the delamination initiation at the
corner region means that the tensile force reaches its first
peak value. Then, when the tensile force reaches the
second peak value, that is, the ultimate force, T-S cases

.‘

T-SW-. ."’? ‘

Figure 7: Comparison of the damage morphology of the cases, varying in the strengthened location at the skin, at the key points as marked

in Figure 6.
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exhibit wide interlaminar delamination damage at the
web and fiber-broken damage around the bolt holes.
Moreover, as listed in Table 1, the cases with bolts at
3 cm can increase the first peak force slightly as well as
the ultimate force dramatically.

However, Figure 7 shows the crack evolution of the
cases varying in the strengthened location at the skin
laminate. Regarding T-SW cases, T-SW-2 cm has less
delamination region, resulting in a higher stiffness and
easier shear failure mode at the fixture edge. Besides, the
T-SW-3 cm cases have a larger curvature to reduce the
damage there. Hence, they fail in the fiber broken around
the web holes.

4 Conclusions

The GFRP T-joints with/without bolt reinforcement are
fabricated via the VARI process, then mechanically char-
acterized by tensile tests. In the experiments, the response
histories, including both force—displacement curves and
failure evolution, are accurately obtained and analyzed
to illuminate their failure and strengthen mechanism.
Based on this systematic study, the following conclusions
can be drawn:

e All the failure of T-joints structures begins with the
delamination at the corner region.

e The interlaminar delamination at the skin laminate
plays an important role in the strength of the T-joints
structure because of the prevention of the extension of
the delamination that occurred first. Hence, the T-W
cases even have a poorer exhibition in strength than
T-Raw, and it is a must of enhancing the skin firstly.

¢ Since the reinforcement between the web and skin is
set up, the bolt strengthening can work effectively to
enhance the tensile force up to 4.74 times greater than
that of the control cases, T-Raw.

¢ The blot strengthening of both T-S and T-SW at the skin
with a larger distance can be increased due to the pre-
sence of large curvature caused by more interlaminar
delamination between two bolts at the skin.

¢ The addition of the bolts could lead the region around
the hole to break more easily.
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