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Abstract: Graphite flakes/Al composites are promising
thermal management materials due to high thermal con-
ductivity (TC) in basal plane orientation, matched coeffi-
cient of thermal expansion, and good machinability. In
this article, the acoustic mismatch model and the effective
medium approach are applied to predict the influence of
different interfacial coatings on the interfacial thermal
conductance (ITC) and the TC of graphite flakes/Al com-
posites, respectively. With the increase in the thickness of
interfacial coatings, the ITC and the TC of graphite flakes/
Al composites decrease. For the composites with Ni,
Cr/Cr,C3/CrsC,, Si/SiC, Ti/TiC, WC, and Mo/Mo,C coat-
ings, the ITC is sensitive to coating thickness. In order to
obtain ideal TC of graphite flakes/Al composites, the
thickness of the coatings should be controlled below
1pm. It is reasonable that the TC of the graphite flakes/
Al composites increases as the volume fraction of graphite
flakes increases. The TC of the graphite flakes/Al composites
increases with the ITC and changes slowly when the ITC
increases to a certain extent. Si/SiC and WC coatings are
proposed to be the most promising candidates to improve
the thermal performance of graphite flakes/Al composites.
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1 Introduction

The rapid development of smaller, more powerful, and
more efficient electronic systems has created a very chal-
lenging set of heat dissipation, a critical factor in guar-
anteeing performance and reliability in electronic devices
[1,2]. Hence, there is a great desire to develop very effi-
cient thermal management materials with ideally light-
weight, extremely high thermal conductivity (TC), and
low coefficient of thermal expansion (CTE). In recent
years, aluminum matrix composites with excellent com-
prehensive properties are therefore becoming promising
materials for heat sinks and spreaders in multi-functional
electronic packaging systems. Among these, SiC/Al com-
posites, due to their low price, matched CTE, and near-
net-shape fabrication versatility, are frequently used in
the thermal management market [3,4]. However, their
relatively low TC (below 250 W/m K) [5] cannot meet well
with the increasing requirement in packaging application.
Diamond/Al composites with higher TC (~750 W/mK) [6]
have high potential in this regard; however, their high
price and poor processability limit their application [7].
Due to their low price, high TC in basal plane orientation,
and good machinability, graphite flakes/Al composites
have received ever-growing attention [8-16].

Similar to other carbon/Al composites, the optimiza-
tion of the interface plays a crucial role in determining
the thermophysical properties of the graphite flakes/Al
composites. It is well known that during the fabrication
of graphite flakes/Al composites at elevated tempera-
tures, it is extremely easy to form interfacial aluminum
carbide (Al,Cs), which is easy to hydrolyze under water
vapor condition and can cause the interfacial de-bonding
and deteriorate the properties of the composites [17].
Meanwhile, excessive Al,C; may also greatly deteriorate
the interfacial thermal conductance (ITC) to some extent
due to its rather low intrinsic TC [18]. It is widely known
that the ITC is important in various applications and
metrologies of various forms of composites [19-23].
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Recent studies have shown that graphite flake surface
coating can be applied to prevent the formation of Al,C;
and enable good bonding with the Al matrix, thus signifi-
cantly improve the thermal and mechanical properties
of graphite flakes/Al composites [24-29]. Although good
interfacial bonding is helpful for desirable TC, the addi-
tional interface layers will probably also act as thermal
boundary barriers, which will influence the thermal prop-
erties of composites [18]. Moreover, systematic experi-
mental research studies on quantitative evaluation and
comparison of interface layers on the thermal properties
are still insufficient yet. Based on the performance para-
meters of the surface coatings [22,30-33], the prediction
of the ITC and the TC of the composites will help to
improve the process of the surface coating of reinforce-
ments and the design of the composites.

The present work aims to theoretically evaluate the
effects of various coating types and their thicknesses on
the ITC and the TC of graphite flakes/Al composites.
Typical interfacial coatings are divided into metals and
their carbides, and a calculating method based on the
acoustic mismatch model (AMM) and effective medium
approach (EMA) are applied. The results may guide for
choosing the appropriate interface types and their thick-
nesses for graphite flakes/Al composites.

2 Model employed for calculating
the ITC and the TC

Considering the differences in the electronic and vibra-
tional properties, there is an interface thermal barrier for
heat transfer between Al matrix and graphite flakes,
known as Kapitza resistance, which will limit the improve-
ment of the TC of composites. The ITC h is the reciprocal of
Kapitza resistance. For graphite flakes/Al composites with
various coatings, the schematic of the multi-layered
interfacial structure and physical model of the interfa-
cial thermal resistance are shown in Figure 1. The total
interfacial thermal resistance (Riota1) includes the Kapitza
resistance between Al matrix and the coating layer (R,.1),
the thermal resistance of the coating layer (R;), and the
Kapitza resistance between the coating and graphite flakes
(Riy)-

The AMM can be used to theoretically estimate the
Rm—l and ler:
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Figure 1: Schematic diagram of the interfacial thermal resistance of
graphite flakes/Al composites with an interfacial coating.

where p, v, and C are the density, sound velocity, and
specific heat capacity, respectively, and m and r denote
the matrix and reinforcement. Generally, there are three
modes of vibrations in isotropic materials: one longitu-
dinal (v;) and two transverse (v;) [19]. The average sound
velocity can be expressed as follows:

3 1 2

v @
As a typical anisotropic material, however, graphite

flake still has three modes: one longitudinal, one trans-

verse, and one out-of-plane mode (vy), and the v is far

less than v; and v; [19]. Hence, the average sound velocity

of graphite flake can be expressed as follows:
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The R; can be expressed by the equation:

l

Rl = T
K

(4)
where [ and K; are the thickness and the TC of the coating
layer, respectively.

The TC of graphite flakes/Al composites in the basal
plane of graphite flakes (defined as the X-Y plane) is
much higher (~880 W/m K) than that perpendicular to
the basal plane (defined as the Z-direction). The sche-
matic diagram of the X-Y plane and the Z-direction of
graphite flakes/Al composites are shown in Figure 2.

The EMA can theoretically estimate the TC of graphite
flakes/Al composites (K.), which can be expressed as fol-
lows [16,20]:
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Figure 2: Schematic diagram of the X-Y plane and the Z-direction of
graphite flakes/Al composites.
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where KXY and K¢ are the TC of composites in the X-Y
plane and Z-direction, respectively. K, is the TC of matrix
alloy. KXY and K7 are the effective TC of reinforcements
in the X-Y plane and Z-direction, respectively. f is the
volume fraction of reinforcements. <cos?6> is the orienta-
tion function, which can describe the distribution of the
reinforcements in the Al matrix. When the graphite flakes
are completely disordered in the matrix, <cos?6> = 1/3;
when the graphite flakes are completely perpendicular to
the X-Y plane, <cos?0> = 0; and when the graphite flakes
are completely parallel to the X-Y plane, <cos?6> =1. S is
the geometrical factors related to the aspect ratio of the
reinforcements, approximately regarding the shape of
graphite flakes as a disk, and can be given by:
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where D and t are the diameter and thickness of graphite
flakes, respectively. Hence, the EMA can be reduced to:

K& = K| 1+ — ! , (a1
lTD(l - f) + KXY K
K& = Ky|1+ f (12)
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The effect of multilayer interface (Figure 1) on the TC
of graphite flakes may be equivalent to that of graphite
flakes covered with a thermal barrier. Hence, the relation-
ship between the effective TC of graphite flakes (K;) and
their intrinsic TC (Kgp) and ITC (h = 1/Reotal) is as fol-
lows [7,21]:

I(XY
XY
k™ = —ZKf (13)
1+ o
K
Z _ Gf
Ky = g (14)
1+ Wt

In our calculations and numerical analyses, the con-
stants of materials involved are listed in Table 1. The
representative values of 50 vol%, 500, and 20 pm are
assigned to f, D, and ¢, respectively.

3 Predictions and numerical
analyses

Based on the aforementioned models, the effects of var-
ious coating types and their thicknesses on the ITC and
the TC of graphite flakes/Al composites can be theoreti-
cally evaluated. Furthermore, the variation of the ITC and
the TC of graphite flakes/Al composites with a different
volume fraction of graphite flakes has been systemati-
cally analyzed.

3.1 ITC of graphite flakes/Al composites

As a bridge between the matrix and the reinforcements,
the interface can transfer the external force borne by the
matrix to the reinforcements; meanwhile, the appropriate
interface bonding can prevent crack propagation and
slow down stress concentration. Light wave, acoustic
wave, thermoelastic wave, and shock wave will scatter
and absorb at the interface, resulting in discontinuity of
physical properties. From this point of view, the carrier
transport at the interface is blocked, which is not condu-
cive to the heat conduction of the material, especially the
condition of a weak bonding at the interface. Due to the
poor wettability of graphite and Al, it is more feasible and
necessary to improve interfacial bonding by introducing
additional interface layers by surface metallization of
graphite flakes. Generally, the commonly used coating
materials include metals and their carbides.
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Table 1: Constants of coating materials [22,30-33]
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Materials Density/(kg m~3) Sound velocity/(ms™) Specific heat/(J K™ kg™?) TC/WmK™)
Longitudinal Transverse Average

Al 2,700 6,240 3,040 880 237

Graphite flakes 2,250 23,600 15,900 710 880 (a-axis)
1,960 700 27 (c-axis)

Si 2,330 8,970 5,332 703 126

SiC 3,100 12,810 7,530 678 179

w 19,320 4,029 133 178

wcC 14,900 4,697 203 120

Mo 10,200 3,916 248 138

Mo, C 9,000 6,257 3,605 4,003 347 21

Cr 7,190 6,980 4,100 4,545 446 90

Ti 4,540 6,070 3,120 522 22

TiC 4,930 9,330 6,092 569 36

Cu 8,900 4,910 2,500 2,801 386 398

Ni 8,800 5,630 2,960 3,310 447 88

Ag 10,500 3,780 1,740 1,960 237 427

As shown in Figure 3, the ITC of graphite flakes/Al
composites with metal coatings decreases with the increase
in coating thickness, but the trend of variation is obviously
different. For the composites with W, Cu, and Ag coatings,
the ITC decreases slowly with the increase in coating thick-
ness. Particularly, the ITC of composites with Ag coating is
relatively lower than others, which is not suitable for
coating material of graphite flakes/Al composites. That is
because of the lower sound velocities of Ag. For the compo-
sites with Cr, Si, Mo, Ni, and Ti coatings, the ITC is sensitive
to coating thickness. When the coating thickness is 1um,
the ITC of composites with Cr, Si, Mo, Ni, and Ti coating
decreases 49.3, 37.1, 26.2, 36.2, and 57.3%, respectively.
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Figure 3: ITC of graphite flakes/Al composites with typical metal
coatings as a function of coating thickness.

Hence, in order to obtain satisfied interface heat transfer
behavior, the thickness of the coating of the composites
should be strictly controlled. Among these coatings, the
ITC of composites with Ti coating is relatively low, and
the coating thickness should be controlled at tens of nano-
meters. Cr and Si are better coating materials due to their
higher ITC. However, the solubility of Cr in the Al matrix is
so large that it is not advisable to be used as a coating
material of diamond/Al composites [18]. Mo, as a diamond
coating material, has been found to form intermetallic com-
pounds with Al at the interface, so the TC of the diamond/Al
composites has not been improved [23]. Therefore, Si is a
suitable coating material of the graphite flakes/Al
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Figure 4: ITC of graphite flakes/Al composites with typical carbide
coatings as a function of coating thickness.
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composites from the point of view of improving the ITC of
the composites; however, the thickness of the coating still
needs to be controlled.

For graphite flakes/Al composites with carbide coat-
ings, as shown in Figure 4, the ITC similarly decreases
with the increase in coating thickness and changes gra-
dually after falling to a certain extent. The ITC of graphite
flakes/Al composites with ZrC coating is at a lower level;
hence, ZrC is not a suitable coating material. The graphite
flakes/Al composites with other coating are all sensitive
to the thickness of the coating, and the ITC has been
significantly reduced when the coating thickness is more
than 500 nm. Particularly, for Cr,Cs, Cr5C,, TiC, and Mo,C
coatings, the ITC of composites with 100 nm thickness
coatings decreases 30.1, 32.9, 22.4, and 21.6%, respectively.
Considering the coating process of flake graphite, it is
relatively difficult to realize the coating thickness under
100 nm. Compared with other carbide coatings, SiC is
more suitable as a coating material for graphite flakes/Al
composites. The ITC of graphite flakes/Al composites with
SiC coating is higher as a whole; meanwhile, when the
coating thickness is 500 nm, the ITC only decreases 22.35%.

3.2 TC of graphite flakes/Al composites

Figures 5 and 6 show the variation of the TC of graphite
flakes/Al composites with different coatings along the
X-Y plane, which is consistent with the ITC. With the
increase in the thickness of interfacial coatings, the TC
of graphite flakes/Al composites decreases. The overall
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Figure 5: TC of graphite flakes/Al composites with typical metal
coatings as a function of coating thickness.
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Figure 6: TC of graphite flakes/Al composites with typical carbide
coatings as a function of coating thickness.

level of the TC of Ag coating composite is low, and the
TC of Ti coating composites decreases rapidly with the
increase in coating thickness. When the coating thickness
is 1 pm, the TC of composites with Ti coating decreases
9.1%. The graphite flakes/Al composites with Cr and Si
coatings exhibit higher TCs when coating thickness is
less than 1 pm.

In comparison, the thickness of the carbide coating
has a more significant effect on the TC of the composites.
The TC of composites with ZrC coating is relatively lower,
which is consistent with the variation trend of the ITC.
The TC of Cr,Cs, CrsC,, TiC, and Mo,C coating composites
changes significantly with the coating thickness. The
overall TC of SiC and WC coating composites is relatively
high, and SiC or WC coating can be used for graphite
flakes/Al composites.

Figure 7 shows the calculated ITC and the TC of 50-70
vol% graphite flakes/Al composites with various coatings
with a thickness of 0.2-1.0 um. It is well reasonable that
the TC of the graphite flakes/Al composites increases as
the volume fraction of graphite flakes increases. Since the
graphite flakes as high thermal reinforcements construct
the heat conduction path of the composites, the increase in
their contents is bound to improve the TC of the compo-
sites. Furthermore, as for the case of the introduced inter-
face coatings, it can be seen that the TC of the graphite
flakes/Al composites increases with the ITC and changes
gradually when the ITC increases to a certain extent. The
ITC plays an important role in improving the TC of graphite
flakes/Al composites. Because of the differences between
the physical properties of graphite and Al, thermal flux
through the interfaces changes and this so-called thermal
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Figure 7: Predicted ITC and TC of 50-70 vol% graphite flakes/Al
composites with a coating thickness of 0.2-1.0 pm.

resistance limits the heat transfer of composites. Once the
interface coating layers introduced in the composites can
improve the ITC, such as Si and SiC, and the TC of the
composites can reach higher level. The TC of the gra-
phite-SiC/Al composite in the X-Y plane fabricated by
vacuum hot pressing technology can reach (528-735)
W/(mK) [24]. In order to obtain better ITC, the coating
layers should be with a nanoscale thickness. However,
the interface is one of the factors affecting the TC of com-
posites. Once the perfect interface bonding is obtained, the
TC of composites often depends on other factors, such as
the size and volume fraction of graphite, the distribution of
graphite in the matrix, the composition of matrix alloy,
and so on. Apparently, the size and volume fraction of
graphite flake are also the factors affecting the ITC.

It can be seen that there are still some errors in the
prediction model of the ITC and the TC of the composites.
AMM assumes that phonons are reflected and refracted at
the interface. The smaller the ratio of interface roughness
to phonon mean free path, the closer the interface thermal
resistance is to the calculated value of the AMM model.
Hence, the actual situation of the ITC of composites is higher
than that predicted by the AMM model. Meanwhile, other
factors, such as relative density and interfacial reaction of
the graphite/Al composite, are not considered in these
models. When there are pores in the composites, it is easy
to form microcrack under stress and further reduce the
mechanical properties of the composites. Meanwhile, these
pores can also affect the heat conduction of phonons and
electrons and reduce the thermophysical properties of the
composites. It is well known that graphite and Al will react
during preparation in high temperature and the TC of the
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reaction products Al,Cs is very low, which is not benefit for
the improvement of the TC of the composites. It should be
noted that these predictive models are still very effective to
evaluate the effects of various coatings on the ITC and select
a desired interface layer for graphite flakes/Al composites.

4 Conclusion

Graphite flakes/Al composites are promising thermal man-
agement materials due to high TC and low CTE. In this
work, the prediction models based on the AMM and EMA
are developed to evaluate the effect of various interfacial
coatings on the ITC and the TC of graphite flakes/Al com-
posites. The ITC decreases with the increase in coating
thickness. For the composites with Ni, Cr/Cr,Cs/Cr3C,,
Si/SiC, Ti/TiC, WC, and Mo/Mo,C coatings, the ITC is rela-
tively sensitive to coating thickness. With the increase in
the thickness of interfacial coatings, the TC of graphite
flakes/Al composites decreases. The coatings with a nanos-
cale thickness are positive to improve the thermal properties
of graphite flakes/Al composites. Si/SiC and WC coating can
be used as suitable coating materials of the graphite flakes/
Al composites from the point of view of improving the TC of
the composites; however, the thickness of the coatings still
needs to be controlled. The TC of the graphite flakes/Al
composites increases as the volume fraction of graphite
flakes increases. The TC of the graphite flakes/Al composites
increases with the ITC and changes slowly when the ITC
increases to a certain extent.
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