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Abstract: To comprehend the fatigue failure mechanism
at the fiber discontinuity in fiber-reinforced composites,
it is necessary to evaluate the local mechanical behaviors.
The fatigue strength depends on the stress distribution at
the fiber inclusion corner. An improved advanced finite
element method (IAFEM) is proposed for the stress inten-
sity factor (SIF) analysis at the fiber inclusion corner. In
the IAFEM, the element stiffness matrix of singular inclu-
sion corner element (SICE) is obtained, and the singular
elastic field at the tip of the fiber inclusion is determined.
The effects of load direction, fiber distribution, fiber geo-
metry, and material properties on SIFs are analyzed
numerically using the IAFEM. The difference in stress
field distribution between two-dimensional and three-
dimensional fiber inclusions is discussed. The IAFEIM
and calculation results can provide reference for fatigue
strength analysis and preparation of composite materials.

Keywords: fatigue strength, fiber-reinforced composite,
singular inclusion corner element, stress intensity factor

1 Introduction

Fiber-reinforced composites are utilized in automotive,
aerospace, and other engineering fields due to their light-
weight, low cost, and high-quality processing perfor-
mance [1–4]. In composite materials subjected to cyclic
loading, the high stress zone prone to crack initiation is
usually located at geometric discontinuities due to mate-
rial mismatch. In fiber-reinforced composites, local fiber
fracture is a typical defect [5–7]. The criteria for evalu-
ating the fatigue strength of materials mostly depend on
assumed structural models. Fatigue behavior can be eval-
uated in terms of parameters which are meaningfully sig-
nificant to fatigue phenomena, such as the common S–N
curve which combines design stress with the number of
cycles. Generally, the fatigue strength S in the S–N curve
is related to the definition of nominal stress [8]. If the root
radius of the inclusion corner tip is assumed to be zero,
stress singularity will appear in linear elastic analysis.
Failure prediction based on stress singularity analysis is
an active research topic [9]. Seweryn's criterion of brittle
failure is based on whether the average stress for crack
initiation or propagation to a specific damage stage reaches
the critical value [10]. Although the stress near the stress
singularitypoint tends tobe infinite, the energy in the small
pieceofmaterialaround the stress singularitypoint isfinite,
thus appropriate characterization parameters are a prere-
quisite for accurate prediction of fatigue failure. Fatigue
tests prove that maximum principal stress can be applied
to the prediction of fatigue limit, but the scatter of the
experimental data was obvious. Relatively speaking, stress
intensity factor (SIF) is used as a meaningful parameter for
the prediction of fatigue failure [11].

There have been a lot of research works on the sin-
gular stress field analysis and SIF of fiber inclusions in
composites. Bogy and Wang [12] first studied the stress
field at the corner of cylindrical inclusions. Zbib et al. [13]
established an analytical expression of SIF for cylindrical
cracks located at the fiber-matrix interface. Jiang et al. [14]
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developed an analytical method for periodic cylindrical
inclusions under longitudinal shear by using equivalent
inclusion technique and combining the results of Rie-
mann boundary value problem. Bian et al. [15] used
Eshelby's equivalent inclusion theory and Mori–Tanaka
method to derive an analytical formula for stress distri-
bution near fibers. Mantič [16] studied the plane strain
problem of a single cylindrical inclusion embedded in an
infinite matrix under uniform uniaxial transverse tension
based on the stress criterion of coupling nodes and incre-
mental energy criterion. Vable and Maddi [17] effectively
applied the boundary element method for stress analysis
of polygonal inclusions. Chen [18] introduced the basic
density function in the physical force method to charac-
terize the stress singularity at the inclusion corner in
numerical analysis. Noda et al. [19–21] systematically cal-
culated the generalized SIF at the inclusion corner with
the body force method. Bulling et al. [22] proposed a finite
element method (FEM) for automatic enrichment near
stress singularities and constructed a semi-analytical sin-
gular mode to evaluate the SIFs in the areas of stress
singularities.

Due to the complexity of boundary conditions and
governing equations, the analytical method is only sui-
table for certain models which are relatively simple. The
goal of fracture analysis using FEM or other numerical
methods is to compute the singular stress at the crack tip
or inclusion. Tan and Meguid [23] established a new
singular FEM by using the complex function method,
which could reliably and effectively determine the sin-
gular stress field and the related SIFs for various wedge
geometry and elastic mismatches. Liou [24] developed a
global-local FEM to predict the stress distributions of
short fiber-reinforced composite. Madenci et al. [25] devel-
oped finite element analysis combining special and con-
ventional elements to provide an accurate description of
the stress field at the interface of two materials or at the
junction of different materials. Lei et al. [26] evaluated the
micromechanical properties of composite materials rein-
forced with single and clustered polygonal fibers using the
FEM. Zhang and Katsube [27] proposed a new mixed FEM
for mechanical analysis of heterogeneous materials with
randomly dispersed inclusions. Symplectic singular ele-
ment is a special singular element in the framework of
FEM, which can be used to solve the dynamic SIF of bi-
material interface cracks [28,29]. Chen et al. [30] devel-
oped a singular edge smooth FEM to solve crack problems
in anisotropic media.

In order to ensure the compatibility of singular ele-
ments, it is usually necessary to use transition elements
between singular elements and regular elements. However,

Chen and Ping [31] and Ping et al. [32] developed a kind
of super singular corner element method based on the
special finite element characteristic analysis method,
which achieved the consistency degree of freedom between
the singular element and the conventional element. By
using the characteristic solutions of numerical stress field
and displacement field, the singular stress near the tip of
polygonal inclusion embedded in the matrix was analyzed
by the super singular corner element. The super singular
corner element method was further extended to deal with
the 3D singular stress field problems [33–35]. The local fiber
discontinuity problem is a typical three-dimensional (3D)
inclusion problem in fiber-reinforced composites. It is
necessary to propose an effective solution method and
do more research on the stress singularity problem at
the fiber inclusion corner.

In this work, using an ad hoc finite element eigen-
analysis method and based on the Hellinger–Reissner
(H–R) variational principle, a singular inclusion corner
element (SICE) containing a part of cylindrical inclusion
corner front is established. By using the SICE method, the
singular stress field at the inclusion corner tip of double
cylindrical inclusions under different loading conditions
is analyzed. The effects of material mismatches, inclusion
size, inclusion spacing, and unit cell size on SIF are
analyzed. The differences in singular stress fields solved
by two-dimensional (2D) and 3D models are compared.
Once the fatigue strength judgment parameters are
obtained, the numerical analysis results can be used to
predict fatigue damage problems at 3D fiber discontinuity
position.

2 Quantitative parameters of
fatigue strength

Inclusion is the key factor to cause low-cycle fatigue
failure. SIF is an important characterization parameter
of progressive stress distribution near inclusion corner.
The relationship between the SIF and the stress compo-
nents at the angle bisector of the matrix corner adjacent
to the inclusion corner in asymptotic stress field can be
approximated as follows:
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where ϕb is the angle ϕ located at the angle bisector of
the matrix corner as shown in Figure 2a. For singular
stress field analysis, ρ = 0.0001R. The values of charac-
teristic roots λI, λII, and λIII are related to material proper-
ties and inclusion shape [36].

For comparative analysis of 2D and 3D models, the
dimensionless SIFs are expressed as:
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where specific expressions of fϕ I,
I

b
, fϕ I,

II
b
, and fϕ I,

III
b

can be
referred from ref. [21].

3 SICE model for a cylindrical
inclusion corner

In this section, based on the numerical eigen solutions of
singular stress field and the generalized H–R variational
principle, an SICE is established, and its validity is verified.

3.1 Establishment of the SICE model

In Figure 1a, we assume that 3D cylindrical inclusions are
located in the matrix. To analyze the singular stress field
at the corner of the inclusion, a unit cell containing a
cylindrical inclusion is established, as shown in Figure
1b. 2H is the height of the unit cell, 2W is its length, and
2B is its width. If there are no special instructions, it is
assumed that H = W = B.
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Figure 1: (a) Periodic inclusion model with a local fiber discontinuity; (b) a cylindrical inclusion in a unit cell model; and (c) two cylindrical
inclusions aligned in the z-direction.
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The diameter of the cylindrical inclusion is 2R and
the height is 2L. The boundary condition of the unit cell
satisfies Ux = C1, Uy = C2, and Uz = C3. That is, the six
planes are translational in the loading process. The elas-
ticity modulus of the inclusion and the matrix are EI and
EM, respectively. The Poisson's ratios are vI and vM,
respectively. Taking the center point O of the top surface
of the cylindrical inclusion as theoriginpoint, theCartesian
coordinate system is established to obtain the singular
stress field near the inclusion corner line A. As shown in
Figure 2a, a local coordinate system (ρ,ϕ, θ) is established
with a point on the inclusion corner front line A. In the
regionwhereρ≪R, the asymptoticdisplacementand stress
on the angular bisector of the cylindrical inclusion corner
can be expressed as follows:
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where λ is the characteristic root of the characteristic
equation [37]. The number of intercepted characteristic

roots may be multiple, which may be real or complex. N is
the number of intercepted complex roots, and M is the
number of intercepted real roots. Due to the bounded strain
energy, only the eigen values within the range of Re(λ) > −1
are considered herein.D is the elastic matrix of thematerial,
and βn is the stress intensity coefficient to be solved.

The displacement and stress field in the global coor-
dinate system (x, y, z) can be obtained by transforming
the corresponding parameters in the local coordinate
system (ρ,ϕ, θ), i.e.,
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In Figure 2b, an SICE containing partial inclusion
corner line is established. The singular element contains
the inclusion domain ΩI and the matrix domain ΩM. Γei is
the end surface of the SICE. Γci is the remaining surface of
the SICE. In order to solve the unknown parameter βn
according to the H–R variational principle, the varia-
tional functional at the inclusion corner is defined as
follows:
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By solving the steady state value of the functional,
the element stiffness matrix of the SICE is established,
and the singular stress field at the inclusion corner is
obtained.
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where Γc is the assembly of Γci, n is the unit normal
vector, and Nh is the interpolation function matrix.

(a)

(b)

Figure 2: Definition of a SICE along the inclusion corner line: (a) Local
curvilinear coordinate in rectangular coordinate and cylindrical
coordinate; and (b) SICE containing partial inclusion corner line.
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When −1 < λ < 1, the singular stress field at the inclu-
sion corner can be expressed as the sum of the third-
order singular stresses:
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3.2 Verification of the SICE model

In order to verify the SICE model, the unit cell model as
shown in Figure 1b is considered. Under the applied load

∞σz , the stresses ( )/

∞σ ρ ϕ θ σ, ,ϕ zb and ( )/

∞σ ρ ϕ θ σ, ,ρϕ zb on
the bisector of the corner of the cylindrical inclusion end
are analyzed. The value of ρ varies from 0.0001R to
0.001R. The size of the cylindrical inclusion is L/R = 1.
The size of the unit cell is H/L = B/R = W/R = 100. As
shown in Figure 3a, due to the symmetry of the structure,
a quarter of the model within the range of x > 0 and y > 0
is taken for analysis. A 16-node SICE is used at the
inclusion corner. The circumferential dimensions and
sectional dimensions of the element are as follows:
lθ = πR/80, lw = lh = 0.02R. In order to ensure the high
accuracy of calculation, 40 SICEs are set up at the corner
of the cylindrical inclusion. They are assembled directly
with the surrounding conventional 8-node elements. The
type of the conventional 8-node elements is C3D8R and the
SICEs are user-defined elements. Singular elements have
good compatibility with traditional elements due to the
consistent degrees of freedom at element nodes. Under
the same condition, the traditional FEM is used to ana-
lyze the singular stresses at the inclusion corner, as

shown in Figure 3b. In the range of 0.02R × 0.02R,
3,362 elements are used in the traditional finite element
model. In contrast, traditional finite element modeling
is more complex. Table 1 demonstrates the number of
elements and CPU running time analyzed by the SICE
method and the traditional FEM. The comparison shows
that the SICE model has higher computational efficiency.
Figure 4a and b shows the variation in singular stress field
parameters ( )/

∞σ R ϕ θ σ0.0001 , ,ϕ zb and (σ R ϕ0.0001 , ,ρϕ b
)/

∞θ σz vs ρ/R in the vicinity of the inclusion corner in the
unit cell under tensile loading ∞σz .

Figure4canddshows thevariation in the singular stress
components ( )/

∞σ R ϕ θ σ0.0001 , ,ϕ xb and (σ R ϕ0.0001 , ,ρϕ b
)/

∞θ σx under tensile loading ∞σx . By comparison, it is
found that the stresses calculated by SICE method is con-
sistent with the stress calculated by traditional FEM, and
the maximum error is less than 3.130%.

In the stress intensity coefficient expression, the
effect of Dim(β) = (2N + M) on the singular stress field
of a cylindrical inclusion is shown in Table 2. When Dim
(β) = 10–26, the errors of ( )/

∞σ R ϕ θ σ0.0001 , ,ϕ zb and
( )/

∞σ R ϕ θ σ0.0001 , ,ρϕ zb are less than 3.128% compared
with those obtained by Noda (19), indicating that the
SICE method has good convergence.
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Figure 3: The meshes at the corner of 3D cylindrical inclusion as shown in Figure 1b (L/R = 1, H/L = 100): (a) the mesh using traditional
elements and SICEs and (b) the mesh using traditional elements.

Table 1: The number of elements and CPU running time for SICE
method and traditional FEM (Case in Figure 1b)

L/H Num. of elements CPU time

SICE + FEM FEM SICE + FEM FEM

L/H = 0.8 61,688 167,442 0:01:48 0:05:53
L/H = 0.67 66,350 196,361 0:02:05 0:07:03
L/H = 0.5 80,864 254,736 0:02:21 0:08:07
L/H = 0.33 89,027 267,255 0:02:31 0:08:13
L/H = 0.1 105,094 282,590 0:02:58 0:10:13

278  Cong-Man Wang et al.



4 Discussion of results

This section applies the SICE model to calculate the fiber
inclusion problem under the loading as shown in Figure 1.

The effects of load direction, fiber spacing, fiber geometry,
and material properties on SIFs at the inclusion corner are
analyzed numerically.

4.1 Effects of inclusion size and spacing on
the fatigue strength parameters

In the unit cell model as shown in Figure 1b, the effects of
inclusion size and spacing on the SIF at corner line A
under tensile loading ∞σz are analyzed. A unit cell is con-
sidered to be an approximate simulation of periodic
inclusions distribution. Let L/H vary from 0.1 to 0.8, var-
iation in SIFs at the inclusion corner with the geometrical
parameter L/H is shown in Figure 5. When EI/EM < 1
(soft inclusion), KⅠ decreases with L/H by 22.466%.
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Figure 4: Comparison of stress results between the SICE method and the traditional FEM = (L/R = 1, L/H = 100): (a) and (b) results under
tensile loading σz

∞ and (c) and (d) results under tensile loading σx
∞.

Table 2: Effect of Dim(β) = (2N + M) on singular stress field under
tensile loading σz

∞ (H/L = 100, L/R = 1)

Dim(β) =
2N +M

σ R ϕ θ σ0.0001 , ,ϕ z
∞

b( )/ σ R ϕ θ σ0.0001 , ,ρϕ
∞

b z( )/

EI/EM = 10−2 EI/EM = 102 EI/EM = 10−2 EI/EM = 102

10 15.827 0.193 1.177 8.028
14 15.892 0.193 1.179 8.092
18 15.986 0.195 1.183 8.092
22 15.988 0.195 1.184 8.093
26 15.987 0.195 1.185 8.090
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KII increases with L/H by 53.176%. When EI/EM > 1 (hard
inclusion), KⅠ remains unchanged with L/H. KII decreases
with L/H by 54.988%. The variation in the analysis results
is considered to be caused by the influence of the nearby
inclusion.

In order to analysis the influence of fiber fracture, the
model of double inclusions aligned in the z-direction is
established, as shown in Figure 1c. Let L/H = 0.01, which
makes the model approximate to an inclusion in an infi-
nite solid. The z-direction distance between the two
inclusions is represented by 2t. As shown in Figure 6, KⅠ

decreases with L/t for both the soft and hard inclusions.
For soft inclusions, KII increases with the increase in the
distance 2t between the two inclusions. While for hard
inclusions, Kα is basically stable after a little decrease
with increase in the distance 2t. The extrema of KII

when EI/EM = 101 and EI/EM = 10−1 both appear at L/t =
0.7, their values are 0.463 and 0.402, respectively. The
results show that the interference of inclusions aligned in
the z-direction reduces the tendency of opening fracture
at the corner front of the inclusion under tensile loading

∞σz . The increase in spacing parameter L/t leads to a
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Figure 5: Variation in SIFs at the inclusion corner with the geometrical parameter L/H (L/R = 1) in (a) KI and (b) KII.
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decreasing trend of sliding fracture mode for soft inclu-
sions, while for hard inclusions, the situation is just
opposite.

Figure 7 shows KⅠ and KⅡ in the interaction of double
inclusions aligned in the z-direction and at the corner of
an inclusion in a unit cell when L/R = 10. By comparing
Figure 7 with Figures 5 and 6, KI is basically the same
under tensile loading ∞σz as L/t or L/H changes when
L/R > 10, as opening fracture mode can be observed.

In the current analysis, when EI/EM = 10−3, the length-
diameter ratio (L/R) of the inclusion in the unit cell
increases, a decreasing trend corresponding to the two
cases L/R = 1 and 10, KⅠ decreased by 24.834 and 2.969%,
respectively.

4.2 Effects of length-diameter ratio and size
of a unit cell on fatigue strength
parameters

Figure 8a and b shows the variation in KⅠ and KⅡ at the
corner A with the length-diameter ratio and size of unit
cell under the loading ∞σz . When EI/EM = 103 and L/R = 10,
KⅠ and KⅡ increase with W/R, and in most cases decrease
with H/L. When H/L > 10, the analysis results tend to be
consistent, which can be considered as the approximate
situation of H/L→∞. Figure 8c and d shows KⅠ and KⅡ at
the corner A of the inclusion when EI/EM = 10−3. KⅠ and
KⅡ decrease with W/R, and in most cases increase with

H/L. This variation trend is contrary to that when
EI/EM = 103.

4.3 The fatigue strength parameter results
under loading σx

∞

The variation in KⅠ and KⅡ with L/H of the cylindrical
inclusion in a unit cell under tensile loading ∞σx is shown
in Figure 9. Compared with KⅡ, the size parameter L/H
has less effect on KⅠ. The maximum change rate of KⅠ is
10.183%. For soft inclusions, KⅡ increases with L/H by
63.119%. For hard inclusions, KⅡ decreases with L/H by
46.001%. As shown in Figure 10, the variation trend of KⅠ

and KⅡ with L/t at the corner of double cylindrical inclu-
sions aligned in the z-direction under ∞σx is almost oppo-
site to the analysis results under tensile loading ∞σz . An
increasing L/t leads to a decreasing trend of sliding frac-
ture mode for hard inclusions, while for soft inclusions,
the situation is just opposite.

As shown in Figure 11, under ∞σx and when B = W, KⅠ

at the hard inclusion corner in the unit cell is generally
small, which means that the possibility of opening frac-
ture mode is small. KⅡ increases with W/R, and the pos-
sibility of sliding fracture mode increases. The KⅠ and KⅡ

at soft inclusion corner in a unit cell increase with W/R
in most cases, and the possibility of crack initiation
increases. Therefore, the SIF at the corner front of the
unit cell is affected by the inclusion material, length-dia-
meter ratio of the inclusion, and size of the unit cell.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0.0

0.2

0.4

0.6

0.8

1.0

1.2

EI/EM=103

EI/EM=10-3

K Ⅰ

L/t (L/H)

 z-double model

 one cell model

σꝏ
z

σꝏ
z

2W
2B

2H 2L

2R
σꝏ

z

σꝏ
z

2t
2L

2R

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.3

0.6

0.9

1.2

1.5

1.8

2.1

2.4

2.7

EI/EM=103

E1/EM=10-3

K Ⅱ

L/t (L/H)

 z-double model

 one cell model

σꝏ
z

σꝏ
z

2W
2B

2H 2L

2R
σꝏ

z

σꝏ
z

2t
2L

2R

(a) (b)
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Figure 9: Variation in (a) KⅠ and (b) KⅡ with L/H of the unit cell (L/R = 1).
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Figure 10: Variation in (a) KⅠ and (b) KⅡ with position parameter of the cylindrical inclusions (L/R = 1).
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Figure 11: Effects of the unit cell size parameterW/R and the length-width ratio H/L on KⅠ and KⅡ underσx
∞: (a and b) EI/EM = 103 and (c and d)

EI/EM = 10−3, when L/R = 10.
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5 Comparison between singular
stress fields of the 2D and 3D
models

The difference between the results of 3D cylindrical inclu-
sion and 2D plane square inclusion is analyzed. Table 3
shows the dimensionless SIFs at the inclusion corner in a
unit cell with different material properties and geometric
sizes. The variation in the dimensionless SIFs at the 3D
cylindrical inclusion corner and the 2D plane square
inclusion corner with L/H (l1/l2) is basically the same,
while there is a special case. In the range of 1/10 ≤ L/H
(l1/l2) ≤ 2/3 and when EI/EM = 10−1, FⅠ at the cylindrical
inclusion corner decreased by 12.153%, while FⅠ at planar
square inclusion corner increased by 14.825%. Table 4
shows the dimensionless SIFs at the double square inclu-
sion aligned in the z-direction. It is found that the varia-
tion trends of FⅡ in 3D hard inclusions with L/t (l1/l2) are
different from that of 2D hard inclusions. In the 3D model,
FⅡ goes up by 8.504% with increase in L/H. On the other
hand, in the 2D model, FⅡ goes down by 5.766% with
increase in l1/l2. As shown in Table 3, FⅠ and FⅡ for 3D
cylindrical inclusions are larger than that of 2D plane
square inclusions when EI/EM = 10−1. FⅠ and FⅡ for 3D
cylindrical inclusions are smaller than that of 2D plane
square inclusions when EI/EM = 101. This same rule
applies to the double cylindrical inclusions aligned in
the z-direction as shown in Table 4.

If 2D models are used to evaluate 3D results, their
differences should be realized. The analysis results are
conservative when EI/EM = 10−1, and the analysis results
are dangerous when EI/EM = 101.

6 Conclusion

The SICE model is established to analyze the fatigue
strength parameters at the cylindrical inclusion corner
in fiber-reinforced composites with local fiber disconti-
nuity. The SIFs of a cylindrical inclusion and in the inter-
action of double inclusions aligned in the z-direction
under tensile loadings in different directions in the unit
cell are investigated. The effects of material properties,
inclusion geometry and spacing, and unit cell size on
SIFs were systematically discussed.

The present discussions show that the effect of the
variation in volume ratio on the fracture mechanics prop-
erties of soft inclusions and hard inclusions is basically
opposite. The sliding fracture effect of the distance between
two inclusions on soft inclusions and hard inclusions is
different.

The variations in unit cell size parameter and length-
width ratio have an effect on SIFs. But when length-width
ratio H/L > 10, the analysis results tend to be consistent.

Compared with the 2D models, the present analysis
results are conservative for soft inclusions, and the ana-
lysis results are dangerous for hard inclusions.

Table 3: Comparison of SIFs between a cylindrical inclusion (3D) and a square inclusion (2D) under loading σz
∞ (L/R = 1)

EI/EM FⅠ Change (%) FⅡ Change (%)

L/H (3D), l1/l2 (2D) 1/10 2/3 1/10 2/3

10−1 3D 0.288 0.253 −12.153 1.904 2.276 19.538
10−1 2D (20) 0.371 0.426 14.825 2.402 3.492 45.379
10 3D 0.295 0.238 −19.322 0.616 0.477 −22.565
10 2D (20) 0.229 0.182 −20.524 0.532 0.355 −33.271

Table 4: Comparison of SIFs between double cylindrical inclusion (3D) and double square inclusion (2D) aligned in the z-direction under
loading σz

∞ (L/R = 1)

EI/EM FⅠ Change (%) FⅡ Change (%)

L/t (3D), l1/l2 (2D) 1/10 2/3 1/10 2/3

10−1 3D 0.275 0.174 −36.727 1.843 1.719 −6.728
10−1 2D (20) 0.324 0.179 −44.753 2.210 2.082 −5.792
10 3D 0.297 0.274 −7.744 0.635 0.689 8.504
10 2D (20) 0.226 0.192 −15.044 0.554 0.522 −5.776
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The SICE method is effective to analyze the singular
stress field at the cylindrical inclusion corner and provide
references for the fatigue strength prediction and pre-
paration of fiber-reinforced composites.
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