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Abstract: The lattice truss panel structure (LTPS), which is a 
high strength material with high efficiency of heat transfer, 
has a good potential to be used as compact heat exchanger. 
The core of LTPS is a periodic porous structure, and the effec-
tive elastic modulus (EEM) will be different from the base 
material. It is essential to calculate the EEM for the design 
of this type of heat exchanger. This paper presents a study 
on the EEM of X-type LTPS by homogenization method, 
which has been verified by finite element method (FEM). 
It reveals that the effects of seven geometrical parameters 
of the X-type LTPS on EEM are not identical, and the rela-
tionship between the seven parameters and EEM has been 
established. Results calculated by homogenization method 
and FEM show a good agreement. The EEM decreases with 
the increase of truss length, stamping angle, shearing angle 
and node length, while it increases with the increase of truss 
width, truss thickness and face sheet thickness. Unlike the 
conventional foam material, there is no clear correlation 
between the EEM and the relative density, and a formula has 
been fitted to calculate the EEM of LTPS.

Keywords: effective elastic modulus; finite element method; 
homogenization method; lattice truss panel structure.

1  �Introduction
Lattice truss panel structures (LTPS) are widely used in aer-
ospace and astronautic engineering aspect because of the 

low density and high strength [1]. In addition, LTPS are also 
a highly efficient heat exchanger because of the low thermal 
resistance, large surface contact area between the core and 
a coolant, high heat transfer between the metal surface and 
the fluid, vortex structures formed behind the vertices and 
flow separation on the truss surfaces [2, 3]. The LTPS made 
of high temperature resistance material has a good poten-
tial to be used at high temperatures because of the high 
strength, for example as cooling systems of modern steam 
turbine [4]. These heat exchangers, which operate at high 
temperature or fatigue conditions, are required to have high 
strength and reliability. The core of LTPS is a kind of peri-
odic porous structure, and its effective mechanical strength 
will be different from the parent material. How to calculate 
the effective mechanical strength of LTPS is critical for the 
design of this heat exchanger. In the past 10 years, many 
researchers have carried out extensive work on the fabrica-
tion technology [5–7], mechanical strength [8–10] and effec-
tive elastic modulus (EEM) of LTPS [11, 12]. In this paper, the 
main focus is on the EEM of LTPS, and thus the following 
literature review is mainly on the EEM.

Extensive work has been paid on the EEM of foam or 
cellular materials in the past decades. Early in the 1980s, 
Torquato et al. [13] developed an analytical model to predict 
the EEM of honeycomb structure, assuming that the linear 
elastic behavior is controlled by the bending of cell wall. 
The EEM is a function of relative density relating to wall 
length and thickness, and it does not depend on the Pois-
son’s ratio of the solid phase. Basing on this theory, in the 
2000s, Wallach and Gibson [14] studied the EEM of a three-
dimensional truss material as a function of the aspect ratio 
of the unit cell, and the results have a good agreement with 
the experimental data. For the foam material, it is very dif-
ficult to get an analytical model because the geometrical 
structure is more complex than the honeycomb structure. 
Thus, finite element method (FEM) has been widely used 
to predict the EEM. For instance, Sanders and Gibson [15] 
used FEM to study the EEM of hollow sphere foams and 
found that the hollow sphere foams have the potential for 
improved mechanical properties compared with existing 
metallic foams, and the EEM of face-centered cubic packing 
of hollow sphere foams is larger than those of body-centered 
cubic and simple cubic packing [16]. Guessasma et al. [17] 
investigated the relation of the cellular structure to Young’s 
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modulus of open cell materials by FEM; they found that the 
Young’s modulus is a function of relative density for dif-
ferent sphere distribution widths and overlap distances. 
Guessasma [18] found an exponential correlation between 
the EEM and relative density for a 2D cellular structure by 
FEM study. In recent years, Antunes et al. [19] and Marur 
[20] used FEM to study the EEM of syntactic foams. And 
the influence of the matrix, reinforcement, the radius and 
thickness of hollow particles, and the volume fraction of 
particles on the EEM of syntactic foams have been fully 
studied. Pérez et al. [21, 22] found that the EEM drops as the 
porosity increases for Mg and Ti foams by FEM study. Liu 
and Antoniou [23] built a relationship between the EEM and 
geometrical structure of a nanoporous metal foam. Chen 
et al. [24] studied the EEM of a porous La0.6Sr0.4Co0.2Fe0.8O3-δ 
ceramic film by FEM based on the reconstructed microstruc-
tures, and they found that in the initial stages of sintering, 
when interparticle necks are small, the EEM increases with 
neck size increase. However, as the coarsening increases 
further, the EEM becomes insensitive to the details of the 
microstructure and only depends on porosity.

LTPS composed of two face sheets and the lattice truss 
core is a more complex structure than the foam and honey-
comb structures. But the core is a periodic structure, and the 
homogenization method becomes an effective method to 
characterize the mechanical behavior [25]. Liu et al. [26, 27] 
studied the EEM and performed the design optimization of 
truss-cored sandwiches by homogenization method. Zhang 
et  al. [28] reported a new type of lattice structure named 
X-type LTPS whose out of plane compressive and shear peak 
strength are about 30% larger than pyramidal LTPS with the 
same relative density. Besides, Zhang et al. [29] used homog-
enization method to study the effective elastic constants of 
an X-type LTPS, and the obtained results agree well with the 
data by experimental method and FEM. But the relationship 
between geometrical parameters and the EEM has not been 
established. In this paper, the EEM of X-type LTPS has been 
investigated by homogenization method and FEM; mean-
while, the influence of the seven geometric parameters on 
the EEM of X-type LTPS is explored. Basing on the compre-
hensive study, a formula has been fitted to calculate the EEM 
considering all the geometrical parameters.

2  �Homogenization method

2.1  �Homogenization theory

The X-type LTPS consists of upper face sheet, lower face 
sheet, and a truss core, as shown in Figure  1. The basic 

material used in this work is P92  steel, and its elastic 
modulus and Poisson’s ratio are 203 GPa and 0.3, respec-
tively. The X-type LTPS is a kind of periodic cellular struc-
ture whose mechanical properties can be analyzed by a 
representative unit cell, as shown in Figure 2. The geomet-
rical parameters of X-type LTPS: the truss length L, truss 
width w, truss thickness t, face sheet thickness T, node 
length S, stamping angle α and shearing angle β are listed 
in Table 1. The length LX̅,width LY ̅and height H of the unit 
cell are 21, 28 and 14 mm, respectively.

According to homogenization method, the X-type 
LTPS is deemed as a homogeneous solid at the macro-
scopic scale, while it is considered as discrete structural 
elements at microscopic scale [26]. Considering the con-
tinuum mechanics and homogenized theory, the relation-
ship between macroscopic scale and microscopic scale for 
strain and stress can be described as
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Lattice truss structure Face sheet

Figure 1: Schematic of X-type lattice truss panel structure.

Figure 2: Sketching of the unit cell.

Table 1: Geometrical parameters of X-type LTPS.

L W t T S α β

22 mm 2 mm 1 mm 2 mm 3 mm 60° 70°
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where Ξ and Σ are the equivalent strain and stress tensors 
at macroscopic scale, respectively; ε and σ are micro-
scopic strain and stress tensors, respectively. Ω denotes 
the volume of the unit cell.

The volume averaged strain energy density of an inho-
mogeneous material is determined by multiplying the sepa-
rate volume averages of microscopic stresses and strains [26]:

	

1 d
Ω

Ω

Σ Ξ ε ε Ω
Ω

⋅ = 〈 ⋅ 〉 = ⋅∫σ σ
�

(3)

where Σ · Ξ is the macroscopic strain energy density and 
d

Ω
σ ε Ω⋅∫  is the total strain energy of the admissible micro-

scopic field.
Eight beams of the unit cell would be analyzed to 

study the mechanical properties of the X-type LTPS. 
According to the deformation analysis of the unit cell, the 
displacements of the end nodes of the beam are

	 0 0L n∆ Ξ= � (4)

where Ξ is the three-order equivalent strain tensor, L0 
means the length of the beam, and n0 denotes the direc-
tion vector of the beam in global coordinate system:
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Because each sub-geometry (the unit cell) of X-type 

LTPS contains equal truss members and the length of the 
trusses is equal. Then, using the Euler-Bernoulli beam 
model derived from mechanics of materials, the axial 
stretching of the beam prevails over the bending deforma-
tion [26]. Therefore, the bending deformation and associ-
ated rotations are neglected here. The nodal displacement 
vector u(i) for the ith beam can be characterized by the two 
ends of the beam. For u(i), The previous six values repre-
sent displacement of the one end, and the following six 
values denotes that of the other end:

	 ( ) ( )T
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where the ω means the rotation:

	 T
1 2 3[ , , ] 0ω ω ω = � (9)

If the unit cell is composed of N Euler-Bernoulli beam 
members, its strain energy density can be defined as
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where Ω is the volume of the unit cell, u(i) is the nodal 
displacement vector of the ith beam, and K(i) is the global 
stiffness matrix that satisfies the transformation between 
local and global coordinates; it can be calculated by

	
( ) T ( )i e iK T K T= ′ ′ � (11)

where T′ is the transformation matrix, which is related 
with the global coordinate system and the local coordi-
nate system of the beam element. Ke(i) is the element stiff-
ness matrix:
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The macroscopic strain vector acting on the unit cell 
is defined as

	

T
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The effective stiffness of the unit cell can be calcu-
lated as [26]
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H
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where H denotes the homogenized effective stiffness.
Combining Equations (10) and (14), the effective stiff-

ness matrix of the X-type LTPS is calculated by a program 
compiled by Matlab code:
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(15)

It is obvious that the stiffness matrix has nine inde-
pendent parameters, namely, C1111, C1122, C1133, C2222, C2233, 
C3333, C1212, C1313 and C2323, indicating that the core is regarded 
as an orthotropic material after the homogenization.

2.2  �Calculation of the effective elastic 
modulus

The homogenous calculation in Section 2.1 just gets the 
effective stiffness matrix of the X-type core of LTPS. In 
order to calculate the EEM of the whole panel structure, 
a three-dimensional equivalent model is established by 
finite element software ABAQUS, as shown in Figure  3. 
The X-type core is assumed to be an equivalent homoge-
nous-solid plate with the same length, width, and height 

of X-type core. The effective elastic constants of the equiv-
alent homogenous-solid plate are specified by the effec-
tive stiffness matrix obtained in Section 2.1 (Equation 
(15)). The equivalent solid plate is bonded tightly to the 
upper face sheet and lower face sheet to form a sandwich 
panel with three layers.

A finite element analysis of the uniaxial tensile test 
was performed to calculate the EEM of the X-type core of 
LTPS. In order to get a uniform deformation of the model, 
a rigid plate was added and bonded tightly to the top 
surface of the upper face sheet. A tensile load was applied 
on the rigid plate, and the effective strain is calculated 
by the displacement of rigid plate divided by the origi-
nal height of the composite plate. A plot of the obtained 
elastic stage of the equivalent stress-strain curve is shown 
in Figure 4, and the curve slope is the EEM.

3  �Verification by finite element 
method

In order to verify the homogenization method, a solid 
three-dimensional finite element analysis was performed. 
And the analysis using FEM is carried out by using 
ABAQUS software. The materials of face sheets and trusses 
are P92 steel as before. Geometrical dimensions of X-type 
LTPS models are the same as those in Section 2, and the 
element type is C3D8. The effect of element number on 
the calculation result has been examined. Finally, in total, 
49,296 elements and 186,253 nodes have been meshed for 
X-type LTPS model, as shown in Figure 5. The symmetric Figure 3: Equivalent homogenous solid plate model.
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homogenization method and FEM.



Q. Zhang et al.: EEM for an X-type LTPS      1139

boundary conditions were applied on the all around faces 
of the model, and the bottom surface of the lower face 
sheet was constrained. Similarly, a rigid plate was also 
added on the top surface of the upper face sheet in order to 
have a uniform deformation. A tensile load was applied on 
the rigid plate, and the displacement of the rigid plate was 
equal to the equivalent displacement of the X-type LTPS. 
The effective strain of the whole structure is also calculated 
by the displacement of rigid plate divided by the original 
total height of the LTPS. The obtained elastic stage of the 
equivalent stress-strain curve is also presented in Figure 4.

4  �Results and discussion

4.1  �Comparison between homogeneous 
method and FEM

Figure 4 shows the elastic stage of the stress-strain curve 
of the X-type LTPS obtained by homogeneous method and 
FEM. The two slopes by the two methods show a good 
agreement, indicating that the homogeneous method is 
right. The obtained EEM by the two methods are 393 MPa 
and 420 MPa, respectively, and the error is only 6.43%. It is 
a pity that we did not present an experimental validation, 
which still needs further study in the future.

4.2  �Effect of the geometrical parameters

As shown in Figure 2, the X-type LTPS is determined by 
seven parameters including the thickness of face sheet T, 
stamping angle α, shearing angle β, truss length L, truss 
width w, truss thickness t and node length S. Basing on 

the single-factor analysis, how these parameters affect the 
EEM is fully discussed here by the developed homogene-
ous method. When one of the parameters is discussed, its 
value is changed, and the rest of the parameters are kept 
constant. The initial values are listed in Table 1.

Figure 6 shows the effects of truss length, truss width, 
truss thickness, stamping angle, shearing angle, thickness 
of face sheet and node length on EEM by homogenization 
method. Obviously, as the truss length, stamping angle 
and shearing angle increase, the EEM decreases. The EEM 
decreases slightly as the node length increases, while it 
increases with the increase of truss width, truss thickness 
and thickness of face sheet. The effect of the geometrical 
parameters can be verified by previous work [30]. As the 
truss length increases from 14 to 22 mm, the EEM decreases 
from 1500 to 432  MPa. However, as the truss width and 
thickness increase from 1.5 to 3.5 mm and 1.0 to 1.8 mm, 
the EEM increases from 432 to 700  MPa and from 432 to 
880 MPa, respectively. As the stamping and shearing angle 
increase from 10 to 70° and 20 to 60°, the EEM decreases 
from 1040 to 502 MPa and from 2024 to 494 MPa, respec-
tively. And their decrease rates are 8.97 MPa and 38.25 MPa 
per each degree, respectively. As the thickness of face sheet 
increases from 1.2 to 3.2 mm, the EEM increases from 450 
to 455 MPa slightly, while it decreases slightly from 620 to 
460 MPa as the node length increases from 1 to 5 mm. As 
found above, the most significant important factors effect-
ing the EEM are shearing angle, stamping angle, truss 
width, truss length and truss thickness, while the effects of 
the node length and face sheet thickness are not obvious.

4.3  �Discussion of influence mechanism

To find out the reason why the geometric parameters 
have such significant effect on the EEM of X-type LTPS, 
we perform a stress analysis to a single truss as shown in 
Figure 7. P is a tensile load at the truss end in Z̅ direction. 
It is decomposed into three forces PX, PY and PZ in X, Y and 
Z directions, respectively, which produce axial tensile 
deformation DX, bending deformation DY and DZ in Y and Z 
directions, respectively.

PX, PY and PZ are calculated by

	
cos cos

2 2XP P α β=
�

(16a)

	
sin

2YP P α=
�

(16b)

	
cos sin

2 2ZP P α β=
�

(16c)

Figure 5: Finite element meshing.
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Figure 6: Effects of truss length (A), truss width (B), truss thickness (C), stamping angle (D), shearing angle (E), thickness of face sheet (F) 
and node length (G) on EEM.
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DX, DY and DZ are calculated by
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where A is the cross-sectional area of truss, and IY and IZ 
are the inertia moments of the cross-sectional area of truss 
about the Y and Z axes, respectively. We decompose DX, DY 
and DZ in Z̅, directions, respectively:

	
2 2cos cos /
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dX, dY and dZ are the deformation components induced by 
DX, DY and DZ in Z̅ direction.

The total displacement d′ in Z̅ direction is the sum of 
dX, dY and dZ:
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The truss height H shown in Figure 2 is calculated by
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The equivalent strain ε′ in Z̅ direction is
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The EEM (Eeq) is calculated by
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Having a derivation to L, w, t, α and β by Equation 
(21), respectively, we obtain
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   ∂ ′ = − −      ∂

−
�

(24)

	

2 2 4

2 3 2

cos cos / 12 sin tan /
2 2 2 2

4 cos sin tan /
2 2 2

P Ewt P L Ewt
t

P L Ew t

ε α β α α

α β β

   ∂ ′ = − −      ∂

−
�

(25)

	

2 3

2 3

sin cos / 2 ( ) / cos
2 2 2

2 sin sin tan /
2 2 2

P Ewt PL Ewt

P L Ew t

α β α
α

α β β

 ∂ ′ = − +  ∂

−

ε

�

(26)

	

2 3cos sin / 2 cos / cos
2 2 2 2

P Ewt P L Ew tα β α β ∂ ′ = − +  ∂
ε
β �

(27)

After a calculation of Equations (23)–(27), it is  
 found that 0,

L
ε∂ ′ >

∂
 0,ε

α
∂ ′ >
∂

 0,ε
β

∂ ′ >
∂

 which means that 

ε′ increases with the increase of L, α and β (10° ≤ α ≤ 70°, 
10° ≤ β ≤ 60°). As a result, EEM decreases according to  
 Equation (22), whist 0

w
ε∂ ′ <

∂
 and 0,

t
ε∂ ′ <

∂
 which proves 

that the EEM increases as w and t increase.
The reason of node length S effect on EEM is discussed 

as follows:
As shown in Figure 2, the length LX ̅and width LY ̅of the 

unit cell are calculated, respectively, by

Figure 7: The force diagram of the beam.
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2 sin 2 / cos

2 2XL L wβ β= +
�

(28)

	
2 sin cos 2 2 cos

2 2 2YL L S tα β α= + − ⋅
�

(29)

As the panel structure bears a distributed load p, the 
equivalent load P of each truss in Z̅ direction as shown in 
Figure 7 is calculated by

	

/ 4 2 sin 2 / cos
2 2

2 sin cos 2 2 cos / 4
2 2 2

X YP pL L p L w

L S t

β β

α β α

 
= = +  
 

+ − ⋅  
�

(30)

Substituting Equation (30) into Equation (21), we 
obtain

	

2 3 2 3

2 sin 2 / cos
2 2

2 sin cos 2 2 cos / 4 cos cos /
2 2 2 2 2

4sin tan / 4cos sin tan /
2 2 2 2 2

d p L w
H

L S t Ewt

L Ewt L Ew t

β β
ε

α β α α β

α α α β β

  ′′ = = +   
    

+ − ⋅ ×        
 

+ +    

� (31)

in Z̅ direction decreases, which leads to a slight increase 
of EEM.

4.4  �Formula fitted

Based on the above analysis, it shows that each para-
meter has a different effect on the EEM. It is essential 
to develop a theory formula to calculate the EEM by 
the seven variables. For foam materials, it has been  
proved that the EEM is related with the relative density 
ρ  [23]:

	 / ( 0)n
eqE E nρ∝ > � (33)

For low density foam, Equation (33) agrees well with 
experiment, but for large density foam they have no clear 
correlation [23].

In order to illustrate whether the LTPS obeys Equation 
(33), we plot the EEM as a function of relative density with 
different geometrical dimensions, as shown in Figure  8. 
It should be noted that when one parameter is discussed 
the other parameters are kept constant. Here the relative 
density of the X-type LTPS is calculated by

	

/cos
2

sin / cos cos sin - cot 45 cos cos
2 2 2 2 4 2 2

wt L S

L w L S t L t

β

ρ
β β β α α β α

 
+  

=
      

+ ⋅ ⋅ + ⋅ ° + ⋅ ⋅ +           �
(34)

Having a derivation to S by Equation (31), we obtain

	

2 3 2 3

sin / cos cos cos /
2 2 2 2

4sin tan / 4cos sin tan /
2 2 2 2 2

p L w Ewt
S

L Ewt L Ew t

β β α β

α α α β β

   ∂ ′ = + ×      ∂ 
 

+ +    

ε

� (32)

It shows that 0,
S
ε∂ ′ >

∂
 which proves that the ε′ 

increases with the increase of S, and correspondingly the 
EEM decreases according to Equation (22).

As calculated in Section 2, it reveals that the effective 
modulus of lattice truss core is far smaller than that of 
face sheet. Therefore, the deformation of face sheet can be 
ignored compared with the core. As the thickness of face 
sheet increases, the total height of the panel structure 
increases, while the vertical deformation of core is con-
stant at a constant stress. As a result, the effective strain 

Figure 8 demonstrates that EEM of the X-type LTPS 
does not exhibit a clear correlation with the relative 
density. This conclusion is consistent with that of the 
pyramidal LTPS [30]. The EEM totally increases as the rel-
ative density increases. As the relative density is smaller 
than 2%, the effects of different parameters are similar. As 
the relative density is larger than 2%, the most significant 
impact factor is the shearing angle, and then followed by 
the truss width, length and thickness with the same effect; 
the smallest influencing factor is the stamping angle. 
Therefore, EEM cannot be simply expressed by a formula 
with relative density.

Gibson and Ashby [31] have developed a theoretical 
formula to calculate the EEM for honeycomb and foam 
structures which include the geometrical parameters 
of unit cells, respectively (see Equations (35) and (36)). 
Figures  9 and 10 show the sketching of the unit cells of 
honeycomb and foam structures, respectively. For honey-
combs, there are four geometrical parameters including 
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length of side l and h, wall thickness d and inclination 
angle of side θ. The foams have two geometrical para-
meters: length a and thickness b.

	 0

/ 2
2( / sin )cos )

h
eqE h l d d
E h l l l

ρ
 += = ≈ 

+ θ θ
�

(35)

	

21
14

0

f
eqE C I

C
E a

ρ= =
�

(36)

where h
eqE  and f

eqE  denote the EEM of honeycomb and 
foam structures, respectively. E0 is the Young’s modulus of 
the parent material. ρ  is the relative density. C1 and I are 
the constant of proportionality and the second moment of 
area.

However, the honeycomb structures belong to the 
ordered two-dimensional cellular solid, and foams 
belong to unordered cellular solid, whereas X-type LTPS 
belongs to ordered three-dimensional cellular solid. 
Besides, the honeycomb and the foam structures include 
four and two geometrical parameters, respectively, while 
the X-type LTPS has seven geometrical parameters. The 
EEM proposed by Gibson and Ashby is not suitable for 
X-type LTPS. Therefore, it is essential to establish the rela-
tionship between the EEM and geometrical parameters of 
X-type LTPS. The structure of LTPS is very complex, and 
it is very difficult to get an analytical formula to calculate 
the EEM. In order to get a formula, we performed a large 
number of FEM calculations with different geometric 
dimensions and then fitted a formula by Origin software 
as follows

	

0.97 0.41 0.13

0 2.30
700

eq
t w TE E

S Lβ α

       =             �
(37)

where Eeq is the EEM, and E0 is the elastic modulus of basic 
metal. Their unit is megapascal. The units of the geometri-
cal parameters L, w, t, T, and S are millimeters, and the 
units of α, β are degrees. But only the values of the geo-
metrical parameters are put into Equation (37), and their 
units are not considered in the calculation.

The EEM of the X-type LTPS with different geometrical 
parameters derived from the present fitted formula Equa-
tion (37) is also plotted in Figure 6. It obviously shows that 
there is a good consistence between the homogenization 
and formula results, which proves that the present formula 
can be used to calculate the EEM. Kawashima et al. [32] 
and Mizokami et al. [33] studied the effective strength of 
plate-fin structure. The porous structure is treated as the 
equivalent homogenous solid plate, and the tensile and 
creep strength are predicted successfully. In their method, 
the calculation of EEM is an important issue, and they 
predict it by FEM. But how the geometrical parameters 
influence the EEM is still unclear. The effective mechanical 
strength of LTPS, such as tensile, creep and fatigue, still 
needs to be studied further by the equivalent homogenous 
solid method, and the formula can be used to calculate 
the EEM for future work, proving that this work plays a key 
role for the development of structural design procedure of 
compact heat exchanger by LTPS. It should be noted that 
the flexural deformation has not been considered in this 
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Figure 8: EEM of X-type LTPS versus relative density with different 
geometrical parameters.

Figure 9: Unit cell of honeycomb structures.

Figure 10: Unit cell of foams.
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model [8], because for heat exchanger it is forbidden to 
have such obvious deformation in order to ensure safety. 
The effect of flexural deformation on strength still needs 
further study in the future.

5  �Conclusions
In this study, the EEM of X-type LTPS has been investi-
gated by homogenization method and FEM; meanwhile, 
the effects of the seven geometric parameters on the EEM 
of X-type LTPS are explored. Based on this study, the fol-
lowing conclusions can be drawn.
1.	 The results by homogenization method and FEM have 

a good agreement, which proves that the homogeni-
zation method is right.

2.	 With the increase of stamping angle, shearing angle, 
truss length, and node length, the EEM of X-type 
LTPS decreases. With the increase of truss width, 
truss thickness and thickness of face sheet, the EEM 
increases.

3.	 The EEM does not exhibit a clear correla-
tion with the relative density. The formula,  
 0.97 0.41 0.13

0 2.30
700 ,eq

t w TE E
S Lβ β

       =            
 proposed by us, 

can be used to accurately calculate the EEM.
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