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Abstract: The lattice truss panel structure (LTPS), which is a
high strength material with high efficiency of heat transfer,
has a good potential to be used as compact heat exchanger.
The core of LTPS is a periodic porous structure, and the effec-
tive elastic modulus (EEM) will be different from the base
material. It is essential to calculate the EEM for the design
of this type of heat exchanger. This paper presents a study
on the EEM of X-type LTPS by homogenization method,
which has been verified by finite element method (FEM).
It reveals that the effects of seven geometrical parameters
of the X-type LTPS on EEM are not identical, and the rela-
tionship between the seven parameters and EEM has been
established. Results calculated by homogenization method
and FEM show a good agreement. The EEM decreases with
the increase of truss length, stamping angle, shearing angle
and node length, while it increases with the increase of truss
width, truss thickness and face sheet thickness. Unlike the
conventional foam material, there is no clear correlation
between the EEM and the relative density, and a formula has
been fitted to calculate the EEM of LTPS.

Keywords: effective elastic modulus; finite element method;
homogenization method; lattice truss panel structure.

1 Introduction

Lattice truss panel structures (LTPS) are widely used in aer-
ospace and astronautic engineering aspect because of the
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low density and high strength [1]. In addition, LTPS are also
a highly efficient heat exchanger because of the low thermal
resistance, large surface contact area between the core and
a coolant, high heat transfer between the metal surface and
the fluid, vortex structures formed behind the vertices and
flow separation on the truss surfaces [2, 3]. The LTPS made
of high temperature resistance material has a good poten-
tial to be used at high temperatures because of the high
strength, for example as cooling systems of modern steam
turbine [4]. These heat exchangers, which operate at high
temperature or fatigue conditions, are required to have high
strength and reliability. The core of LTPS is a kind of peri-
odic porous structure, and its effective mechanical strength
will be different from the parent material. How to calculate
the effective mechanical strength of LTPS is critical for the
design of this heat exchanger. In the past 10 years, many
researchers have carried out extensive work on the fabrica-
tion technology [5-7], mechanical strength [8-10] and effec-
tive elastic modulus (EEM) of LTPS [11, 12]. In this paper, the
main focus is on the EEM of LTPS, and thus the following
literature review is mainly on the EEM.

Extensive work has been paid on the EEM of foam or
cellular materials in the past decades. Early in the 1980s,
Torquato et al. [13] developed an analytical model to predict
the EEM of honeycomb structure, assuming that the linear
elastic behavior is controlled by the bending of cell wall.
The EEM is a function of relative density relating to wall
length and thickness, and it does not depend on the Pois-
son’s ratio of the solid phase. Basing on this theory, in the
2000s, Wallach and Gibson [14] studied the EEM of a three-
dimensional truss material as a function of the aspect ratio
of the unit cell, and the results have a good agreement with
the experimental data. For the foam material, it is very dif-
ficult to get an analytical model because the geometrical
structure is more complex than the honeycomb structure.
Thus, finite element method (FEM) has been widely used
to predict the EEM. For instance, Sanders and Gibson [15]
used FEM to study the EEM of hollow sphere foams and
found that the hollow sphere foams have the potential for
improved mechanical properties compared with existing
metallic foams, and the EEM of face-centered cubic packing
of hollow sphere foams is larger than those of body-centered
cubic and simple cubic packing [16]. Guessasma et al. [17]
investigated the relation of the cellular structure to Young’s
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modulus of open cell materials by FEM; they found that the
Young’s modulus is a function of relative density for dif-
ferent sphere distribution widths and overlap distances.
Guessasma [18] found an exponential correlation between
the EEM and relative density for a 2D cellular structure by
FEM study. In recent years, Antunes et al. [19] and Marur
[20] used FEM to study the EEM of syntactic foams. And
the influence of the matrix, reinforcement, the radius and
thickness of hollow particles, and the volume fraction of
particles on the EEM of syntactic foams have been fully
studied. Pérez et al. [21, 22] found that the EEM drops as the
porosity increases for Mg and Ti foams by FEM study. Liu
and Antoniou [23] built a relationship between the EEM and
geometrical structure of a nanoporous metal foam. Chen
et al. [24] studied the EEM of a porous La_,Sr ,Co Fe O,
ceramic film by FEM based on the reconstructed microstruc-
tures, and they found that in the initial stages of sintering,
when interparticle necks are small, the EEM increases with
neck size increase. However, as the coarsening increases
further, the EEM becomes insensitive to the details of the
microstructure and only depends on porosity.

LTPS composed of two face sheets and the lattice truss
core is a more complex structure than the foam and honey-
comb structures. But the core is a periodic structure, and the
homogenization method becomes an effective method to
characterize the mechanical behavior [25]. Liu et al. [26, 27]
studied the EEM and performed the design optimization of
truss-cored sandwiches by homogenization method. Zhang
et al. [28] reported a new type of lattice structure named
X-type LTPS whose out of plane compressive and shear peak
strength are about 30% larger than pyramidal LTPS with the
same relative density. Besides, Zhang et al. [29] used homog-
enization method to study the effective elastic constants of
an X-type LTPS, and the obtained results agree well with the
data by experimental method and FEM. But the relationship
between geometrical parameters and the EEM has not been
established. In this paper, the EEM of X-type LTPS has been
investigated by homogenization method and FEM; mean-
while, the influence of the seven geometric parameters on
the EEM of X-type LTPS is explored. Basing on the compre-
hensive study, a formula has been fitted to calculate the EEM
considering all the geometrical parameters.

2 Homogenization method

2.1 Homogenization theory

The X-type LTPS consists of upper face sheet, lower face
sheet, and a truss core, as shown in Figure 1. The basic
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Figure 1: Schematic of X-type lattice truss panel structure.

material used in this work is P92 steel, and its elastic
modulus and Poisson’s ratio are 203 GPa and 0.3, respec-
tively. The X-type LTPS is a kind of periodic cellular struc-
ture whose mechanical properties can be analyzed by a
representative unit cell, as shown in Figure 2. The geomet-
rical parameters of X-type LTPS: the truss length L, truss
width w, truss thickness ¢, face sheet thickness T, node
length S, stamping angle « and shearing angle j3 are listed
in Table 1. The length L ,width L, and height H of the unit
cell are 21, 28 and 14 mm, respectively.

According to homogenization method, the X-type
LTPS is deemed as a homogeneous solid at the macro-
scopic scale, while it is considered as discrete structural
elements at microscopic scale [26]. Considering the con-
tinuum mechanics and homogenized theory, the relation-
ship between macroscopic scale and microscopic scale for
strain and stress can be described as

[1]

(o), Eé i £dQ M

Z=(0),= éjadg ®)

View from C

Figure 2: Sketching of the unit cell.

Table 1: Geometrical parameters of X-type LTPS.
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where E and X are the equivalent strain and stress tensors
at macroscopic scale, respectively; ¢ and ¢ are micro-
scopic strain and stress tensors, respectively. 2 denotes
the volume of the unit cell.

The volume averaged strain energy density of an inho-
mogeneous material is determined by multiplying the sepa-
rate volume averages of microscopic stresses and strains [26]:

>.

[1]

=(o-¢), =é£a~ed9 (3)

where X E is the macroscopic strain energy density and
L}a -edQ is the total strain energy of the admissible micro-
scopic field.

Eight beams of the unit cell would be analyzed to
study the mechanical properties of the X-type LTPS.
According to the deformation analysis of the unit cell, the
displacements of the end nodes of the beam are

A=LEn, )

where E is the three-order equivalent strain tensor, L
means the length of the beam, and n, denotes the direc-
tion vector of the beam in global coordinate system:

&

[ [ [

E = 22 23 (5)
sym 33

n,=(n}, nj, m})" (6)

A=(A, A, A @)

Because each sub-geometry (the unit cell) of X-type
LTPS contains equal truss members and the length of the
trusses is equal. Then, using the Euler-Bernoulli beam
model derived from mechanics of materials, the axial
stretching of the beam prevails over the bending deforma-
tion [26]. Therefore, the bending deformation and associ-
ated rotations are neglected here. The nodal displacement
vector u® for the ith beam can be characterized by the two
ends of the beam. For u®, The previous six values repre-
sent displacement of the one end, and the following six
values denotes that of the other end:

u’=[A, A, A, 0,0, 0, 0,0,0 0,0,0"" ()
where the w means the rotation:
o, v, w,]'=0 ©)

If the unit cell is composed of N Euler-Bernoulli beam
members, its strain energy density can be defined as

U = lilu(m KOy
= 2

Q- (10)
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where Q is the volume of the unit cell, u® is the nodal
displacement vector of the ith beam, and K? is the global
stiffness matrix that satisfies the transformation between
local and global coordinates; it can be calculated by

K(i) — T/TI(L’(I')T/ (11)
where T is the transformation matrix, which is related
with the global coordinate system and the local coordi-
nate system of the beam element. K¢ is the element stiff-
ness matrix:

k k -
K‘““:{ ! 2} (12a)
sym k,
% 0 0 0 0 0
12EI 6EI
0 z 0 0 0 z
P P
o o 121151Y o —612EIY o
k= Gl (12b)
0 0 0 TX 0
o o TOEL , AEL
P l
6EI, 4EI,
0o — 0o 0 0
L l |
—% 0 0 0 0 0
12EI EI
o —% 0 0 0 OFL,
B P
o o 121151Y 0 —611251Y o
k,= Gl (12¢)
0 0 0 TX 0
o o SEL  2E
r l
6EI 2EI
0 Z 0 0 0 ‘
L l |
% 0 0 0 0 0
12EI EI
0 Z 0 0 0 —6 Z
P P
0 12EI, 6El,
3 2
k= bt (12d)
0 0 0 TX 0 0
o 6EI, 4EI,
P l
—6EI EI
0 —* 0 0 0 41 Z
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The macroscopic strain vector acting on the unit cell
is defined as

r=[r,.r,. I, [, T,.T,]

2

1>~ 22° 7332 7 23°

(13)

—_
2=
=

[1]

T
o)

The effective stiffness of the unit cell can be calcu-
lated as [26]

=& ,E ,E._, 28
1° T2° T33° 23° 13°

H U

e = 9V
= 9r ar, (14)
ij

where H denotes the homogenized effective stiffness.

Combining Equations (10) and (14), the effective stiff-
ness matrix of the X-type LTPS is calculated by a program
compiled by Matlab code:

67.62 2195 2202 O 0 0
219.5 865 7649 O 0 0
4 12202 7649 7826 O 0 0
"= MPa (15)
0 0 0 7939 O 0
0 0 0 0 2251 0
0 0 0 0 0 2307

It is obvious that the stiffness matrix has nine inde-
pendent parameters, namely, C, , C_, C., C, ,C, .,
Ciisp Ciom Cisps and Copp indicating that the core is regarded
as an orthotropic material after the homogenization.

2.2 Calculation of the effective elastic
modulus

The homogenous calculation in Section 2.1 just gets the
effective stiffness matrix of the X-type core of LTPS. In
order to calculate the EEM of the whole panel structure,
a three-dimensional equivalent model is established by
finite element software ABAQUS, as shown in Figure 3.
The X-type core is assumed to be an equivalent homoge-
nous-solid plate with the same length, width, and height

_— H>( Upper face sheet

Homogenized
equivalent core

Lower face sheet

Figure 3: Equivalent homogenous solid plate model.

DE GRUYTER

1.2
—ua—FEM
—A— Homogenization method
1.0+ /I
0.8- . /
=
< /
> 0.6f A
§
z /
0.4+ n
0.2F
OO 1 1 1 1 1
0.00 0.05 0.10 0.15 0.20 0.25 0.30
Strain (%)

Figure 4: The elastic stage of the equivalent stress-strain curves by
homogenization method and FEM.

of X-type core. The effective elastic constants of the equiv-
alent homogenous-solid plate are specified by the effec-
tive stiffness matrix obtained in Section 2.1 (Equation
(15)). The equivalent solid plate is bonded tightly to the
upper face sheet and lower face sheet to form a sandwich
panel with three layers.

A finite element analysis of the uniaxial tensile test
was performed to calculate the EEM of the X-type core of
LTPS. In order to get a uniform deformation of the model,
a rigid plate was added and bonded tightly to the top
surface of the upper face sheet. A tensile load was applied
on the rigid plate, and the effective strain is calculated
by the displacement of rigid plate divided by the origi-
nal height of the composite plate. A plot of the obtained
elastic stage of the equivalent stress-strain curve is shown
in Figure 4, and the curve slope is the EEM.

3 Verification by finite element
method

In order to verify the homogenization method, a solid
three-dimensional finite element analysis was performed.
And the analysis using FEM is carried out by using
ABAQUS software. The materials of face sheets and trusses
are P92 steel as before. Geometrical dimensions of X-type
LTPS models are the same as those in Section 2, and the
element type is C3D8. The effect of element number on
the calculation result has been examined. Finally, in total,
49,296 elements and 186,253 nodes have been meshed for
X-type LTPS model, as shown in Figure 5. The symmetric
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Figure 5: Finite element meshing.

boundary conditions were applied on the all around faces
of the model, and the bottom surface of the lower face
sheet was constrained. Similarly, a rigid plate was also
added on the top surface of the upper face sheet in order to
have a uniform deformation. A tensile load was applied on
the rigid plate, and the displacement of the rigid plate was
equal to the equivalent displacement of the X-type LTPS.
The effective strain of the whole structure is also calculated
by the displacement of rigid plate divided by the original
total height of the LTPS. The obtained elastic stage of the
equivalent stress-strain curve is also presented in Figure 4.

4 Results and discussion

4.1 Comparison between homogeneous
method and FEM

Figure 4 shows the elastic stage of the stress-strain curve
of the X-type LTPS obtained by homogeneous method and
FEM. The two slopes by the two methods show a good
agreement, indicating that the homogeneous method is
right. The obtained EEM by the two methods are 393 MPa
and 420 MPa, respectively, and the error is only 6.43%. It is
a pity that we did not present an experimental validation,
which still needs further study in the future.

4.2 Effect of the geometrical parameters

As shown in Figure 2, the X-type LTPS is determined by
seven parameters including the thickness of face sheet T,
stamping angle «, shearing angle S, truss length L, truss
width w, truss thickness t and node length S. Basing on
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the single-factor analysis, how these parameters affect the
EEM is fully discussed here by the developed homogene-
ous method. When one of the parameters is discussed, its
value is changed, and the rest of the parameters are kept
constant. The initial values are listed in Table 1.

Figure 6 shows the effects of truss length, truss width,
truss thickness, stamping angle, shearing angle, thickness
of face sheet and node length on EEM by homogenization
method. Obviously, as the truss length, stamping angle
and shearing angle increase, the EEM decreases. The EEM
decreases slightly as the node length increases, while it
increases with the increase of truss width, truss thickness
and thickness of face sheet. The effect of the geometrical
parameters can be verified by previous work [30]. As the
truss length increases from 14 to 22 mm, the EEM decreases
from 1500 to 432 MPa. However, as the truss width and
thickness increase from 1.5 to 3.5 mm and 1.0 to 1.8 mm,
the EEM increases from 432 to 700 MPa and from 432 to
880 MPa, respectively. As the stamping and shearing angle
increase from 10 to 70° and 20 to 60°, the EEM decreases
from 1040 to 502 MPa and from 2024 to 494 MPa, respec-
tively. And their decrease rates are 8.97 MPa and 38.25 MPa
per each degree, respectively. As the thickness of face sheet
increases from 1.2 to 3.2 mm, the EEM increases from 450
to 455 MPa slightly, while it decreases slightly from 620 to
460 MPa as the node length increases from 1 to 5 mm. As
found above, the most significant important factors effect-
ing the EEM are shearing angle, stamping angle, truss
width, truss length and truss thickness, while the effects of
the node length and face sheet thickness are not obvious.

4.3 Discussion of influence mechanism

To find out the reason why the geometric parameters
have such significant effect on the EEM of X-type LTPS,
we perform a stress analysis to a single truss as shown in
Figure 7. P is a tensile load at the truss end in Z direction.
It is decomposed into three forces P,, P,and P, in X, Y and
Z directions, respectively, which produce axial tensile
deformation D,, bending deformation D, and D,in Y and Z
directions, respectively.
P, P, and P, are calculated by

a B
P, =Pcos—cos— 1
X 2 2 (162)
P = Psin% (16b)
P, = Pcosgsiné (16¢)
2 2
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Figure 6: Effects of truss length (A), truss width (B), truss thickness (C), stamping angle (D), shearing angle (E), thickness of face sheet (F)
and node length (G) on EEM.
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Figure 7: The force diagram of the beam.

D,, D, and D, are calculated by

D, (PLcos 5 cosﬁ ) [ EA (17a)
. Qo
D, = PsmEL /3EI, (17b)
D :(Pcosasinﬁf)BEI (17¢)
Z 2 2 Y

where A is the cross-sectional area of truss, and I, and I,
are the inertia moments of the cross-sectional area of truss
about the Y and Z axes, respectively. We decompose D,, D,
and D, in Z, directions, respectively:

d, = (PLcos2 %cos2 gj | EA (18a)
d, = (psin2 ‘;cosfﬁj /3EI, (18b)
d, = Pcos? < 55 n’ B L3 /3K, (18¢)

d,, d,and d, are the deformation components induced by
D,, D,and D, in Z direction.

The total displacement d’ in Z direction is the sum of
d,d,and d:

w=¢+@+@

2 B 2 U B
EA 2 2 3EI , 2 2
Pr’ o ﬂ
+ COS
3EI 2 (19)

Y

The truss height H shown in Figure 2 is calculated by
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a P
H =Lcos—cos™ 2
5€0s5 (20)

The equivalent strain ¢’ in Z direction is
’ d, ﬂ 2 3
=% | pcos? cos | Ewt + 4Psin & tan ¢ I | Ewt
H 2 2 2

+4PcosgsinétanéL2 | Ew’t
2 2 2

@1
The EEM (Eeq) is calculated by
o
=g (22)

Having a derivation to L, w, t, ¢ and § by Equation
(21), respectively, we obtain

o = (SPsinatanaLj | Ewt® + 8PcosgsinﬁtanﬁL | Ew’t
oL 2 2 2 2 2
(23)
oe’ a B b . a a o 2.3
=—| Pcos—cos— |/ Ew’t—| 4Psin—tan—L" |/ Ew’t
ow 2 2 2 2
“12pPcosEsinPanf | Ew't (24)
2 2 2
dg’ a_ p 5 L a, Ao, 4
—| Pcos— cos [ Ewt* —| 12Psin—tan—I’ |/ Ewt
ot 2 2 2
a . ﬁ B 3.2
—4Pcos—sin—tan—L" /| Ew’t
psinytans L/ (25)
a—gl (Psm % cos ﬁj /2Ewt +(PL?)/ Ewt’cosE
oa 2
a BB (26)
—2Psin— 5 sin™- 5 tan I’ | Ew’t
o¢ (Pcos smﬁ )/2Ewt+Pcos I’ | Ew’ tcosﬂ 27)
aﬁ 2 2

After a calculation of Equations (23)-(27), it is

o¢’ o¢’ ¢’

o ap
¢’ increases with the increase of L, ¢ and 3 (10° < <70°,
10°<B<60°). As a result, EEM decreases according to

—->0, which means that

’

Equation (22), whist ai<0 and o
ow ot

that the EEM increases as w and t increase.

The reason of node length S effect on EEM is discussed
as follows:

As shown in Figure 2, the length L, and width L, of the
unit cell are calculated, respectively, by

<0, which proves
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L, :2Lsin§+2w/cosg (28)

L= 2Lsin%cosg +28-2t- cos% (29)

As the panel structure bears a distributed load p, the
equivalent load P of each truss in Z direction as shown in
Figure 7 is calculated by

P=pL.L, 4= p(ZLsin§+2w/cos§j

(2Lsin§cos§+28—2t~c05§)/4 (30)

Substituting Equation (30) into Equation (21), we
obtain

s’:d:[p(2Lsinﬂ+2w/cosﬁ)
H 2 2
.a_ B a a fB
2Lsin—cos™+2S—-2t-cos— |/ 4 |x|| cos—cos’- |/ Ewt
2 2 2 2 2

+| 4sinEtan < 12 /Ewt3+4cosgsinﬁtanﬁLz/Ew3t
2 2 2 2 2

(1)

wt(L+S/cos§j
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in Z direction decreases, which leads to a slight increase
of EEM.

4.4 Formula fitted

Based on the above analysis, it shows that each para-
meter has a different effect on the EEM. It is essential
to develop a theory formula to calculate the EEM by
the seven variables. For foam materials, it has been
proved that the EEM is related with the relative density
p [23]:

E, |E«<p" (n>0) (33)
For low density foam, Equation (33) agrees well with
experiment, but for large density foam they have no clear
correlation [23].

In order to illustrate whether the LTPS obeys Equation
(33), we plot the EEM as a function of relative density with
different geometrical dimensions, as shown in Figure 8.
It should be noted that when one parameter is discussed
the other parameters are kept constant. Here the relative
density of the X-type LTPS is calculated by

p:
(Lsinﬂ+w/cosﬂj(L-cosﬂ-sina+S-t-cot(45°+aj](L-cosﬂ-cosa+ t)
2 2 2 2 4 2 2

(34)

Having a derivation to S by Equation (31), we obtain

9 P(Lsinﬁ +w/ cosgjx [(cosicos 'Bj | Ewt

dS 2 2
+(4sina tan & 12 j | Ewt® + ltcosgsinﬁtanﬁL2 / Ewﬁ‘}
2 2 2 2 2
(32

’

Bz >0, which proves that the &’

It shows that

increases with the increase of S, and correspondingly the
EEM decreases according to Equation (22).

As calculated in Section 2, it reveals that the effective
modulus of lattice truss core is far smaller than that of
face sheet. Therefore, the deformation of face sheet can be
ignored compared with the core. As the thickness of face
sheet increases, the total height of the panel structure
increases, while the vertical deformation of core is con-
stant at a constant stress. As a result, the effective strain

Figure 8 demonstrates that EEM of the X-type LTPS
does not exhibit a clear correlation with the relative
density. This conclusion is consistent with that of the
pyramidal LTPS [30]. The EEM totally increases as the rel-
ative density increases. As the relative density is smaller
than 2%, the effects of different parameters are similar. As
the relative density is larger than 2%, the most significant
impact factor is the shearing angle, and then followed by
the truss width, length and thickness with the same effect;
the smallest influencing factor is the stamping angle.
Therefore, EEM cannot be simply expressed by a formula
with relative density.

Gibson and Ashby [31] have developed a theoretical
formula to calculate the EEM for honeycomb and foam
structures which include the geometrical parameters
of unit cells, respectively (see Equations (35) and (36)).
Figures 9 and 10 show the sketching of the unit cells of
honeycomb and foam structures, respectively. For honey-
combs, there are four geometrical parameters including
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Figure 8: EEM of X-type LTPS versus relative density with different
geometrical parameters.
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where E] and Eefq denote the EEM of honeycomb and
foam structures, respectively. E is the Young’s modulus of
the parent material. p is the relative density. C, and I are
the constant of proportionality and the second moment of
area.

However, the honeycomb structures belong to the
ordered two-dimensional cellular solid, and foams
belong to unordered cellular solid, whereas X-type LTPS
belongs to ordered three-dimensional cellular solid.
Besides, the honeycomb and the foam structures include
four and two geometrical parameters, respectively, while
the X-type LTPS has seven geometrical parameters. The
EEM proposed by Gibson and Ashby is not suitable for
X-type LTPS. Therefore, it is essential to establish the rela-
tionship between the EEM and geometrical parameters of
X-type LTPS. The structure of LTPS is very complex, and
it is very difficult to get an analytical formula to calculate
the EEM. In order to get a formula, we performed a large
number of FEM calculations with different geometric
dimensions and then fitted a formula by Origin software
as follows

e, -a(8) () (1) 2]

where E, is the EEM, and E_ is the elastic modulus of basic
metal. Their unit is megapascal. The units of the geometri-
cal parameters L, w, t, T, and S are millimeters, and the
units of a, § are degrees. But only the values of the geo-
metrical parameters are put into Equation (37), and their
units are not considered in the calculation.

The EEM of the X-type LTPS with different geometrical
parameters derived from the present fitted formula Equa-
tion (37) is also plotted in Figure 6. It obviously shows that
there is a good consistence between the homogenization
and formula results, which proves that the present formula
can be used to calculate the EEM. Kawashima et al. [32]
and Mizokami et al. [33] studied the effective strength of
plate-fin structure. The porous structure is treated as the
equivalent homogenous solid plate, and the tensile and
creep strength are predicted successfully. In their method,
the calculation of EEM is an important issue, and they
predict it by FEM. But how the geometrical parameters
influence the EEM s still unclear. The effective mechanical
strength of LTPS, such as tensile, creep and fatigue, still
needs to be studied further by the equivalent homogenous
solid method, and the formula can be used to calculate
the EEM for future work, proving that this work plays a key
role for the development of structural design procedure of
compact heat exchanger by LTPS. It should be noted that
the flexural deformation has not been considered in this

G7)
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model [8], because for heat exchanger it is forbidden to
have such obvious deformation in order to ensure safety.
The effect of flexural deformation on strength still needs
further study in the future.

5 Conclusions

In this study, the EEM of X-type LTPS has been investi-

gated by homogenization method and FEM; meanwhile,

the effects of the seven geometric parameters on the EEM
of X-type LTPS are explored. Based on this study, the fol-
lowing conclusions can be drawn.

1. The results by homogenization method and FEM have
a good agreement, which proves that the homogeni-
zation method is right.

2. With the increase of stamping angle, shearing angle,
truss length, and node length, the EEM of X-type
LTPS decreases. With the increase of truss width,
truss thickness and thickness of face sheet, the EEM
increases.

3. The EEM does not exhibit a clear correla-
tion with the relative density. The formula,

t 0.97 0.41 T 0.13 700
w

can be used to accurately calculate the EEM.

proposed by us,
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