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Abstract: This article presents a numerical method for
determining the dosage of pre-embedded capsules in self-
healing materials with complex crack patterns. The crack
distribution on the surface of materials is simplified into a
two-dimensional (2D) multi-shaped geometrical structure
composed of triangles, rhombuses, and hexagons with
specified area fractions, and further decomposed into
three separate mono-shaped crack systems. Then, the dos-
age of capsules required to heal the cracks in each mono-
shaped crack system is computed. According to the area
fraction of each mono-shaped polygon in the whole sys-
tem, the integrated models of crack-hitting probability by
the capsules and the capsule dosage for the multi-shaped
crack system are derived. The analytical results reveal that
the dosage of capsules significantly depends on the spa-
tial distribution of the cracks and the ratio of the capsule
length to the crack size. For a certain fixed crack pattern,
the size and dosage of capsules will strongly affect crack
healing efficiency.

Keywords: capsule dosage; geometrical probability; linear
crack patterns; self-healing materials.

1 Introduction

Cracks are one of the critical factors that induce loss in
the load-bearing capacity and durability of structures
[1-3]. To reduce the negative impact of cracks on struc-
tural properties, inspired by the autogenous healing of
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organs in creatures, a self-healing concept was proposed,
and the related techniques [4-6] were then developed
in many fields such as biomaterials [7-9] and organic/
inorganic materials [10, 11]. Depending on the method
used to deliver the healing components to the target site,
self-healing techniques can be roughly divided into two
categories: intrinsic and extrinsic. The former operates
through inter/intra-macromolecular interaction, and the
latter occurs with the aid of an embedded healing agent.
With technological advancements, self-healing based on
microencapsulated healing agents has become the most
common approach for crack healing in recent years and is
more likely to be commercialized because of its practica-
bility and simplicity [12-15].

In actual projects, the amount of healing agent is an
important factor affecting the reliability and service life
of materials and often quantified by both the number of
capsules per unit volume and the capsule size [16, 17].
To know the relationship between the volume fraction of
capsules and healing efficiency, many experiments and
theoretical approaches on the volume fraction of capsules
required in self-healing materials have been considered.
For example, Huang et al. [18] investigated self-healing in
cementitious materials with saturated Ca(OH), solution
as the healing agent supplied by capsules and a vascular
system, and the influence of capsule dosage and size was
taken into account. In Ref. [19], self-healing due to further
hydration of unhydrated cement particles was taken as
an example for investigating the effects of capsules on
the self-healing efficiency and mechanical properties of
cementitious materials. The efficiency of supply of water
by using capsules as a function of capsule dosage and size
was determined numerically. Yuan and Chen [20] applied
geometrical probability to derive a statistical model for
determining the length of capsule for a given simple crack
pattern, as well as a model for calculating the proper
dosage of capsules. Lv et al. [21-23] proposed a series of
geometrical patterns such as parallel linear, rectangular,
parallel planar, and so on, and developed the correspond-
ing models of capsule dosage on the basis of the above
crack patterns. Previous studies [20-23] have shown that
the required number of capsules in self-healing materials
greatly depends on the distribution of cracks.
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Figure 1: Actual cracks on the surface of structures: (A) cracked soil, (B) cracked asphalt pavement, and (C) cracked wall coating.

From the literature on sulfate attack [24], drying
shrinkage [25], alkali aggregate reaction [26], and freeze—
thaw cycles [27] of cement-based materials, it is not hard
to find that the crack configuration in those materials is
very complicated and diverse due to various degradation
mechanisms. For cracking structures such as cracked soil,
organic/inorganic coatings [28, 29], and concrete pave-
ments [30, 31], the generated cracks exhibit as a complex
geometrical configuration, which is analogous to a
network composed of multi-shaped cells (Figure 1). Thus,
it is necessary to develop a methodology for determining
the required dosage of pre-embedded capsules in materials
with more complex geometric crack patterns than before.

In this study, the concept and deducing method of
the interaction probability between capsules and cracks
are presented first. Taking the linear crack distribution
in Figure 1 as the research foundation, a simplified 2D
multi-shaped geometrical structure composed of trian-
gles, rhombuses, and hexagons is introduced. The multi-
shaped crack pattern is decomposed into three separate
mono-shaped crack systems. By combining the formu-
las in Section 2, the required dosage of capsules in each
mono-shaped system is computed. Afterward, according
to the area fraction of each polygon in the whole system,
the crack-hitting probabilities by the capsules for the
multi-shaped crack pattern are computed and the models
of capsule dosage are derived. Computer simulation is
also employed to verify the reliability of these models.

2 Materials and methods

2.1 The binomial distribution

In general, to reduce the potentially negative effect of the
addition of capsules on the overall macro properties of
materials, the volume of capsules embedded in materials
should not be too high, and it should preferably be less

than 5% of the matrix [32]. Under these conditions, the
capsules form a stationary, random system of nonover-
lapping geometric objects. We assume that all the healing
capsules are randomly dispersed in the material and the
cracks appear in a certain pattern. The process of tossing
capsules onto the crack network will produce two results:
one is the capsule intersecting with cracks, and the other
resulting in no intersection. This reminds us of the Buffon
needle problem - a classical problem of the probability of
a randomly tossed needle intersecting with a set of paral-
lel lines in a plane [33].

Taking the needles’ analogy for the capsules, the geo-
metrical relationship between the needles and cracks is
complicated and their independence may be hard to find in
practice. But if the scale of the matrix is large enough, the
independence between needles and cracks can be assumed,
and this assumption can be used in our models to simplify
the problem. The length of the healing capsules in materi-
als is normally fixed, while the size of cracks always propa-
gates and some extra cracks may form with the increase of
service time and external load. That is, at different stages of
service life of the structures, the ratio of the capsule length
to the crack size may vary, which may influence the crack-
hitting probabilities by the capsules. Therefore, it is neces-
sary to consider all possible conditions of different ratios of
the capsule length to the crack size.

Based on the assumption of independence, intersec-
tion or not between capsules and cracks is regarded as
a Bernoulli probability variable, and the number of suc-
cesses is represented by a binominal distribution. In what
follows, we will briefly present the concept of binomial
distribution [34].

From the statistical point of view, the binomial dis-
tribution is the discrete probability distribution of the
number of successes in a sequence of m independent yes/
no trials. For a random variable X, which is defined as the
number of successes in m trials, if the following condi-
tions are met, the variable X has a binomial distribution
with parameters m and p, abbreviated as B(m, p):
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(a) The experiment consists of m identical trials and all
the trials are independent.

(b) Each trial results in one of two outcomes. One of
the outcomes is called a success (S), and the other a
failure (F).

(c) The probability of success or failure on a single trial is
equal to p and 1 - p, respectively.

For capsules containing the healing agent and cracks in
materials, if there are N capsules and the crack-hitting
probabilities by the capsules p stay the same, the random
variable X denoting the total number of intersection in the
area follows the binomial distribution, and the mean of X,
denoted by E(X), can be expressed by Eq. (1).

E(X)=N-p @)

Assume that each capsule has the capability for
repairing cracks of length equal to the threshold L, . The
expected length of repairing the crack by N capsules can
be expressed as L, E(X). The total length of cracks in the
material is L,. If those cracks can be completely repaired,
the following relationship (i.e. Eq. 2) should be fulfilled:

LhealE(X) 2 LT (2)

2.2 Hitting probabilities

In order to better deal with the problems of hitting prob-
ability and expand the range of its application, the defi-
nition of kinetic measure is applied to the geometric
probabilities. In the literature [35], the following theorem
is made use of to derive the kinetic measure of a segment
contained in an arbitrary convex cell:

Theorem 1: Let K be a bounded convex cell of perimeter
L and area A, and there is a segment of length [ in the
plane. The kinematic measure of the segment contained
in the domain K is

27 r(Ly)

m(l)=7A- ! dp | plo, p)do 3

0

where m(l) is the kinematic measure of a segment with
length [; p(o, ¢) and r(l, ¢) are the generalized support
function and the restricted chord function of the convex
cell K, respectively; and ¢ is an angle between 0 and 2.
For the definition and derivation of p(o, ¢) and r(l, ¢), refer
to [35].

For an arbitrary convex cell K [35], the hitting prob-
ability of the line segment with the boundary of cell K can
be derived by substituting Eq. (3) into Eq. (4):

J. Lin et al.: Analytical solution on dosage of self-healing capsules =—— 1231

__mD
p=1 A (4)

3 Simplified crack pattern

Roughly, the distribution of linear cracks in Figure 1 can
be simplified to an edge system of a variety of tessella-
tions. The models of Voronoi tessellations [36], Laguerre
tessellations [37], and the random tessellations that are
stable under the operation of iteration (STIT tessellations)
[38, 39], which can generate various irregular convex
polygons, are commonly used as geometric models for
crack patterns. However, because of their complexity, it
is difficult to apply those models. To show how the ana-
Iytical solution of capsule dosage is derived for a rela-
tively complex crack system, here we consider only some
regular polygons as examples. As shown in Figure 2, a
simplified 2D multi-shaped crack pattern composed of
triangles, rhombuses, and hexagons with specified area
fractions and arrangement form is employed: the areas of
the triangle, rhombus, and hexagon in the hypothetical
crack system are \/ga2 /4, \/ga2 /2, and B\Ba2 /2, respec-
tively, where a is the side length of those polygons. All the
randomly distributed capsules in the plane are idealized
as 1D linear segments with a fixed length [ and negligi-
ble thickness. Each linear capsule is capable of repairing
cracks of length equal to the threshold L, _ .

To obtain the analytical solutions of the crack-hitting
probability by the capsules and the capsule dosage in
the complex crack system, we need to obtain the analyti-
cal models in each mono-shaped crack system first. The
multi-shaped crack configuration is decomposed into
three separate mono-shaped crack systems (i.e. triangular,
rhombic and hexagonal crack patterns). It is noteworthy
that small differences in the crack distribution may have
a considerable impact on determining the dosage of self-
healing capsules in materials. Accordingly, the outcomes

Triangle

Hexagon ~

A YA
Rhombus /

/
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Figure 2: Atriple-shaped crack distribution composed of triangles,
rhombuses, and hexagons.
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and conclusions presented herein are valid only within
the present selections of crack patterns and capsules.

3.1 The mono-shaped crack patterns
3.1.1 Triangular crack pattern

Assume that there exist three sets of equidistant, parallel,
linear cracks on the surface of materials, and the parallel
cracks form the regular triangular crack pattern as sche-
matically shown in Figure 3. The kinematic measure of a
linear capsule in a regular triangular cell is described in
the Appendix [40]. According to Eq. (4) and the ratio of

3.1.2 Rhombic crack pattern

72al—181% —[3xl?

9\Ena2
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3a
L= 7n(n +1) 7)
If those cracks can be repaired, the required number

of capsules N should fulfill Eq. (2). Substituting Eqgs. (5-7)
into Eq. (2) yields Eq. (8):

6 1
N > — 8
! \/gaLheal p T ( )

where N, is the required number of capsules per unit area
of the materials, and equivalent to N/A, [41]. Therefore, for
the triangular crack pattern in Figure 3, Eq. (8) should be
fulfilled if all of the cracks are to be completely repaired.
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the capsule length to the crack size (I/a), the crack-hitting
probability p, by the capsules can be expressed as Eq. (5):

1243al - 2712 —3/3P 1. 3
3na’ ’ a 2
R e s _g_\/—zz 4 +6a Osﬂ NEB
’ f;m 3a> nd’ na’ 2 a
10, 1<t
a
(5)

The event that a capsule intersects with the cracks is
a binomial experiment, and the number of capsules inter-
secting with the cracks is the binomial random variable X.
A representative region E1 with side length na (Figure 3)
is selected with the edges coinciding with the cracks, and
has an area A,:
V3,

A = nzja (6)

where n? is the number of regular triangles in the region
E1, and A, is the area of the region E1. The total length L, of
cracks can be represented by Eq. (7):

A rhombic crack pattern on the surface of materials is
shown in Figure 4. The angles between the crossed linear
cracks are 60°. The kinematic measure of linear capsule
in the rhombic cell is described in the Appendix [40].
According to the ratio of the capsule length to the crack
size (I/a), the crack-hitting probability p, by the capsules
[i.e. Eq. (9)] can be obtained by Eq. (4).

; : ; ;? : i(ﬁmcks
Ia)

Capsules

LN N

Figure 3: Triangular crack pattern and a representative sampling
region E1.
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Cracks

Capsules

/

Figure 4: Rhombic crack pattern and a representative sampling
region E2.

a (10)

ATznz\/z5 2

L, =2an(n+1) (11)

A rhombic region E2, which is composed of n? rhom-
buses, is selected as a representative sampling region, with
the edges coinciding with the linear cracks. The area of the
region A, and length of cracks inside L are obtained by Eqs.
(10) and (11), respectively. The required number of capsules
per unit area of materials for rhombic crack pattern [i.e. Eq.
(12)] is obtained by substituting Egs. (9-11) into Eq. (2).

4 1
\/gaLheal pR

N, 2 (12)

3.1.3 Hexagonal crack pattern

Another mono-shaped crack system — hexagonal crack
pattern — is formed here by a large number of line seg-
ments. The side length of a regular hexagon and length of
the capsules are given in Figure 5. The kinematic measure
of linear capsule in the hexagonal cell is also described
in the Appendix [40]. The crack-hitting probability by the
capsules p, is expressed as Eq. (13):

123al+ 72 =33
Ira’ ’

9a/4P -3a? - Baa? +B)+ 232 + 3a2)arcsin\/2§la

33na?

Py

3(6\/5 —m)a’ + (3\/§—n)l2 —30av 3’ -9a® +6(12a* + Iz)arccosT
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Figure 5: Hexagonal crack pattern and a representative sampling
region E3.

In Figure 5, a complex sampling region E3 is selected,
and n? regular hexagons exist in the region. The area of
region A,, and length of cracks L,, are obtained by Eqs.
(14) and (15), respectively.

L.=(3n’+4n-1)a

(14)
(15)

Referring to the derivation of N, in Section 3.1.1, the
solution of capsule dosage is derived, and it is expressed
as Eq. (16):

2 1

\/gaLheal . E

N, > (16)

3.1.4 Verification of crack-hitting probability models

The verification algorithm is done as follows:

(a) Generate three kinds of polygonal cells with the side
length a (Figure 6).

(b) Randomly generate a number of capsules N, (i =1,
2, ..., m, where m is set by user) with length inside
above polygonal cells, the location of capsules is
determined by its mid-point coordinate (x,, y,) as well

s l<££\/§

a (13)

a

ona’

1.0,

s \/§<££2
a
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Figure 6: Polygonal cells of different crack patterns: (A) triangle, (B) rhombus, and (C) hexagon.

as the orientation angle 6. The value I/a is separately
selected to be equal to 0.50, 0.87, 1.10 or 1.80, which
is located in the specified ranges as listed in Table 1.
Count the number of capsules intersecting with the
boundary of cells k and the total number of capsules
m. The crack-hitting probability p by the capsules can
be estimated as the ratio

(o)

p=— (17)

m

Simulations from triangular, rhombic, and hexagonal
crack patterns at different ratios of the capsule length to
the crack size are compared with the theoretical values. It
can be seen that (Figure 7) with the increase of the tossed
number m of the capsules m, the simulated probability p
tends to a stable value and is consistent with the theoreti-
cal value, which verifies the reliability of the models for
the crack-hitting probability by the capsules.

3.1.5 Verification of capsule dosage models

(a) Generate the representative sampling region E1, E2,
and E3 as shown in Figures 3-5, with the size a=1.0.
The number of corresponding polygonal cells in each
region is n% and the required number of capsules is
calculated through the models of the capsule dosage
N, [i.e. Egs. (8), (12) and (16)].

Assume that the length of cracks L, , that can be
healed by a single capsule is equal to 0.50. Then

(b)

healing ratio of the cracks p, , can be obtained by

Eq. (18):
kL

heal

L

T

Drea = (18)
After replacing quantitative parameters of capsules and
the crack pattern in the sampling region by fixed numeri-
cal values, the simulation results for capsule dosage show
good consistency with theoretical solutions. As shown in
Figure 8, as the number of polygonal cells (n?) increases,
all the healing ratios p, , reach a stable value 1.0.

3.2 Multi-shaped crack pattern

All crack-hitting probability models and capsule dosage
models for triangular, rhombic, and hexagonal crack
patterns have been proposed and verified by numerical
simulations. If the area fraction of each mono-shaped
polygonal cell in the whole system is known, then the inte-
grated model of crack-hitting probabilities by the capsules
and the analytical model of capsule dosage for complex
crack system can be derived.

3.2.1 Crack-hitting probability model

Theorem 2 [42]: Consider an arbitrary, multi-shaped
system comprised of convex polygonal cells K, K,, ..., K .
If we randomly toss a line segment of length lin the plane,
the intersection probability of the line segment with the

boundary of cells can be expressed as Eq. (19):

i m (D) +m,(D+---+m (1)

randomly toss capsules into the region and count (19)
the number of capsules intersecting the cracks. The (A + A+t A)
Table 1: Selection of the ratio (/a for different crack patterns.
Crack patterns 1 N3 £<151 1<les B<l< 2< L
a 2 2 a a a a
Triangular crack pattern 0.50 0.87 - - -
Rhombic crack pattern 0.50 0.87 1.10 - -
Hexagonal crack pattern 0.50 - 1.10 1.80 -
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Figure 7: Verification of crack-hitting probability models for mono-
shaped crack patterns: (A) triangular crack pattern, (B) rhombic

crack pattern, and (C) hexagonal crack pattern.

where A, A,
K, K, ..., K, and m(D), m/D,

ing cells.

., A are the area of the convex cells
..., m(D are the
kinematic measure of the line segment in the correspond-
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Figure 8: Verification of capsule dosage models for mono-shaped
crack patterns: (A) triangular crack pattern, (B) rhombic crack
pattern, and (C) hexagonal crack pattern.

By combining Eqgs. (19) and (4), the intersecting
probability of a line segment with the boundary of multi-
shaped cell system can be translated into a simplified

form as Eq. (20):



1236 —— |.Linetal.: Analytical solution on dosage of self-healing capsules

n

A
p:z n l ‘pi
i=1 ZA)

=

(20)

For the multi-shaped crack pattern in Figure 2, a com-
bined cell composed of two regular triangles, two rhom-
buses, and one hexagon is selected. These polygons are
arranged tightly, as shown in Figure 9, and the area of the
triangular, rhombic, and hexagonal domains are, respec-
tively, \/gaz /2, ﬁaz, and B\Baz /2. Based on the area frac-
tion of various polygons in the whole system and the ratios
of the capsule length to the crack size, the crack-hitting
probability p_by the capsules [i.e. Eq. (21)] can be derived
by substituting Egs. (8), (12), and (16) into Eq. (20):

360al—5v/371 =901
54J§na2 ’

90(4a — 1)l - 5437 —171a\ 4 — 3a? + 6+/3(10 + 21a?) arccos
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combined cells exist in total. Further, the region is also
assumed to be periodic as the cell. The area of the region
E, is expressed by Eq. (22):

A, =x~y=3\5a2n2

The total length of cracks L, is obtained by Eq. (23):

(22)

L. =10an’ +5an (23)

Substituting Egs. (21-23) into Eq. (2) yields Eq. (24).
That is to say, for the multi-shaped crack pattern, to fully
heal the cracks on the surface of materials, the required
number of capsules should fulfill Eq. (24):

10 1

54437a

1
_ ) 5437a?
J3a

+(18- 5\/§7t)l2 + 18\/5(3a2 +20%)arcsin S

3(9- \/gn)a2 +54a 41> -3a* + 12\/5 (3a*> - I*)arccos \/zgla

6(3\5 +m)a’ + (3\@:1)12 —30a+/32 -9a* +6(12a* +I?)arccos

187a’

1.0,

N>————
! 3\/gaLheal pc (24)
13
a 2
J3a
2l , £<1S1
2 a
1<—<+/3 1)
J3a
s \/§<££2
a
2<£
a

3.2.2 Capsule dosage model

Assume that the multi-shaped crack pattern is composed
of numerous combined cells as in Figure 9, which are
arranged periodically. In Figure 10, an observed paral-
lelogram region E, with the sizes of region of x and y is
selected as the representative sampling region where n?

. <B> oie

Figure 9: The combined cellin the multi-shaped crack pattern.

3.2.3 Verification of crack-hitting probability models

We generate a combined cell, as shown in Figure 9, and the
ratios of the capsule length to the crack size (I/a) are selected
to be equal to 0.50, 0.87, 1.10 and 1.80, which is located in the
specified ranges as listed in Table 2. The process of verifi-
cation is the same as that in Section 3.1.4. The verification
results of crack-hitting probabilities by the capsules for
the specified complex crack pattern are given in Figure 11.
When the total number of capsules increases to about 2000,
the simulation results for crack-hitting probability models
show good consistency with theoretical solutions.

3.2.4 Verification of capsule dosage models

Generate a region E, as shown in Figure 10. Other para-
meters are the same as those in Section 3.1.5, and the
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Figure 10: A parallelogram representative region E, with the sizes
of xand y (x=3an, y =\/§an).

required dosage of capsules (N,) is determined by Eq. (24).
From the variation tendency of curves in Figure 12, it is
noted that the simulation results at different ratios of the
capsule length to the crack size agree with the analytical
solutions from the proposed models, which verifies the
reliability and rationality of the method in this study.
Figure 13 show the effect of simplified 2D crack pat-
terns on the required number of capsules per unit area (N,).
At the same I/a, the values of N, show significant difference
for various mono-shaped crack patterns (i.e. triangular,
rhombic, and hexagonal crack patterns), which illustrate
the importance of the crack distribution. Meanwhile, it is
found that the value of N, for multi-shaped crack pattern
is less than those for triangular and rhombic crack patterns

Table 2: Selection of the ratio //a for the triple-shaped crack pattern.

Crack pattern i<£ £<L<1 1<is\/§ \/§<i52 2<i
a 2 2 a a a a
Triple-shaped 0.50 0.87 1.10 1.80 -
crack pattern
1.20 10.999
; l/a=180
1.00 B e s
= i Y la=110 19997 £
= 0.80 = =
£ A Ila=0.87 5
‘g 0.60 P N _p lia=050 10995 E_
& : : &
L{—Eq.(21) [left Y-axis] L
%ﬂ = ====-Simulation [left Y-axis] }_E—
£ (.20 —Eq.(21) [left Y-axis] 10993 =
= b2 ; ; : 7
i -===Simulation [left Y-axis] ]
g 0.00 F| — Eq.(21) [left Y-axis] £
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Figure 11: Verification of crack-hitting probability models for the
multi-shaped crack pattern.
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but is higher than that for the hexagonal crack pattern. In
Figure 13, the results are also compared with the analytical
solution for 2D parallel cracks and orthogonal cracks in the
literature [21, 22]. For the parallel crack system, the symbol a
here represents the distance between two neighboring par-
allel cracks. For the orthogonal crack system, the sides of
the rectangles are equal and both are denoted by the symbol
a. It can be seen that the value of the required number of
capsules per unit area (N,) for multi-shaped crack pattern
is larger than the values of N, for both parallel and orthogo-
nal cracks. From Figure 1, the real crack distribution on the
2D plane can be characterized by various irregular convex
polygons. In view of the fact that the multi-shaped crack
system in this study is more approximate to the models of
convex polygons compared with mono-shaped crack pat-
terns, the corresponding N, would have better precision
and promising application value than before. Actually, it is
not hard to find that in Figure 1 the sizes of linear cracks
on the surface of materials are not exactly identical. Thus,
to improve the reliability of the simulated results, further

120
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g oy

g’ -’f \“, a=1.0, L-fiswf =0.50
:§ 0.90 I'!' --1/a=0.50,p.=0.513
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Number of the combine cell

Figure 12: Verification of capsule dosage models for the multi-
shaped crack pattern.
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Figure 13: The minimum required number of capsules per unit area
N, for different 2D crack patterns.
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studies on the models of multi-sized and multi-shaped
convex polygons are still strongly needed.

In this article, we mainly considered 2D cracks on the
plane. In fact, the majority of cracks in materials are 3D
distribution. In Ref. [19], the cracks in the cement paste
are simplified to a 3D plane to investigate the crack-hitting
probability by the spherical capsules. Lv et al. [21] studied
the crack-hitting probability by the linear capsules in
materials with 3D orthogonal parallel planar cracks and
zonal cracks. Strictly speaking, the above crack distribu-
tions are still simple. In recent years, 3D Voronoi tessella-
tions [43] are widely used to model the random structure of
porous media. The structures generated by using Voronoi
tessellations are very similar to the 3D crack distribution
in materials. If possible, these structures could also be uti-
lized to study the crack-hitting probability by the capsules.
According to Ref. [44], there is a close relationship between
the crack-hitting probability and the chord length distri-
bution function. By using this principle, current models
can be easily extended to calculate the capsule dosage
for complex crack systems such as Voronoi tessellations.
Besides, it is worth noting that in the 3D space, various
types of capsules such as cylinders [45], spheres [46-48],
and spherocylinders [49] were also widely used in materi-
als. If the influence of all of the crack patterns, crack size
distribution, and capsule shapes can be included in the
models, the research will be more valuable.

4 Conclusion

A 2D multi-shaped geometrical structure composed
of triangles, rhombuses, and hexagons with specified
area fractions as well as linear segments was employed
to determine the minimum dosage of capsules in self-
healing materials with complex crack systems. Based on

For the triangular cell

DE GRUYTER

geometric measure theory, the analytical models of crack-
hitting probabilities and capsule dosage for the multi-
shaped crack system were derived at various ratios of the
capsule length to the crack size. The results revealed that
for a given multi-shaped crack pattern, the area fraction
of mono-shaped cells in the system and the ratio of the
capsule length to the crack size are two key parameters
determining the crack-hitting probability by the capsules
and the dosage of capsules. Since the capsule length is
normally fixed during the preparation stage of materi-
als, the self-healing efficiency of materials will depend on
the spatial distribution and size of the cracks. The meth-
odology presented here can be extended to other 2D/3D
complex crack networks with any arbitrary shape of cap-
sules by using the chord length distribution function, and
the solutions on capsule dosage can be derived then.
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Appendix

The kinematic measure of a linear capsule
in convex domains [40]

Here, formulas (A.1), (A.2), and (A.3) represent the kin-
ematic measure of a linear capsule in regular triangular,
rhombic, and hexagonal cells, respectively.

ﬁnaz —3al+\/§m2 +3—I2 isﬁ
m(l) = [ et 5 “f ? (A1)
Eals “3a1-22 - il 31 [\flz 3 ]arcco ﬂ V3 —Sl
2 4 6 21 a
For the rhombic cell
\Enaz —4al+lz+\6nlz, Lsﬁ
2 18 a 2
2 2 2 2
m(l) = \@na —4al+I + \@nl +5a, (I’ —3% —(2\61 +2\Eazjarcsin\/2§la, \f < z < (A.2)
2 2
\/E;[ —4—2—\/77[1 BaA/ (f e ]arccos\/;a 1<££\/§
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For the hexagonal cell

2 2
—6 l_\fnl 31

\f al

S\Ena
2

m(l) =

where [is the length of the linear capsule and a is the side
length of the convex domain.
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