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Abstract: This article presents a numerical method for 
determining the dosage of pre-embedded capsules in self-
healing materials with complex crack patterns. The crack 
distribution on the surface of materials is simplified into a 
two-dimensional (2D) multi-shaped geometrical structure 
composed of triangles, rhombuses, and hexagons with 
specified area fractions, and further decomposed into 
three separate mono-shaped crack systems. Then, the dos-
age of capsules required to heal the cracks in each mono-
shaped crack system is computed. According to the area 
fraction of each mono-shaped polygon in the whole sys-
tem, the integrated models of crack-hitting probability by 
the capsules and the capsule dosage for the multi-shaped 
crack system are derived. The analytical results reveal that 
the dosage of capsules significantly depends on the spa-
tial distribution of the cracks and the ratio of the capsule 
length to the crack size. For a certain fixed crack pattern, 
the size and dosage of capsules will strongly affect crack 
healing efficiency.

Keywords: capsule dosage; geometrical probability; linear 
crack patterns; self-healing materials.

1  �Introduction
Cracks are one of the critical factors that induce loss in 
the load-bearing capacity and durability of structures 
[1–3]. To reduce the negative impact of cracks on struc-
tural properties, inspired by the autogenous healing of 

organs in creatures, a self-healing concept was proposed, 
and the related techniques [4–6] were then developed 
in many fields such as biomaterials [7–9] and organic/
inorganic materials [10, 11]. Depending on the method 
used to deliver the healing components to the target site, 
self-healing techniques can be roughly divided into two 
categories: intrinsic and extrinsic. The former operates 
through inter/intra-macromolecular interaction, and the 
latter occurs with the aid of an embedded healing agent. 
With technological advancements, self-healing based on 
microencapsulated healing agents has become the most 
common approach for crack healing in recent years and is 
more likely to be commercialized because of its practica-
bility and simplicity [12–15].

In actual projects, the amount of healing agent is an 
important factor affecting the reliability and service life 
of materials and often quantified by both the number of 
capsules per unit volume and the capsule size [16, 17]. 
To know the relationship between the volume fraction of 
capsules and healing efficiency, many experiments and 
theoretical approaches on the volume fraction of capsules 
required in self-healing materials have been considered. 
For example, Huang et al. [18] investigated self-healing in 
cementitious materials with saturated Ca(OH)2 solution 
as the healing agent supplied by capsules and a vascular 
system, and the influence of capsule dosage and size was 
taken into account. In Ref. [19], self-healing due to further 
hydration of unhydrated cement particles was taken as 
an example for investigating the effects of capsules on 
the self-healing efficiency and mechanical properties of 
cementitious materials. The efficiency of supply of water 
by using capsules as a function of capsule dosage and size 
was determined numerically. Yuan and Chen [20] applied 
geometrical probability to derive a statistical model for 
determining the length of capsule for a given simple crack 
pattern, as well as a model for calculating the proper 
dosage of capsules. Lv et al. [21–23] proposed a series of 
geometrical patterns such as parallel linear, rectangular, 
parallel planar, and so on, and developed the correspond-
ing models of capsule dosage on the basis of the above 
crack patterns. Previous studies [20–23] have shown that 
the required number of capsules in self-healing materials 
greatly depends on the distribution of cracks.
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From the literature on sulfate attack [24], drying 
shrinkage [25], alkali aggregate reaction [26], and freeze–
thaw cycles [27] of cement-based materials, it is not hard 
to find that the crack configuration in those materials is 
very complicated and diverse due to various degradation 
mechanisms. For cracking structures such as cracked soil, 
organic/inorganic coatings [28, 29], and concrete pave-
ments [30, 31], the generated cracks exhibit as a complex 
geometrical configuration, which is analogous to a 
network composed of multi-shaped cells (Figure 1). Thus, 
it is necessary to develop a methodology for determining 
the required dosage of pre-embedded capsules in materials 
with more complex geometric crack patterns than before.

In this study, the concept and deducing method of 
the interaction probability between capsules and cracks 
are presented first. Taking the linear crack distribution 
in Figure 1 as the research foundation, a simplified 2D 
multi-shaped geometrical structure composed of trian-
gles, rhombuses, and hexagons is introduced. The multi-
shaped crack pattern is decomposed into three separate 
mono-shaped crack systems. By combining the formu-
las in Section 2, the required dosage of capsules in each 
mono-shaped system is computed. Afterward, according 
to the area fraction of each polygon in the whole system, 
the crack-hitting probabilities by the capsules for the 
multi-shaped crack pattern are computed and the models 
of capsule dosage are derived. Computer simulation is 
also employed to verify the reliability of these models.

2  �Materials and methods

2.1  �The binomial distribution

In general, to reduce the potentially negative effect of the 
addition of capsules on the overall macro properties of 
materials, the volume of capsules embedded in materials 
should not be too high, and it should preferably be less 

than 5% of the matrix [32]. Under these conditions, the 
capsules form a stationary, random system of nonover-
lapping geometric objects. We assume that all the healing 
capsules are randomly dispersed in the material and the 
cracks appear in a certain pattern. The process of tossing 
capsules onto the crack network will produce two results: 
one is the capsule intersecting with cracks, and the other 
resulting in no intersection. This reminds us of the Buffon 
needle problem – a classical problem of the probability of 
a randomly tossed needle intersecting with a set of paral-
lel lines in a plane [33].

Taking the needles’ analogy for the capsules, the geo-
metrical relationship between the needles and cracks is 
complicated and their independence may be hard to find in 
practice. But if the scale of the matrix is large enough, the 
independence between needles and cracks can be assumed, 
and this assumption can be used in our models to simplify 
the problem. The length of the healing capsules in materi-
als is normally fixed, while the size of cracks always propa-
gates and some extra cracks may form with the increase of 
service time and external load. That is, at different stages of 
service life of the structures, the ratio of the capsule length 
to the crack size may vary, which may influence the crack-
hitting probabilities by the capsules. Therefore, it is neces-
sary to consider all possible conditions of different ratios of 
the capsule length to the crack size.

Based on the assumption of independence, intersec-
tion or not between capsules and cracks is regarded as 
a Bernoulli probability variable, and the number of suc-
cesses is represented by a binominal distribution. In what 
follows, we will briefly present the concept of binomial 
distribution [34].

From the statistical point of view, the binomial dis-
tribution is the discrete probability distribution of the 
number of successes in a sequence of m independent yes/
no trials. For a random variable X, which is defined as the 
number of successes in m trials, if the following condi-
tions are met, the variable X has a binomial distribution 
with parameters m and p, abbreviated as B(m, p):

A B C

Figure 1: Actual cracks on the surface of structures: (A) cracked soil, (B) cracked asphalt pavement, and (C) cracked wall coating.
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(a)	 The experiment consists of m identical trials and all 
the trials are independent.

(b)	 Each trial results in one of two outcomes. One of 
the outcomes is called a success (S), and the other a 
failure (F).

(c)	 The probability of success or failure on a single trial is 
equal to p and 1 – p, respectively.

For capsules containing the healing agent and cracks in 
materials, if there are N capsules and the crack-hitting 
probabilities by the capsules p stay the same, the random 
variable X denoting the total number of intersection in the 
area follows the binomial distribution, and the mean of X, 
denoted by E(X), can be expressed by Eq. (1).

	 = ⋅( )E X N p� (1)

Assume that each capsule has the capability for 
repairing cracks of length equal to the threshold Lheal. The 
expected length of repairing the crack by N capsules can 
be expressed as LhealE(X). The total length of cracks in the 
material is LT. If those cracks can be completely repaired, 
the following relationship (i.e. Eq. 2) should be fulfilled:

	 ≥heal ( ) TL E X L � (2)

2.2  �Hitting probabilities

In order to better deal with the problems of hitting prob-
ability and expand the range of its application, the defi-
nition of kinetic measure is applied to the geometric 
probabilities. In the literature [35], the following theorem 
is made use of to derive the kinetic measure of a segment 
contained in an arbitrary convex cell:

Theorem 1: Let K be a bounded convex cell of perimeter 
L and area A, and there is a segment of length l in the 
plane. The kinematic measure of the segment contained 
in the domain K is

	

ϕπ

π ϕ σ ϕ σ= − ∫ ∫
( , )2

0 0

( ) ( , )
r l

m l A d p d � (3)

where m(l) is the kinematic measure of a segment with 
length l; p(σ, ϕ) and r(l, ϕ) are the generalized support 
function and the restricted chord function of the convex 
cell K, respectively; and ϕ is an angle between 0 and 2π. 
For the definition and derivation of p(σ, ϕ) and r(l, ϕ), refer 
to [35].

For an arbitrary convex cell K [35], the hitting prob-
ability of the line segment with the boundary of cell K can 
be derived by substituting Eq. (3) into Eq. (4):

	 π
= − ( )1 m lp

A � (4)

3  �Simplified crack pattern
Roughly, the distribution of linear cracks in Figure 1 can 
be simplified to an edge system of a variety of tessella-
tions. The models of Voronoi tessellations [36], Laguerre 
tessellations [37], and the random tessellations that are 
stable under the operation of iteration (STIT tessellations) 
[38, 39], which can generate various irregular convex 
polygons, are commonly used as geometric models for 
crack patterns. However, because of their complexity, it 
is difficult to apply those models. To show how the ana-
lytical solution of capsule dosage is derived for a rela-
tively complex crack system, here we consider only some 
regular polygons as examples. As shown in Figure  2, a 
simplified 2D multi-shaped crack pattern composed of 
triangles, rhombuses, and hexagons with specified area 
fractions and arrangement form is employed: the areas of 
the triangle, rhombus, and hexagon in the hypothetical 
crack system are 23 / 4a , 23 / 2a , and 23 3 / 2a , respec-
tively, where a is the side length of those polygons. All the 
randomly distributed capsules in the plane are idealized 
as 1D linear segments with a fixed length l and negligi-
ble thickness. Each linear capsule is capable of repairing 
cracks of length equal to the threshold Lheal.

To obtain the analytical solutions of the crack-hitting 
probability by the capsules and the capsule dosage in 
the complex crack system, we need to obtain the analyti-
cal models in each mono-shaped crack system first. The 
multi-shaped crack configuration is decomposed into 
three separate mono-shaped crack systems (i.e. triangular, 
rhombic and hexagonal crack patterns). It is noteworthy 
that small differences in the crack distribution may have 
a considerable impact on determining the dosage of self-
healing capsules in materials. Accordingly, the outcomes 

Figure 2: A triple-shaped crack distribution composed of triangles, 
rhombuses, and hexagons.
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and conclusions presented herein are valid only within 
the present selections of crack patterns and capsules.

3.1  �The mono-shaped crack patterns

3.1.1  �Triangular crack pattern

Assume that there exist three sets of equidistant, parallel, 
linear cracks on the surface of materials, and the parallel 
cracks form the regular triangular crack pattern as sche-
matically shown in Figure 3. The kinematic measure of a 
linear capsule in a regular triangular cell is described in 
the Appendix [40]. According to Eq. (4) and the ratio of 

Figure 3: Triangular crack pattern and a representative sampling 
region E1.

	
= +3 ( 1)

2T
aL n n � (7)

If those cracks can be repaired, the required number 
of capsules N should fulfill Eq. (2). Substituting Eqs. (5–7) 
into Eq. (2) yields Eq. (8):

	
≥ ⋅

heal

6 1
3A

T

N
paL

� (8)

where NA is the required number of capsules per unit area 
of the materials, and equivalent to N/AT [41]. Therefore, for 
the triangular crack pattern in Figure 3, Eq. (8) should be 
fulfilled if all of the cracks are to be completely repaired.

3.1.2  �Rhombic crack pattern
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A rhombic crack pattern on the surface of materials is 
shown in Figure 4. The angles between the crossed linear 
cracks are 60°. The kinematic measure of linear capsule 
in the rhombic cell is described in the Appendix [40]. 
According to the ratio of the capsule length to the crack 
size (l/a), the crack-hitting probability pR by the capsules 
[i.e. Eq. (9)] can be obtained by Eq. (4).

the capsule length to the crack size (l/a), the crack-hitting 
probability pT by the capsules can be expressed as Eq. (5):

	

π

π

π ππ

 − − ≤

 − − += − − + < ≤


 <

2 2

2

2 2 2 2 2 2

2 2 2

12 3 2 3 3 3,
23

12 9 4 3 2 3 4 6 3 3arccos , 1
2 233

1.0, 1

T

al l l l
aa

l l a l l l a a lp
l aa a aa

l
a

� (5)

The event that a capsule intersects with the cracks is 
a binomial experiment, and the number of capsules inter-
secting with the cracks is the binomial random variable X. 
A representative region E1 with side length na (Figure 3) 
is selected with the edges coinciding with the cracks, and 
has an area AT:

	 = 2 23
4TA n a � (6)

where n2 is the number of regular triangles in the region 
E1, and AT is the area of the region E1. The total length LT of 
cracks can be represented by Eq. (7):
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Figure 4: Rhombic crack pattern and a representative sampling 
region E2.

Figure 5: Hexagonal crack pattern and a representative sampling 
region E3.

	
= 2 23

2TA n a
�

(10)

	 = +2 ( 1)TL an n � (11)

A rhombic region E2, which is composed of n2 rhom-
buses, is selected as a representative sampling region, with 
the edges coinciding with the linear cracks. The area of the 
region AT and length of cracks inside LT are obtained by Eqs. 
(10) and (11), respectively. The required number of capsules 
per unit area of materials for rhombic crack pattern [i.e. Eq. 
(12)] is obtained by substituting Eqs. (9–11) into Eq. (2).

	 ≥ ⋅
heal

4 1
3A

R

N
paL

� (12)

3.1.3  �Hexagonal crack pattern

Another mono-shaped crack system – hexagonal crack 
pattern – is formed here by a large number of line seg-
ments. The side length of a regular hexagon and length of 
the capsules are given in Figure 5. The kinematic measure 
of linear capsule in the hexagonal cell is also described 
in the Appendix [40]. The crack-hitting probability by the 
capsules pH is expressed as Eq. (13):
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In Figure 5, a complex sampling region E3 is selected, 
and n2 regular hexagons exist in the region. The area of 
region AT, and length of cracks LT, are obtained by Eqs. 
(14) and (15), respectively.

	 = 2 23 3
2TA n a � (14)

	 = + −2(3 4 1)TL n n a� (15)

Referring to the derivation of NA in Section 3.1.1, the 
solution of capsule dosage is derived, and it is expressed 
as Eq. (16):

	 ≥ ⋅
heal

2 1
3A

H

N
paL

� (16)

3.1.4  �Verification of crack-hitting probability models

The verification algorithm is done as follows:
(a)	 Generate three kinds of polygonal cells with the side 

length a (Figure 6).
(b)	 Randomly generate a number of capsules Ni (i  = 1, 

2,  …, m, where m is set by user) with length inside 
above polygonal cells, the location of capsules is 
determined by its mid-point coordinate (xi, yi) as well 
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as the orientation angle θi. The value l/a is separately 
selected to be equal to 0.50, 0.87, 1.10 or 1.80, which 
is located in the specified ranges as listed in Table 1.

(c)	 Count the number of capsules intersecting with the 
boundary of cells k and the total number of capsules 
m. The crack-hitting probability p by the capsules can 
be estimated as the ratio

	
= kp
m� (17)

Simulations from triangular, rhombic, and hexagonal 
crack patterns at different ratios of the capsule length to 
the crack size are compared with the theoretical values. It 
can be seen that (Figure 7) with the increase of the tossed 
number m of the capsules m, the simulated probability p 
tends to a stable value and is consistent with the theoreti-
cal value, which verifies the reliability of the models for 
the crack-hitting probability by the capsules.

3.1.5  �Verification of capsule dosage models

(a)	 Generate the representative sampling region E1, E2, 
and E3 as shown in Figures 3–5, with the size a = 1.0. 
The number of corresponding polygonal cells in each 
region is n2, and the required number of capsules is 
calculated through the models of the capsule dosage 
NA [i.e. Eqs. (8), (12) and (16)].

(b)	 Assume that the length of cracks Lheal that can be 
healed by a single capsule is equal to 0.50. Then 
randomly toss capsules into the region and count 
the number of capsules intersecting the cracks. The 

healing ratio of the cracks pheal can be obtained by 
Eq. (18):

	
= heal

heal
T

kL
p

L
� (18)

After replacing quantitative parameters of capsules and 
the crack pattern in the sampling region by fixed numeri-
cal values, the simulation results for capsule dosage show 
good consistency with theoretical solutions. As shown in 
Figure 8, as the number of polygonal cells (n2) increases, 
all the healing ratios pheal reach a stable value 1.0.

3.2  �Multi-shaped crack pattern

All crack-hitting probability models and capsule dosage 
models for triangular, rhombic, and hexagonal crack 
patterns have been proposed and verified by numerical 
simulations. If the area fraction of each mono-shaped 
polygonal cell in the whole system is known, then the inte-
grated model of crack-hitting probabilities by the capsules 
and the analytical model of capsule dosage for complex 
crack system can be derived.

3.2.1  �Crack-hitting probability model

Theorem 2 [42]: Consider an arbitrary, multi-shaped 
system comprised of convex polygonal cells K1, K2, …, Kn. 
If we randomly toss a line segment of length l in the plane, 
the intersection probability of the line segment with the 
boundary of cells can be expressed as Eq. (19):

	 π

+ + +
= −

+ + +
�
�

1 2

1 2

( ) ( ) ( )
1

( )
n

n

m l m l m l
p

A A A
� (19)

Figure 6: Polygonal cells of different crack patterns: (A) triangle, (B) rhombus, and (C) hexagon.

Table 1: Selection of the ratio l/a for different crack patterns.

Crack patterns   3
2

l
a

≤   3 1
2

l
a

< ≤   1 3l
a

< ≤   3 2l
a

< ≤   2 l
a

<

Triangular crack pattern   0.50  0.87  –  –  –
Rhombic crack pattern   0.50  0.87  1.10  –  –
Hexagonal crack pattern  0.50  –  1.10  1.80  –
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Figure 7: Verification of crack-hitting probability models for mono-
shaped crack patterns: (A) triangular crack pattern, (B) rhombic 
crack pattern, and (C) hexagonal crack pattern.

Figure 8: Verification of capsule dosage models for mono-shaped 
crack patterns: (A) triangular crack pattern, (B) rhombic crack 
pattern, and (C) hexagonal crack pattern.

where A1, A2, …, An are the area of the convex cells 
K1, K2,  …, Kn, and m1(l), m2(l), …, mn(l) are the  
kinematic measure of the line segment in the correspond-
ing cells.

By combining Eqs. (19) and (4), the intersecting 
probability of a line segment with the boundary of multi-
shaped cell system can be translated into a simplified 
form as Eq. (20):
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1
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�

(20)

For the multi-shaped crack pattern in Figure 2, a com-
bined cell composed of two regular triangles, two rhom-
buses, and one hexagon is selected. These polygons are 
arranged tightly, as shown in Figure 9, and the area of the 
triangular, rhombic, and hexagonal domains are, respec-
tively, 23 / 2a , 23a , and 23 3 / 2a . Based on the area frac-
tion of various polygons in the whole system and the ratios 
of the capsule length to the crack size, the crack-hitting 
probability pc by the capsules [i.e. Eq. (21)] can be derived 
by substituting Eqs. (8), (12), and (16) into Eq. (20):

Figure 9: The combined cell in the multi-shaped crack pattern.
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3.2.2  �Capsule dosage model

Assume that the multi-shaped crack pattern is composed 
of numerous combined cells as in Figure 9, which are 
arranged periodically. In Figure  10, an observed paral-
lelogram region Exy with the sizes of region of x and y is 
selected as the representative sampling region where n2 

combined cells exist in total. Further, the region is also 
assumed to be periodic as the cell. The area of the region 
Exy is expressed by Eq. (22):

	 = ⋅ = 2 23 3TA x y a n � (22)

The total length of cracks LT is obtained by Eq. (23):

	 = +210 5TL an an� (23)

Substituting Eqs. (21–23) into Eq. (2) yields Eq. (24). 
That is to say, for the multi-shaped crack pattern, to fully 
heal the cracks on the surface of materials, the required 
number of capsules should fulfill Eq. (24):

	
≥ ⋅

heal

10 1
3 3A

c

N
paL

� (24)

3.2.3  �Verification of crack-hitting probability models

We generate a combined cell, as shown in Figure 9, and the 
ratios of the capsule length to the crack size (l/a) are selected 
to be equal to 0.50, 0.87, 1.10 and 1.80, which is located in the 
specified ranges as listed in Table 2. The process of verifi-
cation is the same as that in Section 3.1.4. The verification 
results of crack-hitting probabilities by the capsules for 
the specified complex crack pattern are given in Figure 11. 
When the total number of capsules increases to about 2000, 
the simulation results for crack-hitting probability models 
show good consistency with theoretical solutions.

3.2.4  �Verification of capsule dosage models

Generate a region Exy as shown in Figure 10. Other para-
meters are the same as those in Section 3.1.5, and the 
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required dosage of capsules (NA) is determined by Eq. (24). 
From the variation tendency of curves in Figure  12, it is 
noted that the simulation results at different ratios of the 
capsule length to the crack size agree with the analytical 
solutions from the proposed models, which verifies the 
reliability and rationality of the method in this study.

Figure  13 show the effect of simplified 2D crack pat-
terns on the required number of capsules per unit area (NA). 
At the same l/a, the values of NA show significant difference 
for various mono-shaped crack patterns (i.e. triangular, 
rhombic, and hexagonal crack patterns), which illustrate 
the importance of the crack distribution. Meanwhile, it is 
found that the value of NA for multi-shaped crack pattern 
is less than those for triangular and rhombic crack patterns 

but is higher than that for the hexagonal crack pattern. In 
Figure 13, the results are also compared with the analytical 
solution for 2D parallel cracks and orthogonal cracks in the 
literature [21, 22]. For the parallel crack system, the symbol a 
here represents the distance between two neighboring par-
allel cracks. For the orthogonal crack system, the sides of 
the rectangles are equal and both are denoted by the symbol 
a. It can be seen that the value of the required number of 
capsules per unit area (NA) for multi-shaped crack pattern 
is larger than the values of NA for both parallel and orthogo-
nal cracks. From Figure 1, the real crack distribution on the 
2D plane can be characterized by various irregular convex 
polygons. In view of the fact that the multi-shaped crack 
system in this study is more approximate to the models of 
convex polygons compared with mono-shaped crack pat-
terns, the corresponding NA would have better precision 
and promising application value than before. Actually, it is 
not hard to find that in Figure 1 the sizes of linear cracks 
on the surface of materials are not exactly identical. Thus, 
to improve the reliability of the simulated results, further 

Figure 10: A parallelogram representative region Exy with the sizes 
of x and y ( 3 , 3 ).x an y an= =

Table 2: Selection of the ratio l/a for the triple-shaped crack pattern.

Crack pattern   3
2

l
a

≤   3 1
2

l
a

< ≤   1 3l
a

< ≤   3 2l
a

< ≤   2 l
a

<

Triple-shaped 
crack pattern

  0.50  0.87  1.10  1.80  —

Figure 11: Verification of crack-hitting probability models for the 
multi-shaped crack pattern.

Figure 12: Verification of capsule dosage models for the multi-
shaped crack pattern.

Figure 13: The minimum required number of capsules per unit area 
NA for different 2D crack patterns.
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studies on the models of multi-sized and multi-shaped 
convex polygons are still strongly needed.

In this article, we mainly considered 2D cracks on the 
plane. In fact, the majority of cracks in materials are 3D 
distribution. In Ref. [19], the cracks in the cement paste 
are simplified to a 3D plane to investigate the crack-hitting 
probability by the spherical capsules. Lv et al. [21] studied 
the crack-hitting probability by the linear capsules in 
materials with 3D orthogonal parallel planar cracks and 
zonal cracks. Strictly speaking, the above crack distribu-
tions are still simple. In recent years, 3D Voronoi tessella-
tions [43] are widely used to model the random structure of 
porous media. The structures generated by using Voronoi 
tessellations are very similar to the 3D crack distribution 
in materials. If possible, these structures could also be uti-
lized to study the crack-hitting probability by the capsules. 
According to Ref. [44], there is a close relationship between 
the crack-hitting probability and the chord length distri-
bution function. By using this principle, current models 
can be easily extended to calculate the capsule dosage 
for complex crack systems such as Voronoi tessellations. 
Besides, it is worth noting that in the 3D space, various 
types of capsules such as cylinders [45], spheres [46–48], 
and spherocylinders [49] were also widely used in materi-
als. If the influence of all of the crack patterns, crack size 
distribution, and capsule shapes can be included in the 
models, the research will be more valuable.

4  �Conclusion
A 2D multi-shaped geometrical structure composed 
of triangles, rhombuses, and hexagons with specified 
area fractions as well as linear segments was employed 
to determine the minimum dosage of capsules in self-
healing materials with complex crack systems. Based on 

geometric measure theory, the analytical models of crack-
hitting probabilities and capsule dosage for the multi-
shaped crack system were derived at various ratios of the 
capsule length to the crack size. The results revealed that 
for a given multi-shaped crack pattern, the area fraction 
of mono-shaped cells in the system and the ratio of the 
capsule length to the crack size are two key parameters 
determining the crack-hitting probability by the capsules 
and the dosage of capsules. Since the capsule length is 
normally fixed during the preparation stage of materi-
als, the self-healing efficiency of materials will depend on 
the spatial distribution and size of the cracks. The meth-
odology presented here can be extended to other 2D/3D 
complex crack networks with any arbitrary shape of cap-
sules by using the chord length distribution function, and 
the solutions on capsule dosage can be derived then.
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Appendix

The kinematic measure of a linear capsule 
in convex domains [40]

Here, formulas (A.1), (A.2), and (A.3) represent the kin-
ematic measure of a linear capsule in regular triangular, 
rhombic, and hexagonal cells, respectively.

For the triangular cell
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For the rhombic cell
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where l is the length of the linear capsule and a is the side 
length of the convex domain.
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