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Abstract: This work focuses on identifying the thermal con-
ductivity of composites loaded with phase-change materi-
als (PCMs). Three configurations are studied: (1) the PCMs
are divided into identical spherical inclusions arranged in
one plane, (2) the PCMs are inserted into the matrix as a
plate on the level of the same plane of arrangement, and
(3) the PCMs are divided into identical spherical inclusions
arranged periodically in the whole matrix. The percentage
PCM/matrix is fixed for all cases. A comparison among
the various situations is made for the first time, thus pro-
viding a new idea on how to insert PCMs into composite
matrices. The results show that the composite conductiv-
ity is the most important consideration in the first case,
precisely when the arrangement plane is parallel with the
flux and diagonal to the entry face. In the present work, we
are interested in exploring the solid-solid PCMs. The PCM
polyurethane and a wood matrix are particularly studied.

Keywords: arrangement; polyurethane-wood composite;
solid-solid phase change material; thermal conductivity.

1 Introduction

The use of phase-change materials (PCMs) has become
an important research topic because of two main reasons:
energy and environmental issues are becoming increasingly
sensitive and the requirement of realizing interior comfort in
the field of thermal regulation. These smart materials have
appeared on the construction market as a first step to reduce
the need for air conditioning during hot periods [1-3]. PCMs
can improve the energy performance of the envelope while
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increasing thermal inertia inside buildings and in products
based on polymer, plasters, or concrete. The market devel-
opment of phase change composites is promising because
of their thermo-physical properties, which can be further
explored for the storage/retrieval of energy [4, 5]. Therefore,
it is essential to have theoretical, numerical, and experimen-
tal tools to characterize these materials. The thermophysical
properties of these composites depend on many factors, such
as the conductivities of the constituents, load rate, micro-
structure, and so on [6-8]. The control of these properties
should allow the determination of optimum conditions for
manufacturing and analyzing heat transfer in various indus-
trial applications (electronic circuits).

This work focuses on the thermal analysis and iden-
tification of the thermophysical parameters of the phase
change composites, thus gaining better insights on the
thermal behavior and the mechanism of the conductive
transfer of such materials. A numerical simulation of the
thermal behavior of the PCMs is conducted and then sub-
ected to analytical analysis. We are particularly interested
in the configuration geometry of PCMs in a cubic matrix.
Two- and three-dimensional configurations are studied.
In the first case, four arrangements are envisaged: two in
the frontal planes with respect to conductive heat flux and
two others on parallel planes to this flux. The PCMs are dis-
tributed as identical spheres centered on the same plane of
arrangement. In each case, a compact limit case is exam-
ined where the PCM is spread in the shape of a plate. In
the 3D case, several theoretical and empirical approaches
have been employed to analyze the thermal conductivity
of composites, as described in the literature [9, 10]. Here,
a periodic arrangement of the PCM spheres is considered.
A new simple method of calculating is proposed. A com-
parison among the different configurations is performed.
This is achieved by keeping the same boundary conditions
adopted for the composite material and maintaining the
same volume percentage PCM-composite at 20%.

In the present work, we are interested in the solid-
solid PCMs, which according to recent studies, may have a
higher latent heat than that of solid-fluid PCMs [1, 11-15].
Aside from this capital property, the mechanical problem
called “material fatigue,” which is caused by the alternat-
ing volume change of the solid-fluid PCM type during the
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melting and solidification processes added to the super-
cooling phenomenon, make the study of solid-solid PCMs
primordial and their use in electrotechnical field pos-
sible. The PCM hyperbranched polyurethane copolymer
(HB-PUPCM) with a latent heat equal to 138.2 kJ/kg [11,
16] and wood matrix are studied. The conductivity of this
PCM is conserved during its phase change. The numerical
calculation of the thermal conductivity is obtained using
CFD code Fluent [17]. Thus, the variation of conductivity
is studied versus several parameters, such as the plane of
arrangement (parallel or frontal) to the heat flux, geom-
etry of the PCM (sphere, plate), and finally, the volumetric
distribution of the spheres within the matrix.

2 Mathematical formulation of the
problem

The composite material consists of PCM distributed as identi-
cal spheres centered on the same plane of arrangement and
inserted into a matrix. By way of simplification, the matrix
has a rectangular parallelepiped shape (cube), and it is
assumed that the PCM represents the volume fraction f, of
the composite material while the matrix occupies the rest.

2.1 Preliminary study

First we start by calculating the radius of these spheres.
The condition on the composition in volume led to the
relationship (Eq. 1) shown below.

V,=fV @

This relationship gives us the radius of the equal-
sized spheres that have been inserted.
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2.1.1 Two-dimensional arrangement

The PCM spheres are centered on a same single inser-
tion plane. To prevent the spheres from overlapping,
the representative surface of their intersections with the
insertion plane (cross section) must be smaller than the
total surface of this plane (Figure 1). This relationship is
expressed mathematically as follows (Egs. 3a and b) :

{nmﬂZ <a’ for mediator plane

nor? < J2a* for tilted plane (3a, b)

This condition is necessary but not sufficient. Although
it provides information on the maximum number of spheres
that can be inserted, it should be checked further whether
the diameters of the spheres do not exceed the edge or the
diagonal of the insertion plane cited above. This last condi-
tion cannot be predicted but must be checked case by case
in accordance with the number of spheres.

Cubic matrix is of edge a=10 cm. The radius of the
integrated spheres is a function of their number n. This
number n is not infinitely possible, but its maximum value
obviously varies with the percentage and according to the
position of the plane of arrangement, either a mediator of
one of the edges (Figure 1A and B), or it contains the diago-
nal of the entry face (Figure 1C and D). For the sake of com-
parison, n is limited to number four; maximum number
available without overlapping spheres for the mediator
planes of edges for these geometrical forms of the matrix
and the PCM and the percentage of composition 20%.

2.1.2 Three-dimensional arrangement

The volumetric distribution of spheres in the composite
is assumed to be uniform, and thus, periodic (Figure 2).
Hence, we only studied the simple cubic lattice structure.
Conductivity is an intensive property; the calculation of
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Figure 1: Configuration of spheres. (A) perpendicular plane frontal to the flux, (B) plane parallel to the flux, (C) tilted plane parallel to the

flux, (D) tilted plane frontal to the flux.
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Figure 2: Three-dimensional periodic arrangement of the spheres in
the composite.

equivalent thermal conductivity is restricted, by reason
of symmetry, to that on an edifice containing only one
sphere (elementary cell). This cubic elementary cell is
of elementary volume V,_ (Eq. 4), whose edge a* (Eq. 5)
should not be exceeded by the diameter of the sphere,
which is allowed as much as the percentage PCM/mate-
rial does not rise above 52.3%. The possible number n is
unlimited in this case (e.g. 1, 8, 27, 64.. .etc).

V. =d’/n (4)

elem

a'=a/n"

®)

2.2 Equation of heat transfer in the
composite

Our system consists of a material of important thermal
inertia, where a second material inserted can change its
physical status in the temperature range studied. The
composite material is subjected to a heat flux through
one of its faces. The study of heat transfer of a physical
problem requires the resolution of the energy equation
which makes it possible to obtain the space-time evolu-
tion of the temperature and heat flux. In this work, the
study is limited to the steady case and to the solid-solid
PCM. The energy balance (Eq. 6) allows us to consider the
equation of heat (Eq. 7) valid for each phase [18].

PP, =P+, (6)

a(,ar) af,or) a(,ar) . .oT
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In each presumedly isotropic component i of the com-
posite, this equation can be simplified in equation (Eq. 8)
by considering that there is no generation of energy within
the material while being interested in the steady state.

V(AVT)=0 (8)
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2.3 Boundary conditions

The conductivity of a material is an intrinsic characteristic
of that material and the function of its temperature. Thus,
it is necessary to limit the interval of temperature in the
vicinity of that state change in order to consider constant
conductivity. The latter is independent of the nature of the
conditions imposed on the material surfaces, such as the
flux, the temperature, or both. In our study, the following
assumptions of simplification are considered: the thermo-
physical characteristics are constant; the entry face and
the exit face of the cube are maintained at temperatures T,
and T, respectively, and assumd to be uniform and con-
stant; and the side faces are imposed on a null flux. Inside
the composite material, a perfect contact between the two
solids is assured.

2.4 Calculation of equivalent conductivity

Generally, the analytical calculation of the conductivity of
composite materials is not possible because of its complex
geometry. Hence, it must be calculated numerically. In this
work, we are interested in the materials that undergo a
solid-solid transition; therefore, the transfer is purely con-
ductive. The difference between the thermal expansion
coefficients of wood and polyurethane is very weak and
of a few tens of u°C™. In addition, the study interval AT
(=25°C) on both sides of the phase transition temperature
is small, thus making the difference in expanded volumes
negligible. Consequently, the interface thermal resistance
is neglected. The heat transfer with outside through side
surfaces is maintained null. The heat density flux is pro-
portional to the thermal conductivity of the medium and
the temperature gradient according to the Fourier analysis
(9), which gives the expression of conductivity (10) below.

w=—zg—z ©)
__ pa
1—7(711_712)5 (10)

3 Numerical resolution

The resolution of the equations governing the field of tem-
perature is performed using the finite volume method. The
grid used is not uniform and is tight at the level of spheres
so that their low sizes can be accommodated when nis high;
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Figure 3: Grid of the composite material. (A) grid of the matrix faces and the interfaces of the PCM spheres for a mediator plane, (B) grid 3D

of a PCM sphere, (C) tetrahedral cell.

itis also tight at the level of the matrix when the spheres are

near the external faces of the matrix (walls). The equations

were integrated on a volume of control Ax x Ay x Az. To solve
the problem, Fluent CFD code was used.

The grid, carried out on Gambit [17], consisted of two
zones (Figure 3A and B, respectively):

— Zone 1, material portion matrix cubic hollow with a
10-cm edge, and is represented by an unstructured
grid formed by tetrahedral cells with a distance of
5 mm between nodes and diameter of spherical cavi-
ties given by r, (Eq. 2).

— Zone 2, the material portion of the PCM; n spheres
of diameter r , represented by an unstructured grid
formed by tetrahedral cells also, with a distance of
1-5 mm between nodes.

In this study, the complexity of the geometry prevented
us from using a structured grid. We used only one type of
unstructured grid where the cells are tetrahedral (Figure 3C).
The grid is cubic and has a 100-mm edge. For example, the
grid is made up of 56,432 cells and 12,029 nodes in the case
of four spheres located on a mediator plane.

4 Results and discussion

4.1 Two-dimensional case

With a percentage of 20%, a matrix of wood whose thermal
conductivity is equal to 4,=0.173 W/m°C and a PCM of
polyurethane of thermal conductivity 4 =0.032 W/m°C
are examined. The latter is putrefied in the form of spheres
arranged in only one plane of insertion (Figure 1). Two
cases of planes are studied: frontal planes to the heat
flux along axis (Oz); [plane (z=0) and plane (y=2)],

and planes parallel to this flux [plane (y=0) and plane
(x=y)]. We impose a uniform inlet temperature, constant
and equal to 70°C and a temperature equal to 20°C to the
face of exit. The heat transfer with outside through the
side surfaces is supposed to be null ¢ =0. We handled
a numerical simulation code to solve the heat transfer
equation. Doing so enabled us to determine the evolu-
tion of the temperature and of the heat flux and thus
deduce thermal conductivity.

Figure 4 describes the variation of thermal conduc-
tivity versus the number of spheres. This figure shows
that thermal conductivity is a decreasing function with
the number of spheres in the case of the frontal plane,
whereas it is increasing in the case of the parallel plane.
This figure also shows that the distribution of the PCM
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Figure 4: Thermal conductivity versus the number of spheres.



DE GRUYTER
0.80
| ' | ' | ' |
- 9 ¥ M
oo T -
2 060 —
=
B —&— Frontal flux/mediator plane...case A 7
0.50 —&— Parallel flux/mediator plane...case B
—&— Parallel flux/tilted plane...case C
- —+— Frontal flux/tilted plane...case D -
0.40 I R B

1 2 3 4

Figure 5: Thermal flux versus the number of spheres.

spheres according to a plane of insertion is tilted exposed
in a side way to the heat flux, thus having the advantage
of improving the equivalent thermal conductivity of the
composite. In comparison, this conductivity decreases
quickly when the distribution is according to a mediator
plane of edges exposed perpendicular to the heat flux.

Thermal conductivity is more important in the case
of flux parallel and precisely when the plane of insertion
is tilted — the only case where it exceeds the arithmetic
conductivity A_,, of composite material, which is equal to
0.1448 W/m°C (Eq. 11). This arrangement is thus the most
effective and most useful in maintaining a material com-
posite of conductivity close to its matrix while preserving
its equivalent heat capacity.

(11)

A’arith = (1 - fv )ll + fvlz
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These results remain valid as long as the PCM has a
thermal conductivity that is weaker than that of the matrix.
This situation is the most widespread in nature, while the
weakness of the thermal conductivity of the PCMs materi-
als is one of the handicaps of their industrial use [19-25].
Figure 5 shows that thermal conductivity and the heat
flux evolve identically towards the rise of the number of
spheres. These curves also indicate the anisotropy of the
composite material obtained; consequently, crossing flux
is no longer the same one and now varies according to the
choice of the entry face.

The borderline case of the distributions of spheres,
which is a plate of PCM inserted in the matrix into the
level of the plane of arrangement, is studied (Figure 6).
The numerical results are shown in Table 1. Otherwise, by
electric analogy, the thermal conductivity of this compos-
ite material is analytically obtained (Egs. 12-14). They cor-
respond to the cases A, B and C, respectively, as illustrated
in Figure 6:

- A (12)
2L A, + LA,
G 2L LA, 1)
a

2

1 2hla—@-0) 2] +h@ ) (14)
2da°
with

b=+/1.6a

d :\/Ea ’ (153’ b)

which is simplified as follows:

Figure 6: Different configurations of the PCM plate. (A) perpendicular plane frontal to the flux, (B) plane parallel to the flux, (C) tilted plane

parallel to the flux, (D) tilted plane frontal to the flux.
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A=0.84,+0.24,. (16)

For the situation (D), the analytical calculation of 4
based on the electric analogy is no longer valid, and the
concept of association in derivation and series is lost. As
the medium is not homogeneous neither on the level of
all materials nor on the level of each crossed section, the
applicable formula is as follows:

— T dZ
Fo=l ims@ "

The calculation of this situation (D) lead us to the fol-

lowing expression:

2 ln‘ Ala-c)+Ac ‘ a-2c
A, ‘/ll(a—ZC)+2/lzc‘ Ala-20)+2Ac |

A=1/ 1
(18)

>
o]

9.25e-01
8.34e-01
7.43e-01
6.52e-01
5.60e-01
4.69e-01
3.78e-01
2.87e-01
1.96e-01
1.04e-01
1.33e-02
—7.79e-02
—1.69e-01
—2.60e-01
-3.51e-01
—4.43e-01
—5.34e-01
—6.25e—01
—7.16e-01
—8.07e-01
—8.99e-01

7.73e-01
6.95e-01
6.18e-01
5.41e-01
4.64e-01
3.87e-01
3.10e-01
2.33e-01
1.56e-01
7.85e-02
1.39e-03
—7.57e-02
—1.53e-01
—2.30e-01
-3.07e-01
—3.84e-01
—4.61e-01
-5.38e-01
—6.16e—01
—6.93e-01
—7.70e-01
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Table 1: Comparison between the numerical model and the analyti-
cal calculation.

CaseA CaseB CaseC CaseD

Numerical results ¢ (W) 0.47 0.6936 0.7262 0.5586
A(W/m°C) 0.0940 0.1387 0.1456 0.1117
A(W/m°C) 0.0919 0.1448 0.1448 0.1191

0.3 6

Analytical results
Relative error on A (%) 2 4

with

c=(d-bN2. (19)

This last result is valid for c<a/2 (i.e. f, <0.75). If
¢>a/2, the calculation of this situation (D) leads us to the
following modified expression:

1.02e+00
9.19e-01
8.21e-01
7.24e-01
6.27e-01
5.30e-01
4.32e-01
3.35e-01
2.38e-01
1.41e-01
4.34e-02
—5.38e-02
—1.51e-01
—2.48e-01
—3.46e-01
—4.43e-01
—5.40e-01
—6.37e-01
—7.34e-01
—8.32e-01
—9.29e-01

1.01e+00
9.09e-01
8.11e-01
7.13e-01
6.15e-01
5.17e-01
4.19e-01
3.21e-01

2.23e-01

1.25e-01

2.71e-02
—7.09e-02
—1.69e-01
—2.67e-01
—3.65e-01
—4.63e-01
-5.61e-01
—6.59e-01
—7.57e-01
—8.55e-01
—9.52e-01

Figure 7: Flux density contours of composite wood/polyurethane on the levels of the entry and exit faces. Tilted insertion plane (x=2) case
crossed by: (A) frontal heat flux along (0z), (B) parallel heat flux along (Oy); mediator plane (z=0) case crossed by: (C) frontal heat flux along

(02), (D) parallel heat flux along (Oy).
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2 ‘ Ala-c)+Ac ‘ 2c-a
In + .
=, A(a-20)+24c A,a

A=1/ Z (20)

These thermal conductivities, which are analytically
calculated, are very close to the numerical results with
relative errors less than 6% made by numerical modeling
(Table 1). The limits of these functions (in kind of materi-
als and in volume fractions), which are obtained analyti-
cally, are checked for each situation quoted above.

It is noted that for the situations (B) and (C) of Figure 6
(analoguous with the parallel resistances) A is the same
regardless of the configuration of the plate of PCM. More-
over, it is maximal and equal to arithmetic conductivity
A (Egs. 13 and 16 and Table 1). This is coherent with the
result found for the discontinuous distribution of the PCM
spheres, as illustrated in Figure 1.

For calculation with the Fluent code, in order to pass
from the case of the frontal flux to the parallel flux case,
the position of the insertion planes is preserved whereas
the flux is carried by axis (Oy) instead of axis (0z). We rep-
resent below, for example, the contours of the flux in the
case of PCM distributed in four spheres. Figure 7 shows
that the propagation of heat is more important when the
flux is parallel (Figure 1A and B) than in the case of a
frontal flux (Figure 1C and D) compared with the distribu-
tion plane of the PCM spheres, thus reflecting obviously
on the thermal conductivity in a proportional way. We
also note that the flux density is not uniform and is more
intense in the area devoid of the PCM spheres.

4.2 Three-dimensional case

Here, we consider a composite material consisting of a
periodic array of identical spheres of radius r, and con-
ductivity A, embedded in a uniform matrix of conductivity
A, in which no thermal resistance exists at the interface
between the two phases.
Let

R, =2R +R 21)
be the thermal resistance of the composite material.
Below, R1 is the thermal resistance of the matrix of thick-
ness L*l, and R2 is the thermal resistance of the part of the

composite material of thickness 2r, (Figure 8), including
the PCM sphere.

a2

R= |

r"

dz
ra’

(22)
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v L= 2r,  L1*
Figure 8: Elementary cell.
. -2
R =27 23)
ra
. dz
R, = _[1:27 (24)
Y A,(2)S,(2)
i=1
LT r sin0do
=] (A, — 4 )r’sin?6 25)
o’ A, —AJE S
R = h rdu
v .
ra® (26)
Ta(, -A)| ————r* U
( 1 2)[.7_[(11_12) n J
Let us suppose
2 1/2
a@, =)
Thus,
;arct (1/A) sid <A
|76, =2 )ar, E 2%
D - bl
! n‘1+A‘ sid,>A,
7@, —A)Ar [1-Al (282, b)

This calculation remains valid when the volume frac-
tion does not exceed the limiting value corresponding to
2r <aand results in f, <0.52.

Finally, we arrive at

1

Given that A is independent of n, and R and R; are
proportional to n', whereas a* varies as a function of n'?,
therefore, 4 is independent of n. Thus, for conductivity,
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the distribution of PCM either in a single sphere or in a
periodic distribution of multiple spheres is similar.

If this result is applied to the percentage studied
(20%), we can find that the equivalent thermal conductiv-
ity of the composite material wood-polyurethane when it
is modelled into a 3D periodic sample is 1 =0.1412 W/m°C.
This result is in good agreement with that found by
numerical calcul ation 4 _=0.1422 W/m°C with a negligi-
ble relative error of 0.7%. By comparison with the models
treating the composites with isotropic components and
the random distribution of spherical inclusions proposed
by Eshelby [26] (Egs. 30-32), we have

A=A +fA,=A)A, (30)
where
A =1/(1+@,-1)P), (31
and
P=1/34,, (32)
which predict 4., =0.1343 W/m°C and that of Nan [27]. In
addition, 4 =0.1369 W/m°C, which proposes the expres-

sion given by the equation (Egs. 33 and 34), where the
interfacial thermal resistance R is zero:

a=a 112AL (33)
1-Af,
where
" 1—(/11//12+R/11/rn) (34)

"2, /A, +RA, 1)

Compared with the random distribution, the periodic
distribution with a simple cubic structure improves the
conductivity of the composite by almost 4.9%. Moreover,
Figure 4 and Table 1 show that the 3D configuration of the
PCM spheres has a thermal conductivity whose intermedi-
ate value is between those of the parallel planes and those
of the planes frontal to flux. Otherwise, it is noted that,
in practice, the equivalent conductivity of a composite
material can be assimilated to the arithmetic conductivity
(Figure 4) with a relative error of 2.54%.

5 Conclusion

In the present work, a theoretical and numerical thermal
analysis enabled us to investigate the thermal behavior
and conductive transfer mechanism of the composites.

DE GRUYTER

The relations giving thermal conductivity in 2D and 3D
arrangements are established and are deemed valid for
any biphasic solid-solid composite. The variation of con-
ductivity according to several parameters, such as the
arrangement plane (parallel or frontal) to the heat flux,
the PCM geometry (sphere, plate), is identified. The results
highlight the influence of the number of the spheres
introduced into the studied composite. Meanwhile, we
also studied the influence of the incidence angle of flux,
compared with these planes, on the thermal behavior of
composite. The results obtained indicate that the ideal
composite conductivity is obtained if the load PCM is
divided into multiple spheres arranged in a plane parallel
with the flux and, particularly, if it contains the diagonal
of the entry face. In addition, for conductivity, the PCM
distribution is similar either in a single sphere or in a peri-
odic distribution of multiple spheres. A good agreement
between the theoretical results and the numerical results
is found for all the cases where theoretical analysis is pos-
sible. Similarly, a coherence is also observed between the
results of the 3D configuration and previous works.

Nomenclature

cube edge, m

edge of elementary cell, m

thermal capacity, J/kg°C

volume fraction of PCM, f = Vz/ V,, dimensionless
number of spheres, dimensionless

length of part i of the matrix, m

length of part i of the elementary cell, m

density of energy generated, W/m?

radius of spheres, m

thermal resistance of part i of the elementary cell, °C/W
thermal resistance of composite, °C/W

surface crossed by the heat flux, m?

time, s

temperature on point 7(x, y, z) at instant t, °C
temperature of the entry face, °C

temperature of the exit face, °C

total volume of the composite, m*

total volume of PCM, m’

volume of elementary cell, m?

space variables, m

R R S

;U’ = Qe

=

Bl

SSSNHNS"O

elem

X, ), 2

Greek symbols

A equivalent thermal conductivity of the composite mate-
rial, W/m°C
A thermal conductivity of matrix, W/m°C

A thermal conductivity of PCM, W/m°C

2
Aot arithmetic conductivity of composite, W/m°C
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thermal conductivity of the wood, W/m°C
/lp thermal conductivity of polyurethane, W/ m°C
AsA, A thermal conductivity components, W/m°C

porp, incoming heat flux, W

P, heat flux generated, W
®, Leaving heat flux, W
. heat flux stored, W

P density, kg/m?

Y flux density, W/m?

6 spherical coordinate, radian
Subscript

arith arithmetic

Esh Eshelby

Nan Nan

Num Numerical

trid tridimensional
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