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Abstract: This work focuses on identifying the thermal con-
ductivity of composites loaded with phase-change materi-
als (PCMs). Three configurations are studied: (1) the PCMs 
are divided into identical spherical inclusions arranged in 
one plane, (2) the PCMs are inserted into the matrix as a 
plate on the level of the same plane of arrangement, and 
(3) the PCMs are divided into identical spherical inclusions 
arranged periodically in the whole matrix. The percentage 
PCM/matrix is fixed for all cases. A comparison among 
the various situations is made for the first time, thus pro-
viding a new idea on how to insert PCMs into composite 
matrices. The results show that the composite conductiv-
ity is the most important consideration in the first case, 
precisely when the arrangement plane is parallel with the 
flux and diagonal to the entry face. In the present work, we 
are interested in exploring the solid-solid PCMs. The PCM 
polyurethane and a wood matrix are particularly studied.

Keywords: arrangement; polyurethane-wood composite; 
solid-solid phase change material; thermal conductivity.

1  �Introduction
The use of phase-change materials (PCMs) has become 
an important research topic because of two main reasons: 
energy and environmental issues are becoming increasingly 
sensitive and the requirement of realizing interior comfort in 
the field of thermal regulation. These smart materials have 
appeared on the construction market as a first step to reduce 
the need for air conditioning during hot periods [1–3]. PCMs 
can improve the energy performance of the envelope while 

increasing thermal inertia inside buildings and in products 
based on polymer, plasters, or concrete. The market devel-
opment of phase change composites is promising because 
of their thermo-physical properties, which can be further 
explored for the storage/retrieval of energy [4, 5]. Therefore, 
it is essential to have theoretical, numerical, and experimen-
tal tools to characterize these materials. The thermophysical 
properties of these composites depend on many factors, such 
as the conductivities of the constituents, load rate, micro-
structure, and so on [6–8]. The control of these properties 
should allow the determination of optimum conditions for 
manufacturing and analyzing heat transfer in various indus-
trial applications (electronic circuits).

This work focuses on the thermal analysis and iden-
tification of the thermophysical parameters of the phase 
change composites, thus gaining better insights on the 
thermal behavior and the mechanism of the conductive 
transfer of such materials. A numerical simulation of the 
thermal behavior of the PCMs is conducted and then sub-
ected to analytical analysis. We are particularly interested 
in the configuration geometry of PCMs in a cubic matrix. 
Two- and three-dimensional configurations are studied. 
In the first case, four arrangements are envisaged: two in 
the frontal planes with respect to conductive heat flux and 
two others on parallel planes to this flux. The PCMs are dis-
tributed as identical spheres centered on the same plane of 
arrangement. In each case, a compact limit case is exam-
ined where the PCM is spread in the shape of a plate. In 
the 3D case, several theoretical and empirical approaches 
have been employed to analyze the thermal conductivity 
of composites, as described in the literature [9, 10]. Here, 
a periodic arrangement of the PCM spheres is considered. 
A new simple method of calculating is proposed. A com-
parison among the different configurations is performed. 
This is achieved by keeping the same boundary conditions 
adopted for the composite material and maintaining the 
same volume percentage PCM-composite at 20%.

In the present work, we are interested in the solid-
solid PCMs, which according to recent studies, may have a 
higher latent heat than that of solid-fluid PCMs [1, 11–15]. 
Aside from this capital property, the mechanical problem 
called “material fatigue,” which is caused by the alternat-
ing volume change of the solid-fluid PCM type during the 
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melting and solidification processes added to the super-
cooling phenomenon, make the study of solid-solid PCMs 
primordial and their use in electrotechnical field pos-
sible. The PCM hyperbranched polyurethane copolymer 
(HB-PUPCM) with a latent heat equal to 138.2  kJ/kg [11, 
16] and wood matrix are studied. The conductivity of this 
PCM is conserved during its phase change. The numerical 
calculation of the thermal conductivity is obtained using 
CFD code Fluent [17]. Thus, the variation of conductivity 
is studied versus several parameters, such as the plane of 
arrangement (parallel or frontal) to the heat flux, geom-
etry of the PCM (sphere, plate), and finally, the volumetric 
distribution of the spheres within the matrix.

2  �Mathematical formulation of the 
problem

The composite material consists of PCM distributed as identi-
cal spheres centered on the same plane of arrangement and 
inserted into a matrix. By way of simplification, the matrix 
has a rectangular parallelepiped shape (cube), and it is 
assumed that the PCM represents the volume fraction fv of 
the composite material while the matrix occupies the rest.

2.1  �Preliminary study

First we start by calculating the radius of these spheres. 
The condition on the composition in volume led to the 
relationship (Eq. 1) shown below.

	 2 1vV f V= � (1)

This relationship gives us the radius of the equal-
sized spheres that have been inserted.
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2.1.1  �Two-dimensional arrangement

The PCM spheres are centered on a same single inser-
tion plane. To prevent the spheres from overlapping, 
the representative surface of their intersections with the 
insertion plane (cross section) must be smaller than the 
total surface of this plane (Figure 1). This relationship is 
expressed mathematically as follows (Eqs. 3a and b) :
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This condition is necessary but not sufficient. Although 
it provides information on the maximum number of spheres 
that can be inserted, it should be checked further whether 
the diameters of the spheres do not exceed the edge or the 
diagonal of the insertion plane cited above. This last condi-
tion cannot be predicted but must be checked case by case 
in accordance with the number of spheres.

Cubic matrix is of edge a = 10  cm. The radius of the 
integrated spheres is a function of their number n. This 
number n is not infinitely possible, but its maximum value 
obviously varies with the percentage and according to the 
position of the plane of arrangement, either a mediator of 
one of the edges (Figure 1A and B), or it contains the diago-
nal of the entry face (Figure 1C and D). For the sake of com-
parison, n is limited to number four; maximum number 
available without overlapping spheres for the mediator 
planes of edges for these geometrical forms of the matrix 
and the PCM and the percentage of composition 20%.

2.1.2  �Three-dimensional arrangement

The volumetric distribution of spheres in the composite 
is assumed to be uniform, and thus, periodic (Figure 2). 
Hence, we only studied the simple cubic lattice structure. 
Conductivity is an intensive property; the calculation of 
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Figure 1: Configuration of spheres. (A) perpendicular plane frontal to the flux, (B) plane parallel to the flux, (C) tilted plane parallel to the 
flux, (D) tilted plane frontal to the flux.
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equivalent thermal conductivity is restricted, by reason 
of symmetry, to that on an edifice containing only one 
sphere (elementary cell). This cubic elementary cell is 
of elementary volume Velem (Eq. 4), whose edge a* (Eq. 5) 
should not be exceeded by the diameter of the sphere, 
which is allowed as much as the percentage PCM/mate-
rial does not rise above 52.3%. The possible number n is 
unlimited in this case (e.g. 1, 8, 27, 64…etc).

	 3
elem /V a n= � (4)

	 1/3/a a n∗ = � (5)

2.2  �Equation of heat transfer in the 
composite

Our system consists of a material of important thermal 
inertia, where a second material inserted can change its 
physical status in the temperature range studied. The 
composite material is subjected to a heat flux through 
one of its faces. The study of heat transfer of a physical 
problem requires the resolution of the energy equation 
which makes it possible to obtain the space-time evolu-
tion of the temperature and heat flux. In this work, the 
study is limited to the steady case and to the solid-solid 
PCM. The energy balance (Eq. 6) allows us to consider the 
equation of heat (Eq. 7) valid for each phase [18].

	 e g s stϕ ϕ ϕ ϕ+ = + � (6)
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In each presumedly isotropic component i of the com-
posite, this equation can be simplified in equation (Eq. 8) 
by considering that there is no generation of energy within 
the material while being interested in the steady state.

	 ( ) 0i Tλ∇ ∇ =
� �

� (8)

2.3  �Boundary conditions

The conductivity of a material is an intrinsic characteristic 
of that material and the function of its temperature. Thus, 
it is necessary to limit the interval of temperature in the 
vicinity of that state change in order to consider constant 
conductivity. The latter is independent of the nature of the 
conditions imposed on the material surfaces, such as the 
flux, the temperature, or both. In our study, the following 
assumptions of simplification are considered: the thermo-
physical characteristics are constant; the entry face and 
the exit face of the cube are maintained at temperatures T1 
and T2, respectively, and assumd to be uniform and con-
stant; and the side faces are imposed on a null flux. Inside 
the composite material, a perfect contact between the two 
solids is assured.

2.4  �Calculation of equivalent conductivity

Generally, the analytical calculation of the conductivity of 
composite materials is not possible because of its complex 
geometry. Hence, it must be calculated numerically. In this 
work, we are interested in the materials that undergo a 
solid-solid transition; therefore, the transfer is purely con-
ductive. The difference between the thermal expansion 
coefficients of wood and polyurethane is very weak and 
of a few tens of μ°C−1. In addition, the study interval ΔT 
(≈25°C) on both sides of the phase transition temperature 
is small, thus making the difference in expanded volumes 
negligible. Consequently, the interface thermal resistance 
is neglected. The heat transfer with outside through side 
surfaces is maintained null. The heat density flux is pro-
portional to the thermal conductivity of the medium and 
the temperature gradient according to the Fourier analysis 
(9), which gives the expression of conductivity (10) below.
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3  �Numerical resolution
The resolution of the equations governing the field of tem-
perature is performed using the finite volume method. The 
grid used is not uniform and is tight at the level of spheres 
so that their low sizes can be accommodated when n is high; 
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Figure 2: Three-dimensional periodic arrangement of the spheres in 
the composite.
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it is also tight at the level of the matrix when the spheres are 
near the external faces of the matrix (walls). The equations 
were integrated on a volume of control Δx × Δy × Δz. To solve 
the problem, Fluent CFD code was used.

The grid, carried out on Gambit [17], consisted of two 
zones (Figure 3A and B, respectively):

–– Zone 1, material portion matrix cubic hollow with a 
10-cm edge, and is represented by an unstructured 
grid formed by tetrahedral cells with a distance of 
5 mm between nodes and diameter of spherical cavi-
ties given by rn (Eq. 2).

–– Zone 2, the material portion of the PCM; n spheres 
of diameter rn, represented by an unstructured grid 
formed by tetrahedral cells also, with a distance of 
1–5 mm between nodes.

In this study, the complexity of the geometry prevented 
us from using a structured grid. We used only one type of 
unstructured grid where the cells are tetrahedral (Figure 3C). 
The grid is cubic and has a 100-mm edge. For example, the 
grid is made up of 56,432 cells and 12,029 nodes in the case 
of four spheres located on a mediator plane.

4  �Results and discussion

4.1  �Two-dimensional case

With a percentage of 20%, a matrix of wood whose thermal 
conductivity is equal to λb = 0.173 W/m°C and a PCM of 
polyurethane of thermal conductivity λp = 0.032 W/m°C 
are examined. The latter is putrefied in the form of spheres 
arranged in only one plane of insertion (Figure  1). Two 
cases of planes are studied: frontal planes to the heat 
flux along axis (Oz); [plane (z = 0) and plane (y = z)], 

and planes parallel to this flux [plane (y = 0) and plane 
(x = y)]. We impose a uniform inlet temperature, constant 
and equal to 70°C and a temperature equal to 20°C to the 
face of exit. The heat transfer with outside through the 
side surfaces is supposed to be null ϕ = 0. We handled 
a numerical simulation code to solve the heat transfer 
equation. Doing so enabled us to determine the evolu-
tion of the temperature and of the heat flux and thus 
deduce thermal conductivity.

Figure 4 describes the variation of thermal conduc-
tivity versus the number of spheres. This figure shows 
that thermal conductivity is a decreasing function with 
the number of spheres in the case of the frontal plane, 
whereas it is increasing in the case of the parallel plane. 
This figure also shows that the distribution of the PCM 

Figure 3: Grid of the composite material. (A) grid of the matrix faces and the interfaces of the PCM spheres for a mediator plane, (B) grid 3D 
of a PCM sphere, (C) tetrahedral cell.
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Figure 4: Thermal conductivity versus the number of spheres.
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spheres according to a plane of insertion is tilted exposed 
in a side way to the heat flux, thus having the advantage 
of improving the equivalent thermal conductivity of the 
composite. In comparison, this conductivity decreases 
quickly when the distribution is according to a mediator 
plane of edges exposed perpendicular to the heat flux.

Thermal conductivity is more important in the case 
of flux parallel and precisely when the plane of insertion 
is tilted – the only case where it exceeds the arithmetic 
conductivity λarith of composite material, which is equal to 
0.1448 W/m°C (Eq. 11). This arrangement is thus the most 
effective and most useful in maintaining a material com-
posite of conductivity close to its matrix while preserving 
its equivalent heat capacity.

	 arith 1 2(1 )v vf fλ λ λ= − + � (11)

These results remain valid as long as the PCM has a 
thermal conductivity that is weaker than that of the matrix. 
This situation is the most widespread in nature, while the 
weakness of the thermal conductivity of the PCMs materi-
als is one of the handicaps of their industrial use [19–25]. 
Figure 5 shows that thermal conductivity and the heat 
flux evolve identically towards the rise of the number of 
spheres. These curves also indicate the anisotropy of the 
composite material obtained; consequently, crossing flux 
is no longer the same one and now varies according to the 
choice of the entry face.

The borderline case of the distributions of spheres, 
which is a plate of PCM inserted in the matrix into the 
level of the plane of arrangement, is studied (Figure 6). 
The numerical results are shown in Table 1. Otherwise, by 
electric analogy, the thermal conductivity of this compos-
ite material is analytically obtained (Eqs. 12–14). They cor-
respond to the cases A, B and C, respectively, as illustrated 
in Figure 6:
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which is simplified as follows:
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Figure 5: Thermal flux versus the number of spheres.
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Figure 6: Different configurations of the PCM plate. (A) perpendicular plane frontal to the flux, (B) plane parallel to the flux, (C) tilted plane 
parallel to the flux, (D) tilted plane frontal to the flux.
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	 1 20.8 0.2 .λ λ λ= + � (16)

For the situation (D), the analytical calculation of λ 
based on the electric analogy is no longer valid, and the 
concept of association in derivation and series is lost. As 
the medium is not homogeneous neither on the level of 
all materials nor on the level of each crossed section, the 
applicable formula is as follows:

	 0 ( ) ( )

a

th
dzR

z S zλ
= ∫

�
(17)

The calculation of this situation (D) lead us to the fol-
lowing expression:
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with

	 ( ) 2.c d b= − � (19)

This last result is valid for c < a/2 (i.e. fv < 0.75). If 
c > a/2, the calculation of this situation (D) leads us to the 
following modified expression:

Table 1: Comparison between the numerical model and the analyti-
cal calculation.

Case A Case B Case C Case D

Numerical results ϕ (W) 0.47 0.6936 0.7262 0.5586
λ (W/m°C) 0.0940 0.1387 0.1456 0.1117

Analytical results λ (W/m°C) 0.0919 0.1448 0.1448 0.1191
Relative error on λ (%) 2 4 0.3 6
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Figure 7: Flux density contours of composite wood/polyurethane on the levels of the entry and exit faces. Tilted insertion plane (x = z) case 
crossed by: (A) frontal heat flux along (Oz), (B) parallel heat flux along (Oy); mediator plane (z = 0) case crossed by: (C) frontal heat flux along 
(Oz), (D) parallel heat flux along (Oy).
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These thermal conductivities, which are analytically 
calculated, are very close to the numerical results with 
relative errors less than 6% made by numerical modeling 
(Table 1). The limits of these functions (in kind of materi-
als and in volume fractions), which are obtained analyti-
cally, are checked for each situation quoted above.

It is noted that for the situations (B) and (C) of Figure 6 
(analoguous with the parallel resistances) λ is the same 
regardless of the configuration of the plate of PCM. More-
over, it is maximal and equal to arithmetic conductivity 
λarith (Eqs. 13 and 16 and Table 1). This is coherent with the 
result found for the discontinuous distribution of the PCM 
spheres, as illustrated in Figure 1.

For calculation with the Fluent code, in order to pass 
from the case of the frontal flux to the parallel flux case, 
the position of the insertion planes is preserved whereas 
the flux is carried by axis (Oy) instead of axis (Oz). We rep-
resent below, for example, the contours of the flux in the 
case of PCM distributed in four spheres. Figure 7 shows 
that the propagation of heat is more important when the 
flux is parallel (Figure 1A and B) than in the case of a 
frontal flux (Figure 1C and D) compared with the distribu-
tion plane of the PCM spheres, thus reflecting obviously 
on the thermal conductivity in a proportional way. We 
also note that the flux density is not uniform and is more 
intense in the area devoid of the PCM spheres.

4.2  �Three-dimensional case

Here, we consider a composite material consisting of a 
periodic array of identical spheres of radius rn and con-
ductivity λ2 embedded in a uniform matrix of conductivity 
λ1, in which no thermal resistance exists at the interface 
between the two phases.

Let

	 1 22thR R R∗ ∗ ∗= + � (21)

be the thermal resistance of the composite material. 
Below, 1R∗ is the thermal resistance of the matrix of thick-
ness 1,L∗  and 2R∗  is the thermal resistance of the part of the 
composite material of thickness 2rn (Figure 8), including 
the PCM sphere.
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This calculation remains valid when the volume frac-
tion does not exceed the limiting value corresponding to 
2rn ≤ a and results in fv ≤ 0.52.

Finally, we arrive at
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Given that A is independent of n, and 1R∗  and 2R∗  are 
proportional to n1/3, whereas a* varies as a function of n−1/3, 
therefore, λ is independent of n. Thus, for conductivity, 
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Figure 8: Elementary cell.
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the distribution of PCM either in a single sphere or in a 
periodic distribution of multiple spheres is similar.

If this result is applied to the percentage studied 
(20%), we can find that the equivalent thermal conductiv-
ity of the composite material wood-polyurethane when it 
is modelled into a 3D periodic sample is λ = 0.1412 W/m°C. 
This result is in good agreement with that found by 
numerical calcul ation λnum = 0.1422 W/m°C with a negligi-
ble relative error of 0.7%. By comparison with the models 
treating the composites with isotropic components and 
the random distribution of spherical inclusions proposed 
by Eshelby [26] (Eqs. 30–32), we have

	 1 2 1( ) ,v ff Aλ λ λ λ= + − � (30)

where

	 2 11 /(1 ( ) ),fA Pλ λ= + − � (31)

and

	 11 / 3 ,P λ= � (32)

which predict λEsh = 0.1343 W/m°C and that of Nan [27]. In 
addition, λNan = 0.1369 W/m°C, which proposes the expres-
sion given by the equation (Eqs. 33 and 34), where the 
interfacial thermal resistance R is zero:
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Compared with the random distribution, the periodic 
distribution with a simple cubic structure improves the 
conductivity of the composite by almost 4.9%. Moreover, 
Figure 4 and Table 1 show that the 3D configuration of the 
PCM spheres has a thermal conductivity whose intermedi-
ate value is between those of the parallel planes and those 
of the planes frontal to flux. Otherwise, it is noted that, 
in practice, the equivalent conductivity of a composite 
material can be assimilated to the arithmetic conductivity 
(Figure 4) with a relative error of 2.54%.

5  �Conclusion
In the present work, a theoretical and numerical thermal 
analysis enabled us to investigate the thermal behavior 
and conductive transfer mechanism of the composites. 

The relations giving thermal conductivity in 2D and 3D 
arrangements are established and are deemed valid for 
any biphasic solid-solid composite. The variation of con-
ductivity according to several parameters, such as the 
arrangement plane (parallel or frontal) to the heat flux, 
the PCM geometry (sphere, plate), is identified. The results 
highlight the influence of the number of the spheres 
introduced into the studied composite. Meanwhile, we 
also studied the influence of the incidence angle of flux, 
compared with these planes, on the thermal behavior of 
composite. The results obtained indicate that the ideal 
composite conductivity is obtained if the load PCM is 
divided into multiple spheres arranged in a plane parallel 
with the flux and, particularly, if it contains the diagonal 
of the entry face. In addition, for conductivity, the PCM 
distribution is similar either in a single sphere or in a peri-
odic distribution of multiple spheres. A good agreement 
between the theoretical results and the numerical results 
is found for all the cases where theoretical analysis is pos-
sible. Similarly, a coherence is also observed between the 
results of the 3D configuration and previous works.

Nomenclature
a	 cube edge, m
a*	 edge of elementary cell, m
C	 thermal capacity, J/kg°C
fv	 volume fraction of PCM, fv = V2/V1, dimensionless
n	 number of spheres, dimensionless
Li 	 length of part i of the matrix, m

*
iL 	 length of part i of the elementary cell, m

q• 	 density of energy generated, W/m3

rn	 radius of spheres, m
*
iR 	 thermal resistance of part i of the elementary cell, °C/W

Rth	 thermal resistance of composite, °C/W
S	 surface crossed by the heat flux, m2

t	 time, s
T	 temperature on point ( , , )r x y z�  at instant t, °C
T1	 temperature of the entry face, °C
T2	 temperature of the exit face, °C
V1	 total volume of the composite, m3

V2	 total volume of PCM, m3

Velem	 volume of elementary cell, m3

x, y, z	 space variables, m

Greek symbols
λ	� equivalent thermal conductivity of the composite mate-

rial, W/m°C
λ1	 thermal conductivity of matrix, W/m°C
λ2	 thermal conductivity of PCM, W/m°C
λarith	 arithmetic conductivity of composite, W/m°C
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λb	 thermal conductivity of the wood, W/m°C
λp	 thermal conductivity of polyurethane, W/ m°C
λx, λx, λz	 thermal conductivity components, W/m°C
ϕ or ϕe	 incoming heat flux, W
ϕg	 heat flux generated, W
ϕs	 Leaving heat flux, W
ϕst	 heat flux stored, W
ρ	 density, kg/m3

ψ	 flux density, W/m2

θ	 spherical coordinate, radian

Subscript
arith	 arithmetic
Esh	 Eshelby
Nan	 Nan
Num	 Numerical
trid	 tridimensional
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