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Determination of the critical load and energy 
release rate in mode II delamination using a 
meshfree method

Abstract: Simulation of fracture by using numerical meth-
ods is important to treat geometries that change in time. 
In this study, both numerical and experimental investi-
gations are presented for the delamination under mode 
II loading, detailing the derivation of the formulations in 
numerical simulations of fracture. The simulation of the 
delamination under mode II loading based on the cohe-
sive segments model was investigated by using a mesh-
free method. Then, an experimental investigation was 
used to verify the meshfree method’s results. For tests 
under mode II loading, three-point end-notched flex-
ure specimens, which are made of carbon/epoxy lami-
nate (AS4/3501-6) which consists of 10 plies in [0]10 and 
[0/90/0/90/0]s lay-up with delamination inserted in the 
middle of the laminate, were used for the interlaminar 
fracture toughness tests. The problem was solved for 
[0]10, [0/45/-45/90/0]s, [0/90/0/90/0]s, [0/90/0/90/30]s, 
[0/90/0/90/45]s and [0/90/0/90/60]s laminates with mid-
plane delaminations, and the results were verified for 
different composite materials. The critical fracture force, 
which can be experimentally measured, was used to cal-
culate the mode II delamination fracture toughness of the 
carbon/epoxy laminate. In addition, values of the integral 
for 209 (11 × 19) and 253 (11 × 23) background meshes with 
equivalent interval sizes were compared. For a relatively 
fine background mesh, the critical load was converged. 
Results obtained from the meshfree element-free Galerkin 
method showed very good agreement with experimental 
data for single-mode delamination under mode II loading. 
The results presented will help in the implementation of 
mesh design techniques that protect numerical accuracy 
while minimizing computational expense.
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1  Introduction

Delamination is one of the most common types of damage 
in composites because of their relatively weak interlami-
nar strengths. Delamination may appear under various 
conditions such as transverse concentrated loads. This 
damage mode is especially important for the structural 
integrity of composite structures since it is difficult to 
detect during inspection. It has a detrimental influence 
on both stiffness and strength of structural components. 
In order to use the full capacity of a composite structure, 
it is important that the initiation of delamination cracks 
and the resulting reduction in laminate strength can be 
correctly modeled. Therefore, a significant research effort 
has been devoted to studying the laws governing the onset 
and evolution of delamination damage [6]. It is interest-
ing to predict whether the delamination will grow as the 
structure is loaded.

Delamination of laminated composite structures has 
been widely examined, from both an experimental and a 
numerical standpoint, due to local failure and, sometimes, 
to sudden structural collapse. Therefore, knowledge of 
delamination modes and growth rate during the operating 
life of a composite structure is of primary concern. Several 
studies aimed at formulating a criterion for delamination 
onset and growth prediction have been published, and 
experimental testing was performed for validating theo-
retical models. An opening mode (mode I) and a shearing 
mode (mode II) are the main modes of fracture in compos-
ites. There are existing standard tests for determining the 
critical strain energy release rates associated with each 
mode. The criteria used to predict delamination propa-
gation under mode loading conditions are usually estab-
lished in terms of the components of the energy release 
rate (GI, GII, GIII) and fracture toughness (GIC, GIIC, GIIIC). The 
strain energy release rate (G) is often appraised because 
of an experimentally measurable quantity and it has been 
mathematically well defined. Delamination propagation 
is predicted when the energy release rate is equal to the 
corresponding fracture toughness of the material. There-
fore, several fracture test methods have been developed 
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to measure the critical strain energy release rates for pure 
and mixed-mode loadings.

Numerical simulation of the delamination is based on 
either fracture mechanics or damage mechanics. Linear 
elastic fracture mechanics (LEFM) is used if the material 
nonlinearities can be neglected. Delamination growth of 
one or more cracks is predicted using LEFM. The assump-
tion is that the delamination propagates when the asso-
ciated energy release rate is greater than or equal to a 
critical value. The application of this method is easy since 
the crack front propagates in one dimension. When more 
than one crack propagates simultaneously, the mechani-
cal behavior of the interface which includes the cohesive 
zone model is modeled on the basis of damage mechanics. 
The interface-traction relationship is based on a simple 
bilinear one-dimensional law. The area of the triangle 
delimited by the traction/relative displacement curve is 
equated to the critical energy release rate [1].

Computational methods such as the finite differ-
ences method (FDM), the finite element method (FEM) or 
the finite volume method (FVM) all make use of a mesh, 
i.e., a set of nodes with node-to-node connectivity, which 
has gained much attention over the last 10 years. Since 
these methods have been successfully used to solve engi-
neering problems for decades, some limitations of these 
kinds of methods are becoming more and more obvious: 
mesh generation is very time consuming and, in prob-
lems with moving boundaries, a drastic loss of accuracy is 
observed due to the distortion of the elements. Therefore 
there is a need to develop meshfree (grid free, mesh less) 
methods that do not suffer from the problems described 
above. Meshfree methods and application of composite 
fracture continue to be used in in-depth research. Mesh-
free methods are very widely used for modeling problems 
with moving boundaries such as crack growth in solids, 
because changing discontinuities can be displayed very 
easily by modifying only the weighting functions, which 
is a well-known advantage compared to the classical finite 
element method. In the meshfree method, discontinui-
ties are not restricted to element boundaries or even no 
elements are necessary at all. Only nodes are used for 
approximation [3, 9, 14].

Meshfree methods have existed for a number of years, 
and the element-free Galerkin (EFGM) was first proposed 
for the simulation of fracture 15 years ago by Belytschko 
et al. [4, 5]. Several review articles [2, 7, 8, 10, 11], which 
cover the classification, application and computer imple-
mentation aspects of the meshfree method, have been 
reported in the literature [12–22].

The aim of this study was to present a meshfree 
method for the simulation of the delamination and 

failure of composite materials based on the cohesive seg-
ments model. With the use of the partition of unity of 
moving least-squares (MLS) shape functions, the discon-
tinuities at the cohesive segments can be approximated 
with the additional degrees of freedom of nodes. An 
iterative solution scheme between the continuous and 
discontinuous fields is presented to solve the mode II 
delamination growth problem. An experimental investi-
gation was used to verify the meshfree method’s results. 
The experimental study used end-notched flexure (ENF) 
specimens made of carbon/epoxy laminate (AS4/3501-
6) which consists of 10 plies in [0]10 and [0/90/0/90/0]s 
lay-up with delamination inserted in the middle of the 
laminate.

The problem was solved for [0]10, [0/45/-45/90/0]s, 
[0/90/0/90/0]s, [0/90/0/90/30]s, [0/90/0/90/45]s and 
[0/90/0/90/60]s laminates with mid-plane delamina-
tions, and the results are verified for different composite 
materials. The critical fracture force, which can be experi-
mentally measured, was used to calculate the mode II 
delamination fracture toughness for the carbon/epoxy 
laminate. In addition, values of the integral for 219 (11 × 19) 
and 253 (11 × 23) background meshes with equivalent inter-
val sizes were compared.

2  The meshfree method
A number of different meshfree methods have been 
developed. One of the most widely used is the EFGM. 
This method implements the connectivity between the 
nodes and sets completely using approximation func-
tions. The EFGM uses the moving least-squares (MLS) 
approximants in order to obtain test and trial functions; 
background cells are utilized for numerical integration 
in the weak form; and essential boundary conditions are 
implemented using Lagrange multipliers. The weak form 
of Galerkin was used to develop the discretized system of 
equations.

The meshfree method is described in a broad sense 
as a method where nodes are not required to be intercon-
nected. A distribution of nodes is generated to define 
the domain and its boundaries, and the solution of the 
problem is sought at these nodes in the EFGM. However, 
cells are also prescribed over the domain and used for 
numerical integration. In the EFGM, the moving least 
squares (MLS) scheme is utilized for interpolation, and a 
mesh of background cells, with no required connection to 
the nodal discretization, is used for the purpose of numer-
ical integration [11].
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2.1  �The moving least-squares shape 
functions

In this section, we will explain the moving least square 
(MLS) method and establish the connections between the 
weighting coefficients and the partial derivatives of the 
MLS shape functions. The approximation u(x) of the func-
tion u(x) is defined in the domain V as
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where Pj(x), j = 1,2…,m are monomial basis functions and 
aj(x) are unknown coefficients. The unknown coefficient 
aj(x) can be achieved such that the weighted difference 
between the approximate values at nodes nearby and 
the nodal values is minimized. These coefficients are 
obtained, at any point x, minimizing the weighted discrete 
norm J,
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where n and ui are the number of nodes in the domain 
of influence of x and the nodal parameter of u(x) at x = xi, 
respectively. Because of the limited number of nodes 
close to the evaluation point, the MLS approximation 
is local. The size of the domain influence identifies the 
number of discrete points in the domain of influence. 
The kernel −

�
( )iW x x  or weight function, which is posi-

tive, decreases as ||x–xi|| increases. ||x–xi|| is defined as the 
distance between the node xi and the sampling point x in 
the domain of influence. The choice of the weight func-
tion is important due to the effect on the performance of 
the EFGM [5]. The cubic spline weight function [Eq. (3)], 
quadratic spline function [Eq. (4)] and exponential func-
tion [Eq. (5)] are generally used as weight functions in the 
one-dimensional case.
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where α is a constant and r is the normalized distance,

	

+
= =

2 2( - ) ( - )
.i ii

i
s s

x x y yd
r

d d
�

(6)

The approximate function u(x) can then be expressed 
in terms of the MLS nodal shape functions as
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where φi(x) is the shape function and n is the number of 
nodes with domains of influence containing the point x. 
The shape functions constructed with respect to MLS have 
compact support, or domain of influence, which is identi-
cal to the support of the corresponding weight function. 
The support can be of arbitrary shapes, such as circular, 
rectangular and square. The two popular types of support 
are circular and rectangular.

3  Cohesive zone model approach
The cohesive zone model approach is one of the most com-
monly used tools to investigate interfacial fracture. This 
approach gives the physical explanations of the failure 
process and it can be used for both damage tolerance and 
strength analysis. The cohesive zone model approach is 
defined by a bilinear constitutive law. In the cohesive zone 
model, relative displacements and stresses are defined as 
failure and they do not contain crack tip stress singulari-
ties. The fracture process region chosen is a narrow band 
of vanishing thickness ahead of a crack tip. Bonding of the 
surfaces of the region is caused by cohesive traction which 
follows a cohesive constitutive law. There are an initial 
high positive stiffness and a negative tangent stiffness 
representing softening. The constitutive law is a bilin-
ear softening model which is regulated by both material 
strength parameters and fracture mechanics parameters. 
If the cohesive traction disappears, crack growth takes 
place. A critical strain energy release rate is equal to the 
amount of work done per unit area of crack surface.

Consider a domain V containing a material disconti-
nuity Gc, which divides the domain V into two parts: V1 
and, under crack, V2. The stress field inside the domain σ 
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is related to the external loading and to the closing trac-
tions in the material discontinuity through the equilib-
rium equations. The solid can be loaded by body force b 
and surface traction (force) t in any distributed fashion in 
the volume of the solid and the traction τ(v) in the bound-
ary Gc. The traction τ depends on the displacement jump v 
on the cohesive segment Gc.

The bilinear law is the most commonly utilized cohe-
sive law because of its simplicity. The bilinear constitu-
tive relationship is shown in Figure 2 for the softening 
traction-displacement curves of the interface material 
model for the cases of mode II delamination. The fracture 
toughness GC, cohesive surface tractions τ and the crack-
ing relative displacements v are input material proper-
ties. The onset displacement jump and final displacement 
jump are defined as v0 and vf, respectively. The area under 
the traction-displacement jump relation is defined as the 
fracture toughness or the critical fracture energy.

The bilinear stress relative displacement curve is 
composed of three main parts: elastic part, softening part 
and decohesion part. The constitutive equations are as 
follows:

	 τ(v) = [1–D(v)]K0v � (9)

where K0 is the interface stiffness, D is a damage parameter 
whose initial value is 0. D starts growing when v > v0 and 
reaches the value when v > vf. The damage parameter can 
be computed with the following relations for the elastic 
part, softening part and decohesion part, respectively:
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	 Decohesion part: v〉vf, D(v) = 1 � (12)

If the traction across the interface increases to the 
maximum, this part is defined as the elastic part. In the 
softening part, the traction across the interface decreases 
to zero. Also, two layers begin to separate from each other 
in the softening part. If there is no bond between the two 
layers, the traction across the interface is null. This case is 
defined as the decohesion part.

Damage initiation is related to the interfacial strength 
τm, i.e., the maximum traction on the traction-displace-
ment jump relation. When v0 is reached, the stress is equal 
to the interfacial tensile strength τm, the maximum stress 
level possible. For higher relative displacements, the inter-
face accumulates damage and its ability to sustain stress 
decreases progressively. Once v exceeds vf, the interface 
is fully debonded and it is no longer able to support any 
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Figure 1 Bilinear interface traction for mode II delamination.
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Figure 2 Cohesive zone ahead of delamination tip.

stress. If the load were removed after v0 has been exceeded 
but before vf has been reached, the model would unload 
to the origin. The slope of the constitutive equation before 
damage initiation K0 is referred to as the interface stiffness 
[3, 19, 20].

The criteria used to predict delamination propagation 
are usually established in terms of the components of the 
energy release rate and fracture toughness. It is supposed 
that when the energy release rate G exceeds the critical 
value, delamination of the critical energy release rate GC 
grows.

As illustrated in Figure 1, the shaded area under 
the τ-v curve is the energy dissipated per unit area; it is 
defined as the strain energy release rate and the two fol-
lowing relations exist among these parameters:
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As shown in Figures 1 and 2, 0
3v  and f

3v  are expressed 
as the displacement jumps corresponding to delamina-
tion onset in mode II and in shear mode, respectively, 
while 0

3N  and f
3N  are defined as the mode interlaminar 

strengths. The following relations exist:
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Figure 3 Energy release rate-load diagram for e-glass/epoxy obtained from meshfree method.
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The opening values vi are determined by equating the 
area under the curve to the critical fracture energies such 
that
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The work done per unit area upon complete interface 
degradation is given by the integration of cohesive trac-
tions as functions of the displacement jump,

	
τ= ∫

2

IIC 12 2
0

d .
fv

G v
�

(17)

where GIIC, τ12 and f
3v  are the critical strain energy release 

rate, the mode traction and the final relative displace-
ments, respectively, corresponding to complete decohe-
sion. A failure criterion for mode II delamination can be 
written when the following condition is fulfilled:
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The existing literature [2] expression utilizes the inter-
face as a resin-rich zone of small thickness ei and has pro-
posed to define stiffness as:

	
= =3 13,x y

E G
K K

e e �
(19)



228      Y. Pekbey et al.: Simulation of delamination under mode II loading using a meshfree method

where it is assumed that E3 = E2 and G13 = G12. E2 and E3 are 
Young’s modulus in the transverse and thickness direc-
tion, respectively.

The stress-relative displacement relationship and 
the displacement jump can be formulated, respectively, 
as [3]:
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where Φ is the shape function belonging to sub-domain 
V1 and V2:
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4  Variational principle
The EFGM is formulated in the space coordinates x = [x, y] 
on the domain V bounded by G. The equilibrium equation 
can be written at a material point x as follows:

	 LTσ+b = 0 in Ω � (23)
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Figure 4 Energy release rate-load diagram for s-glass/epoxy obtained from meshfree method.
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where σ is the stress tensor, which corresponds to the 
displacement field u, and b is the body force vector. 
The boundary conditions are written as σ·nc = τ(v) on Γc, 
σ Γ⋅ = t on ttn  and Γ=  on ,uu u  where t  and u  are defined 

as traction on the traction (natural) boundaries and as 
displacement on the displacement (essential) boundaries; 
nt is the normal unity vector of the boundary Gt where the 
traction t  is prescribed; nc is the normal unity vector of 
the boundary Gc where the traction τ(v) is prescribed; and 
Gu is the boundary where the displacement u is imposed.

The boundary conditions in the EFGM cannot be per-
formed as in classical computational techniques because 
the properties of Kronecker delta are not satisfied. There-
fore special methods are required such as the Lagrange 
multipliers method, coupling with FEM, and penalty 
methods. In this study, Lagrange multipliers were used. 

The weak form is written with Lagrange multipliers, with 
essential boundary conditions [3]:
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By taking a sufficiently high order of quadrature, the 
weak form is integrated numerically over the domain, as 
a function of the size of the background cells and of the 
nodal distribution.
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Figure 5 Energy release rate-load diagram for Kevlar/epoxy (Aramid149/epoxy) obtained from meshfree method.
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Λ is a vector that collects the nodal Lagrange multipli-
ers for all field nodes on essential boundaries:

	

λ

λ=∑ T
n

I
I

Λ
�

(25)

If we rewrite Eq. (24), by defining K and F as the global 
stiffness matrix and the global force vector, respectively, 
we obtain
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where K is called the nodal stiffness matrix. The terms in the 
stiffness matrix are defined by the following equation [3]:
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in the delaminated part:
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The global force F is

	 F = Fb+Ft, � (29)
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Figure 6 Energy release rate-load diagram for carbon/epoxy (AS4/3501-6) obtained from meshfree method.
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and
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Since both δU and δΛ are arbitrary, this equation can 
be satisfied only if [3]
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If it is rewritten, Eq. (32) becomes
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then the solution to the whole problem can be obtained by 
the iterative solution of Eq. (33).

In the conventional EFGM, the stiffness matrix and 
load factor are computed by the Gaussian quadrature 
method with a background mesh.

Q and G are defined as a global vector form and a 
global matrix form, respectively:
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Figure 7 Energy release rate-load diagram for carbon/PEEK (AS4/APC2) obtained from meshfree method.
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Figure 8 Energy release rate-load diagram for carbon/epoxy (IM6/SC1081) obtained from meshfree method.

Table 1 Comparison of the meshfree method results of the carbon/
epoxy laminate (AS4/3501-6) with [0°]10 and [0°/90°/0°/90°/0°]s.

Nodes [0]10 [0/90/0/90/0]s

P (N) G (N/m) P (N) G (N/m)

11 × 19 650 240.04 505 146.21
11 × 23 742 313.45 568 184.10

	 Γ Γ

Ω Γ Ω Γ= ∫ ∫1 2

1 2

T T T- d - d
u u

IJ I J u I J uG N N

�
(35)

To illustrate the applicability of the meshfree 
method, the delamination under mode II loading is 
simulated.

5  �Numerical implementation: 
delamination of composite 
specimens

In this section, the validity and the accuracy of the mesh-
free EFGM are shown by determining the critical load 
and energy release rate in mode II delamination. To 
demonstrate the usefulness of the proposed method, the 
delamination problem is numerically analyzed by the EFG 
method. The fracture modes studied are mode II with an 
ENF test.

For the analysis of the critical load and energy release 
rate, some codes were developed in MATLAB. Four-point 
Gaussian quadrature method is employed in the EFG 
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Figure 11 End-notched flexure (ENF) specimen for mode II testing 
mounted in the fixture.
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Figure 9 Specimen for end-notched flexure (ENF) specimen.
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Figure 10 Specimen dimension.
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Figure 13 Load-displacement curve for [0°/90°/0°/90°/0°]s 
carbon/epoxy laminate in ENF test.

Displacement (mm) 

L
oa

d 
(N

) 

700

600

500

400

300

200

100

0

0
0.

2

4.
0

5.
0

5.
3

5.
6

5.
9

4.
4

4.
7

0.
5

0.
9

1.
2

1.
5

1.
8

2.
1

3.
1

2.
4

3.
4

3.
7

2.
8

Figure 12 Load-displacement curve for [0°]10 carbon/epoxy lami-
nate in ENF test.

method. Linear basis functions in two dimensions are 
used. In addition, the cubic spline is taken as a weight 
function.

Load-energy release rate diagrams obtained from the 
meshfree method are shown in Figures 3–8 for different 
composite materials: e-glass/epoxy, s-glass/epoxy, Kevlar/
epoxy (Aramid149/epoxy), carbon/epoxy (AS4/3501-
6), carbon/PEEK (AS4/APC2) and carbon/epoxy (IM6/
SC1081), with different orientation angles [13].

Comparison of meshfree method results of the 
carbon/epoxy laminate (AS4/3501-6) with [0°]10 and 
[0°/90°/0°/90°/0°]s angle plies are shown in Table 1 for 
values of the integral for 11 × 19 and 11 × 23 background 
meshes.

6  �Comparisons with experimental 
studies

To demonstrate the usefulness of the proposed method, 
delamination problem was investigated by analyzing 
the mode II delamination test. The ENF test was used to 
measure mode II delamination toughness. The most com-
monly used of these is the ENF test as it may be easily 
performed on thin specimens. The load measured at the 
onset of delamination from the precrack was used to 
evaluate the critical energy release rate. Tests were con-
ducted using the ENF configuration (Figure 9), in which 
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Table 3 Comparison of the critical loads for carbon/epoxy laminate 
(AS4/3501-6) in mode II.

Orientation 
angle

Experimental Meshfree 
method

Relative 
error (%)

[0]10 614.00 650 5.86
[0/90/0/90/0]s 547.34 505 7.74

Table 4 Comparison to the critical energy release rate (G, N/m) for 
carbon/epoxy laminate (AS4/3501-6) in mode II.

Orientation 
angle

Experimental Meshfree 
method

Relative 
error (%)

[0]10 278.08 313.45 12.72
[0/90/0/90/0]s 220.97 184.10 16.69

Table 5 Comparison of the critical loads P (N) obtained from meshfree methods (nodes: 11 × 19).

[0]10 [0/45/-45/90/0]s [0/90/0/90/0]s [0/90/0/90/30]s [0/90/0/90/45]s [0/90/0/90/60]s

E-Glass/epoxy 915 825 845 865 1015 1190
S-Glass/epoxy 905 810 820 875 1040 1195
Kevlar/epoxy (Aramid149/epoxy) 605 380 400 465 890 1150
Carbon/epoxy (AS4/3501-6) 650 490 505 590 965 1175
Carbon/PEEK (AS4/APC2) 620 420 455 500 930 1160
Carbon/epoxy (IM6/SC1081) 615 390 420 560 925 1170

Table 6 Comparison of the critical load P (N) obtained from meshfree methods (nodes: 11 × 23).

[0]10 [0/45/-45/90/0]s [0/90/0/90/0]s [0/90/0/90/30]s [0/90/0/90/45]s [0/90/0/90/60]s

E-Glass/epoxy 1003 962 970 978 1073 1245
S-Glass/epoxy 995 935 955 992 1080 1287
Kevlar/epoxy (Aramid149/epoxy) 643 464 507 555 1041 1201
Carbon/epoxy (AS4/3501-6) 742 560 568 702 1062 1235
Carbon/PEEK (AS4/APC2) 702 535 540 635 1056 1210
Carbon/epoxy (IM6/SC1081) 675 508 517 638 1048 1223

Table 7 Comparison of the critical energy release rate G (N/m) obtained from meshfree methods (nodes: 11 × 19).

[0]10 [0/45/-45/90/0]s [0/90/0/90/0]s [0/90/0/90/30]s [0/90/0/90/45]s [0/90/0/90/60]s

E-Glass/epoxy 1718.95 1399.25 1466.8 1534.34 2112.95 2902.05
S-Glass/epoxy 1523.43 1222.37 1252.99 1421.39 2012.16 2651.92
Kevlar/epoxy (Aramid149/epoxy) 344.94 138.73 153.22 205.51 746.44 1247.53
Carbon/epoxy (AS4/3501-6) 240.04 137.79 146.21 198.90 529.04 784.05
Carbon/PEEK (AS4/APC2) 239.24 110.11 128.8 156.33 536.27 833.29
Carbon/epoxy (IM6/SC1081) 173.86 70.75 81.29 143.51 391.63 625.71

Table 2 The critical load and energy release rate amount for 
carbon/epoxy laminate (AS4/3501-6) in mode II testing.

Orientation angle P (N) G (N/m)

[0]10 614.00 278.08
[0/90/0/90/0]s 547.34 220.97

a specimen with an initial mid-plane delamination at 
one end is loaded in a three-point bending arrangement. 
Although there is no universally accepted standard for 
mode II testing, the ENF is commonly used. End-notched 
flexural specimens, end-loaded split (ELS) or short-length 
specimens are possible test configurations to quantify 
delamination in mode II [22].

The ENF specimen was fabricated with carbon/epoxy 
(AS4/3501–6), a high-strength carbon pre-impregnated 
with epoxy resin-based repairing materials. The delamina-
tion cracks were simulated by Teflon films. The specimen 
was 100 mm long, 40 mm wide and 2 mm thick, and it had 
an initial crack length of 30 mm (Figure 10). Simulation of 
the ENF specimen was performed for two different lami-
nate lay-ups: Type 1 [0]10 and Type 2 [0°/90°/0°/90°/0°]s.

The single-ply thickness was 0.2 mm. The mechani-
cal properties of the unidirectional lamina are reported as 
follows: E11 = 146.7 GPa, E22 = 7.8 GPa, G12 = G13 = 4.8 GPa and 
v12 = 0.29 [23].

Fracture testing was performed using universal testing 
machine (Shimadzu, Autograph AG-X 100 series) with 
a 100 kN load cell. A test sample as shown in Figure  11 
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Table 10 Comparison of the critical energy release rate G (N/m) obtained from meshfree methods (Nodes: 11 × 19).

[0/90/0/90/30]s [0/90/0/90/45]s [0/90/0/90/60]s

E-Glass/Epoxy 1534.34 2112.95 2902.05
S-Glass/Epoxy 1421.39 2012.16 2651.92
Kevlar/Epoxy (Aramid149/Epoxy) 205.51 746.44 1247.53
Carbon/Epoxy (AS4/3501-6) 198.90 529.04 784.05
Carbon/PEEK (AS4/APC2) 156.33 536.27 833.29
Carbon/Epoxy (IM6/SC1081) 143.51 391.63 625.71

Table 9 Comparison of D/A32 (m2) and the critical loads and energy 
release rates for carbon/epoxy laminate (AS4/3501-6) in mode II.

Orientation 
angle

D/A32 
(m2),  × 10-10

Critical load 
(N) (meshfree 

method)

Critical energy 
release rate 

(N/m)

[0]10 4.29 690 270.37
[0/45/-45/90/0]s 2.17 520 154.17
[0/90/0/90/30]s 42.3 668 254.16
[0/90/0/90/45]s 87.6 1025 595.58
[0/90/0/90/60]s 119 1201 817.64

Table 8 Comparison of the critical energy release rate G (N/m) obtained from meshfree methods (nodes: 11 × 23).

[0]10 [0/45/-45/90/0]s [0/90/0/90/0]s [0/90/0/90/30]s [0/90/0/90/45]s [0/90/0/90/60]s

E-Glass/epoxy 2059.60 1898.96 1930.06 1961.16 2360.53 3117.57
S-Glass/epoxy 1837.58 1626.08 1696.58 1827.00 2390.62 3075.01
Kevlar/epoxy (Aramid149/epoxy) 391.43 204.80 242.54 292.23 1022.20 1357.65
Carbon/epoxy (AS4/3501-6) 313.45 179.11 184.10 279.44 640.62 865.82
Carbon/PEEK (AS4/APC2) 304.62 178.26 181.66 250.55 690.56 905.21
Carbon/epoxy (IM6/SC1081) 208.69 118.05 122.57 186.75 502.13 683.09

was loaded with a speed of 10 mm/min. The incremental 
test method for mode II fracture testing which requires 
loading-crack propagation-unloading sequences was fol-
lowed. The specimens were loaded until crack propaga-
tion occurred.

Typical load versus deflection curves (P-δ) obtained 
from testing the carbon/epoxy (AS4/3501-6) specimens 
using the ENF test are shown in Figures 12 and 13. As 
shown in Figure 13, when the displacement reaches 
about 3.4 mm, the discontinuity begins to propagate 
along the horizontal straight line. As the cohesive trac-
tion decreases with the increasing separation, the 
load-displacement curve rapidly declines as the crack 
propagates.

In the present study, the existing literature expression 
was utilized to calculate the critical strain-energy release 
rate for the composites [7]:

	

   = +     

22 2
1

IIC 2 3
311

9 1 0.2
16

EP a hG
G aE b h

�
(36)

In Eq. (36), P, a and h are defined as the applied 
load, the crack length and the thickness of each beam in 
the delaminated region, respectively. E1 and G31 are the 
equivalent elastic flexural modulus and the equivalent 
transverse shear modulus of the laminate, respectively. 
To calculate GIIC from Eq. (36), first the critical load must 
be determined from the experiment. The critical load and 
energy release rate are given in Table 2 for carbon/epoxy 
laminate (AS4/3501–6).

The percentage relative errors of the critical load and 
energy release rate are defined as follows:

	
= ×

-EFG 
Relative error(%) 100

E
E �

(37)

where E and EFG are the critical load obtained from the 
experiment and the meshfree EFG method, respectively.

7  Results and discussion
In this paper, critical load and energy release rate for mode 
II testing of a delaminated composite for various orienta-
tion angles and materials were obtained and compared. 
In the experimental method, the ENF specimen was used. 
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The obtained results from experimental method were 
supported by the meshfree and finite element numerical 
methods. A comparison of the critical loads and energy 
release rate is given in Tables 3 and 4.

In Tables 3 and 4, the relative error percentages of the 
experimental data and the meshfree EFG are evaluated 
using both [0]10 and [0/90/0/90/0]s lay-up. The relative 
error percentages of the critical load and energy release 
rate are 5.86 and 12.72 for carbon/epoxy (AS4/3501-6) 
with the [0]10 lay-up. Similarly, it is seen that the relative 
error percentages of the critical load and energy release 
rate are 7.74 and 16.69 with the [0/90/0/90/0]s lay-up. 
The meshfree EFG results for the [0]10 lay-up show good 
convergence and agreement with experimental data. 
The meshfree EFG method for the [0]10 lay-up is compu-
tationally more effective than that for the [0/90/0/90/0]s 
lay-up.

In addition to study the effects of background meshes, 
the critical load and the energy release rate for two dif-
ferent background meshes with equivalent interval sizes 
were calculated in the meshfree EFGM. The critical load 
and the energy release rate are presented using angle-
ply [0]10, [0/45/-45/90/0]s, [0/90/0/90/0]s, [0/90/0/90/30]s, 
[0/90/0/90/45]s and [0/90/0/90/60]s laminates with mid-
plane delamination with six different composite mate-
rials. A comparison of the critical loads and the energy 
release rate for values of the integral for 11 × 19 and 11 × 23 
background meshes is given in Tables 5–12.

Table 13 Comparison of D/A32 (m2) and the critical loads, energy 
release rates for carbon/epoxy laminate (AS4/3501-6) in Mode-II.

Orientation angle D/A32 
(m2)  × 10-10

Critical Load 
(N) (meshfree 

method)

Critical energy 
release rate 

(N/m)

[0]10 4.29 690 270.37
[0/45/-45/90/0]s 2.17 520 154.17
[0/90/0/90/30]s 42.3 668 254.16
[0/90/0/90/45]s 87.6 1025 595.58
[0/90/0/90/60]s 119 1201 817.64

Table 12 Comparison of the critical energy release rate G (N/m) obtained from meshfree methods (Nodes: 11 × 23).

[0/90/0/90/30]s [0/90/0/90/45]s [0/90/0/90/60]s

E-Glass/Epoxy 1961.16 2360.53 3117.57
S-Glass/Epoxy 1827.00 2390.62 3075.01
Kevlar/Epoxy (Aramid149/Epoxy) 292.23 1022.20 1357.65
Carbon/Epoxy (AS4/3501-6) 279.44 640.62 865.82
Carbon/PEEK (AS4/APC2) 250.55 690.56 905.21
Carbon/Epoxy (IM6/SC1081) 186.75 502.13 683.09

Table 11 Comparison of the critical energy release rate G (N/m) obtained from meshfree methods (Nodes: 11 × 23).

[0]10 [0/45/-45/90/0]s [0/90/0/90/0]s

E-Glass/Epoxy 2059.60 1898.96 1930.06
S-Glass/Epoxy 1837.58 1626.08 1696.58
Kevlar/Epoxy (Aramid149/ Epoxy) 391.43 204.80 242.54
Carbon/Epoxy (AS4/3501-6) 313.45 179.11 184.10
Carbon/PEEK (AS4/APC2) 304.62 178.26 181.66
Carbon/Epoxy (IM6/SC1081) 208.69 118.05 122.57

As can be easily observed, the maximum critical load 
was obtained for e-glass/epoxy with the [0/90/0/90/60]s 
angle ply for 11 × 19 and 11 × 23 background meshes. 
The critical buckling loads with 11 × 19 and 11 × 23 back-
ground meshes were 1190 and 1215 N, respectively, for the 
[0/90/0/90/60]s angle ply. A similar study of mesh size 
effect was repeated for the critical energy release rate. The 
critical energy release rate calculated using a mesh size 
of 11 × 19 and 11 × 23 was 2902.05 and 3117.57 N/m, respec-
tively, for e-glass/epoxy with the [0/90/0/90/60]s angle ply. 
Tables 5–8 show that the maximum critical load and the 
energy release rate predicted by the meshfree EFGM con-
verge when increasing the background meshes.

As shown in Table 9, it is seen that D/A32 affects the 
critical load and energy release rate values directly. The 
maximum and the minimum critical loads and energy 
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release rates were obtained for the [0/90/0/90/60]s and 
[0/45/-45/90/0]s orientation angles, respectively.

8  Conclusions
In this paper, both numerical and experimental investi-
gations are presented for the delamination under mode 
II loading, detailing the derivation of the formulations in 
numerical simulations of fracture. Based on the results of 
this study, the following conclusions can be drawn:

–– It has been shown that the mode II delamination 
behavior of fiber-reinforced laminated composite 
beams could be analyzed by using a meshfree EFG 
method. Even though the node distribution used in 
this study was selected as uniform, node scattering 
could be changed to take into account high stress 
variation around the crack tip. This will help to 
improve the accuracy of the analysis.

–– The experimental results and closed form solution 
were used together to calculate the mode II energy 
release rate for only one composite material having 
two different lay-ups. The critical load and energy 
release rate results of meshfree EFG and the FEM 
were compared with each other as a verification of the 
EFGM. Results obtained from the meshfree method 
showed very good agreement with experimental 
evidences for single-mode delamination under mode 
II loading. Therefore, the meshfree method is capable 
of accurately predicting delamination onset.

–– In the meshfree method, critical loads and energy 
release rates are increased by an increase in the number 
of nodes. That is because the node density in the 

analysis increased everywhere including in the crack 
tip region. A relatively fine background mesh helps the 
analysis to estimate the critical load and energy release 
rate more accurately. Although the uniform mesh 
density was used in the analysis, for better performance 
varying the node density can be used such that more 
nodes may be placed around the crack tip while fewer 
nodes are used in the other regions.

–– The maximum and the minimum critical loads 
and energy release rates were obtained for the 
[0/90/0/90/60]s and [0/45/-45/90/0]s orientation 
angles, respectively (Table 13). Since mode II energy 
release rate was calculated by using Eq. (17), where 
out-of-plane stress is given by

	
= -1

32 yDA Nγτ
�

(38)

–– the value of the expression D/A32 affects the critical 
load and energy release rate values directly.

–– Results obtained from the meshfree method showed 
very good agreement with experimental data for 
single-mode delamination under mode II loading. 
The results presented will help in the implementation 
of numerical analysis techniques that protect 
numerical accuracy while minimizing computational 
expense. Consequently, the meshfree method could 
be used effectively to study delamination growth in 
composite laminates and it is especially suitable for 
the simulation of complex delamination patterns that 
are difficult to model using other numerical methods.
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