Abstract
Objectives
The past decade has seen tremendous progress in the development of biomedical agents that are effective as pre-exposure prophylaxis (PrEP) for HIV prevention. To expand the choice of products and delivery methods, new medications and delivery methods are under development. Future trials of non-inferiority, given the high efficacy of ARV-based PrEP products as they become current or future standard of care, would require a large number of participants and long follow-up time that may not be feasible. This motivates the construction of a counterfactual estimate that approximates incidence for a randomized concurrent control group receiving no PrEP.
Methods
We propose an approach that is to enroll a cohort of prospective PrEP users and aug-ment screening for HIV with laboratory markers of duration of HIV infection to indicate recent infections. We discuss the assumptions under which these data would yield an estimate of the counterfactual HIV incidence and develop sample size and power calculations for comparisons to incidence observed on an investigational PrEP agent.
Results
We consider two hypothetical trials for men who have sex with men (MSM) and transgender women (TGW) from different regions and young women in sub-Saharan Africa. The calculated sample sizes are reasonable and yield desirable power in simulation studies.
Conclusions
Future one-arm trials with counterfactual placebo incidence based on a recency assay can be conducted with reasonable total screening sample sizes and adequate power to determine treatment efficacy.
Funding source: National Institutes of Health
Award Identifier / Grant number: AI029168
Award Identifier / Grant number: AI143357
Award Identifier / Grant number: AI143418
Award Identifier / Grant number: UM1A1068617
Appendix A: Derivation of asymptotic variances
Note that N, N
+, and N
− are the numbers of total screened, HIV-positive, and HIV-negative subjects, p is HIV prevalence, r is the proportion of HIV-negative subjects enrolled to the trial, N
−,enroll is the number of HIV-negative subjects enrolled to the trial, and τ is the follow-up time, and
Write
and
where W
k
is the kth element of W for k = 1, …, 5. Therefore, by the delta method, the asymptotic variance of
Note that N +∼Bin(N, p), N −=N − N +,and N −,enroll∼Bin(N −, r). The number of test-recent subjects N R can be viewed as from Bin(N +, P R ), where
The number of incidence cases N event is from Poisson(N −,enroll τλ 1). Then, calculation yields
Then, the asymptotic variance of
is the asymptotic variance of
is the asymptotic variance of
is the asymptotic covariance of
and
That is, log λ
0 and log λ
1 have asymptotic covariance zero and the asymptotic variance of
and the variance of
In a special case when β
T
=0 and
That is, the variance of the estimated incidence ratio is driven by the numbers of observed events and the variability of MDRI of the recency test.
Appendix B: Derivation of asymptotic distribution of Z under alternatives
In this section, we calculate the asymptotic distribution of Z under alternative hypothesis R = R
1. Particularly, we consider the derivation under a simplified case with
Note that
where
We would like to apply the delta method with respect to W* to calculate the distribution of Z.
Replacing W j (j=1, 2, 4, 5, 6) by their expectations in the definitions of A and B, we denote
We apply the delta method to find the asymptotic mean of Z is given by
where
and
Since
Note that
Note that var(W*) is proportional to N and
where
and V W is the covariance matrix of W* divided by N (which does not depend on N). Note that to calculate V W , we make use of the covariance matrix of W calculated in Appendix A and
References
Baeten, J. M., D. Donnell, P. Ndase, N. R. Mugo, J. D. Campbell, J. Wangisi, J. W. Tappero, E. A. Bukusi, C. R. Cohen, E. Katabira, A. Ronald, E. Tumwesigye, E. Were, K. H. Fife, J. Kiarie, C. Farquhar, G. John-Stewart, A. Kakia, J. Odoyo, A. Mucunguzi, E. Nakku-Joloba, R. Twesigye, K. Ngure, C. Apaka, H. Tamooh, F. Gabona, A. Mujugira, D. Panteleeff, K. K. Thomas, L. Kidoguchi, M. Krows, J. Revall, S. Morrison, H. Haugen, M. Emmanuel-Ogier, L. Ondrejcek, R. W. Coombs, L. Frenkel, C. Hendrix, N. N. Bumpus, D. Bangsberg, J. E. Haberer, W. S. Stevens, J. R. Lingappa, and C. Celum for the Partners PrEP Study Team. 2012. “Antiretroviral Prophylaxis for HIV Prevention in Heterosexual Men and Women.” New England Journal of Medicine 367: 399–410. https://doi.org/10.1056/nejmoa1108524.Search in Google Scholar
Facente, S., E. Grebe, C. Pilcher, M. Busch, G. Murphy, and A. Welte. 2020. “Estimated Dates of Detectable Infection (EDDIs) as an Improvement upon Fiebig Staging for HIV Infection Dating.” Epidemiology and Infection 148: 1–5. https://doi.org/10.1017/S0950268820000503.Search in Google Scholar
Glidden, D. V. 2020. “Statistical Approaches to Accelerate the Development of Long-Acting Antiretrovirals for HIV Pre-exposure Prophylaxis.” Current Opinion in HIV and AIDS 15: 56. https://doi.org/10.1097/coh.0000000000000589.Search in Google Scholar
Grant, R. M., J. R. Lama, P. L. Anderson, V. McMahan, A. Y. Liu, L. Vargas, P. Goicochea, M. Casapía, J. V. Guanira-Carranza, M. E. Ramirez-Cardich, M. E. Ramirez-Cardich, O. Montoya-Herrera, T. Fernández, V. G. Veloso, S. P. Buchbinder, S. Chariyalertsak, M. Schechter, L. Bekker, K. H. Mayer, E. Georges Kallás, K. Rivet Amico, K. Mulligan, L. R. Bushman, R. J. Hance, C. Ganoza, P. Defechereux, B. Postle, F. Wang, J. Jeff McConnell, J. Zheng, J. Lee, J. F. Rooney, H. S. Jaffe, A. I. Martinez, D. N. Burns, and D. V. Glidden for the iPrEx Study Team. 2010. “Preexposure Chemoprophylaxis for HIV Prevention in Men Who Have Sex with Men.” New England Journal of Medicine 363: 2587–99. https://doi.org/10.1056/nejmoa1011205.Search in Google Scholar
Grebe, E., G. Murphy, S. M. Keating, D. Hampton, M. P. Busch, S. Facente, K. Marson, C. D. Pilcher, A. Longosz, S. H. Eshleman, T. C. Quinn, A. Welte, N. Parkin, and O. Laeyendecker. 2019. “Impact of HIV-1 Subtype and Sex on Sedia Limiting Antigen Avidity Assay Performance.” In Poster Presented at Conference on Retroviruses and Opportunistic Infections. Seattle.Search in Google Scholar
Hanscom, B., J. P. Hughes, B. D. Williamson, and D. Donnell. 2019. “Adaptive Non-inferiority Margins under Observable Non-Constancy.” Statistical Methods in Medical Research 28: 3318–32. https://doi.org/10.1177/0962280218801134.Search in Google Scholar
Kaplan, E. H., and R. Brookmeyer. 1999. “Snapshot Estimators of Recent HIV Incidence Rates.” Operations Research 47: 29–37. https://doi.org/10.1287/opre.47.1.29.Search in Google Scholar
Kassanjee, R., T. A. McWalter, T. Bärnighausen, and A. Welte. 2012. “A New General Biomarker-Based Incidence Estimator.” Epidemiology 23: 721–8. https://doi.org/10.1097/ede.0b013e3182576c07.Search in Google Scholar
Koss, C. A., E. D. Charlebois, J. Ayieko, D. Kwarisiima, J. Kabami, L. B. Balzer, M. Atukunda, F. Mwangwa, J. Peng, Y. Mwinike, J. Peng, Y. Mwinike, A. Owaraganise, G. Chamie, V. Jain, N. Sang, W. Olilo, L. B. Brown, C. Marquez, K. Zhang, T. D. Ruel, C. S. Camlin, J. F. Rooney, D. Black, T. D. Clark, M. Gandhi, C. R. Cohen, E. A. Bukusi, M. L. Petersen, M. R. Kamya, and D. V. Havlir for the SEARCH Collaboration. 2020. “Uptake, Engagement, and Adherence to Pre-exposure Prophylaxis Offered after Population HIV Testing in Rural Kenya and Uganda: 72-Week Interim Analysis of Observational Data from the SEARCH Study.” The Lancet HIV 7: e249–61. https://doi.org/10.1016/s2352-3018(19)30433-3.Search in Google Scholar
Landovitz, R., D. Donnell, M. E. Clement, B. Hanscom, L. Cottle, L. Coelho, R. Cabello, S. Chariyalertsak, E. F. Dunne, I. Frank, J. A. Gallardo-Cartagena, A. H. Gaur, P. Gonzales, H. V. Tran, J. C. Hinojosa, E. G. Kallas, C. F. Kelley, M. H. Losso, J. Valdez Madruga, K. Middelkoop, N. Phanuphak, B. Santos, O. Sued, J. Valencia Huamaní, E. T. Overton, S. Swaminathan, C. del Rio, R. M. Gulick, P. Richardson, P. Sullivan, E. Piwowar-Manning, M. Marzinke, C. Hendrix, M. Li, Z. Wang, J. Marrazzo, E. Daar, A. Asmelash, T. T. Brown, P. Anderson, S. H. Eshleman, M. Bryan, C. Blanchette, J. Lucas, C. Psaros, S. Safren, J. Sugarman, H. Scott, J. J. Eron, S. D. Fields, N. D. Sista, K. Gomez-Feliciano, A. Jennings, R. M. Kofron, T. H. Holtz, K. Shin, J. F. Rooney, K. Y. Smith, W. Spreen, D. Margolis, A. Rinehart, A. Adeyeye, M. S. Cohen, M. McCauley, and B. Grinsztejn for the HPTN 083 Study Team. 2021. “Cabotegravir for HIV Prevention in Cisgender Men and Transgender Women.” New England Journal of Medicine 385: 595–608.10.1056/NEJMoa2101016Search in Google Scholar PubMed PubMed Central
Mayer, K. H., A. Agwu, and D. Malebranche. 2020a. “Barriers to the Wider Use of Pre-exposure Prophylaxis in the United States: A Narrative Review.” Advances in Therapy 37: 1778–811. https://doi.org/10.1007/s12325-020-01295-0.Search in Google Scholar PubMed PubMed Central
Mayer, K. H., J.-M. Molina, M. A. Thompson, P. L. Anderson, K. C. Mounzer, J. J. De Wet, E. DeJesus, H. Jessen, R. M. Grant, P. J. Ruane, P. Wong, R. Ebrahimi, L. Zhong, A. Mathias, C. Callebaut, S. E. Collins, M. Das, S. McCallister, D. M. Brainard, C. Brinson, A. Clarke, P. Coll, F. A. Post, and C. B. Hare. 2020b. “Emtricitabine and Tenofovir Alafenamide vs Emtricitabine and Tenofovir Disoproxil Fumarate for HIV Pre-exposure Prophylaxis (DISCOVER): Primary Results from a Randomised, Double-Blind, Multicentre, Active-Controlled, Phase 3, Non-Inferiority Trial.” The Lancet 396: 239–54. https://doi.org/10.1016/s0140-6736(20)31065-5.Search in Google Scholar
Mera, R., S. Scheer, C. Carter, M. Das, J. Asubonteng, S. McCallister, and J. Baeten. 2019. “Estimation of New HIV Diagnosis Rates Among High-Risk, Prep-Eligible Individuals Using HIV Surveillance Data at the Metropolitan Statistical Area Level in the United States.” Journal of the International AIDS Society 22: e25433. https://doi.org/10.1002/jia2.25433.Search in Google Scholar PubMed PubMed Central
Mullick, C., and J. Murray. 2020. “Correlations between Human Immunodeficiency Virus (HIV) Infection and Rectal Gonorrhea Incidence in Men Who Have Sex with Men: Implications for Future HIV Preexposure Prophylaxis Trials.” The Journal of Infectious Diseases 221: 214–7. https://doi.org/10.1093/infdis/jiz037.Search in Google Scholar PubMed
Sullivan, P. S., and A. J. Siegler. 2018. “Getting Pre-exposure Prophylaxis (PrEP) to the People: Opportunities, Challenges and Emerging Models of PrEP Implementation.” Sexual Health 15: 522–7. https://doi.org/10.1071/sh18103.Search in Google Scholar
Thigpen, M. C., P. M. Kebaabetswe, L. A. Paxton, D. K. Smith, C. E. Rose, T. M. Segolodi, F. L. Henderson, S. R. Pathak, F. A. Soud, K. L. Chillag, R. Mutanhaurwa, L. Ian Chirwa, M. Kasonde, D. Abebe, E. Buliva, R. J. Gvetadze, S. Johnson, T. Sukalac, V. T. Thomas, C. Hart, J. A. Johnson, C. K. Malotte, C. W. Hendrix, and J. T. Brooks for the TDF2 Study Group. 2012. “Antiretroviral Preexposure Prophylaxis for Heterosexual HIV Transmission in Botswana.” New England Journal of Medicine 367: 423–34. https://doi.org/10.1056/nejmoa1110711.Search in Google Scholar
© 2021 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Research Articles
- Confidence limits for the averted infections ratio estimated via the counterfactual placebo incidence rate
- Sample size calculation for active-arm trial with counterfactual incidence based on recency assay
- Principal surrogates in context of high vaccine efficacy
- Evaluating the power of the causal impact method in observational studies of HCV treatment as prevention
- GLM based auto-regressive process to model Covid-19 pandemic in Turkey
- Contact network uncertainty in individual level models of infectious disease transmission
Articles in the same Issue
- Research Articles
- Confidence limits for the averted infections ratio estimated via the counterfactual placebo incidence rate
- Sample size calculation for active-arm trial with counterfactual incidence based on recency assay
- Principal surrogates in context of high vaccine efficacy
- Evaluating the power of the causal impact method in observational studies of HCV treatment as prevention
- GLM based auto-regressive process to model Covid-19 pandemic in Turkey
- Contact network uncertainty in individual level models of infectious disease transmission