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Abstract: Somaticmutations in cancer can be viewed as amixture distribution of severalmutational signatures,

which can be inferred using non-negative matrix factorization (NMF). Mutational signatures have previously

been parametrized using either simple mono-nucleotide interaction models or general tri-nucleotide interac-

tion models. We describe a flexible and novel framework for identifying biologically plausible parametriza-

tions of mutational signatures, and in particular for estimating di-nucleotide interaction models. Our novel

estimation procedure is based on the expectation–maximization (EM) algorithm and regression in the log-

linear quasi–Poisson model. We show that di-nucleotide interaction signatures are statistically stable and suffi-

ciently complex to fit themutational patterns. Di-nucleotide interaction signatures often strike the right balance

between appropriately fitting the data and avoiding over-fitting. They provide a better fit to data and are bio-

logically more plausible than mono-nucleotide interaction signatures, and the parametrization is more stable

than the parameter-rich tri-nucleotide interaction signatures. We illustrate our framework in a large simulation

study where we compare to state of the art methods, and show results for three data sets of somatic mutation

counts from patients with cancer in the breast, Liver and urinary tract.

Keywords: cancer genomics; expectation-maximization (EM) algorithm; interaction terms; mutational signa-

tures; non-negative matrix factorization (NMF); Poisson regression
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1 Introduction

Themutation rate at a particular site in the genome often depends on both the left and right flanking nucleotides.

Hwang and Green (2004) analysed a 1.7 mega-base alignment of 19 mammalian species, and perhaps the most

striking observation was amuch elevatedmutation rate for C > T mutations when the right flanking nucleotide

is a G. The elevated rate reflects deamination of methyl cytosine. The CG-methylation-deamination process was

the main focus in the neighbour-dependent models described in Arndt et al. (2003) and Hobolth (2008). Further-

more, longer contextual patterns have recently been shown to impact the mutation rates induced by ultraviolet

light (Lindberg et al. 2019).

Analyses of somatic mutations in cancer patients have increased our basic understanding of themutational

processes operating in human cancer (Alexandrov et al. 2020). For example, mutational signatures from tobacco
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smoking (Alexandrov et al. 2016) and UV-light (e.g. Shen et al. 2020) have been identified. Furthermore, muta-

tional signatures can be used as biomarkers for drug sensitivity (Levatić et al. 2022) and deciding the diagnosis

and treatment of cancer patients (Nik-Zainal and Morganella 2017). A simple parametrization of mutational

signatures is essential to achieve statistically stable estimation, easier interpretation of signatures, and the

possibility of including more flanking nucleotides than just the nearest neighbors.

Our method is a flexible framework for parametrizing mutational signatures by biologically plausible

interaction terms. The frameworkmakes it possible to greatly reduce the number of parameterswhile still main-

taining a good fit to the data. The mutational signatures from Alexandrov et al. (2013) and Shiraishi et al. (2015)

constitute two extremes in our framework. We view signatures as a composition of interactions between the

mutation typeM and the left and right flanking nucleotides L and R as shown in Figure 1.

In this context, the general model from Alexandrov et al. (2013) with 96 mutation types includes all tri-

nucleotide interaction terms, and the independence model from Shiraishi et al. (2015) has no interaction terms

between themutation and the flanking nucleotides i.e. mono-nucleotide interaction terms. Using classical factor

analysis notation we can write the general model as L ×M × R and the mono-nucleotide model as L+M + R.

We propose a model that reaches the middle-ground between the complex model of Alexandrov et al. (2013)

and the simple model of Shiraishi et al. (2015). Our model includes di-nucleotide interaction terms between the

mutation type and flanking nucleotides and can be written L ×M +M × R. We also investigate combinations

of the parametrizations for mutational signatures. Our novel and flexible estimating procedure is based on the

EM-algorithm and a quasi-Poisson log-linear model for optimizing the free parameters.

In a simulation study with changing number of signatures and patients we show that the di-nucleotide

model strikes a good balance between maintaining a good fit to the data and reconstruction of the underlying

true signatures. We also compare our framework to state of the art methods for 96 mutation types with one

flanking nucleotide as well as 1536 mutation types with two flanking nucleotides. We find that the di-nucleotide

model reconstructs the true signatures verywell, and compares favorable to three othermethods formutational

signature extraction; signeR (Rosales et al. 2017), SparseSignatures (Lal et al. 2021a) and sigfit (Gori and
Baez-Ortega 2018).

We also analyze three data sets of somatic mutations in cancer patients. The first data set is from breast

cancer patients with 96mutation types. We analyze the 214 breast cancer patients from Alexandrov et al. (2020),

and we refer to this data set as BRCA. We show that many of the recovered signatures can be parametrized by

the simpler di-nucleotide or even mono-nucleotide parametrization. In a bootstrap and downsampling exper-

iment we also show how simpler parametrizations give a better reconstruction of both the exposures and the

signatures.

The second data set is from 260 Liver cancer patients with 96 mutation types from Alexandrov et al.

(2020). For this data set we again see that many of the recovered signatures can be explained by much simpler

parametrizations. The signatures found for the di-nucleotidemodel is alsomore similar to the COSMIC signatures

identified for Liver cancer in Alexandrov et al. (2020) compared to the mono- and tri-nucleotide models.

Figure 1: Graphical illustration of the parametrization of the mutation types. (a) The natural features for the mutation types are the left

nucleotide L, right nucleotide R, and the base mutation M. (b) The three parametrizations we are analyzing in this paper for mutation

types with one flanking nucleotide at each side.
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The third data set is fromurothelial carcinomaof the upper urinary tract (Hoang et al. 2013) from26 patients

with 1536 mutation types. These mutation types include two flanking nucleotides to each side of the base muta-

tion. This data was also analysed by Shiraishi et al. (2015), and we refer to the data as UCUT. We find that the

di-nucleotide interaction models fit the data substantially better than the mono-nucleotide models and are

statistically much more stable than the full penta-nucleotide model.

In general, our analyses validate the relevance of our flexible framework for mutational signatures. The di-

nucleotide signatures provide a better fit to the data and are biologically more plausible than mono-nucleotide

signatures, and the parametrization ismore stable than the parameter-rich higher-order signatures that include

all interaction terms.

Our paper is organized as follows. In Section 2 we describe non-negative matrix factorization and

parametrization of amutational signature in terms of interactions between the nucleotides in themutation type.

Section 3 includes a simulation study and analyzes of the BRCA, Liver and UCUT data sets. Maximum likelihood

estimation is carried out using a novel combination of the expectation-maximization algorithm (Dempster et al.

1977) and regression in the quasi-Poisson model (e.g. McCullagh and Nelder 1989), and is described in detail in

Section 4. The paper ends with a general discussion about parametrization and model selection for mutational

signatures (Section 5). The data and code for reproducing the results and figures are available at https://github

.com/ragnhildlaursen/paramNMF_ms.

2 Determining the mutational signatures

Mutational signatures are derived from mutational counts using an unsupervised method called non-negative

matrix factorization (NMF). In this section we first explain NMF in general terms and afterwards how parame-

terization of the mutational signatures is included in the framework.

2.1 Non-negative matrix factorization

Given a datamatrixV ∈ ℕN×T
+ , themain aim of non-negativematrix factorization (NMF) is to find a factorization

WH, where the product of the non-negative exposure (sometimes also called weight or loading) matrix W ∈
ℝN×K
+ and the non-negative signature matrix H ∈ ℝK×T

+ provide a good approximation of the data matrix, i.e.

V ≈ WH. (1)

In our application N is the number of cancer patients, T is the number of mutation types, and each entry

V
nt
is the total number of somatic cancer mutations of type t in patient n. The non-negative weight matrixW is

of size N × K, and the non-negative mutational signature matrix H is of size K × T . Each of the K signatures is

a discrete probability distribution of length T , i.e. has T − 1 free non-negative parameters that sum to at most

one. The rank K of the factorization is most often one or more magnitudes smaller than the minimum of N and

T . For the BRCA data set, for example, we have the number of signatures K around 6–10, number of patients

N = 214, and number of mutation types T = 96.

In general, the number of observations is N × T and the number of free parameters is N × K for the weight

matrix and K × (T − 1) for the signature matrix. With N = 214 patients and K = 8 signatures the number of

observations N × T = 214 × 96 = 20, 544 are estimated using N × K + K × (T − 1) = 214 × 8+ 8 × 95 = 1712+
760 = 2472 free parameters. Thus, in general, this approach has a large number of free parameters compared to

the size of the data matrix. These considerations suggest that parametrizing a mutational signature is fruitful.

2.2 Parametrization of a mutational signature

We parametrize each mutational signature h = (h1, . . . , hT ) by the mutation type as a function of the base muta-

tionM, the flanking left base L and the flanking right base R as shown in Figure 1(a). The number of mutations is

12 without strand-symmetry, and 6 with strand-symmetry. Each flanking nucleotide can be one of the four types

https://github.com/ragnhildlaursen/paramNMF_ms
https://github.com/ragnhildlaursen/paramNMF_ms
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A, C,G or T . The different factors are thus the left neighbour L (4 categories), the right neighbour R (4 categories),

and the mutation typeM (6 or 12 categories). In all of the following we assume strand-symmetry, so thatM has

6 categories.

We model the mutational signatures with a log-linear parametrization given by

h
t
= exp

(
(X𝛽)

t

)

T∑
t=1

exp
(
(X𝛽)

t

) , t = 1,… , T, (2)

where X has dimension T × S and is the design matrix that describe the common factors among the different

mutation types and 𝛽 ∈ ℝS is a vector of S parameters for the different factors. This framework thereforemakes

it possible to choose any type of parametrization for the signatures through the designmatrix X. In Section 2.2.1

we consider parametrizations for 96 mutation types (one flanking nucleotide at each side of the mutation). We

consider the general tri-nucleotide interaction model L ×M × R, the simple mono-nucleotide model L+M + R

and the di-nucleotide interaction model L ×M +M × R. In Section 2.2.2 we consider parametrizations for 1536

mutation types (two flanking nucleotides at each side of themutation).We consider the general penta-nucleotide

interaction model L2 × L1 × R × R1 × R2, the simple mono-nucleotide model L2 + L1 +M + R1 + R2, and a suite

of models in-between such as the full di-nucleotide interaction model L2 × L1 + L1 ×M +M × R1 + R1 × R2. We

explain in detail the parametrizations and corresponding design matrix in the next two subsections.

2.2.1 One flanking nucleotide at each side of the mutation

A summary of the three parametrizations for mutational signatures with 96 mutation types is provided in

Figure 1(b). We consider parametrizations with no interaction between nucleotides (mono-nucleotide signa-

tures), interaction between neighboring nucleotides (di-nucleotide signatures) and general interaction (tri-

nucleotide signatures).

Themutational signature hwith one flanking nucleotide at each side is a vector of length T = 4 × 6 × 4 = 96

indexed by 𝓁mr. Following classical factorial analysis of variance we specify the general tri-nucleotide interac-
tion model from Alexandrov et al. (2013) by L ×M × R. The model can be written as

h𝓁mr =
exp

(
𝛽L×M×R
𝓁mr

)
∑
𝓁∈L

∑
m∈M

∑
r∈R

exp
(
𝛽L×M×R
𝓁mr

) , (3)

wherem describes the six base mutation, and 𝓁 and r describe the four possible flanking nucleotides to the left

or right of the base mutation. This gives S = T = 4 × 6 × 4 = 96 different parameters in the 𝛽 vector and X = I
T

is the T × T identity matrix in the general formulation (2).

The mono-nucleotide interaction model L+M + R of Shiraishi et al. (2015) takes the form

h𝓁mr =
exp

(
𝛽M
m
+ 𝛽L𝓁 + 𝛽R

r

)
∑
𝓁∈L

∑
m∈M

∑
r∈R

exp
(
𝛽M
m
+ 𝛽L𝓁 + 𝛽R

r

) . (4)

In order to avoid confoundingwe define𝛽R
A
= 𝛽L

A
= 0. Therefore,we have S = 6+ 4+ 4− 2 = 12 remaining

parameters in the 𝛽 vector, which is a substantial reduction from the original model with 96 parameters. The

corresponding 96 × 12 design matrix X takes the form
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(5)

We propose the di-nucleotide interaction signature L ×M +M × R given by

h𝓁mr =
exp

(
𝛽M
m
+ 𝛽L×M𝓁m + 𝛽M×R

mr

)
∑
𝓁∈L

∑
m∈M

∑
r∈R

exp
(
𝛽M
m
+ 𝛽L×M𝓁m + 𝛽M×R

mr

) . (6)

In order to avoid confounding we define 𝛽L×M
Am

= 𝛽M×R
mA

= 0 for all the six possible basemutationsm ∈ {C >

A, C > G, C > T, T > A, T > C, T > G}. This signature therefore has a total of S = 4 × 6+ 4 × 6− 6 = 42 param-

eters and is a biologically plausible alternative between the simple mono-nucleotide multiplicative signature of

Shiraishi et al. (2015) and the complex tri-nucleotide interaction signature of Alexandrov et al. (2013). From the

mutational pattern of spontaneous cytosine deamination in CpG contexts, we know that some processes are

dependent on only one neighbouring nucleotide (Arndt et al. 2003). Results for the models with one flanking

nucleotide at each side of the mutation are shown for the breast and Liver cancer patients in Section 3.2 and 3.3,

respectively.

2.2.2 Two flanking nucleotides at each side of the mutation

In Table 1 and Figure 2 we give an overview of the factorizations with two flanking nucleotides at each side and

how they are nested in each other.

Shiraishi et al. (2015) considers higher-order context dependencies where the mutation types include four

flanking bases, which gives five different factors L2, L1,M,R1 andR2. The number ofmutation types in this case is

T = 42 × 6 × 42 = 6 × 44 = 1536 and the number of parameters in themono-nucleotidemodel with two flanking

neighbours on each side of the mutation is 3+ 3+ 6+ 3+ 3 = 6+ 3 × (2 × 2) = 18.

Table 1: Parametrizations of a mutational signature with two flanking nucleotides at each side. We consider two categories of

di-nucleotide interaction models. The first category has interaction between the flanking nucleotide and the mutation. The second

category has interaction between the two nearest neighbours.

Signature Factorization Number of parameters

Mono-nucleotide L2 + L1 + M + R1 + R2 6+ 3 × 4= 18

Di-nucleotide L2 × L1 + L1 × M + M × R1 + R1 × R2 42+ 12 × 2= 66

Tri-nucleotide L1 × M × R1 6 × 42 = 96

Penta-nucleotide L2 × L1 × M × R1 × R2 6 × 44 = 1536

Di- and mono-nucleotide L2 + L1 × M + M × R1 + R2 42+ 3 × 2= 48

Tri- and mono-nucleotide L2 + L1 × M × R1 + R2 96+ 3 × 2= 102

Tri- and di-nucleotide L2 × L1 + L1 × M × R1 + R1 × R2 96+ 12 × 2= 120
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Figure 2: Factor diagram for the signatures used for the UCUT data set. The diagram shows the number of parameters for each

signature and how the signatures are nested in each other.

Our framework is very flexible, and we are able to analyse combinations of mono-, di- and tri-nucleotide

interaction terms within a signature. For example, we consider the signatures L2 + L1 ×M +M × R1 + R2, L2 +
L1 ×M × R1 + R2, and L2 × L1 + L1 ×M × R1 + R1 × R2. These three signatures are combinations of mono-, di-

and tri-nucleotide interactions. Results for applying these models to the UCUT data are provided in Section 3.4.

3 Results

This section includes a simulation study to compare the different parametrizations and afterwards an analy-

sis of three real data sets. In the simulation study we vary both the number of signatures and the number of

patients. For the real data sets we analyze two of the largest PCAWG tumor data sets: the BRCA data set and the

Liver cancer data set. We compare the retrieved signatures with the identified COSMIC signatures from Alexan-

drov et al. (2020). The third real data set includes two flanking nucleotides in the mutation type and is the same

data analyzed in Shiraishi et al. (2015). We determine the optimal number of signatures, compare and eval-

uate the various parametrizations, and use parametric bootstrap and downsampling to investigate statistical

robustness and stability of the signatures.

The most appropriate statistical model can be determined by several methods that are balancing between

a good fit to the data and avoiding over-fitting, and the choice depends on the application of the model (e.g.

Shmueli 2010). In this paper we use the Bayesian Information Criterion (BIC) given by

BIC = nprm log nobs − 2𝓁(W ,H;V) ≡ nprm log nobs + 2GKL,

where nprm is the number of parameters, nobs is the number of observations, 𝓁(W ,H; V) is the log-likelihood
function from (8), GKL is the generalized Kullback–Leibler divergence from (9), and≡means that the statement

is true up to an additive constant. Appropriate models have a small BIC because they represent a good balance

between model complexity (measured in terms of the number of parameters) and goodness of fit (measured in

terms of the negative log-likelihood).

3.1 Simulation study

In this simulation studyweare simulating signatures having the di-nucleotide parametrization. The exposure for

the different signatures are simulated using a negative binomial model with mean 1000 and dispersion param-

eter 1.5 following Lal et al. (2021a). The data sets are then constructed as the matrix product of the exposures

and the signatures. At last Poisson noise has been added to all the data sets. In Figure 3 we are both changing

the number of signatures and the number of patients included in the dataset. We observe that if the true muta-

tional signatures are di-nucleotide interaction signatures, then the di-nucleotide model is always superior to the

simple mono-nucleotide or general tri-nucleotide model for any number of signatures or patients. Additionally

we observe that the di-nucleotide model maintain a good fit to data even though the number of parameters is

greatly reduced.

In Figure 4 we compare our method to other state of the art methods that has also been implemented

in R. This includes signeR (Rosales et al. 2017), SparseSignatures (Lal et al. 2021a) and sigfit (Gori and
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Figure 3: Simulating di-nucleotide signatures creating 100 different data sets for different number of patients and signatures. The figure

both shows the reconstruction of the signatures through the average cosine similarity and the fit to data through the Generalized

Kullback–Leibler divergence (GKL). The number of patients is fixed to 100, when the number of signatures varies (left) and the number of

signatures is fixed to 15, when the number of patients varies (right).

Figure 4: Comparing different methods for 10 datasets of 100 patients for 5 and 15 signatures. The methods SigneR, SparseSignatures
and sigfit are run with their default implementaions. The two figures show the results for tri-nucleotide mutation types with only one

flanking nucleotide (left) and the results for the penta-nucleotide mutation types with two flanking nucleotides (right).

Baez-Ortega 2018). We compare these methods with the three models from our framework; the mono- and

di-nucleotide parametrization and the regular NMF with no parametrization. The regular NMF is called tri-

nucleotide when the mutation types has one flanking nucleotide and penta-nucleotide when the mutation type

has two flanking nucleotides. We have only conducted this for 10 datasets with 5 or 15 signatures as many of

the methods are very time consuming. Again we can clearly see that when the true mutational signatures are

di-nucleotide signatures the di-nucleotide model has the best performance among all the methods.

3.2 Analysis of BRCA

Recall that the breast cancer data set has T = 96 mutation types and N = 214. The number of observations for

the data set is nobs = T × N = 96 × 214 = 20, 544.
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Figure 5: The Bayesian Information Criterion (BIC) for different number of signatures K for the BRCA dataset. The BIC is minimized for K

= 14, K = 9 and K = 8 when all signatures are either mono-, di- or tri-nucleotide (dark red, yellow and blue curves). The BIC is minimized

for K = 8 when the parametrization of signatures is free (dark curve). The top shows the optimal mixture of signature parametrizations

for each number of signatures K . For example, the optimal mixture for K = 8 signatures consists of 1 mono-nucleotide, 5 di-nucleotide

and 2 tri-nucleotide signatures.

3.2.1 Choosing the number of signatures and parametrization

In Figure 5 we plot the BIC for different types of parameterizations. We plot the BIC for models where all signa-

tures are eithermono-, di- or tri-nucleotide parametrizations, but also the optimalmixture,where each signature

can be any of the three parametrizations from Figure 1(b). The mono-nucleotide model has an optimal number

of signatures at K = 14, which is much higher than the K = 8 signatures that are optimal for both the mixture

model and the exclusive tri-nucleotide model. The optimal number of signatures is K = 9 when all signatures

are of the di-nucleotide type. Even though there are much fewer parameters in the mixture model compared to

the exclusive tri-nucleotidemodel, the optimal number of signatures is identical. In the analysis of the signatures

we therefore choose to fix the number of signatures at K = 8.

We allow a flexible parametrization of type L ×M × R, L ×M +M × R, and L+M + R for each of theK = 8

signatures. We could investigate 38 = 6561 models, but the models are only identifiable up to permutation (see

the beginning of Section 4); this results in 45 different models. For the 45 models, Figure 6 shows the General-

ized Kullback–Leibler divergence (GKL) and the Bayesian Information Criterion (BIC). The models are ordered

according to the number of free parameters. The EM-algorithm can get stuck in local maxima of the likelihood

function, so we start the algorithm by running 100 different initializations for 500 iterations and identify the

maximum. From that maximum we then continue iterating until convergence. This procedure of starting the

algorithmmultiple times and running for a few iterations is recommended by Biernacki et al. (2003) who tested

many different ways of running the EM-algorithm to escape local maxima and identify the global maximum

likelihood value.

We observe a steep decrease in GKL when the mono-nucleotide assumption is relaxed, and one or more

signatures are allowed to contain di-nucleotide or even tri-nucleotide interactions. This indicates that only apply-

ing mono-nucleotide signatures is biologically too restrictive. The mixture model with the smallest BIC (Mix in

Figure 6) has one mono-nucleotide signature, five di-nucleotide signatures and two tri-nucleotide interaction
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Figure 6: Fit to mutational count data from 214 breast cancer patients for all possible interaction models. The generalized

Kullback–Leibler (GKL) and Bayesian Information Criterion (BIC) for all 45 models with K = 8 signatures. The models are ordered

according to the total number of parameters for the 8 signatures; e.g. 8 × 12= 96 for the sole mono-nucleotide model and 8 × 96= 768

for the sole tri-nucleotide model. The model with the smallest BIC is indicated, and consists of two tri-nucleotide signatures, five

di-nucleotide signatures and one mono-nucleotide signature.

signature. The fit to the data is too poor for the independent model, and the general model has too many free

parameters. This is even more evident when we look at the robustness of the signatures; this is the topic for the

next section.

3.2.2 Model validation and stability of signatures

In Figure 7, we show the eight signatures for the four different models marked in Figure 6. Each row corre-

sponds to a model, and the signatures are matched for comparison. For the mixture model the parametrization

is ordered according to Figure 6, whichmeans signature 1 has amono-nucleotide parametrization, signature 2 to

6 have a di-nucleotide parametrization and the last two have a tri-nucleotide parametrization. We observe that

the signatures are very similar across the mixture, di- and tri-nucleotide models, whereas the mono-nucleotide

model differs more from the others.

We validated the inferred signatures by matching to the signatures from version 3 of the Catalogue Of

Somatic Mutations In Cancer (COSMIC) database (https://cancer.sanger.ac.uk/cosmic) with the highest cosine

similarity. Notice that signature 4 is matched with SBS39 for the mono- and di-nucleotide parametrization and

with SBS3 for the mixture and tri-nucleotide parametrization. All the models have a cosine similarity above 0.8

to the COSMIC signatures except the mono-nucleotide model for signature 1, 5 and 8. All of the COSMIC signa-

tures we have matched is equivalent to the ones recovered for the same breast cancer data in Alexandrov et al.

(2020). This includes all the six signatures (SBS1, SBS2, SBS3, SBS5, SBS13 and SBS18) that was included in more

than half of the tumors.

This indicates that many of the COSMIC signatures can be parametrized by a much simpler di-nucleotide

parametrization and a few can even be explained by mono-nucleotide parametrization. The ten most impor-

tant interactions for these eight COSMIC signatures are shown in Figure 8. The top interactions are found with

forward selection, where we include the interaction making the largest increase in the cosine similarity to

the underlying true signature. The coefficient for each interaction is determined as the average over all the

https://cancer.sanger.ac.uk/cosmic
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Figure 8: The top interactions for the eight COSMIC signatures found for the BRCA dataset. The top interactions are found with forward

selection from the interaction making the largest increase in the cosine similarity to the COSMIC signature.

mutation types including that specific interaction. The figure again supports that many of the most important

interactions are mono- or di-nucleotide interactions. This figure also supports the results for the mixture model,

where SBS8 is parametrized with the mono-nucleotide model as the top seven interactions are from the mono-

nucleotide model. Similarily the mixture model parametrized SBS17b and SBS18 with the tri-nucleotide model,

which is shown by the many top tri-nucleotide interactions. The rest of the signatures were parametrized by the

di-nucleotide model, which are mostly driven by one or two important di-nucleotide interactions.

In order to investigate the statistical stability of the signatures we use parametric bootstrap. For a given

model with an estimate of the count matrix ŴĤ we simulate 50 data sets from the Poisson model (7). For each

of the simulated data sets we re-estimate the exposures and signatures and use cosine similarity to investigate

how close the re-estimated signatures are to the true signatures under the specific model. In Figure 9 we show

the cosine similarity for reconstructing the signatures from the parametric bootstrap procedure.

The mono-nucleotide model has very stable signatures as the cosine similarity is consistently high, but the

signatures are also rather different from the signatures in the other models, and they are giving a substantially

worse fit to the data. In contrast, the exclusive tri-nucleotide model generally provides a good fit to the data,

but due to the many parameters in the model, the bootstrap variability is generally higher than for the other

Figure 9: The cosine similarity for reconstructing the signatures with parametric bootstrapping for the BRCA data.
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Figure 10: The mean cosine similarity between the recovered exposures from down-sampled BRCA data compared to the exposures

from the original BRCA data.

models. Our new exclusive di-nucleotide model andmixture model reach the middle ground between these two

extremes. The mixture model shows more bootstrap variability than the di-nucleotide model, but the mixture

model also gives a better fit to the data.

Finally, we use down-sampling to investigate the stability of the exposures for the different parametriza-

tions of the signatures. We again compare the four different models Mono (8 mono-nucleotide interaction

signatures), Di (8 di-nucleotide interaction signatures), Tri (8 tri-nucleotide interaction signatures) and Mix

(1mono-nucleotide, 5 di-nucleotide and 2 tri-nucleotide interaction signatures).We fix the eight signatures to the

values obtained from the full data and down-sample to 1 percent, 2 percent or 5 percent of the total originalmuta-

tion counts.We repeat the downsampling 50 times. In each experimentwe then re-estimate the exposures for the

eight signatures of the four interaction models by minimizing the generalized Kullback–Leibler divergence. In

Figure 10 we show the mean cosine similarity between the original and re-estimated exposures from the down-

sampled data for the four differentmodels.We observe that the exposures for the di-nucleotidemodel are better

recovered than the exposures for the tri-nucleotide model. In general, we observe that a simpler parametriza-

tion gives a more robust estimation of the exposures. This feature could be important if the exposures are used

in the clinic for deciding upon diagnosis or treatment of cancer patients.

3.3 Analysis of Liver data

In this section we analyse 260 Liver cancer patients from the PCAWG tumors with the three models, where

all the signatures are parametrized with either mono-, di- or tri-nucleotide interactions. The results for these

models are shown in Figure 11 together with the mixture model, where each signature can by any of the three

parametrizations. When running all the possible mixture models for different number of signatures we see that

the models with the smallest BIC include both di-nucleotide signatures and even mono-nucleotide signatures

(Figure 11(a)). In addition, we see in Figure 11(b) that the di-nucleotide and mixture model are identifying more

of the COSMIC signatures that were found for Liver cancer in Alexandrov et al. (2020). The top interaction effects

for many of these COSMIC signatures also includemanymono- or di-nucleotide interactions, which again shows

that simpler parametrizations can be used to explain many COSMIC signatures (Figure 11(c)).

3.4 Analysis of UCUT data

The UCUT data contains information about the two flanking bases at each side. The UCUT count matrix has

T = 6 × 44 = 1536 mutation types and N = 26 patients. The data consists of 14.715 somatic mutations, and the

number of non-zero entries in the count matrix is nobs = 5260.
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Figure 11: Analysis of the Liver data set. (a) The bayesian information criteria (BIC) for changing number of signatures K . This is shown

for four different models; the red, orange and blue lines are where all the signatures are parametrized with mono-, di-og tri-nucleotide

signatures, respectively. The grey line shows the BIC for the optimal mixture of the three different parametrisations. In the top it is

shown how many of the signatures that are parametrized with each of the three different parametrizations. (b) Fixing the number of

signatures at 12, the figure shows the match to the COSMIC signatures identified for Liver cancer in Alexandrov et al. (2020). The

number is the cosine similarity and it is only shown if the value was above 0.75. (c) The top ten interactions for the COSMIC signatures

recovered for the Liver data set. The top interactions are found with forward selection from the interaction making the largest increase in

the cosine similarity to the COSMIC signature.

3.5 Choosing the number of signatures and parametrization

For the UCUTwith two flanking nucleotides at each side of themutation we have also found the optimal number

of signatures for different number of parametrizations in Figure 12. Recall the possible parametrizations from

Table 1. Three parametrizations are not included in the plot because theywere never part of the optimalmixture.

We also decided to remove the full penta-nucleotidemodel from the plot because the BICwas extremely high due

to the many parameters. The optimal number of signatures for the penta-nucleotide model was therefore also

only one signature. Again, we see that a simpler parametrization gives a higher optimal number of signatures

to model the data. We chose to fix the number of signatures at K = 2 to follow Shiraishi et al. (2015) and this is

also the optimal number of signatures for the di-nucleotide model.

We firstly consider the seven models shown in Table 2, where both signatures have the same parametriza-

tion. The table summarizes the number of parameters nprm, model complexity nprm log nobs, model fit GKL, and

the differences between the model selection measure BIC and the smallest obtained BIC.

The penta-nucleotide interaction signature L2 × L1 ×M × R1 × R2 has 1536 parameters (recall Table 1), and

this many parameters inevitably results in over-fitting for the UCUT data set. This model is included as a
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Figure 12: The Bayesian Information Criterion (BIC) for different number of signatures K to find the optimal number of signatures for

the UCUT dataset. The top shows the optimal mixture of signature parametrizations for each number of signatures K .

Table 2: Summary statistics for the seven basic models for the UCUT data where both signatures have the same parametrization. The

models are ordered according to their GKL value. The number of signatures is K = 2 and the number of observations is nobs = 5260. At

last the mixture model with the smallest BIC is also depict, which all the other BIC values are compared to.

Model for the

two signatures

Number of

parameters nprm

Model complexity

nprm log nobs

Fit to

data GKL

Model selection

△BIC

L2 + L1 + M + R1 + R2 2 × 18= 36 308 10,422 2116

L1 × M × R1 2 × 96= 192 1645 10,182 2972

L2 + L1 × M + M × R1 + R2 2 × 48= 96 823 9788 1363

L2 + L1 × M × R1 + R2 2 × 102= 204 1748 9438 1588

L2 × L1 + L1 × M + M × R1 + R1 × R2 (a) 2 × 66= 132 1131 9008 111

L2 × L1 + L1 × M × R1 + R1 × R2 (b) 2 × 120= 240 2056 8658 336

L2 × L1 × M × R1 × R2 2 × 1536= 3072 26,321 6982 21,249

Mixture of signature (a) and (b) 120+ 66= 186 1594 8721 0

control to show that the full parametrization gives an extremely high BIC value compared to the other mod-

els. A parametrization with much fewer parameters is needed for inferring robust signatures, and the mono-

nucleotide interaction signatures L2 + L1 +M + R1 + R2 from Shiraishi et al. (2015) was originally developed for

this purpose. Here, we also consider a di-nucleotide signature of the type L2 × L1 + L1 ×M +M × R1 + R1 × R2,

and three signatures that have a combination of interaction terms L2 + L1 ×M +M × R1 + R2, L2 + L1 ×M ×
R1 + R2 and L2 × L1 + L1 ×M × R1 + R1 × R2. Finally, we include the tri-nucleotide signature L1 ×M × R1 to

investigate whether the two immediate flanking nucleotides are sufficient for explaining the probability of a

somatic cancer mutation.

We observe that two immediate flanking nucleotides (one at each side) are not sufficient for explaining the

mutation patterns: the L1 ×M × R1 model has the same poor fit to data as the mono-nucleotide model despite

having more than five times as many parameters. The four models L2 + L1 ×M +M × R1 + R2, L2 + L1 ×M ×
R1 + R2, L2 × L1 + L1 ×M +M × R1 + R1 × R2 and L2 × L1 + L1 ×M × R1 + R1 × R2 all show a relatively good fit
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to the data, but the L2 + L1 ×M × R1 + R2 model is penalized for the many parameters. Finally, the L2 × L1 +
L1 ×M +M × R1 + R1 × R2 and L2 × L1 + L1 ×M × R1 + R1 × R2 model have a superior fit to the data compared

to the other models, and does not contain too many parameters. We note that these two models are the only

models with di-nucleotide interaction between the two left flanking nucleotides (both models contain the term

L2 × L1) and the two right flanking nucleotides (the term R1 × R2), and conclude that these interaction terms are

important for quantifying the probability of a somatic mutation in this cancer type.

We also consider parametrizations of the signature matrix where the two signatures have different

parametrizations. The GKL and BIC for 16 different combinations of the seven parmetrizations is summarized in

Figure 13. Here, we have ordered the models by the GKL value as this automatically groups the different signa-

ture parametrizations. We have only included the penta-nucleotide signature once at last, as it gives extremely

high BIC values due to the many parameters in the model.

Similar to our finding for the BRCA data set, we observe that two mono-nucleotide signatures L2 + L1 +
M + R1 + R2 give a poor fit to the data. We emphasize that two tri-nucleotide signatures L1 ×M × R1 or a mix-

ture of the two all have a poor fit to the data, which means the information about the flanking nucleotides

two positions away from the mutation is important. We find that a mixture between the two parametriza-

tions L2 × L1 + L1 ×M +M × R1 + R1 × R2 and L2 × L1 + L1 ×M × R1 + R1 × R2 fits the data very well despite

the rather few parameters; this mixture model has the smallest BIC value.

In Figure 14 the two signatures are visualized for the Mono, Di, Mix and Penta model. For the mixture

model, signature 1 is described by the tri- and di-nucleotide interactions and signature 2 only by the di-nucleotide

interactions. In the original study in Hoang et al. (2013) they identify signature 1 as a novel mutation signature

that predominantly contains T > A substitutions at CpTpG site caused by aristolocthic acids. This is also reflected

in Figure 15, where the top interaction is the CpTpG site. This single tri-nucleotide interaction is the likely the

reason why the best parametrization for the signature includes tri-nucleotide interactions.

3.5.1 Model comparisons and stability of signatures

The cosine similarities for reconstructing the signatures from parametric bootstrap show that the penta-

nucleotide signatures are much worse at reconstructing the same signatures (Figure 16). Again, this indicates

Figure 13: The Generalized Kullback–Leibler for 16 models with two signatures for the UCUT data set. The models are ordered according

to GKL values, which also order the models by the first signature.
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Figure 14: Inferred signatures for the UCUT data set. Comparison of the two signatures for the Mono, Di, Mix and Penta models.

Figure 15: The top ten interactions that is increasing the cosine similarity to the retreived signatures.

Figure 16: The cosine similarity for reconstructing the signatures with parametric bootstrap for the UCUT data.
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the problem with too many parameters in the model. On the other hand, the model with two di-nucleotide sig-

natures and the mixture model is almost as stable as the mono-nucleotide signatures, but gives a much better

fit to data.

These findings demonstrate the relevance of our flexible framework for mutational signatures. The di-

nucleotide signatures provide a better fit to the data and are biologically more plausible than mono-nucleotide

signatures, and the parametrization is more stable than the parameter-rich signatures with interaction terms

higher than or equal to three. The ability to allow a combination of signatures is also advantageous.

4 Methods

In this sectionwe describe the EM-algorithm for estimating the parameters in non-negativematrix factorization.We first describe the

EM-algorithm for the traditional model where the only constraints on the exposure matrixW and signature matrix H in the matrix

factorization are that the entries must be non-negative (e.g. Cemgil 2009). Second, we extend the EM-algorithm to the situation where

the signatures are parametrized according to (2).

For mutational count data it is natural to assume that each entry is Poisson distributed

V
nt
∼ Pois

(
(WH)

nt

)
, n = 1,…N, t = 1,… , T. (7)

The data log-likelihood is then, up to an additive constant, given by

𝓁(W ,H;V) =
N∑

n=1

T∑

t=1

{
V
nt
log

(
(WH)

nt

)
− (WH)

nt

}
, (8)

and we determineW and H by maximizing the data log-likelihood. The details are provided in Section 4. Maximization of the data

log-likelihood is identical to minimizing the generalized Kullback–Leibler (GKL) divergence

GKL = GKL(W ,H;V) =
N∑

n=1

T∑

t=1

{
V
nt
logV

nt
− V

nt
log

(
(WH)

nt

)
− V

nt
+ (WH)

nt

}
. (9)

This follows as the negative data log-likelihood is proportional to the GKL up to an additive constant. The factorization is clearly

not unique up to permutation and scaling. Indeed, ifW and H are non-negative and A is a K × K permutation matrix, we have that

WA and A
−1
H are non-negative and WH = W(AA−1)H = (WA)(A−1

H). The permutation issue is taken into account by a potential

re-ordering of the mutational signatures and their corresponding weights. If A is a diagonal matrix with positive entries we also

have thatWA and A−1
H are non-negative andWH = (WA)(A−1

H). The scaling issue can be solved by normalizing the signatures in

H such that they sum to one, i.e. by choosing A = diag(d1,… , d
K
) as the diagonal matrix with entries d

k
= ∑T

t=1 Hkt
, k = 1,… ,K, on

the diagonal. We refer to Laursen and Hobolth (2022) for a general discussion of the NMF non-uniqueness problem and a general

procedure to determine the set of feasible solutions.

The data log-likelihood (8) is analytically intractable, but we can view the problem as amissing data problemwhere themissing

information is the assignment of each mutation to a signature. If this information was available, then a likelihood analysis would be

easy, and therefore the EM-algorithm (Dempster et al. 1977) applies.

4.1 EM-algorithm for traditional non-negative matrix factorization

Given a data matrix V ∈ ℕN×T
+ the aim of NMF is to find a non-negative factorizationWH, whereW ∈ ℝN×K

+ and H ∈ ℝK×T
+ approxi-

mates of our data V i.e. V ≈ WH. The rank K of the factorization is often chosen magnitudes smaller than the minimum of N and T .

A larger K obviously gives a better fit, but would potentially overfit the data. In traditional NMF all the entries inW and H are free

parameters that need to be estimated. Later we will reduce the number of free parameters in H, but first we describe the traditional

estimation ofW and H.

A challenge with the likelihood function in (8) is that it is only convex in eitherW or H, but not in both matrices together. This

meanswe cannot find a closed form solution for themaximum likelihood estimates ofW andH, and insteadwe use the EM-algorithm.

For the EM-algorithm we introduce the latent variables

Z
nkt

∼ Pois(W
nk
H
kt
)

which is the mutational count from each of the K signatures for each observation, such that the total number of mutations for a

cancer patient n of a certain type t is given by

V
nt
=

K∑

k=1
Z
nkt

∼ Pois((WH)
nt
).
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The complete log-likelihood is given by

𝓁(W ,H; Z) =
N∑

n=1

T∑

t=1

K∑

k=1
{Znkt log(Wnk

H
kt
)−W

nk
H
kt
− log(Z

nkt
!)} (10)

≡

K∑

k=1

T∑

t=1

(
N∑

n=1
Z
nkt

)
log(H

kt
)+

K∑

k=1

N∑

n=1

{(
T∑

t=1
Z
nkt

)
log(W

nk
)−W

nk

}
(11)

where we use that signatures are probability distributions that sum to one,
∑T

t=1Hkt
= 1, and ≡means that the statement is true up

to the additive constant
∑N

n=1
∑T

t=1
∑K

k=1 log(Znkm!).
E-step: For fixed valuesWi and Hi this step finds the expected value of the latent variables {Z

nkt
} conditional on the data V .

The distribution of {Z
nkt
} conditional on their sum is given by the multinomial distribution

(Z
n1t,… , Z

nKt
)||Vnt=

K∑

k=1
Z
nkt

∼ Multi

(
V
nt
,

1

(WH)
nt

(
W

n1H1t,… ,W
nK
H
Kt

))
,

which implies that

𝔼
W
i ,Hi

[Z
nkt
|V] = 𝔼

W
i ,Hi

[Z
nkt
|V

nt
] = V

nt

W
i

nk
H
i

kt

(Wi
H
i)
nt

.

Replacing {Z
nkt
} with their expected values 𝔼

W
i ,Hi

[Z
nkt
|V] gives the expected complete log-likelihood

Q(W ,H|Wi,Hi) =
K∑

k=1

T∑

t=1

(
N∑

n=1
𝔼
W
i ,Hi

[Z
nkt
|V]

)
log(H

kt
) (12)

+
K∑

k=1

N∑

n=1

{(
T∑

t=1
𝔼
W
i ,Hi

[Z
nkt
|V]

)
log(W

nk
)−W

nk

}
(13)

M-step: The first term of the expected complete log-likelihood (12) is recognised as K independent multinomial log-likelihood

functions and the second term (13) is recognised as N × K Poisson log-likelihoods. Maximum of the expected complete log-likelihood

with respect toW and H is therefore given by

H
i+1
kt

=

N∑
n=1

𝔼
W
i ,Hi

[Z
nkt
|V]

T∑
t=1

N∑
n
′=1

𝔼
W
i ,Hi

[
Z
n
′
kt
|V

] =

N∑
n=1

V
nt

W
i

nk
H
i

kt

(Wi
H
i )nt

T∑
t=1

N∑
n
′=1

V
n
′
t

W
i

n
′
k
H
i

kt

(Wi
H
i )
n
′
t

(14)

and

W
i+1
nk

=
T∑

t=1
𝔼
W
i ,Hi

[Z
nkt
|V] =

T∑

t=1
V
nt

W
i

nk
H
i

kt

(Wi
H
i)
nt

. (15)

The expected value of {Z
nkt
} from the E-step is also inserted, whichmeans these updates include both steps of the EM-algorithm

to find the optimal estimatesW andH. The entire EM-algorithmwith initialization and stopping criteria to obtain the optimal param-

eters is summarized in Algorithm 1. The updates are written in vector form for H and matrix form forW . Note that⊗ and division

means entry wise multiplication and division, the vector 1 is of length T and consists only of ones,W
k
is the k’th column ofW , and

H
k
is the k’th row of H. We stop the EM-algorithm when the data log-likelihood after a full update of W and H is smaller than a

threshold 𝜖.
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(16)

4.2 EM-algorithm for parametric non-negative matrix factorization

Another parametrization of the signatures H1,…H
K
requires a change in update (14) which was based on maximizing (12). The

parametrization of the signatures are given by the design matrices X1,…X
K
. Recall that the number of mutations from a specific

signature for each observation is given by the latent variables {Z
nkt
}. We observe that we again have K independent multinomial

log-likelihood terms that we can maximize separately. Define

Y
i

kt
=

N∑

n=1
𝔼
W
i ,Hi

[Z
nkt
|V],

which is the expected number of mutations at the i’th iteration for signature k of type t. We now suppress the superscript i and

subscript k by introducing the simple notation y
t
= Y

i

kt
and h

t
= H

kt
. In parallel to (12) we need to maximize

T∑

t=1
y
t
log(h

t
)

with respect to 𝛽 where we set

h
t
= exp((X𝛽)

t
)

T∑
t=1

exp((X𝛽)
t
)

, (17)

and again we have suppressed the dependency on k in both X and 𝛽 . Instead of estimating 𝛽 in this model, we use the ’Poisson Trick’

(see e.g. Lee et al. 2017 or Section 6.4 in McCullagh and Nelder 1989). The ’Poisson Trick’ means that the log-linear Poisson model

log(y
t
) = (X𝛽)

t
, t = 1,… , T, (18)

is equivalent to the multinomial response model with probabilities given by (17). We therefore determine the maximum likelihood

estimate of 𝛽 by fitting the log-linear Poisson model instead of the multinomial response model. The full EM-algorithm is presented

in matrix form in Algorithm 2.
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(19)

Estimation of 𝛽 in (18) is obtained by fitting the log-linear Poisson model using the Newton-Raphson method, and for clarity we

provide the details. The log-likelihood function for the Poisson model with design matrix X of dimension T × S, parameter vector 𝛽

of length S and data vector y = (y1,… , y
T
) of length T is given by

𝓁(𝛽; y,X) ≡
T∑

t=1

{
y
t
(X𝛽)

t
− exp

(
(X𝛽)

t

)}
.

A closed form solution for the maximum likelihood estimate is in general not available, but we can use the Newton-Raphson

method. The gradient and the Hessian of the log-likelihood function are

𝜕𝓁
𝜕𝛽

= X
′{y− exp(X𝛽)} and

𝜕2𝓁
𝜕𝛽′𝜕𝛽

= −X′
AX,

where A = A(𝛽) is a diagonal matrix of dimension T × T with exp
(∑S

s=1Xts𝛽s

)
, t = 1,… , T , on the diagonal. The Newton-Raphson

update is given by

𝛽 i+1 = 𝛽 i + (X′
A
i
X)−1X′{

y− exp(X𝛽 i)
}
,

where Ai = A(𝛽
i
), which can be re-written as

𝛽 i+1 = (X′
A
i
X)−1X′

A
i
[
X𝛽 i + (Ai)−1{y− exp(X𝛽 i)}

]

= (X′
A
i
X)−1X′

A
i𝜐i,

where

𝜐i = X𝛽 i + (Ai)−1
{
y− exp(X𝛽 i)

}
.

This means that the update is the solution to the weighted least square problem

𝛽 i+1 = argmin
𝛽

‖(Ai)1∕2(𝜐− X𝛽 i)‖2.

In our implementation in R we call the built-in method to solve the weighted least squares problem.

To accelerate the EM-algorithm we have both made a version that uses the R package SQUAREM (Du and Varadhan 2020)

and another version implemented in C++. To escape local minimum of the divergence function we typically start the algorithm

100 or even 500 times and run each of them for 100 or 500 iterations before we identify a minimum, which was recommended in

Biernacki et al. (2003). We then let the identified minimum iterate until convergence.
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5 Discussion

We have presented new biologically plausible parametrizations of mutational signatures. The parametrization

is based on interaction terms between neighbouring nucleotides. In general we find that the di-nucleotide inter-

action signature strikes a good balance between a satisfactory fit to our data and statistically stable and robust

signatures. Importantly, our framework also allows a mixture of parametrizations for the signature matrix in

non-negativematrix factorization. Thismakes the parametrization of the signaturematrix very flexible because

we allow each signature to have its own parametrization.We also identify themost important interaction effects

for many of the COSMIC signatures, which in many cases is mono- or di-nucleotide interactions. Specifically we

show the exact interactions that is driving the signatures.

Our main goal has been statistical robustness and interpretation of the signatures, and this is achieved by

biologically plausible constraints on the parameters:we alloweach signature to containmono-, di-, tri-nucleotide

or higher-order interaction terms. An alternative to the constraints imposed by interaction terms is to impose

sparseness on the signatures in the spirit of Lal et al. (2021a). We believe that robust signatures obtained via con-

straints on the interaction terms is biologically more plausible than robust signatures obtained via sparseness

constraints.

In general the number of mutation types is T = 6 × 42n when n bases are considered upstream and down-

streamof themutated site. Thenumber ofmutation typesT (and signature parameters in the generalmodel) thus

increases exponentiallywith the number of neighbouring nucleotides. There are 6+ 3 × (2n) = 6(1+ n) parame-

ters in themono-nucleotidemodel, i.e. a linear increase in the number of parameters. In this paperwe introduce

di-nucleotidemodels that include interactions between neighbors given by L1 ×M +M × R1 +
∑n−1

i=1 (Li+1 × L
i
+

R
i
× R

i+1). This model results in 42+ 12 × 2 × (n− 1) = 6(3+ 4n) parameters. Thus, our di-nucleotide signatures

are also linear in the number of flanking nucleotides.

We have focused on finding a single parametrization for each signature where interpretation is easy. This is

useful when the aim is to recover the true underlying biological mechanisms that cause the various signatures

(e.g. UV-light or tobacco smoking). Model averaging over different parametrizations for a signature would make

sense if the goal is a statistically robust signature where interpretation is less important (e.g. classification of

a genomic region based on the mutation profiles). The BIC values are rather similar for many of the models,

suggesting thatmodel averaging could be useful. Another extension of ourmodelwould be to change the poisson

assumption of the data to the negative binomial model, as it has been shown to be better suited for mutational

counts (Pelizzola et al. 2023).

Ourflexible framework also allows inclusion of other factors known tohave an impact on somaticmutations

such as replication timing (Woo and Li 2012), expression level (Lawrence et al. 2013) or general conservation of

the position when compared to other species (Bertl et al. 2018). Epigenetic data could be included in our model

as an independent feature.

Acknowledgments: We thank Camilla Provstgaard Kudahl and Maiken Bak Poulsen for valuable initial results

and discussions. We are grateful to Marta Pelizzola and Gustav Alexander Poulsgaard for helpful comments on

an earlier version of themanuscript.We alsowant to thank the two anonymous reviewers formany constructive

and helpful comments and suggestions for improving the presentation and analyses.

Research ethics: Not applicable.

Author contributions: The authors have accepted responsibility for the entire content of this manuscript and

approved its submission.

Competing interests: The authors state no conflict of interest.

Research funding: Novo Nordisk Foundation grant number 22OC0079957.

Data availability: github.com/ragnhildlaursen/paramNMF_ms.

https://github.com/ragnhildlaursen/paramNMF_ms


22 — R. Laursen et al.: Flexible model-based non-negative matrix factorization

References

Alexandrov, L.B., Nik-Zainal, S., Wedge, D.C., Campbell, P.J., and Stratton, M.R. (2013). Deciphering signatures of mutational processes

operative in human cancer. Cell Rep. 3: 246−259..
Alexandrov, L.B., Ju, Y.S., Haase, K., Van Loo, P., Martincorena, I., Nik-Zainal, S., Totoki, Y., Fujimoto, A., Nakagawa, H., Shibata, T., et al.

(2016). Mutational signatures associated with tobacco smoking in human cancer. Science 354: 618−622..
Alexandrov, L.B., Kim, J., Haradhvala, N.J., Huang, M.N., Tian Ng, A.W., Wu, Y., Boot, A., Covington, K.R., Gordenin, D.A., Bergstrom, E.N.,

et al. (2020). The repertoire of mutational signatures in human cancer. Nature 578: 94−101..
Arndt, P.F., Burge, C.B., and Hwa, T. (2003). DNA sequence evolution with neighbor-dependent mutation. J. Comput. Biol. 10: 313−322..
Bertl, J., Guo, Q., Juul, M., Besenbacher, S., Nielsen, M.M., Hornshøj, H., Pedersen, J.S., and Hobolth, A. (2018). A site specific model and

analysis of the neutral somatic mutation rate in whole-genome cancer data. BMC Bioinf. 19: 147,.

Biernacki, C., Celeux, G., and Govaert, G. (2003). Choosing starting values for the EM algorithm for getting the highest likelihood in

multivariate Gaussian mixture models. Comput. Stat. Data Anal. 41: 561−575..
Cemgil, A.T. (2009). Bayesian inference for non−negative matrix factorisation models. Comput. Intell. Neurosci. 2009: 785152,.
Dempster, A.P., Laird, N.M., and Rubin, D.B. (1977). Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. Series B

Methodol. 39: 1−38..
Du, Y. and Varadhan, R. (2020). SQUAREM: an R package for off-the-shelf acceleration of EM, MM and other EM-like monotone

algorithms. J. Stat. Software 92: 1−41..
Gori, K. and Baez-Ortega, A. (2018). sigfit: flexible bayesian inference of mutational signatures, bioRxiv, pp. 372896.

Hoang, M.L., Chen, C.-H., Sidorenko, V.S., He, J., Dickman, K.G., Yun, B.H., Moriya, M., Niknafs, N., Douville, C., Karchin, R., et al. (2013).

Mutational signature of aristolochic acid exposure as revealed by whole-exome sequencing. Sci. Transl. Med. 5: 197..

Hobolth, A. (2008). A Markov chain Monte Carlo expectation maximization algorithm for statistical analysis of DNA sequence evolution

with neighbor-dependent substitution rates. J. Comput. Graph. Stat. 17: 138−162,.
Hwang, D.G. and Green, P. (2004). Bayesian Markov chain Monte Carlo sequence analysis reveals varying neutral substitution patterns in

mammalian evolution. Proc. Natl. Acad. Sci. U. S. A. 101: 13994−14001..
Lal, A., Liu, K., Tibshirani, R., Sidow, A., and Ramazzotti, D. (2021a). De novo mutational signature discovery in tumor genomes using

sparsesignatures. PLoS Comput. Biol. 17: e1009119..

Laursen, R. and Hobolth, A. (2022). A sampling algorithm to compute the set of feasible solutions for nonnegative matrix factorization

with an arbitrary rank. SIAM J. Matrix Anal. Appl. 43: 257−273..
Lawrence, M.S., Stojanov, P., Polak, P., Kryukov, G.V., Cibulskis, K., Sivachenko, A., Carter, S.L., Stewart, C., Mermel, C.H., Roberts, S.A., et

al. (2013). Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature 499: 214−218..
Lee, J.Y.L., Green, P.J., and Ryan, L.M. (2017). On the ’Poisson Trick’ and its extensions for fitting multinomial regression models, arXiv:

1707.08538.

Levatić, J., Salvadores, M., Fuster-Tormo, F., and Supek, F. (2022). Mutational signatures are markers of drug sensitivity of cancer cells.

Nat. Commun. 13: 2926..

Lindberg, M., Boström, M., Elliott, K., and Larsson, E. (2019). Intragenomic variability and extended sequence patterns in the mutational

signature of ultraviolet light. Proc. Natl. Acad. Sci. U. S. A. 116: 20411−20417..
McCullagh, P. and Nelder, J.A. (1989). Generalized linear models, 2nd ed. Chapman & Hall, New York.

Nik-Zainal, S. and Morganella, S. (2017). Mutational signatures in breast cancer: the problem at the DNA level. Clin. Cancer Res. 23:

2617−2629..
Pelizzola, M., Laursen, R., and Hobolth, A. (2023). Model selection and robust inference of mutational signatures using negative binomial

non-negative matrix factorization. BMC Bioinf. 24: 187..

Rosales, R.A., Drummond, R.D., Valieris, R., Dias-Neto, E., and Da Silva, I.T. (2017). signer: an empirical bayesian approach to mutational

signature discovery. Bioinformatics 33: 8−16..
Shen, Y., Ha, W., Zeng, W., Queen, D., and Liu, L. (2020). Exome sequencing identifies novel mutation signatures of UV radiation and

trichostatin A in primary human keratinocytes. Sci. Rep. 10: 4943,.

Shiraishi, Y., Tremmel, G., Miyano, S., and Stephens, M. (2015). A simple model-based approach to inferring and visualizing cancer

mutation signatures. PLoS Genet. 11: e1005657..

Shmueli, G. (2010). To explain or to predict? Stat. Sci. 25: 289−310..
Woo, Y.H. and Li, W.-H. (2012). DNA replication timing and selection shape the landscape of nucleotide variation in cancer genomes. Nat.

Commun. 3: 1004,.


	1 Introduction
	2 Determining the mutational signatures
	2.1 Non-negative matrix factorization
	2.2 Parametrization of a mutational signature
	2.2.1  One flanking nucleotide at each side of the mutation
	2.2.2  Two flanking nucleotides at each side of the mutation


	3 Results
	3.1 Simulation study
	3.2 Analysis of BRCA
	3.2.1  Choosing the number of signatures and parametrization
	3.2.2  Model validation and stability of signatures

	3.3 Analysis of Liver data
	3.4 Analysis of UCUT data
	3.5 Choosing the number of signatures and parametrization
	3.5.1  Model comparisons and stability of signatures


	4 Methods
	4.1 EM-algorithm for traditional non-negative matrix factorization
	4.2 EM-algorithm for parametric non-negative matrix factorization

	5 Discussion
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (Euroscale Coated v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.7
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 35
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1000
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.10000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError false
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /DEU <>
    /ENU ()
    /ENN ()
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName (ISO Coated v2 \(ECI\))
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName <FEFF005B0048006F006800650020004100750066006C00F600730075006E0067005D>
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 8.503940
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /UseName
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [595.276 841.890]
>> setpagedevice


