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Abstract: Translation of genomic discovery, such as single-cell sequencing data, to clinical decisions remains

a longstanding bottleneck in the field. Meanwhile, computational systems biological models, such as cellular

metabolismmodels and cell signaling pathways, have emerged as powerful approaches to provide efficient pre-

dictions inmetabolites and gene expression levels, respectively. However, there has been limited research on the

integration between these two models. This work develops a methodology for integrating computational mod-

els of probabilistic gene regulatory networks with a constraint-based metabolism model. By using probabilistic

reasoning with Bayesian Networks, we aim to predict cell-specific changes under different interventions, which

are embedded into the constraint-based models of metabolism. Applications to single-cell sequencing data of

glioblastoma brain tumors generate predictions about the effects of pharmaceutical interventions on the regula-

tory network anddownstreammetabolisms in different cell types from the tumormicroenvironment. Themodel

presents possible insights into treatments that could potentially suppress anaerobic metabolism in malignant

cells with minimal impact on other cell types’ metabolism. The proposed integrated model can guide thera-

peutic target prioritization, the formulation of combination therapies, and future drug discovery. This model

integration framework is also generalizable to other applications, such as different cell types, organisms, and

diseases.
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1 Introduction

Over the past decade, high-throughput single-cell transcriptomics has proven to be instrumental in character-

izing within and between cell variation (Tang et al. 2009) and its relation to disease (Ackers-Johnson et al. 2018;

Binnewies et al. 2018; Chen et al. 2019; Östman 2012; Paik et al. 2020; Potter 2018), including cancer (Chung et al.

2017; Suvà and Tirosh 2019; van Galen et al. 2019; Zhu et al. 2017). The tumor microenvironment is a diverse,

complex collection of many interacting cell types (Whiteside 2008). Such diversity necessitates highly individu-

alized therapies. The push toward personalized medicine has been recognized as a critical step toward effective

cancer treatments (Chin et al. 2011; Tannock and Hickman 2016). Despite the progress and availability of high-

throughput technologies, translating genomic discovery to clinical endpoints has not kept pace and remains a

longstanding bottleneck in the field (Chin et al. 2011). This is partly due to the associated time and expense of
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experiments needed for drug development. Drug discovery is time-consuming and costly; recent estimates to

bring a single cancer drug to market are $648 million and revenues are more than three times that (Prasad and

Mailankody 2017).

Computational systems biology can be used to accelerate the discovery process through the integration

of computational and experimental research (Kitano 2002a,b). Computational experiments, known as in silico

experiments, are used tomake predictions, generate hypotheses, and prioritize themost promising experiments

and treatments for future investigations. Network analysis is a cornerstone of systems biology that leverages

mathematical models of biological networks to enhance our understanding of function, mechanisms, and dis-

ease. Structures of these network models are often obtained either from experimental studies, learned from

the data, or some combination thereof (Liu et al. 2020). Networks typically target specific domains of biological

variables such as protein-protein interaction (Kovács et al. 2019), metabolism (Angione 2019), or gene regula-

tion (Ferreira et al. 2018). This work focuses on two classes of networks that model different biological domains:

regulatory signaling and metabolic networks, and addresses their integration. The mathematical frameworks

used for modeling these domains are fundamentally different, which has made their integration a longstanding

challenge.

Ordinary differential equations are used to model cellular metabolism. These models depend on mathe-

matical representations of biochemical reactions governed by mass balance equations with a well-understood

stoichiometry (Nelson et al. 2008). Dynamic systems require kinetic rate parameters that are often unknown and

difficult or impossible to measure. Furthermore, cost and challenges of omics data collection at multiple time

points have limited its use in the post-genome era. A popular alternative is to model the system at steady-state,

where there are no changes in metabolite concentrations, and the model reduces to a linear system. Steady-

statemodels can be parameterized using observational data froma single time-point. Constraint-basedmodeling

approaches are used for flux analysis in steady-state systems (Gudmundsson and Thiele 2010; Kauffman et al.

2003; Orth et al. 2010; Palsson 2015). The models rely on an objective function, such as biomass production,

together with thermodynamic constraints to define region of feasible fluxes for optimization. Constraint-based

models have becomewidespread and accessible due to the large-scale published computational models of cellu-

lar metabolism used formetabolic modeling. Themodels consist of metabolic reactions in a particular organism

catalyzed by one or several enzymes encoded by genes.

Constraint-based models have been used to characterize differences in flux distributions between malig-

nant and normal cells, thereby providing insights into cancer-specific metabolic hallmarks and enzyme targets

for anti-cancer treatment (Agren et al. 2014; Folger et al. 2011; Frezza et al. 2011; Gatto et al. 2015; Yizhak et al.

2014; Zhao et al. 2013). Notably, the adaptation of these models to different cancers is justified because the dif-

ferences between the mRNA level observed under different steady-state conditions have been shown to explain

most of the variation in concentrations of the associated proteins (Li and Biggin 2015; Liu et al. 2016b). Although

the encoding is often not directly modeled, there is a direct gene-protein-reaction association assumption that

enables the use of high-throughput genomic data within the frame of metabolic networks (Bordel 2018; Gu et al.

2019).

Regulatory pathways and processes have been curated in databases (Ashburner et al. 2000; Kanehisa and

Goto 2000). However, unlike metabolic stoichiometry, structures of regulatory pathways are often less under-

stood. Inference of gene regulatory networks using graphical modeling paradigms has been a very active area

of research (Bansal et al. 2007; Benfey and Mitchell-Olds 2008; Friedman 2004; Husmeier 2003b; Karlebach and

Shamir 2008; Lee and Tzou 2009; Markowetz and Spang 2007; Menéndez et al. 2010; Rockman 2008; Vijesh et al.

2013). The bulk of research in this area is dedicated to inferring the network structure from transcriptomics data

to understand direct or indirect associations between genes. New methods like Functional Inference of Gene

Regulation (FigR) use single-cell ATAC-seq and RNA-seq data to infer gene-regulatory networks, examining chro-

matin dynamics and gene expression for a unique view of regulatory networks (Kartha et al. 2022). This work

utilizes a directed class of Probabilistic Graphical Models (PGMs) known as Bayesian Networks (BNs) (Koller and

Friedman 2009; Lauritzen 1996) for models of gene regulation. A valuable asset within the BN paradigm is the

use of probabilistic reasoning, which enables inferences about probabilistic changes within the network under

different conditions and perturbations (Moharil et al. 2016; Yu et al. 2020).
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There have been limited attempts to link transcriptomics data into metabolic models. Context-specific

metabolic models incorporate information from transcriptomics data into flux estimation. The underlying

premise is that not all reactions are uniformly essential or active across different cell types or conditions, and

that transcriptomics carries this information as a measure of abundance. Boolean models have been used to

embed transcriptional regulation in the constraints (Covert and Palsson 2002; Covert et al. 2008; Shlomi et al.

2007). More complexmodels directly use transcriptomics data to constrain the bounds of estimated fluxes (Chan-

drasekaran and Price 2010; Marmiesse et al. 2015), generating multi-valued logical rules for genetic regulation

with steady-state FBA models.

These constraint-based models of metabolism that utilize transcriptomics fail to account for the complex

structure of the regulatory networks that influence the enzymes facilitators of biochemical reactions. Ignor-

ing the hierarchical structure of the regulatory network could indirectly invoke an independence assumption

between enzymes in the model. To this end, there has been significant progress in the mathematical model-

ing of regulatory networks (Brazhnik et al. 2002; Dondelinger et al. 2013; Hill et al. 2012; Huynh-Thu et al. 2010;

Schäfer and Strimmer 2005; Smolen et al. 2000; Zhang and Horvath 2005), which has been largely untapped in

metabolic models. BNs have been widely used to model regulatory networks, primarily focusing on inferring

structures (Blair et al. 2012; Hageman et al. 2011; Husmeier 2003a,b;Wang et al. 2013;Werhli andHusmeier 2007;

Werhli et al. 2006). Recently, Yu andBlair (2019) developed a novel framework that utilizes BNmodels to perform

exact probabilistic reasoning using bulk transcriptomics (Koller and Friedman 2009). This framework recasts the

network as a computational model for perturbation and prediction. This framework was used to predict brain

metabolism changes after perturbations to the HIF-1A pathway in Alzheimer’s patients.

The integration of single-cell transcriptomics within computational models of metabolism has been lim-

ited. Damiani et al. (2019) proposed a method for single-cell flux balance analysis (scFBA) to infer single-cell

fluxomes. The approach utilizes single-cell transcriptomics, environmental constraints relating to medium-cell

flux exchanges, and assumptions on cell interactions. Earlierwork byDamiani et al. (2017) developed population

FBA (popFBA), which utilized scRNA to characterize the heterogeneity in the tumor environment for classic FBA

models. To the authors’ knowledge, there has not been progress in integrating scRNA regulatory networks with

models of metabolism.

This study is motivated by the observation that drug interventions targeting transcription factors (TFs)

impact the metabolism differently across cells in the tumor microenvironment (DeBerardinis 2020; Reina-Cam-

pos et al. 2017). This can be partially explained by differential cell signaling among cell types (Arneth 2020;

Balkwill et al. 2012; Kenny et al. 2007). Accounting for these differences will provide mathematical models that

are more physiological. These models can be used to advance our understanding of the differential effects of

therapeutic perturbations on metabolisms in different cell types in the tumor microenvironment.

This work develops a modeling paradigm for prediction in integrated regulatory and metabolic networks.

The bridge between the two paradigms is probabilistic reasoning in BNs, which generates predictions to con-

strain the metabolic model. These cell-specific integrated models provide a unique opportunity to character-

ize the metabolism of different cell types in response to upstream genetic perturbations, providing insights

on therapeutic target prioritization, formulation of combination therapies, and future drug discovery. This

model integration framework is generalizable to other applications, such as different cell types, organisms, and

diseases.

Applications focus on networks parameterized using single-cell RNA sequencing data from different cell

types in the glioblastoma tumor microenvironment (Neftel et al. 2019) and a metabolic model of the brain. The

model centers on the HIF-1A pathway, which is central to cancer metabolism (Chiavarina et al. 2010; Kouk-

ourakis et al. 2002; Rawłuszko-Wieczorek et al. 2014) and includes a complex network of transcription factors,

many of which are drug targets. In silico experiments are performed to examine the effects of 177 curated TF-

targeting drugs published in the drug repurposing hub library (Corsello et al. 2017) onmetabolism of cells in the

tumor microenvironment. Results show that drug combinations inhibiting STAT3 (e.g., Niclosamide) with other

transcription factors (e.g., AR inhibitor Enzalutamide) are predicted to strongly suppress anaerobic metabolism

in malignant cells, without major interference to other cell types’ metabolism, suggesting a potential combina-

tion therapy for anti-cancer treatment.
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2 Materials and methods

The integration of regulatory and metabolic networks is challenging due to the fundamental differences between the two modeling

frameworks. Section 2.1 describes the modeling of the regulatory network using probabilistic PGMs. Probabilistic reasoning in BNs

is described, which will enable predictions of downstream enzymatic changes after perturbation. Section 2.2 describes constraint-

basedmodels ofmetabolismused to predict the fluxomes. Sections 2.3 and 2.4 describemodel integration and an application to cancer,

respectively. Lastly, a sensitivity analysis is presented in Section 2.5, to assess the sensitivity of predictions to network construction

and the integration of model systems.

2.1 Bayesian network learning and inference

BNs are a class of probabilistic graphical models with directed edges that are used to represent the joint distribution of a set of

random variables, X = {X1,X2,…X p}. A structural requirement of BNs is that they are directed acyclic graphs (DAGs) (Koller and

Friedman 2009; Lauritzen 1996). The lack of feedback and cycles in BNs is required to represent the joint distribution in compact

factored form. In our setting, the nodes in a BN represent transcription factors and enzymes in a regulatory network. Despite these

structural constraints, there are twomajor advantages that BNs possess thatmake themwell-suited for regulatory networkmodeling.

(1) There is a direct and unique mapping between the graph, G, and the joint probability distribution, P(X). (2) BNs can be used for

exact probabilistic reasoning to infer probabilistic changes (queries) when information is entered and propagated through the graph

(Lauritzen 1996).

The structure of a BN encodes a set of conditional independencies and provides insights into the direct and indirect associations

between nodes. BNs follow a Markov assumption, which states that a node, Xi, is assumed to be independent of its non-descendants

(nodes that are not parent nodes), given the state of its parent nodes in the graph, G. Under this assumption, the graph can be broken

down into a series of conditional dependencies of a child node, Xi, and its parent node(s), pa(Xi). These local models can be used to

express the joint probability distribution in compact factored form:

P
(
X1,X2,… ,Xn

)
=

n∏

i=1
P
(
Xi ∣ pa(Xi),Θi

)
,

where Θi denotes the parameters of the local probability distribution (Koller and Friedman 2009; Nagarajan et al. 2013). In our BN,

we utilize Gaussian distributions to describe the local distributions for child and parent nodes.

Two learning tasks are required for BNs: structural learning and parameter learning. In this work, we leverage a score-based

algorithm known as max-min hill-climbing (Tsamardinos et al. 2006) within the bnlearn package in the R programming language

(Scutari et al. 2019). Briefly, the max-min algorithm is a greedy method that identifies networks with high-scoring local models. The

scores themselves are determined by goodness of fit measures on local regressions of child nodes onto parents. BNs can also leverage

prior network structures and parameterizations. Graphical priors can be incorporated to embed information known a priori about

the network structure into the learning process (Scutari et al. 2019; Werhli and Husmeier 2007). Parameter learning is the second

task and integral to structural learning based on greedy search, which uses scores as a function of the parameters derived from

regressions of child nodes on parents to create local distributions; see (Koller and Friedman 2009; Nagarajan et al. 2013) for details.

BNs can also be used to perform exact probabilistic reasoning or inference. Probabilistic reasoning in a BN is the process by

which evidence about nodes is input and propagated through the network (Koller and Friedman 2009; Lauritzen 1996). In practice,

evidence is simply setting the value or state of a node, propagating this information through the network, and then reasoning about

marginal, joint, and conditional probabilities, within the network, in light of this new evidence. This process is carried out using belief

propagation (BP) algorithms, which use a clique graph derived from the network structure. In BNs, this clique graph is in the form of

a tree and can be used for exact inference, which is not the case for other classes of PGMs (Koller and Friedman 2009). Probabilistic

reasoning is a key component of this approach, as we explore changing evidence relating to changes in an upstream transcription

factor (TF). More specifically, this process of probabilistic reasoning can be viewed as a tool for predicting system-wide responses of

the network to new evidence (perturbations), which can be viewed as in silico experiments. To perform inference on an intervention

in a causal BN requires to represent context-specific independence: in the context of an intervention on a variable, any influences that

have a causal effect on that variable are removed (Minka and Winn 2008; Winn 2012). This problem can be reduced to probabilistic

reasoning in a mutilated BN, where all the incoming edges to the variables under intervention are removed. In our applications, BP

is performed using the BayesNetBP package (Yu et al. 2020).

2.2 Constraint-based flux models

Models of cellular metabolism can be derived from the stoichiometry of biochemical reactions using the principles of mass balance

(Nelson et al. 2008). A widely used approach models the dynamics of metabolite concentrations with ordinary differential equations

(ODEs) of the form:

dC

dt
= E ⋅Φ,
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where C denotes the concentration of metabolites, E ∈ R
m×n is a sparse stoichiometric matrix andΦ ∈ R

n×1 contains the flux rates

for the reactions in the model. When the system is at steady state, the system of ODEs simplifies to a linear one.

The linear system derived from ODEs can serve as constraints to the flux estimation for many purposes, e.g., to impose the

irreversibility of certain reactions (inequality constraints), to add prior knowledge about flux rates, or linear combinations of flux

rates (equality constraints). Flux balance analysis (FBA) is a constraint-based modeling approach that estimates fluxes by optimizing

an objective function while subject to the given constraints. The objective function is usually a profit function for maximizing fluxes

or linear combinations of fluxes related to optimal growth conditions, ATP production, or biomass production rate (Kauffman et al.

2003; Orth et al. 2010). Equality and inequality constraints can be used to impose the irreversibility of certain reactions (inequality

constraints), to add prior knowledge about flux rates or linear combinations of flux rates (equality constraints). Mathematically, the

addition of constraints shapes the solution space for the flux estimation (Orth et al. 2010).

The constrained optimization problem for FBA can be mathematically described as follows:

max
Φ

cTΦ

subject to EΦ = f ,

GΦ ≥ h,

(1)

where Em×n is the stoichiometric matrix with rows representingmmetabolites and columns for n fluxes, andΦ is a vector of fluxes.

The inequality constraint GΦ ≥ h can be used to impose irreversibility of certain reactions as well as the capacity constraints that

provide the upper limit of fluxes. The objective function, cTΦ, is a linear combination of the fluxes that are to be optimized. Note that
the model does not fully account for metabolites that participate in cellular uptake or release to the extracellular environment. The

fluxes for these external metabolites can be non-zero.

In order to achieve more precise in silico cell-specific flux predictions, Gavai et al. (2015) proposed least squares with equalities

and inequalities flux balance analysis (Lsei-FBA) model to estimate metabolic flux distribution in diseased brain cells from healthy

brain metabolism coupled with changes in gene expression between health and disease. More specifically, Lsei-FBA initially esti-

mated fluxes in diseased cells by multiplying the healthy fluxes with the fold change in associated gene expression between health

and disease. Next, the initial estimates were refined by equality (balance of fluxes) and inequality (irreversible reactions) constraints.

Finally, to obtain the fluxes in diseased cells, a cost function of the sum of squares of the differences between the refined estimated

fluxes and the initial rough estimate of the fluxes was minimized, subject to (1) equality and inequality constraints, and (2) max-

imization of correspondence between relative changes in gene expression and changes in fluxes (Gavai et al. 2015). In this study,

we treated oligodendrocytes as healthy cells. We applied Lsei-FBA to predict fluxes in other cell types coupling with the expression

changes between oligodendrocytes and other cell types.

2.3 Integrated networks

2.3.1 Model of brain metabolism: A model for brain metabolism was constructed using 89 metabolites and 71 biochemical reac-

tions from core pathways, including the glycolytic pathway, Pentose Phosphate Pathway (PPP), the Tricarboxylic Acid (TCA) cycle,

malate-aspartate shuttle, the glutamate and GABA shunt and oxidative phosphorylation. The model was originally developed to

investigate the brain’s low oxygen to carbohydrate ratio during extreme endurance sports (van Beek et al. 2011) and was later used

to characterize metabolic changes in Alzheimer’s patients (Gavai et al. 2015). Recently, the model was used to integrate cell-signaling

and metabolic pathways to assess the effect of perturbations on the metabolism is Alzheimer’s disease (Yu and Blair 2019). Each of

these investigations and the current one, assume that the metabolic system is at steady state. This simplification allows us to repre-

sent the model as a linear system of equations rather than a more complex system of differential equations. A detailed description

of the biochemical reactions is given in Yu and Blair (2019).

2.3.2 Data and pre-processing: Single-cell RNA sequencing (scRNA-seq) data was obtained from the Broad Institute single-cell

portal (Neftel et al. 2019). Brain tumor samples were collected from 28 glioblastoma patients, then preprocessed and dissociated into

single cells for single-cell RNA sequencing profiling (SMART-Seq2) (Filbin et al. 2018). The expression levels were log2 transformed.

A total of 7930 single brain cells passed quality control were then classified into four cell types (Neftel et al. 2019): malignant cells

(N = 6836), macrophages (N = 754), oligodendrocytes (N = 219) and T-cells (N = 94) (Filbin et al. 2018; Li and Dewey 2011). The

scRNA-seq data contained 23,686 genes, with an average of 5730 genes detected per cell.

The data contains a large number of zeros resulting in zero-inflated gene distributions, which is common in scRNA-seq data

(Kadota and Shimizu 2020). Zero inflation is problematic for BN construction and inference because the local distributions are

modeled as Gaussian. VIPER (virtual inference of protein activity by enriched regulon analysis) was used to infer TF activity by

systematically analyzing the expression of the genes regulated by the same TF (known as TF regulon) through analytic rank-based

enrichment analysis (Alvarez et al. 2016; Holland et al. 2020). Studies have shown that VIPER can accurately measure TF activities

on a single-cell basis. Its performance is highly robust and resilient to the zero-inflated issue of scRNA-seq data (Ding et al. 2018;
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Obradovic et al. 2021). Notably, alternative popular smoothing methods such as MAGIC (Markov affinity-based graph imputation of

cells) (Van Dijk et al. 2018) have been used to impute likely gene expression in each cell, revealing the underlying biological structure

(Van Dijk et al. 2018). However, MAGIC was not used in this work because it has been shown to induce false correlations (Andrews

and Hemberg 2018), which can lead to false positive edges and high edge density in network structure inference. We implemented

the following three-stage approach to overcome modeling issues related to inference with zero-inflated data. The resulting network

and imputed expression levels will be used for the BN inference described in the next section.

1. Prior regulon network for TF activities inference: VIPER algorithm requires a prior for the network architecture of the TFs

and downstream target genes for TF activities inference. This prior regulon network was constructed leveraging the DoRothEA

database. DoRothEA, as a comprehensive resource of human TF regulon, contains 1.5 million scored interactions between

1399 TFs and 27,976 target genes (Garcia-Alonso et al. 2019). For each TF target interaction, a statistical confidence score was

assigned based on the quality and reliability of the evidence for that interaction, ranging from A (highest confidence) to E (low-

est confidence). In this study, we curated TF-target interactions from Bioconductor dorothea package in R (Garcia-Alonso et al.
2019) with high confidence (score A and B) to construct the prior regulon network for TF activities inference.

2. TF activities inference and gene expression imputation: Next, we processed the scRNA-seq data by screening out the low

expressed genes with a mean expression level of less than 0.1, which leads to a total of 14,403 TFs and downstream genes. The

processed scRNA-seq data were then leveraged to infer the upstream TF activities employing the Bioconductor VIPER package in
R (Alvarez et al. 2016), coupled with the constructed prior regulon network. We obtained inferred activities of a total of 1321 TFs.

The expressions of the remaining 13,082 geneswere then imputed using the MAGICpackage in R (VanDijk et al. 2018). The inferred
TF activities and imputed gene expressions (referred to as imputed expression data in the following) will be later utilized for

BN inference.

3. Prior structural constraint for BN learning: Another regulon network focusing on brain metabolism was also developed

for later BN structural learning. To do so, we first identified 18 critical enzymes from imputed expression data that appeared

both in the brain metabolic model (Gavai et al. 2015) described in Section 2.3.1 and the HIF-1 signaling pathway (Gavai et al.

2015). Among those 18 critical enzymes, 13 were further mapped to the DoRothEA database. Next, we constructed a regulon

network with high confident (score A and B) TF-target interactions from DoRothEA and obtained a subgraph of that network

using those 13 mapped critical enzymes and their neighborhood with a maximum distance of three. In addition, five enzymes

were not recorded in the DoRothEA. Studies showed that HIF1A as a TF plays a crucial role in the cancer metabolism (Semenza

2010) and fundamentally affects the transcription of enzymes involved in glycolytic metabolism in brain cells (Ebright et al.

2020). Therefore, we assumed those five unmapped enzyme genes would be eventually affected by HIF1A and added them

back to the network through an edge from the HIF1A node. This newly obtained regulon network consists of 108 nodes

(18 enzymes and 90 TFs) with 285 possible edges and will serve as a prior graphical constraint in cell-specific BN structure

learning.

2.3.3 Bayesian network models of cell-specific signaling pathways: In this study, we learned the structures of cell-specific sig-

naling Bayesian networks employing a score-based hill-climbing algorithm and imputed expression data under the prior structural

constraint developed in Section 2.3.2. More specifically, prior structure constraint was firstly used to limit the search space of pos-

sible network structures by forbidding edges that did not appear in the constraint regulon network. Then we performed a greedy

hill-climbing search (implemented in the bnlearn package [Nagarajan et al. 2013]) in the limited searching space of BNs based on the
imputed expression data of each cell type. The search began with an empty graph. The edge addition, deletion, or direction reversal

that led to the largest increase in the Bayesian Gaussian equivalent (BGe) score (Koller and Friedman 2009; Kuipers et al. 2014) was

taken. The search continues in a similar fashion, recursively, until a BN with the maximum score was obtained. A total of 10 random

restarts was set during the search to avoid local maxima. In addition, we set the maximum number of parent nodes in the network

as three. This fan in restriction is commonly used to avoid overfitting (Nagarajan et al. 2013). This BN structure learning algorithm

was applied four times, once for each cell type.

The cell-specific BNs for the four different cell types were compared using the following measurements (Newman 2018). (1) The

number of shared edges between networks. (2) The Jaccard index, which equals the number of shared edges between two graphs

divided by the total number of edges of the union of two graphs. (3) The graph edit distance, which is the minimum number of

operations (insert an edge or node; drop an edge or node) required to transform one graph into another. (4) The closeness centrality

distance (Roy et al. 2014), which is a graphical similarity measurement based on a node closeness centrality. The centrality of a node

is the inverse of the average shortest distance between this node and all other nodes in the network. The closeness centrality distance

between graphs G1 and G2 is calculated as:

dC
(
G1,G2

)
=

∑

𝑣∈V

|||C
(
G1, 𝑣

)
− C

(
G2, 𝑣

)|||,

whereV is the union node set ofG1 andG2; C
(
G1, 𝑣

)
and C

(
G2, 𝑣

)
are the centrality of node 𝑣 ofG1 andG2, respectively. These different

measures are complementary, as the number of shared edges and the Jaccard index measured the similarity between graphs. In

contrast, graph edit distance and closeness centrality distance measured the distance between graphs.
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2.4 Model integration and pharmaceutical interventions evaluation

Cell-specific BN models were integrated with a metabolic model to evaluate the system-wide effects of pharmaceutical interventions

targeting TFs. Themodel is used to infer the impact of TF perturbations on the regulatory network and downstreammetabolism. The

integration of these two models is achieved by embedding predicted fold changes of enzyme levels from the signaling pathways into

the constraints of the metabolic model for flux variability analysis. The integration follows closely to Yu and Blair (2019) but differs

in terms of the models themselves and the intervention strategy.

Figure 1 shows a schematic of this integrated model and process. As described in Section 2.3.2, cell-specific BNs are inferred

based on prior knowledge about the network structure (Garcia-Alonso et al. 2019; Holland et al. 2020) and participation in the

metabolic model (Figure 1A) (Gavai et al. 2015). These BNs are perturbed using belief propagation to alter the TF levels. The TF per-

turbations and combinations of perturbations were guided by drug mechanisms of action (MOA) data of 6798 drugs from the drug

repurposing hub (DRH) library (Corsello et al. 2017). TheMOA data recorded the specific biological mechanism (e.g., reaction or inter-

action) that produces the pharmacological effect. A total of 177 inhibitors weremapped such that the BNmodels cover all their known

targets. Supplementary (S-Table 1) details each drug’s target TFs andMOA. Pharmaceutical interventions of all 177 curated drugswere

evaluated using the cell-specific BNs.

2.4.1 Cell-specific enzyme fold change: For each cell-specific network, belief propagation was performed to predict the expres-

sion level of the enzymes and TFs in the regulatory network before and after the TF perturbation (Figure 1B) (Lauritzen 1996).

We employed the BP procedure in the BayesNetBP package (Yu et al. 2020), which implements the belief propagation algorithms

described in (Cowell 2005). The output of interest is cell-specific enzyme fold changes for the constraint of the flux variability analysis,

which were calculated based on the following three-step procedure.

Figure 1: A schematic describing the integrated modeling approach. (A) Cell-specific models are developed using Bayesian Network

inference using prior constraints of regulatory structure from a database and single-cell RNA data. The system-wide effects

of perturbations to these models are explored using probabilistic reasoning for BNs. The enzyme levels estimated from these models are

embedded into the constraints for flux variability analysis. (B) Lsei-FBA is performed using a metabolic model of brain metabolism.

The outputs are predicted cell-specific reaction flux rates that can be compared to estimated baseline fluxes, which provides insights into

the relative changes that occur in the cell-specific systems under TF perturbations.
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1. Initial enzyme expression level: The imputed expression data were utilized to infer both the structure and the parameters

of cell-specific BNs. Cluster trees for belief propagation were then inferred for each network. The initial expression levels of

enzymes and TFs were estimated as the marginal means (Yu et al. 2020).

2. Mutilated network after TF perturbation: Pharmaceutical interventions of each drug were treated as the perturbations

(knockdown) of the target TFs. To simulate the effect of drug interventions, we assume the activity of all drug target TFs will

be reduced by 2 standard deviations from their basal (average) level. Moreover, in order to model the causal relationship after

drug interventions, a mutilated graph was obtained by removing all inward connections to the TF nodes that are targeted by

the intervention (White and Vignes 2019). Cell-specific drug-intervened cluster trees were then generated using the mutilated

graphs for propagation.

3. Enzyme expression level after TF perturbation: The perturbed TF activities after drug intervention were treated as evidence

and absorbed into the cluster trees from the mutilated BNs. Belief propagation was performed for the estimation of perturbed

enzyme levels. Cell-specific enzyme fold changes were then calculated using the mean expression level after perturbation

(numerator) relative to the initial enzyme level (denominator).

2.4.2 Cell-specific relative flux change: Cell-specific relative changes for the metabolic fluxes were calculated in order to assess

the effects of pharmaceutical interventions targeting TFs on metabolism. Calculations follow the three-step procedure described

below.

1. Basal flux estimation in oligodendrocytes: Baseline flux rates in oligodendrocytes were estimated through themaximization

of net ATP production, which reflects the high requirements for energy production in the brain, which is critical for bioenerget-

ics, function, and neurodegeneration (Du et al. 2008). This objective functionwas also applied in other studies of brainmetabolic

modeling (Gavai et al. 2015; Yu and Blair 2019). Following (Gavai et al. 2015; Yu and Blair 2019), the flux in oligodendrocytes

before the intervention using FBA with total ATP production maximized and with the pentose phosphate pathway (PPP) and

GABA shunt fluxes constrained to measured values relative to glucose uptake. Basal flux in oligodendrocytes will then be used

as the input for the Lsei-FBA model to estimate the flux distributions in oligodendrocytes and other cell types before and after

interventions.

2. Enzyme fold changeand initial cell-specificflux estimation:Cell-specific enzyme levels for all four cell types before and after

TF perturbations were obtained following the same BP procedure described in Section 2.4.1, resulting in eight total estimates.

Each of these enzyme estimates was contrasted with baseline oligodendrocytes to obtain fold change estimates. For each cell

type, initial estimates for the fluxes were calculated as the product of basal flux in the oligodendrocytes for that reaction and

the enzyme fold change in the associated cell-specific enzyme expression. In cases where multiple enzymes mapped to a single

reaction, the average fold change across these genes was used to constrain the corresponding flux.

3. Estimationof cell-specific relativeflux change:Employing theLsei-FBAmodel in theRLIMpackage (Haskell andHanson 1981;

Van Oevelen et al. 2010), the final prediction of cell-specific metabolic fluxes was obtained by minimizing the sum of squared

errors between estimated and predicted flux (basal flux × fold-change of enzymes). The constraints were (1) the steady-state

assumption for intercellular metabolites that are not exchanged between brain and blood, (2) the restriction to forward flux

through irreversible reactions (inequality constraints). The cell-specific relative flux change (C) is calculated as:

C = 𝑣1 − 𝑣0

𝑣0

,

where 𝑣0 and 𝑣1 are the fluxes at baseline and after perturbation, respectively. Relative flux change of 0means no change, while

a negative value indicates that the drug down-regulates the reaction.

2.5 Sensitivity analysis

Sensitivity analysis was performed to quantify the effects of small changes in the structure and estimates on the prediction results

from the integrated model. In order to assess the effects of bias, at each stage of model development, small changes were introduced

to the prior regulon network and the inference for BN learning. Specifically, perturbations were introduced into the prior regulon

network acquired in Section 2.3.2 by randomly removing one percent of the edges from the network. The perturbed prior regulon

network was then used as a structural constraint to estimate the cell-specific BNs using the hill-climbing algorithm described in

Section 2.3.3. Ten random restarts were set to avoid local maxima as well as introduce additional variation into the BN estimates.

Following this, cell-specific relative flux changes after selected TF perturbations were determined as outlined in Section 2.4.2. This

entire procedure was repeated 300 times to ensure the robustness of the findings.

3 Results

BNs were learned for each of the four cell types using the scRNA-seq data and prior graph constraints gener-

ated from databases. Unconnected upstream TF nodes were dropped within each cell-specific network. The BNs
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of four cell types showed distinct learned structures that support cell-specific cell-signaling. The macrophage

network (Figure 2A) had 94 nodes and 174 edges; the malignant cell network (Figure 2B) had 103 nodes and

207 edges; the oligodendrocyte network (Figure 2C) had 81 nodes and 129 edges; the T-cell network (Figure 2D)

had 76 nodes and 104 edges. The learned BNs of malignant cells and macrophages were larger in terms of

nodes and edge density, suggesting a more intricate signaling network when compared to oligodendrocytes and

T-cells.

Measures between graphs provide additional insights into the similarities between cell-type structures

(Figure 3). Notably, since the BNs were learned under the same structural prior, larger networks with more edge

Figure 2: The inferred BNs by cell-type: (A) macrophage, (B) malignant, (C) oligodendrocyte and (D) T-cell. Enzymes in the metabolic

model are indicated in red.



10 — T. Shi et al.: Integrated regulatory and metabolic cancer networks

Figure 3: Heatmaps of similarity and dissimilarity measurements between four inferred cell-specific BNs: (A) number of shared edges

(higher is more similar), (B) Jaccard index (higher is more similar), (C) graph edit distance (lower is more similar) and (D) closeness

centrality distance (lower is more similar). Similarity and dissimilarity measurements are indicated in red and blue, respectively.

density are likely to be more similar in their structure. BNs of malignant cells and macrophages had the most

shared edges (N = 98), while sparser networks of oligodendrocytes and T-cells had the least (N = 28) shared

edges (Figure 3A). The Jaccard index computes shared edges adjusting for the total edge number of the union

of two graphs. Therefore, it provides a normalized measure of similarity between networks (higher is more

similar). Jaccard indices showed similar results as shared edges that BNs of malignant cells and macrophages

were the most similar (Jaccard index = 0.35), while oligodendrocytes and T-cells were the most dissimilar (Jac-

card index = 0.14). In addition, the greatest difference was found between BNs of malignant cells and T-cells

with a Jaccard index of 0.15 (Figure 3B). Graph edit distance (GED) which measures the number of changes (i.e.,

adding, removing, substituting nodes and edges) to transfer one graph to the other one, was also utilized to

capture the similarity between networks (lower is more similar). Malignant cells and T-cells were the most dif-

ferent, with the largest GED of 229, while oligodendrocytes and T-cells were more similar, with the least GED

of 177 (Figure 3C). Finally, closeness centrality distance (lower is more similar) captures the difference between
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two networks with respect to a given node centrality, thereby accounting for the local structures around differ-

ent nodes in the networks. In gene regulatory networks, a gene with high centrality is often viewed as a hub

with important biological importance. Overall, we found that malignant cells are the most different from the

others, with the highest closeness centrality distances from other cell types (Figure 3D), indicating the mutated

transcriptional dysregulation in malignant cells.

Systematic perturbations were made to the integrated model in order to explore the system-wide effects

of interventions that target TFs on the regulatory network and downstream metabolism. In this study, the pri-

mary focus is the enzymes and flux rates from three pathways: glycolysis, anaerobic glycolysis, and pyruvate

dehydrogenase (PDH). Since each network is uniquely parameterized by scRNA-seq data, we observed unique

belief propagation results, despite structural similarities. Patterns of the predicted changes of downstream

enzymes (Figure 4) and fluxes (Figure 5) were visualized after TF perturbations. For visualization purposes,

the set of perturbations was selected based on the magnitude and diversity of fold changes. The full set of

247 perturbations from target TFs, and combinations of target TFs from 177 drugs can be found in Supplemen-

tary (S-Table 1, S-Figure 1 and S-Figure 2).

Large variations were observed that indicate a strong differential effect across both TFs and cell types

(Figure 4). Clustering the differential effects of the predicted enzyme expression after TF target inhibition

revealed five distinct groups (Figure 4A–E). Inhibition of TFs promoting the response to hypoxia is expected

to divert the flux from lactate production to oxidative phosphorylation, which is consistent with our findings.

However, the ways that different cells achieving were observed to be markedly different. Patterns of inhibition

were observed for combinations of NFKB1 with other TFs (Figure 4A). Enzymes from all three reaction groups:

glycolysis, anaerobic glycolysis and PDH increased inmacrophages, T-cells, and weremost pronounced in oligo-

dendrocytes. On the other hand, malignant cells exhibited modest reductions in desired anaerobic glycolysis

and PDH with combination therapies of SP-100030 (JUN and NFKB1 inhibitor) and drugs that target on AR (e.g.

Enzalutamide, DHEA sulfate, Epitiostanol, Bicalutamide, etc.).

Drugs in cluster B (Figure 4B) mainly targeted on JUN together with other TFs. Notably, oligodendrocytes

were not sensitive to JUN inhibition, while glycolysis enzymes such as PFKP and PGK1 were upregulated only in

malignant cells. Cluster C (Figure 4C) showed that inhibition of RELA with other TFs leads to significant upreg-

ulation in LDHA and PDHB in only oligodendrocytes. Moreover, targeting ESR1 with other TFs (TP53, KLF4 or

RARA) caused enzymes decrease only in malignant cells, while not much effect on the other cells. Cluster D

(Figure 4D) includes the drug combinations that target on HIF1A (e.g. Acriflavine, Bakuchiol, etc.) with other

TFs. Under these drug interventions, enzymes in glycolysis and anaerobic glycolysis showed major decreases in

malignant and macrophage cells, while T-cells and oligodendrocytes were not as sensitive. Inhibition of STAT3

(e.g. Niclosamide, Meisoindigo, Napabucasin, etc.) with other TFs were clustered as group E (Figure 4E), and

showed similar but weaker effect patterns as inhibitions of HIF1A (Figure 4D).

Relative flux rate changes under combined drug interventions also showed distinct patterns (Figure 5). For

simplicity, the predicted flux changes within glycolysis, anaerobic glycolysis and PDH were averaged within

cell-type and the effects of perturbations. Clustering analysis yielded five distinct groups (Figure 5A–E), which

is consistent with predicted enzyme fold changes (Figure 4). Cluster A corresponds to drugs targeting RELA or

NFKB1 with other TFs (Figure 5A) that caused an increase in the glycolysis and PDH reactions, and a decrease

in anaerobic glycolysis only in oligodendrocytes cells, while other cells were not found to be as sensitive. Clus-

ter B showed that inhibition of targets combinations that led to anaerobic glycolysis decrease in all four cell

types (Figure 4B). Patterns of inhibition of ESR1 with select TFs (FOXM1, RARA, KLF4, TP53) are shown in Clus-

ter C (Figure 5C), which only down-regulated anaerobic glycolysis in malignant cells, but not in other cell types.

STAT3 inhibition in combination with other TFs (Figure 5D) formed cluster D, which shows decreases in anaero-

bic glycolysis in malignant cells, and much more slightly in the other three cell types. Under inhibition of HIF1A

with other TFs in cluster E (Figure 5E), reactions across all pathways were also down regulated in both malig-

nant andmacrophage cells, and anaerobic glycolysis was decreased across all cell types. The sensitivity analysis

affirmed the consistency of these findings (S-Figure 3). Particularly, STAT3 inhibition alongside other TFs results

in decreased anaerobic glycolysis in malignant cells, and slightly less so in the other three cell types. This robust

pattern validates the effectiveness of our proposed integrated model.



12 — T. Shi et al.: Integrated regulatory and metabolic cancer networks

Figure 4: Clustering of the predicted fold changes in enzymes when transcription factors and combinations of transcription factors in the

network are targeted (rows). There were five distinct clusters observed (A–E). The fold changes are systematically displayed for the

enzymes for the malignant, T-cell, macrophage and oligodendrocyte (columns). This ordering is preserved across the different pathways:

glycolysis, anaerobic glycolysis and the flux from the glycolytic pathways to the TCA cycle (pyruvate dehydrogenase).

Taken together, the most promising targets arise from drug combinations inhibiting STAT3 with other TFs

due to the strong effects on the malignant cells, and minimal effects on other cell types. To further investigate

the targets, we selected a promising drug combination from STAT3 cluster (Figures 4E and 5D) that corresponds

to the combined drug intervention of Enzalutamide (targets AR) and Niclosamide (targets STAT3). Figure 6 visu-

alizes the estimated relative flux rate change of the four cell types under this combined intervention. Relative

change of 0 means no change, and negative relative change indicates down-regulation. Results showed that
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Figure 5: Clustering of the predicted relative changes in fluxes when transcription factors and combinations of transcription factors in

the network are targeted (rows). There were five distinct clusters observed (A–E). The flux changes were aggregated and are

systematically displayed for the malignant, T-cell, macrophage and oligodendrocyte (columns). This ordering is preserved across the

different pathways: glycolysis, anaerobic glycolysis and the flux from the glycolytic pathways to the TCA cycle (pyruvate dehydrogenase).

the drug intervention has almost no effects on the PDH reactions, and it only slightly restrained glycolysis in

macrophages and malignant cells with relative flux changes of −0.15 and −0.14, respectively. However, this
combined treatment strongly suppressed anaerobic reaction in malignant cells with a relative change of−0.92,
while the down-regulation effects for other cell types were much milder, with flux fold change ranging from

−0.14 to −0.34. Taken together, these results suggest that Enzalutamide and Niclosamide drug combinations
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Figure 6: The inferred relative flux changes for each of the

four cell-types after inhibition of Enzalutamide (targets AR)

and Niclosamide (targets STAT3).

may be a potential treatment that is specific in suppressing anaerobic metabolism in malignant cells, without

major interference to other cell types.

Our finding that the STAT3 inhibitors have specific effects on glioblastoma cells is consistent with the public

drug sensitivity data and literature. The primary PRISM repurposing dataset (Corsello et al. 2020) obtained from

the cancer dependencymap in theDepMap portal (Ghandi et al. 2019) shows thatmost glioblastoma cell lines are

sensitive to the STAT3 inhibitors (S-Figure 4). Recent literature also found that napabucasin, a STAT3 inhibitor,

can suppress the proliferation and invasion of glioblastoma cells (Han et al. 2019). On the other hand, hyperac-

tivation of STAT3 in tumor-infiltrating immune cells causes immunosuppression by inhibiting both innate and

adaptive immune responses (Zou et al. 2020).

4 Discussion

This work develops a novel approach for integrating cell-specific gene networks into constraint-based models

of metabolism. To the authors’ knowledge, this represents the first approach to integrating genetic cell-specific

networks based on single-cell transcriptomics data into constraint-basedmodels ofmetabolism. This integration

represents a more physiological system and allows us to characterize the distinct metabolic profiles within the

tumor microenvironment under different perturbations. In the context of cancer, these perturbations can be

viewed as potential single drug targets or combination therapies. Although this work focused on cancer, the

general framework can be adopted in other applications, such as different cell types, model organisms, and

diseases.

A strength of this work is the flexible BN representation of signaling networks to estimate the system-wide

impacts of perturbations. There are several advantages to using BNs in this context. For structural learning, prior

information about regulatory associations can be used to constrain the learning of the graph structure. Proba-

bilistic reasoning utilized exact inferences that are only possible because of the directed acyclic nature of the

graphs (Lauritzen 1996). Although the directed nature of the graphs is a strong assumption, BN structures have

been shown tomimic biological mechanisms and capture feedback (Blair et al. 2012). Moreover, exact reasoning

is not possible for undirected networks.

On the other hand, a unique challenge for BN learning and inference is the zero inflation of the scRNA-

seq data (Cao et al. 2021; Luecken and Theis 2019), which violates the Gaussian distribution assumptions for the

parameterization of CGBNs. The zero-inflation issue poses a universal challenge to basic analytics performed

with scRNA-seq and has been shown to have biological relevance (Choi et al. 2020). In this work, we proposed

a hybrid imputation method leveraging enzyme expression level and TF activities that overcome the issues

related to inference with zero-inflated data. We applied MAGIC algorithm (Van Dijk et al. 2018) to impute and

smooth the enzyme expression levels and VIPER technique (Alvarez et al. 2016) to infer the TF activities based

on the TF transcript abundance. There are two benefits in using inferred TF activities. First, the TF protein

activity is a more direct predictor for enzyme levels than the TF transcript abundance. Second, the distribution

of TF activities can be better modeled by Gaussian distributions. A future direction will be directly utilizing the

zero-inflated data, which would require alternative parametric and modifications for the inference.
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The integrated computational model was used to explore a perturbation space of TFs. Pyruvate dehydroge-

nase (PDH) is a gatekeeper enzyme between glycolysis and the TCA cycle. Themodulation of PDH expression has

been actively investigated as a target for controlling cancer growth (Sradhanjali and Reddy 2018). In order to pri-

oritize our findings, we sought to identify target perturbations that inhibit PDH inmalignant cells andminimize

the dysregulation of the metabolism of other cells in the tumor microenvironment. Some of these promising

findings link to drugs in current use.

The androgen receptor (AR) is a steroid hormone activated TF that is targeted by Enzalutamide. In normal

tissues, androgen effects are mediated by AR through hormone-receptor binding in both males and females.

Androgen-independent AR activation is a common finding in castration-resistant prostate cancers. Enzalu-

tamide has been used primarily for prostate cancer (Beer et al. 2014; Tran et al. 2009). AR has also been con-

sidered as a potential target for glioblastoma (Yu et al. 2015; Zalcman et al. 2018), the most common form of

brain cancer. The incidence of glioblastoma is 1.6 times higher in men than women (Carrano et al. 2021), and the

upregulation of AR has been implicated in promoting tumorigenesis (Yu et al. 2015). Despite these associations,

there has only been a recent study that confirms the therapeutic role of targeting AR in glioblastoma in vitro and

in vivo using Enzalutamide in mouse models (Zhao et al. 2021).

STAT3 is central in regulating the anti-tumor immune response and plays essential roles in inhibiting the

expression of crucial immune activation regulators and promoting the production of immunosuppressive fac-

tors (Zou et al. 2020). Niclosamide was the only launched STAT3 targeting drug in our drug list and is known to

have broad clinical applications for the treatment of various cancers (Chen et al. 2018). A study showed that

Niclosamide synergistically reversed Enzalutamide resistance in prostate cancer cells. Combined treatment

with Niclosamide plus Enzalutamide resulted in inhibition of colony formation and growth arrest by inducing

cell apoptosis (Liu et al. 2015). Multiple studies investigated the effect of Niclosamide in combination therapy.

For example, Niclosamide with other drugs like terpyridine or cisplatin achieved significant treatment effects

in breast cancer (Karakas et al. 2015; Liu et al. 2016a). Niclosamide combined with erlotinib was shown to be

effective in treating head and neck cancer (Li et al. 2013a) and lung cancer (Li et al. 2013b).

This approach also has limitations. In the modeling, the scope of the metabolic model is limited to a simple

representation of central carbon metabolism. This work represents a tractable proof of concept. Genome-scale

metabolic models have been developed and made available (Schellenberger et al. 2010). A future direction of

this workwill be to expand upon the integratedmodeling framework to ensure scalability. Flux balance analysis

also requires an objective function, which in our applications was to maximize ATP production for basal flux

estimation in oligodendrocytes, reflecting the high energy demands of brain metabolism. Setting an objective

function is more straightforward in single-cell systems where the objective is growth. In human cells, a single

objective is unrealistic. Importantly, when simulating the effect of drug perturbations, the current approach

does not consider potential off-target effects. Drug actions can often influence other targets beyond the intended

ones, which can cause unanticipated changes in cellular functions. Model validation is challenging in integrated

systems. These potential limitation should be kept in mind when interpreting our findings and could be an

additional aspect to consider in future model refinements.

In conclusion, we have developed a flexible framework for integrating cell-specific BNs of signaling path-

ways into metabolic models using scRNA-seq data. This generalizable approach leverages BN inference to make

predictions about the system under perturbations, and flux estimation to explore the effects of perturbations

on the metabolic system. Metabolic models and gene regulatory networks have both been widely studied, but

in parallel. Biologically, their integration is well understood, but mathematically connecting these models has

been a longstanding challenge. Network integration is a promising approach for bridging these domains into a

computational model that can be used to make predictions and gain novel insights about disease.
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