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Abstract:
Recent studies have found that the microbiome in both gut and mouth are associated with diseases of the gut,
including cancer. If resident microbes could be found to exhibit consistent patterns between the mouth and gut,
disease status could potentially be assessed non-invasively through profiling of oral samples. Currently, there
exists no generally applicable method to test for such associations. Here we present a Bayesian framework to
identify microbes that exhibit consistent patterns between body sites, with respect to a phenotypic variable. For
a given operational taxonomic unit (OTU), a Bayesian regression model is used to obtain Markov-Chain Monte
Carlo estimates of abundance among strata, calculate a correlation statistic, and conduct a formal test based
on its posterior distribution. Extensive simulation studies demonstrate overall viability of the approach, and
provide information on what factors affect its performance. Applying our method to a dataset containing oral
and gut microbiome samples from 77 pancreatic cancer patients revealed several OTUs exhibiting consistent
patterns between gut and mouth with respect to disease subtype. Our method is well powered for modest
sample sizes and moderate strength of association and can be flexibly extended to other research settings using
any currently established Bayesian analysis programs.
Keywords: association, Bayesian, consistent pattern, microbial abundance, microbiome, zero-inflated beta re-
gression
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1 Introduction

Microbial communities inhabit virtually every part of the human body and can differ across individuals. Even
within the same individual, microbial communities often change with anatomical location (Faith et al., 2013).
In this context, it is not surprising that the human microbiome plays an important role in a wide range of dis-
eases, including even life threatening conditions such as cancers. In their review, Goodman and Gardner (2018)
summarize several compelling examples, such as increased Fusobacterium species associating with tumors in
colon and Helicobacter pylori inducing lymphoma and gastric cancer. More recently, bacteria have been iden-
tified in pancreatic tissue in cancer patients (del Castillo et al., 2019) and have been shown to play a role in
carcinogenesis in the pancreas (Pushalkar et al., 2018). Additional studies have also reported evidence that cer-
tain oral bacteria and periodontal disease associate with an increased risk in pancreatic cancer (Michaud et al.,
2012; Fan et al., 2016). Finally, it has been shown that Fusobacterium nucleatum, a common oral bacterium, pro-
duces a protein that allows itself and other bacteria to travel through the endothelium in the mouth and into the
blood stream, allowing them to migrate to other body sites (Fardini et al., 2011). Despite the empirical evidence,
little is understood about how these associations originate and no confirmatory study has conclusively estab-
lished their biological mechanism. This motivates the question of whether microbes exist for which changes
in abundance (mean relative abundance or rate of presence) with respect to disease status in the oral cavity
correspond to changes in abundance in gut samples. In other words, are there microbes for which fluctuations

Richard Meier is the corresponding author.
© 2019 Richard Meier et al., published by Walter de Gruyter GmbH, Berlin/Boston.

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

1

http://rivervalleytechnologies.com/products/


Au
to

m
at

ica
lly

ge
ne

ra
te

d
ro

ug
h

PD
Fb

yP
ro

of
Ch

ec
kf

ro
m

Ri
ve

rV
al

le
yT

ec
hn

ol
og

ie
sL

td
Meier et al. DE GRUYTER

in their abundance are preserved across disease status between mouth and gut? Identification of such species,
exhibiting pairwise stratified association (PASTA) between two body sites, may allow further insight into mech-
anisms and the biology behind a disease. Furthermore, it may also provide new opportunities for treatment
or detection and even potentially enable a researcher or medical professional to learn about the disease in the
gut by monitoring oral samples. Considering that gut samples can only be acquired through invasive surgical
procedures, PASTA microbes could constitute invaluable clinical markers.

Data arising from 16S rRNA sequencing for assessing the microbiome takes the form of compositional count
tables. The term operational taxonomic unit (OTU) can be understood as a group of closely related microbes on
a given taxonomic level, for example: phylum, genus, or species. For a given experiment, in which abundance of
microbes is quantified in a series of biological samples, each cell in row i and column j of such a table represents
how often a species or OTU i was observed in sample j (Table 1). Unfortunately, these data are intricate with
total column counts (sequencing depth and microbial yield) differing between samples, high frequency of zero
values (i.e. sparsity), and the constant sum constraint problem that can create spurious associations when few
rows dominate the majority of counts (Tsilimigras & Fodor, 2016; Gloor et al., 2017).

Table 1: Hypothetical example of a microbial abundance data table.

Genus Sample 1 Sample 2 Sample 3 Sample 4 ⋯
Count Count Count Count ⋯

Actynomices 0 0 3 5 ⋯
Atopobium 0 27 10 6 ⋯
Fusobacterium 0 14 0 0 ⋯
⋯ ⋯ ⋯ ⋯ ⋯ ⋯
Sample total 671 2390 1502 1883 ⋯

Rows represent genera, which are groups of closely related microbes and an example of a type of operational taxonomic unit (OTU). For a
given sample and OTU, each cell in the table counts how often said OTU was observed in said sample through the 16S rRNA sequencing
technique. All counts in this type of table are expected to increase with the total number of observed OTUs in the respective sample.
These column totals can be understood as the sample signal intensity and change based on experimental parameters for each sample.

Due to its complexity, many different modeling strategies have been proposed for the analysis of microbial
16S rRNA abundance data. When investigating an individual microbe (or a specific group of microbes), current
strategies predominantly aim to understand the relationship between abundance and selected phenotypes.
Three major parametric approaches are employed by most researchers: discrete data models such as Zero-
inflated Poisson or Zero-inflated Negative Binomial regression (Zhang et al., 2017; Xia, Sun & Chen, 2018); log-
ratio Aitchison models that explicitly address the constant sum constraint by treating the ratio of abundance
counts between two taxonomic units as the response (Shi, Zhang & Li, 2016; Tsilimigras & Fodor, 2016; Gloor
et al., 2017); and lastly, relative abundance models that transform counts into sample proportions and fit semi-
continuous models to the data such as Zero-inflated Beta regression (ZIBR) (Chen & Li, 2016; Peng, Li & Liu,
2016; Xia, Sun & Chen, 2018). Each approach can present specific advantages and limitations, where the most
suitable model will depend on the circumstances of the research study. While log-ratio Aitchison models are
mandatory in datasets either measuring high phylogenetic levels with few taxonomic units or exhibiting low
community diversity (Tsilimigras and Fodor 2016), discrete data and relative abundance models are convenient
to address sparsity in high diversity settings. To date, neither of these modeling strategies has been utilized to
test for PASTA relationships and there presently exists no general testing approach that is applicable regardless
of the parametric modeling strategy. Alternatively, non-parametric inter-rater strategies can be employed to
test for agreement or association between body-sites. These strategies assume that there are individual raters
that are presented with two different scenarios or cases, each of which they have to assign to either a category
or numeric value. The methods then ask the question whether individual raters tend to make assignments
that agree or associate between the two scenarios. Popular examples are Cohen’s kappa (Cohen, 1960; Fleiss,
1971) for categorical responses and Pearson or Spearman correlation for numeric responses (Schober, Boer &
Schwarte, 2018). These methods do not necessarily require knowledge about the distribution of the response
and are applicable even if there is strong disagreement or variability between individual raters. However, they
do not allow accounting for confounders or other sources of variation, and they require paired samples.

Here, we present an approach to test for PASTA that is applicable regardless of the data model and regard-
less whether all, some, or none of the samples are paired. The question of PASTA relationships with respect
to body site is translated into a question of association of population parameters (such as mean relative abun-
dance) between the two body sites. A test is then proposed based on applying a correlation statistic to param-
eter estimates. Testing and adjusting for paired samples is made convenient by utilizing a Bayesian modeling
framework. For the purpose of illustration, this paper will focus on modeling relative abundance via a ZIBR
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model, though as stated before, the approach is not limited to any partiular data model. After establishing the
data model and introducing the approach, viability and performance are evaluated via simulation studies and
through the analysis of a biological dataset involving microbiome data collected from the gut and specific oral
sites in patients with pancreatic cancer and other diseases of the foregut. Finally, strengths, limitations and
opportunities for future methodological development are discussed.

2 Methods

2.1 Experimental design

A study suitable to answer the previously described research question can be broken down into the follow-
ing steps. First, an appropriate subject population exhibiting the disease or target phenotype is identified and
biological samples from the two body sites of interest are collected. Multiple samples from the same patient
within and across body sites are possible, but not necessarily required. Next, sample preparation and 16S rRNA
sequencing are performed. This sequencing technique aims to identify and count hypervariable DNA patterns
that are specific to microbial species and OTUs, but that do not exist in human DNA; the rationale being that
the DNA content of a group of microbes is approximately proportional to their abundance in the sample. So,
by counting how often signatures belonging to a specific OTU are observed, we can obtain an estimate of its
abundance relative to how many microbes were observed, in total. After OTUs have been counted, our pro-
posed statistical test is performed individually for each OTU, testing the null hypothesis that there is no PASTA
relationship for each specific set of considered microbes. This test is performed by fitting a statistical regression
model to the row vector of abundance values corresponding to a target OTU, followed by the calculation of a
test statistic 𝑇𝜃 based on the parameter estimates (for example, rate of absence or mean abundance) obtained
from said model. This statistic will be small when 𝐻0 is true and large when 𝐻0 is false. An overview of the
experimental design for testing the hypothesis of PASTA can be found in Figure 1.

Figure 1: Overview of the experimental setup to test for pairwise stratified association (PASTA). Oral and gut samples
are obtained from cancer patients and 16S rRNA sequencing is performed on each sample. The resulting microbial abun-
dance data is used to fit a statistical regression model to each observed OTU across all samples. Finally, abundance esti-
mates across strata are used to test whether abundance patterns in disease status are preserved between mouth and gut.
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2.2 Data model

In what follows we consider abundance on two taxonomic levels: the genus and the Amplicon Sequence Variant
(ASV) level, the latter representing unique biological sequences that were identified from 16S genes (Callahan,
McMurdie & Holmes, 2017). In order to make abundance values comparable across samples and bring them
to the same scale, raw counts are first transformed into relative abundance values. For a given sample, relative
abundance of an OTU refers to the number of times that OTU was observed, scaled by the total number of
observed OTUs for that sample. It represents the proportion of times an OTU was observed in a given sample.

Let 𝑌𝑘 denote the relative abundance of a specific OTU for sample 𝑘. This response can be modeled as
a Zero-inflated Beta distribution with probability density 𝑓𝑌𝑘

(𝑦|𝑝𝑘, 𝜔𝑘, 𝜙𝑘). This model assumes that the case
𝑌𝑘 = 0 occurs with probability 𝑝𝑘 and that given 𝑌𝑘 > 0, the response 𝑌𝑘 follows a Beta distribution with
mean 𝜔𝑘 and dispersion 𝜙𝑘. For a given OTU and sample, the probability of absence 𝑝 defines how likely it
is to observe no microbe comprising that OTU within said sample. The mean non-zero relative abundance
𝜔 represents the mean relative abundance given that microbes comprising the OTU are actually observed. The
mean of 𝑌𝑘, the overall mean relative abundance, is then 𝐸[𝑌𝑘] = 𝜇𝑘 = 𝜔𝑘(1 − 𝑝𝑘). The probability density
function of this distribution can be expressed as follows:

𝑓𝑌𝑘
(𝑦) =

⎧{
⎨{⎩

𝑝𝑘 if 𝑦 = 0
(1 − 𝑝𝑘) ⋅ Γ(𝜙𝑘)

Γ(𝜔𝑘⋅𝜙𝑘)Γ((1−𝜔𝑘)⋅𝜙𝑘) 𝑦𝜔𝑘⋅𝜙𝑘−1(1 − 𝑦)(1−𝜔𝑘)⋅𝜙𝑘−1 if 𝑦 > 0
� (1)

Before the statistical PASTA test can be performed, a Bayesian ZIBR model is fit to the data 𝑌𝑘 utilizing the
likelihood 𝑓𝑌𝑘

 and assuming a common dispersion parameter 𝜙𝑘 = 𝜙 for all samples. The estimated posterior
distributions of 𝜔 and 𝑝 resulting from this model are then subsequently used to conduct the test.

Let 𝜔𝜔𝜔 denote the vector of mean relative abundances for all samples, p denote the vector of proba-
bilities of absence for all samples, 𝛽𝛽𝛽,𝛿𝛿𝛿 denote coefficient vectors, b,d denote random effect vectors and
Q,R,W,X represent design matrices. The design matrices code how covariates impact the model parameters
via the following link functions:

𝑙𝑜𝑔𝑖𝑡(𝜔𝜔𝜔) = 𝛽𝛽𝛽X + bR and 𝑙𝑜𝑔𝑖𝑡(p) = 𝛿𝛿𝛿W + dQ (2)

For our application, the matrices W and X are used to model the strata of body site and disease status, but can
additionally be used to adjust for other, fixed covariates (e.g. subject age, gender, smoking status, and/or other
potential confounders or sources of variation). On the other hand, the optional inclusion of Q and R permits
one to account for correlation structures, such as within-subject correlation when multiple samples are collected
from the same patient. If, for example, the probability of absence of a given OTU in sample 𝑘 from subject 𝑗𝑘 is
assumed to be impacted by disease status 𝑔𝑗𝑘

, body site 𝑠𝑘, age 𝐴𝑗𝑘
 and within-subject correlation, we would

formulate W, Q and our model for the probability of absence as follows:

𝑙𝑜𝑔𝑖𝑡(𝑝𝑘) = 𝛿1,𝑔𝑗𝑘
,𝑠𝑘

+ 𝛿2𝐴𝑗𝑘
+ 𝑑1,𝑗𝑘

(3)

Here, 𝛿1,𝑔𝑗𝑘
,𝑠𝑘

captures the effect of disease status 𝑔𝑗𝑘
 and body site 𝑠𝑘 on the probability of absence, 𝛿2 represents

the effect of age on the probability of absence, and 𝑑1,𝑗𝑘
is a subject specific random intercept. Analogously, if

mean relative abundance is believed to be impacted by the same covariates in the same way, except that age
was believed to have no effect, we would formulate X, R and our model for non-zero relative abundance such
that:

𝑙𝑜𝑔𝑖𝑡(𝜔𝑘) = 𝛽1,𝑔𝑘,𝑠𝑘
+ 𝑏1,𝑘 (4)

Here, 𝛽1,𝑔𝑗𝑘
,𝑠𝑘

captures the effect of disease status 𝑔𝑗𝑘
 and body site 𝑠𝑘 on the mean non-zero relative abundance

and 𝑏1,𝑗𝑘
is a subject specific random intercept. The specific models used in our analysis of the pancreatic cancer

dataset are presented in the Results Section are further discussed in Section 2.7.
Let 𝑡, 𝑖 ∈ ℕ denote placeholder indices for any potential coefficient specified in the above ZIBR model. Then

all posterior distributions were estimated, utilizing the following independent prior distributions:

𝜋(𝛽𝑡), 𝜋(𝛿𝑡) ∼ 𝑁(0, 100); 𝜋(𝑏𝑡,𝑖) ∼ 𝑁(0, 𝜁𝑡); 𝜋(𝑑𝑡,𝑖) ∼ 𝑁(0, 𝜉𝑡); (5)
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𝜋(√𝜙) ∼ 𝑈𝑛𝑖𝑓 (1, 100); 𝜋(𝜁 −1
𝑡 ), 𝜋(𝜉 −1

𝑡 ) ∼ 𝐺𝑎𝑚(0.01, 0.01) (6)

Priors were chosen to be weakly informative, with the exception of √𝜙 being restricted to values larger than
or equal to 1 in an attempt to stabilize estimation of means. Under these priors and for some integer vectors
T, I1, I2 the posterior distribution of parameters will then satisfy the following:

𝜋(𝛽𝛽𝛽,𝛿𝛿𝛿, b,d, 𝜁𝜁𝜁 , 𝜉𝜉𝜉 |Y) ∝
𝑇1

∏
𝑡1

𝜋(𝛽𝑡1) ⋅
𝑇2

∏
𝑡2

𝜋(𝛿𝑡2) ⋅
𝑇3

∏
𝑡3

⎛⎜⎜⎜
⎝

𝜋(𝜁𝑡3)
𝐼1,𝑡3

∏
𝑖𝑡3

𝜋(𝑏𝑡3,𝑖𝑡3
|𝜁𝑡3)

⎞⎟⎟⎟
⎠

⋅

𝑇4

∏
𝑡4

⎛⎜⎜⎜
⎝

𝜋(𝜉𝑡4)
𝐼2,𝑡4

∏
𝑖𝑡4

𝜋(𝑑𝑡4,𝑖𝑡4
|𝜉𝑡4)

⎞⎟⎟⎟
⎠

⋅ 𝑓 (Y|𝛽𝛽𝛽,𝛿𝛿𝛿, b,d, 𝜁𝜁𝜁 , 𝜉𝜉𝜉)

(7)

There are generally no analytical solutions for the posterior distributions of the coefficients when random effects
are present. Regardless, whether the model structure is a special case that allows for analytical calculation
of posterior distributions or whether we employ a more complex model where this is not possible, posterior
distributions can be estimated via Markov chain Monte Carlo (MCMC) methods. Briefly, MCMC procedures
allow one to draw arbitrarily large samples from a posterior distribution that will numerically approximate the
said distribution, as the number of draws increases. Models were fit via this method in the software OpenBUGS
(version 3.2.3 rev 1012) via the R (version 3.4.0) package “R2OpenBUGS” (version 3.2.3.2).

2.3 Formal definition of pairwise stratified association (PASTA)

In order to understand how the Bayesian regression model can be used to conduct the desired hypothesis test,
we will first provide a formal definition of PASTA. Let 𝑠 denote a grouping variable for which two groups
are to be compared. For our purposes, this grouping variable represents body sites: 𝑠 = 1 denotes gut and
𝑠 = 2 denotes mouth. Let 𝑔 denote another grouping variable with three or more distinct categories. This
grouping variable will represent different types of disease status, more specifically cancer-subtype. Let 𝜃𝑠𝑔 be
a population parameter of the response for a given body site 𝑠 and disease status 𝑔. The population parameter
represents fundamental properties of the distribution of the response. For the here considered ZIBR model,
𝑝, 𝜔 and 𝜇 are relevant candidates for 𝜃. If PASTA holds for a given OTU, then either 𝑝, 𝜔 or 𝜇 will associate
between the two body sites, because they all relate to the magnitude of abundance.

We thus define: The parameter 𝜃 exhibits PASTA with respect to 𝑠 and 𝑔 if there exists an increasing function
ℎ(𝑥) such that 𝜃1𝑔 = ℎ(𝜃2𝑔) holds for all 𝑔 ∈ {1, 2, … , 𝐺}, where 𝐺 ≥ 3. Conceptually, this definition says that
as we move from one disease status group to another, if 𝜃 increases in oral samples, it will also increase in
gut samples. Analogously, if 𝜃 decreases from one disease status group to another in the mouth, it will also
decrease in the gut. A visualization is provided in Figure 2.
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Figure 2: Visualization of pairwise stratified association (PASTA). Let θ represent a population parameter of interest, for
example the mean relative abundance of a particular OTU. Each column of sub-figures below the table are examples of
a PASTA relationship, i.e. of h being an increasing function. The first row plots parameter values of mouth and gut side-
by-side and demonstrates that a variety of different scenarios are covered by this definition. In the second row, plotting
parameter values of gut against parameter values of mouth reveals their association through a trend. T denotes Pearson
correlation values between gut and mouth.

2.4 Testing for PASTA

Let 𝑇(x, y) ∈ [−1, 1] denote a correlation statistic between two numerical vectors x, y; for example, the Pearson
or Spearman correlation statistic. Under this definition, 𝑇𝜃 = 𝑇(𝜃𝜃𝜃1, 𝜃𝜃𝜃2) denotes the correlation statistic calcu-
lated for the two parameter vectors corresponding to 𝑠 = 1 (e.g. parameters for disease status groups in the
mouth) and 𝑠 = 2 (e.g. parameters for disease status groups in the gut). Generally, if a PASTA relationship
holds between 𝜃𝜃𝜃1 and 𝜃𝜃𝜃2, this statistic should assume a larger value compared to cases where such a relation-
ship does not hold. This means that we are able to formulate our desired test by rejecting 𝐻0 if 𝑇𝜃 is larger than
a specific threshold and fail to reject 𝐻0 if it is less than said threshold.

In summary, assume that 𝜃1𝑔 = ℎ(𝜃2𝑔) implies 𝑇𝜃 > 𝑡𝑐 for some −1 < 𝑡𝑐 < 1. The constant 𝑡𝑐 represents a
meaningful degree of association. For example, a value of 𝑡𝑐 = 0 would mean that any tangible degree of associ-
ation is meaningful, where a value of 𝑡𝑐 = 0.5 would mean that a moderate degree of association is meaningful.
This definition is useful because 𝑇𝜃 can score the degree of association without explicitly having to specify the
shape of ℎ. Considering the complexity of the biology underlying the samples, specifying ℎ in advance may not
only be hard to justify, but strong deviations of a chosen ℎ from the true ℎ could also result in missing promis-
ing associations. Instead, our regression model will allow each stratum (𝑠, 𝑔) to have an independent effect on
the response, leading to a unique, agnostic posterior distribution of each 𝜃𝑠𝑔. These unique posteriors are then
in turn used to calculate the posterior distribution of 𝑇𝜃 and conduct the hypothesis test.

Based on this scoring definition of PASTA, we formulate our hypotheses in the following way:

𝐻0 ∶ 𝑇𝜃 ≤ 𝑡𝑐, i.e. 𝜃𝜃𝜃1 and  𝜃𝜃𝜃2 do NOT exhibit PASTA

𝐻1 ∶ 𝑇𝜃 > 𝑡𝑐, i.e. 𝜃𝜃𝜃1 and 𝜃𝜃𝜃2 DO exhibit PASTA

While deriving analytical solutions of the distribution of 𝑇𝜃 |Y = 𝑇(𝜃𝜃𝜃1|Y, 𝜃𝜃𝜃2|Y) will depend on the data model
and may be difficult or even impossible to obtain depending on the modeling scenario, a general testing proce-
dure can still be derived. As decribed earlier, MCMC methods allow one to conveniently obtain a large sample
of posterior draws of each 𝜃𝑠𝑔, even when obtaining analytical solutions of posterior distributions is not possi-
ble. Furthermore, plugging the posterior draws of each MCMC iteration into 𝑇 allows one to obtain posterior
draws from 𝑇𝜃 itself. Let 𝛼 denote the target credibility threshold, 𝐻0 is then rejected if the lower bound 𝑡𝑄𝛼 of
the one-sided credible interval of 𝑇𝜃 |Y exceeds 𝑡𝑐. This is equivalent to rejecting 𝐻0 if the estimated probability
of no association exceeds 𝛼, i.e. 𝑃𝑟(𝑇𝜃 |Y ≤ 𝑡𝑐) < 𝛼. In detail, the step by step process for testing 𝐻0 is as follows:

1. Specify a likelihood for the response data Y and prior distributions for the parameters 𝜽.

2. Utilize a MCMC sampling scheme to draw a large number of samples from the posterior distributions of the
parameters 𝜃𝜃𝜃|Y. One draw from the Markov Chain contains a unique draw for each 𝜃𝑠𝑔.

3. Calculate 𝑇∗
𝑣 = 𝑇(𝜃𝜃𝜃∗𝑣

1 , 𝜃𝜃𝜃∗𝑣
2 ) where 𝜃𝜃𝜃∗𝑣 denotes the vth MCMC draw. Then T∗ is a large sample of the posterior

distribution 𝑇𝜃 |Y.

4. Calculate the α⋅100% sample quantile 𝑡𝑄𝛼 ofT∗. If the Markov Chain is sufficiently long, the sample quantiles
ofT∗ will closely approximate the quantiles of the true posterior distribution. The value 𝑡𝑄𝛼 is thus the lower
bound of the (1 − 𝛼) ⋅ 100% one-sided credible interval of 𝑇𝜃 |Y.

5. Reject 𝐻0 if the lower bound 𝑡𝑄𝛼 is larger than 𝑡𝑐.

This process is generally applicable regardless of the data model or the parameter being tested, as long as each
𝜃𝑠𝑔 can be estimated without constraining them to a parameter space that implies PASTA.

2.5 Pancreatic cancer patient dataset

In order to evaluate validity of the approach in the context of microbiome data, analyses were performed based
on a biological 16S rRNA sequencing dataset first published in del Castillo et al. (2019). This dataset contained
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samples of various gut and oral sites from 77 patients with pancreatic cancer with age range 31–86 years. Se-
quencing was performed utilizing the Illumina MiSeq System and alignments were performed using BLASTN
against a reference library combining sequences from HOMD (version 14.5), Greengenes Gold and the NCBI
16S rRNA reference sequence set. OTU counts were obtained utilizing the QIIME (Quantitative Insights Into Mi-
crobial Ecology 22) software package version 1.9.1, while the unique Amplicon Sequence Variant (ASV) counts
were calculated using the QIIME2 software package release 2018.4. The former was used to obtain taxonomic
genus level counts, whereas the latter was used to obtain rarefied ASV level information, calculated based on
sequencing data rarefied at a sampling depth of 1200. Both genus level and ASV level counts were considered
for analysis. Before fitting statistical models to the data, relative abundance values of less than 0.01 were treated
as noise and set to 0. To ensure inference was based on sufficient signal, OTUs and ASVs were only tested if
more than 5of all samples exhibited non-zero values.

The dataset was used to both guide simulation studies (described in the next section) and to deploy models
to identify potential microbes that may exhibit a PASTA pattern.

2.6 Simulation studies

Before simulations were performed, an empirical approach was pursued in order to obtain sampling distribu-
tions of the parameters 𝑝, 𝜔, 𝜙 that would be representative of biological microbiome data. First, a marginal,
unstratified ZIBR model was fit to the pancreatic cancer dataset that assumed all samples of relative abun-
dance for a given OTU originated from the same distribution. These model fits yielded a single estimate of
𝑝, 𝜔 and 𝜙 for each OTU. These estimates were then assumed to be representative of or approximate the true
distribution of parameters in biological data. In the next step, the estimates were used to obtain smooth prob-
ability distributions that parameters could be sampled from during the simulation studies. For both 𝑝 and
𝜔, individual Beta distribution models were fit to the marginal estimates in order to obtain their smooth
sampling distributions. On the other hand, log 𝜙 was sampled via a Normal distribution through an ob-
served linear relationship between log 𝜙 and log 𝜔 that was present on the ASV level and the genus level.
More specifically, since our models assumed fixed dispersion among all groups, dispersion was sampled from
(log 𝜙| min𝑠𝑔{log 𝜔𝑠𝑔}) ∼ 𝑁(𝑎 min𝑠𝑔{log 𝜔𝑠𝑔} + 𝑏, 𝜎2), where 𝑎, 𝑏, 𝜎2 differed between genus and ASV level.

After the smooth sampling distributions were obtained, the performance of PASTA tests was evaluated via
simulations. Let 𝑡 denote a target, fixed degree of association, 𝑛 denote the number of observations in each
stratum (𝑠, 𝑔) and 𝑡𝑐 = 0 denote the tested degree of association. A single simulation run was carried out
by first randomly drawing all 𝜃𝑠𝑔 parameters from the representative sampling distributions, until |𝑇𝜃 − 𝑡| <
0.001 was satisfied. This process yields parameters that are both representative and that also exhibit a target
degree of association (within a small error margin). Next, the drawn parameters satisfying this condition were
plugged into the likelihood of the ZIBR data model, which was in turn used to draw a random sample of
relative abundance values. This simulated pseudo-data was then used to fit the Bayesian ZIBR model and
conduct our hypothesis test. Each considered scenario was simulated 1000 times and statistical power for given
𝑡, 𝑛 and 𝑡𝑐 was then estimated as the proportion of times 𝐻0 (i.e. 𝑇𝜃 ≤ 0) was rejected. We specifically considered
Pearson correlation as choice for 𝑇(𝑥, 𝑦) in this simulation.

An additional restriction was put in place for sampling pseudo-data in order to prevent rare cases of sparse
datasets with insufficient signal to perform the analysis. If a generated pseudo-dataset contained more than
three sub-strata (𝑠, 𝑔) in which all observations exhibit a response value of either all 0 or all 1, then it was
rejected and a new pseudo-dataset was sampled.

2.7 Model fitting

Let 𝑗𝑘 denote the unique identifier index for the subject and 𝑠𝑘 denote the body site that sample 𝑘 originated
from. Also, let and 𝑔𝑗𝑘

 denote the disease status for subject 𝑗𝑘, let 𝑋𝑘 be the log of total sample abundance for
sample 𝑘 and let 𝑏𝑗𝑘

 denote the random intercept for subject 𝑗𝑘. The three different models that were utilized in
this study are shown below:

Model A: 𝑙𝑜𝑔𝑖𝑡(𝜔𝑘) = 𝛽𝑠𝑘,𝑔𝑗𝑘
& 𝑙𝑜𝑔𝑖𝑡(𝑝𝑘) = 𝛽𝑠𝑘,𝑔𝑗𝑘

Model B: 𝑙𝑜𝑔𝑖𝑡(𝜔𝑘) = 𝛽𝑠𝑘,𝑔𝑗𝑘
+ 𝑏𝑗𝑘

& 𝑙𝑜𝑔𝑖𝑡(𝑝𝑘) = 𝛽𝑠𝑘,𝑔𝑗𝑘
+ 𝑏𝑗𝑘

Model C: 𝑙𝑜𝑔𝑖𝑡(𝜔𝑘) = 𝛽𝑠𝑘,𝑔𝑗𝑘
+ 𝑏𝑗𝑘

& 𝑙𝑜𝑔𝑖𝑡(𝑝𝑘) = 𝛽1,𝑠𝑘,𝑔𝑗𝑘
+ 𝑋𝑘𝛽2 + 𝑏𝑗𝑘

Model A was utilized in the simulation studies. Model B was utilized for fitting ASV level data, while Model C
was utilized for fitting genus level data. This choice was made because scaling OTU counts to relative abundance
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will only make non-zero relative abundance comparable between samples, but not the rate of absence. This is
due to the fact that, even if the true probability of absence 𝑝 for a specific OTU is very high, if more microbes are
overall observed in sample 1 than in sample 2, then the probability of observing none of the microbes belonging
to the target OTU in sample 1 is much lower than in sample 2. For example, if a total of 1,000,000 microbes live
in a body site and 100 of them belong to the genus Prevotella, then if we randomly extract 1000 microbes from
this body site with our sample, we would expect to only rarely find one of these 100 microbes in our sample.
However, if our sample randomly extracts 100,000 microbes from the body site, it would be rare to find none
of the 100 microbes in it that belong to the genus Prevotella. So since the genus level data was not rarefied, the
total sample abundance differed between samples and an adjustment was necessary, whereas the ASV level
data was rarefied and did not require adjustment for total sample abundance.

In order to achieve potentially better convergence behaviour and to simplify and speed up the model fitting,
the logistic regression component of the model was fit independently of the Beta regression component, in all
cases. The resulting posterior chains of 𝑝 and 𝜔 were then used to calculate the posterior chain of 𝜔. This
approach is justified under the assumption that 𝑝 and 𝜔 are independent after adjusting for covariates, but
may be inadequate when there are confounders affecting both parameters not accounted for in the model.

3 Results

3.1 Simulation studies

Performance of our proposed approach was first evaluated using series of simulation studies. In an attempt
to obtain sampling distributions of parameters that would approximate biological distributions, unstratified
ZIBR models were fit to each OTU in the pancreatic cancer dataset (see Methods for details of this dataset).
Unstratified parameter estimates were then used to obtain smooth sampling distributions of 𝜔, 𝑝, 𝜙. Finally,
these sampling distributions were used to generate many pseudo-datasets satisfying 𝐻1 and performance was
evaluated when applying the previously described testing approach to the simulated dataset.

Sampling distributions for parameters were similar for both genus and ASV level. However, for 𝜔, the mean
non-zero relative abundance, distributions tended to be slightly further concentrated toward 0.0 on the ASV
level as compared to the genus level. Further, distributions of 𝑝 tended to be slightly more concentrated toward
1.0 on the ASV level as compared to the genus level. In both cases a linear relationship was observed between
log 𝜔 and log 𝜙 which was ultimately used to sample 𝜙 conditionally on 𝜔 (Figure 3).
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Figure 3: Observed relationships between marginal distributions of 𝜔 and 𝜙 estimated from the pancreatic cancer
dataset. For both the genus and the ASV level, parameters were estimated marginally for each OTU across all observa-
tions without any stratification. When plotting marginal parameter estimates of 𝜔 and 𝜙 a linear relationship can be ob-
served on the log scale. This relationship was utilized to sample 𝜙 conditionally on 𝜔 in the simulation studies.

In summary, the following sampling distributions were obtained:

Genus: 𝑝 ∼ 𝐵𝑒𝑡𝑎(1.67, 0.4); 𝜔 ∼ 𝐵𝑒𝑡𝑎(0.63, 53.27);
log 𝜙| min𝑠𝑔{log 𝜔𝑠𝑔}) ∼ 𝑁(−1.02 min𝑠𝑔{log 𝜔𝑠𝑔} − 1.41, 0.32)

ASV: 𝑝 ∼ 𝐵𝑒𝑡𝑎(7.35, 0.49); 𝜔 ∼ 𝐵𝑒𝑡𝑎(1.46, 121.12);
log 𝜙| min𝑠𝑔{log 𝜔𝑠𝑔}) ∼ 𝑁(−1.10 min𝑠𝑔{log 𝜔𝑠𝑔} − 0.89, 0.312)

As expected, simulations of biological data revealed that analyses on the genus level were overall more powerful
than on the ASV level, regardless of which population parameter was investigated (Figure 4). Assuming 𝑡𝑐 = 0,
four disease status groups, 95% credible intervals and utilizing Pearson correlation, the highest power was
achieved when testing PASTA of 𝜔. Under a moderate degree of association of 𝑇𝜃 = 0.537 a target power of
0.8 was reached for 5 samples per stratum on the genus level and 15 samples per stratum on the ASV level.
Type 1 error rates appeared adequately calibrated to the 5% significance level ranging from 0.03 to 0.056 on the
genus level and from 0.032 to 0.06 on the ASV level. Despite the relatively modest within group sample size
needed to detect a moderate degree of association for 𝜔 with adequate statistical power, there appeared to be
considerably less power for tests of 𝑝. Under a high degree of association of 𝑇𝜃 = 0.834 a target power of 0.8
was reached for 40 samples per stratum on the genus level. On the ASV level, utilizing as many as 80 samples
per stratum resulted in a power of only 0.59 for the same 𝑇𝜃. Type 1 error rates also appeared mostly calibrated
in this scenario, but showed deflatation for smaller sample sizes, assuming a value of 0.027 on the genus level
and 0.009 on the ASV level.
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Figure 4: Results of the simulation studies. Power plots are displayed for testing PASTA of various population parame-
ters with 𝑡𝑐 = 0 at both ASV and genus level. The term “n per group” refers to the number of samples available in each
of the eight sub-group combinations resulting from two body sites and four different levels of disease status. 𝐻0 was re-
jected if 𝑃𝑟(𝑇𝜃|Y ≤ 0) < 0.05. Type 1 error rates are displayed in white colored boxes with black fonts. Power values
less than 0.8 are colored blue, values larger than 0.9 are colored red and values between 0.8 and 0.9 are colored orange.
Genus level pseudo data generally has higher statistical power than the ASV level. High performance is achieved by the
non-zero mean 𝜔, while an increased sample size is required for the probability of absence 𝑝. Tests of the overall mean
𝜇 result in low performance, when only mildly constraining sparsity.

Testing PASTA of the overall mean 𝜇 = 𝜔(1 − 𝑝) was also investigated. While improving with increasing
size of effect and sample size, the power for this parameter was lower than when considering 𝜔, 𝑝 individually.
Even when considering the large degree of association 𝑇𝜃 = 0.834 and using 100 samples per stratum, the genus
level scenario achieved a power of only 0.546. Notably, type 1 error rates were consistently deflated, ranging
from 0.005 to 0.018 on the genus level and 0.002–0.008 on the ASV level. Type 1 error rates were deflated across
all simulated scenarios, reaching values of less than or equal 0.018 or less.

Discrepancies in performance were found to be directly related to precision of parameter estimates. When
plotting the posterior means of 𝑇𝜃 against their true simulated values across various simulation runs, the vari-
ation around the identity line consistently increased from 𝜔 to 𝑝, aswell as from genus to ASV level (Figure
5). Analogously, posterior distributions of 𝑇𝜃 were found to on average become more diffuse and more biased
towards 0, when moving from 𝜔 to 𝑝 or from genus to ASV level. When performing simulation runs of a sce-
nario with low relative precision, in which 𝑝 was sampled from a 𝑈𝑛𝑖𝑓 𝑜𝑟𝑚(0.85, 0.95) distribution, the posterior
distribution of 𝑇𝜃 was on average almost perfectly centered at zero and highly diffuse.

Figure 5: Effects of the relative precision of parameter estimates on the posterior distribution of 𝑇𝜃. The first row shows
the average point estimate of posterior quantiles of 𝑇𝜃 across simulation runs for various simulation scenarios. The sec-
ond row shows the associated plots of the parameters’ posterior means versus their true values across simulation runs.
As the relative precision of parameter estimates decreases, the posterior distribution of 𝑇𝜃 becomes more diffuse and
more biased towards 0.

Poor power when testing 𝜇 was also found to be related to two additional factors. Detailed results of sim-
ulations accounting for these factors are displayed in Additional File 1. The deflated type 1 error rates when
utilizing 95% credible intervals, lead to overly conservative tests that negatively affected power. Calibrating
type 1 errors to 5% by adjusting lower bounds of the credible intervals of 𝑇𝜃 for each considered sample size,
lead to a consistent improvement in power, reaching a value of 0.73 for 𝑇𝜃 = 0.922 and 80 samples per stratum
on the genus level. The second factor that affected performance was the employed liberal three sub-strata rule,
which allowed up to three strata to exhibit exclusively zeroes. Since high rates of absence were simulated, this
case often naturally occurred leading to the three respective posterior estimates being imputed with the vague
prior distribution, which is very imprecise. A follow-up simulation restricting all strata to have at least one
non-zero observation, lead to a consistent increase in power, reaching a value of 0.82 for 𝑇𝜃 = 0.922 and 80 sam-
ples per stratum on the genus level. In both settings, overall performance for testing 𝜇 was consistently lower
than for testing 𝑝 regardless of taxonomic levels. When both calibrating type 1 error and restricting non-zero
observations at the same time, power increased further but was not consistently better than for testing 𝑝.

10

http://rivervalleytechnologies.com/products/


Au
to

m
at

ica
lly

ge
ne

ra
te

d
ro

ug
h

PD
Fb

yP
ro

of
Ch

ec
kf

ro
m

Ri
ve

rV
al

le
yT

ec
hn

ol
og

ie
sL

td
DE GRUYTER Meier et al.

Additionally, three sets of simplified supplementary simulations were also performed to showcase how
the PASTA testing approach can be analogously utilized in other data models. A simple Poisson regression
model and a log ratio Aitchison model both achieved performance metrics slightly less performant but overall
comparable to testing PASTA of the mean non-zero relative abundance via Beta regression. In particular, the
Beta regression model appeared to achieve higher power for small sample sizes than the other two approaches
and the log-ratio Aitchison model appeared to perform slightly worse than the Poisson regression model. On
the other hand, testing PASTA of the overall mean in a zero-inflated Poisson model, utilizing the same smooth
sampling distribution of zero-inflation rate 𝑝 as for the ZIBR model on the genus level, achieved performance
metrics comparable to testing PASTA of the overall mean in the ZIBR model. Even though minor differences
with respect to calibration of type 1 error and statistical power were observed across the different models, the
testing approach was overall viable regardless of the scenario. A detailed summary of these simulations is
provided in Additional File 2.

3.2 Applying the approach to biological data

The 10th revision of the International Statistical Classification of Diseases and Related Health Problems (ICD-
10), is a systematic classification of medical conditions provided by the World Health organization. Disease
status information in this dataset was available via ICD-10 codes for each subject. The clinical pancreatic cancer
dataset contained four predominant cancer-types: C24.x, C25.x, K86.2 and other, where “.x” denotes a further
sub-type that could differ by subject and “other” refers to pancreatic cancer in various other categories or other
diseases of the foregut. OTUs exhibiting significant PASTA with respect to disease status were successfully
identified for both genus and ASV level in this dataset. For analysis we considered coding cancer sub-type in
two ways: four group coding as described above and three group coding, which collapsed “K86.2” and “other”
into one group. On the genus level, when coding disease status into four groups three genera exhibiting PASTA
between mouth and gut were identified: Fusobacterium, Haemophilus and Veillonella (Table 2). After substratifying
oral sites into saliva, tongue, buccal and gum, these association were found to be preserved for some of the
site pairs: Fusobacterium also exhibited PASTA between gut an saliva sites; Haemophilus also exhibited PASTA
between gut and gum, as well as gut and tongue; Veillonella also exhibited PASTA between gut and gum. Several
genera also exhibited PASTA between individual mouth sites (Table 3). Two genera exhibited PASTA between
four pairs of mouth sites: Fusobacterium and Actinomyces. Three genera exhibited PASTA between two pairs of
mouth sites: Atopobium, Haemophilus and Prevotella. Six genera exhibited PASTA in only one pair of mouth sites.

Table 2: Genus level OTUs showing evidence of PASTA between gut and mouth sites when dividing ICD10 code into
four groups.

Genus Gut & mouth (all) Gut & buccal Gut & gum Gut & saliva Gut & tongue

Fusobacterium μ.., p.. – – μ .. –
Haemophilus p * – μ*, p* – p ..

TM7-G1 – – – – p ..

Veillonella p .. – p .. – –

For a given genus, a parameter is included in this table if it was marginally significant, or when significance is achieved when 𝑇 is either
Pearson or Spearman correlation. For a given population parameter θ, marginal significance (𝑃𝑟(𝑇|Y ≤ 0) < 0.1) is denoted by θ.. and
significance (𝑃𝑟(𝑇|Y ≤ 0) < 0.05) is denoted by θ*. Three parameters were investigated: μ, ω, p. Due to low power in this exploratory
setting multiple testing was not adjusted for.

Table 3: Genus level OTUs showing evidence of PASTA between mouth sites when dividing ICD10 code into four groups.

Genus Buccal & gum Buccal &
saliva

Buccal &
tongue

Gum & saliva Gum &
tongue

Gum &
tongue

Actinomyces – ω .. ω * μ.., p* – μ *

Atopobium – – – – p * p ..

Fusobacterium p * ω.., p.. μ .. p * – –
Haemophilus – ω .. – – – μ.., ω..

Prevotella – μ.., ω.. – – – μ ..
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For a given genus, a parameter is included in this table if it was marginally significant, or when significance is achieved when 𝑇 is either
Pearson or Spearman correlation. For a given population parameter θ, marginal significance (𝑃𝑟(𝑇|Y ≤ 0) < 0.1) is denoted by 𝜃.. and
significance (𝑃𝑟(𝑇|Y ≤ 0) < 0.05) is denoted by θ*. Three parameters were investigated: μ, ω, p. Due to low power in this exploratory
setting multiple testing was not adjusted for. Six OTUs showing association for only one pair of mouth sites are not shown in this Table.

On the ASV level, two ASVs exhibited PASTA with respect to 𝑝 between mouth and gut when disease status
was coded into four groups. When coding disease status into three groups, the same two ASVs as before and
three additional ASVs exhibited PASTA with respect to 𝑝 between mouth and gut. Notably, among these ad-
ditional ASVs was a candidate belonging to the Fusobacterium genus. Further details of the ASV level analysis
are discussed in Chung et al. (2019).

4 Discussion

The methodology presented in this publication successfully establishes a general framework to test for pair-
wise stratified association (PASTA) in microbial abundance or relative abundance. The approach first estimates
posterior distributions of population parameters 𝜃𝜃𝜃|Y within the strata of body site and disease status and sub-
sequently calculates a correlation statistic 𝑇𝜃 between body sites, which scores their degree of association. This
allows researchers to identify individual microbes or groups of microbial species that show consistent abun-
dance patterns between different body sites with respect to the disease status of patients or any other relevant
categorical grouping variable.

While this work focuses on identifying preserved patterns between body sites, anti-correlated relationships,
where an increase in one body site corresponds to a decrease in another body site, may also be also of biological
interest. Such associations are represented by a decreasing functional relationship between the two body sites.
Our approach can also be used to identify these relationships by flipping the inequalities in 𝐻0 and 𝐻1 and
rejecting the null when 𝑃𝑟(𝑇𝜃 |Y ≥ 𝑡𝑐) < 𝛼. If either correlated or anti-correlated relationships are to be identified
a two-sided test can be analogously formularized testing 𝐻0 ∶ −𝑡𝑐 ≤ 𝑇𝜃 ≤ 𝑡𝑐.

It has to be noted that while many possible 𝑇 may be adequate to detect a wide variety of increasing relation-
ships ℎ, the choice of 𝑇 can favour certain shapes of ℎ. If the Pearson correlation is employed, linear relationships
will achieve higher scores than rapid, exponential growth relationships, since it measures the degree of linear
association. In this case, overly large values of 𝑡𝑐 (for example 𝑡𝑐 = 0.8) should be avoided as they may lead
to falsely rejecting non-linear, increasing relationships. While rank-correlation measures such as the Spearman
correlation may be more generally applicable, they may also be less powerful, especially when few groups are
considered (𝑔 < 5). In cases with a small number of groups, the discrete nature of the rank-correlation statistic
is more pronounced. When utilizing Spearman correlation it is helpful to keep in mind that 𝑇𝜃 can only assume
4 discrete values when 𝑔 = 3, 11 discrete values when 𝑔 = 4 and 21 possible values when 𝑔 = 5.

Care should also be exercised when interpreting significant associations. The test for PASTA is concerned
with trend, agreement or association between 𝑠 = 1 and 𝑠 = 2 after stratification according to 𝑔, but does
not at all provide information on whether the effect of site 𝑠 or disease status 𝑔 is biologically or clinically
significant. To the contrary, it assumes that both grouping variables are inherently meaningful objects of the
research hypothesis. For example, if there is no significant effect of body site (i.e. abundance is the same between
mouth and gut), but abundance differs by disease status, the test statistic will likely score a high degree of
association, because what is going on in one site is still associated with what is going on in the other site and
this is an inherently meaningful relationship to us. However, the contrary where effect of body site is significant
(i.e. abundance is different between mouth and gut) but effect of disease status is not, will not necessarily lead
to a significant score of association. Scenarios are possible in which there are small effects of body site and
disease status, where none are strong enough to reach statistical significance, yet the test for association may
still be overall significant, as long as the trend across strata is pronounced enough. To understand the specific
nature of an identified PASTA relationship, it can be useful to plot credible intervals of parameter estimates
𝜃𝑠𝑔 side-by-side (Additional File 3) or to perform statistical follow-up tests investigating the effects of 𝑠 and
𝑔. In order to reduce the burden of multiple testing and to increase the likelihood of screening for impactful
associations, a researcher may also choose to first perform marginal tests confirming whether each microbe
exhibits significant (or marginally significant) differences with the phenotype of interest within the gut. The
restricted set of microbes exhibiting such significant differences could then be used to test for PASTA.

It should be noted that in cases where more information about ℎ is known in advance, more powerful tests of
association could be designed that leverage this information. If, for example, ℎ was known to be linear, then the
following model could be fit: 𝜃2𝑔 = 𝛼+𝜃1𝑔 ⋅𝛽, which drastically reduces the number of parameters. In this setting,
a PASTA test would be reduced to significance of the parameters 𝛼, 𝛽. Whilst being more powerful, such a model
would also allow one to learn the relationship between mouth and gut, which could be leveraged for predicting
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gut samples via mouth samples of newly observed subjects. Knowledge about the correlation structure among
strata and between OTUs could also potentially be incorporated by utilizing Bayesian hierarchical prediction
models with shared hyperpriors. Such sophisticated models may further provide the opportunity to increase
power and more adequately reflect knowledge about the data. However, the benefit of our current approach is
its general applicability and lack of assumptions about ℎ or correlation structure in the data. Little is currently
known about the form of relationships between microbes in different organs or tissues. It is therefore more
important to be able to identify cases in which a relationship is present as opposed to fully characterizing the
relationship. Without prior knowledge the choice of ℎ is arbitrary and researchers run the risk of potentially
missing associations that do not conform with this choice. A researcher can first use our approach to identify
microbes exhibiting promising associations, then look at point estimates and credible intervals of parameters
across strata to learn about the shape of ℎ. This may then motivate building a prediction that is grounded in
empirical evidence. Another benefit of an adequately chosen multivariate Bayesian hierarchical model is that it
allows one to test whether OTU A in mouth associates with OTU B in gut. While such a model has the potential
to provide a more powerful test, the here proposed approach does allow one to identify this type of association
by including the response values from OTU A in oral samples and the response values of OTU B in gut samples
into the model and conducting the test analogously. However, if such a strategy was employed, 𝜙 may have to
be estimated individually per body site, as the assumption of constant dispersion is likely to not hold between
different OTUs.

Results of the simulation studies reveal that the testing procedure is able to successfully identify PASTA
patterns. The decreased performance on the ASV level can be attributed to decreased signal intensities and the
overall increase in sparsity of non-zero observations. The substantial drop in performance when investigating
PASTA of 𝑝 was demonstrated to be a result of overall lower precision in estimation, compared to 𝜔. Since
probabilities of absence are generally high and concentrated towards 1.0 across OTUs and strata, the differences
between them are often small. In this scenario, to be able to reliably quantify differences and assess trends with
adequate precision, larger sample sizes are required. This problem is thus a limitation of the zero-inflated data
and not the testing approach itself.

Investigating the overall mean μ, may not always be viable when utilizing the ZIBR model. Since its esti-
mation is based on estimates of both 𝑝 and 𝜔, its estimates are subject to more sources of variation, resulting
in poorer precision and lower power. Our simulation suggests that if the properties of the population that is
to be analyzed are well known, adjusting the quantile 𝑡𝑄𝛼 to calibrate type 1 error rates is a viable strategy to
improve performance. If this was not the case and a researcher was convinced that inference based on 𝜇 was
more biologically meaningful than considering the individual components 𝑝 and 𝜔, alternative models may be
considered. For relative abundance data an adequate choice may be the marginalized ZIBR model as proposed
by Chai et al. (2018) which directly estimates 𝜇 as a function of covariates. These estimates could then be used
analogously to test for PASTA relationships using the here proposed approach.

The supplementary simulations provided in Additional File 2 should also be interpreted with caution. While
their results do provide information about general viability of our testing approach in the respective scenario,
they may not be suitable to infer superiority of either modeling approach. Direct comparison of the models
based on the simulation scenarios could be biased, since in each scenario pseudo-data was generated differently
and the number of estimated parameters also differed between models.

The fact that in the pancreatic cancer patient dataset OTUs can be identified that show associations between
mouth and gut, as well as between individual oral sites suggests that they may be promising candidates for
potential biomarkers. Among these were Fusobacterium and Haemophilus, both oral bacteria recently found to
distinguish pancreatic head carcinoma patients from healthy subjects (Lu et al., 2019). Also, species belonging
to the genera Fusobacterium and Prevotella (even though the latter was only found to show association between
mouth and gut) have been shown to associate with periodontal disease (Chiranjeevi et al., 2014; Chen et al.,
2018). These results lend further credence to the disease related connection between microbial abundance in
mouth and gut and suggests that our method leads to conclusions consistent with the literature. More future
research will be needed to validate these findings.

The simulation studies also confirmed that tests of PASTA applied to the pancreatic cancer patient dataset
are likely underpowered due to the limited sample size. It should be noted that many OTUs could not be tested
due to too high zero-inflation and thus insufficient signal. These two factors likely explain why relatively few
candidates were identified when conducting the tests. Future studies may consider larger sample sizes or aim to
improve the yield of observed counts in each sample to alleviate this issue. Our results suggest that differences
in the extent of zero-inflation between groups may be generally hard to detect for small to medium sized studies
when more granular phylogenetic levels are targeted.

13

http://rivervalleytechnologies.com/products/


Au
to

m
at

ica
lly

ge
ne

ra
te

d
ro

ug
h

PD
Fb

yP
ro

of
Ch

ec
kf

ro
m

Ri
ve

rV
al

le
yT

ec
hn

ol
og

ie
sL

td
Meier et al. DE GRUYTER

5 Conclusions

In conclusion, the performed simulation studies demonstrate the viability of the approach in the context of
ZIBR models and suggest that for tests of association of mean non-zero relative abundance modest sample
sizes can achieve adequate power for moderate degree of association. The simulations also highlight potential
lack of power for low-level phylogeny data (e.g. species, ASV) or when more complex functions of population
parameters are considered. When analyzing a biological dataset consisting of pancreatic cancer patients the
approach is able to identify microbes that exhibit PASTA patterns and are consistent with independent find-
ings of current research studies. The generality of this approach allows it to be extended to other data models
and research settings, ensuring that it can be useful for researchers interested in stratified associations in the
microbiome world and beyond.
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