Home Identification of supervised and sparse functional genomic pathways
Article
Licensed
Unlicensed Requires Authentication

Identification of supervised and sparse functional genomic pathways

  • Fan Zhang EMAIL logo , Jeffrey C. Miecznikowski and David L. Tritchler
Published/Copyright: February 29, 2020

Abstract

Functional pathways involve a series of biological alterations that may result in the occurrence of many diseases including cancer. With the availability of various “omics” technologies it becomes feasible to integrate information from a hierarchy of biological layers to provide a more comprehensive understanding to the disease. In many diseases, it is believed that only a small number of networks, each relatively small in size, drive the disease. Our goal in this study is to develop methods to discover these functional networks across biological layers correlated with the phenotype. We derive a novel Network Summary Matrix (NSM) that highlights potential pathways conforming to least squares regression relationships. An algorithm called Decomposition of Network Summary Matrix via Instability (DNSMI) involving decomposition of NSM using instability regularization is proposed. Simulations and real data analysis from The Cancer Genome Atlas (TCGA) program will be shown to demonstrate the performance of the algorithm.

Acknowledgement

The authors would like to present special thanks to Martin Morgan, PhD, director of R/Bioconductor project, for his assistance with portions of the R coding and for providing access to Roswell Park Comprehensive Cancer Center high-performance computing resources.

Appendix 1: List of algorithms

Algorithm 1

Algorithm 1 DNSMI at δ level for observation matrices YN×1, XN×q and GN×p for a search grid containing h elements on c1 direction and l elements on c2 direction.

  1. Generate subsampled YrS (0.5N×1), r = 1, …, R, by drawing 0.5N observations randomly without replacement from Y where “S” indicates subsample. Likewise for XrS (0.5N×q) and GrS (0.5N×p).

  2. Calculate NSMr matrix for each subsampled (YrS, XrS, GrS).

  3. Given a (c1m,c2n) pair, m=1,2,,h,n=1,2,,l.

  4. Calculate Up×R=(u1,,ur,,uR),Vq×R=(v1,,vr,,vR) where ur and vr are sparse solutions from applying PMD using c1m and c2n from 3) on NSMr from 2). Set all nonzero elements in 𝓤 and 𝓥 to 1.

  5. Calculate θu=Pr^(u1is selectedup is selected)p×1,θv=Pr^(v1 is selectedvq is selected)q×1 by computing row means for 𝓤 and 𝓥.

  6. Calculate

    ξ^u(c1m,c2n)=2θu(1θu)=(ξ1u^(c1m,c2n)ξpu^(c1m,c2n))p×1ξ^v(c1m,c2n)=2θv(1θv)=(ξ1v^(c1m,c2n)ξqv^(c1m,c2n))q×1
  7. Calculate ξu^(c1m,c2n)=mean(ξ^u(c1m,c2n)), ξv^(c1m,c2n)=mean(ξ^v(c1m,c2n))

  8. Compute ξ^u,v(c1m,c2n)=max(ξu^(c1m,c2n),ξv^(c1m,c2n))

  9. Compute ξ¯^(c1m,c2n)=sup1sc1m,1tc2nξ^u,v(s,t)

  10. Select

    (c1,c2)=argmax(c1m,c2n)E(c1mc2n)2

    where E={(c1m,c2n)ξ¯^(c1m,c2n)δ over the h × l search grid for a preset δ}.

  11. Apply PMD using the selected (c1, c2) from 10) on NSM that is generated from YN×1, XN×q and GN×p. The indices corresponding to nonzero elements in the sparse output u and v represent the A^ and B^, respectively.

end

Algorithm 2

Algorithm 2 Average Mean Squared Error tuned PMD decomposition of NSM (AMSE-PMD).

  1. Given matrix NSM, randomly delete 10% of the data elements over the entire matrix, resulting in NSMi, i=1,2,,10. Note that for each i, the 10% data are nonoverlapping.

  2. Apply PMD on the 10 NSMi’s using a given pair (c1, c2).

  3. Calculate for each i the mean squared error only of the missing locations in NSMi to that of NSM.

  4. The AMSE is the average of the 10 means from above step, and each pair of (c1, c2) will be associated with one such error.

  5. The optimal (c1, c2) will be the one that corresponds to the smallest AMSE over the entire search grid if there is one.

  6. Apply PMD using the selected (c1, c2) from 5) on NSM. The indices corresponding to nonzero elements in the sparse output u and v represent the A^ and B^, respectively.

end

Algorithm 3

Algorithm 3 Supervised Sparse Canonical Correlation Analysis with SCCA from Parkhomenko et al. (2009) (sSCCA-P).

  1. Prefilter features in 𝓖 and 𝓧 by Benjamini-Hochberg (BH) procedure for FDR = 0.2, which produce G~ and X~.

  2. Center and standardize the X~ and G~ matrices so that they have zero column means and unit variances.

  3. Calculate sample correlation matrix between X~ and G~ as K.

  4. Given a pair of parameters (ζu, ζv) each of which ranges from 0 to 2.

  5. Select initial values u0 and v0 and set i = 0.

  6. Update u:

    1. ui+1Kvi

    2. Normalize: ui+1ui+1ui+1

    3. Apply soft thresholding to obtain sparse solution: uji+1(|uji+1|12ζu)+Sign(uji+1) for j=1,,p

      1. (.)+ equals to x if x ≥ 0 and 0 if x < 0

      2. Sign(x)={1if x<0,1if x>0,0if x=0.

    4. Normalize: ui+1ui+1ui+1

  7. Update v:

    1. vi+1Kui+1

    2. Normalize: vi+1vi+1vi+1

    3. Apply soft thresholding to obtain sparse solution: vji+1(|vji+1|12ζv)+Sign(vji+1) for j=1,,q

    4. Normalize: vi+1vi+1vi+1

  8. ii + 1

  9. Repeat steps 6 and 7 until convergence.

  10. The optimal pair of (ζu, ζv) will be determined by using k-fold cross-validation and will be the one who corresponds to the highest Δcor in the search grid where

    Δcor=1kj=1k|cor(Xjv^j,Gju^j)|,
  11. Repeat steps 5–9 using the selected parameters from 10) and the indices corresponding to nonzero elements in the sparse output u and v represent the A^ and B^, respectively.

end

Algorithm 4

Algorithm 4 Supervised Sparse Canonical Correlation Analysis with SCCA from Witten and Tibshirani (2009) (sSCCA-W).

  1. Prefilter features in 𝓖 and 𝓧 by Benjamini-Hochberg (BH) procedure for FDR = 0.2, which produce G~ and X~.

  2. Center and standardize the G~ and X~ matrices so that they have zero column means and unit variances.

  3. Given a pair of parameters (c1, c2).

  4. Set w2 to have L2 norm 1.

  5. Iterate (a) and (b) until convergence:

    1. w1S(G~TX~w2,Δ1)S(G~TX~w2,Δ1)2, where Δ1 = 0 if this results in w11c1; otherwise, Δ1 > 0 is chosen so that w11=c1.

    2. w2S(X~TG~w1,Δ2)S(X~TG~w1,Δ2)2, where Δ2 = 0 if this results in w21c2; otherwise, Δ2 > 0 is chosen so that w21=c2.

      S(.) denotes the soft-thresholding operator; that is, S(a, c) = sgn(a)(|a|c)+.

  6. Compute z=Cor(X~w1,G~w2).

  7. For i ∈ 1, …, N, N is a large number for permutation purpose.

    1. Permute the rows of G~ to obtain the matrix G~i, and compute canonical vectors w1i and w2i using data G~i and X~ and tuning parameter (c1, c2).

    2. Compute zi=Cor(G~iw1i,X~w2i).

  8. Calculate the p-value p=1Ni=1NI(ziz).

  9. Select the pair of (c1, c2) having the smallest p-value over the search grid.

  10. Apply PMD using the selected (c1, c2) from 9) on G~TX~. The indices corresponding to nonzero elements in the sparse output u and v represent the A^ and B^, respectively.

end

Appendix 2: Notation dictionary

  1. Latent variable for genes

  2. Latent variable for genes but is independent of Y

  3. Latent variable for genes that is associated with Y but is independent of others

  4. Latent variable for transcripts

  5. Latent variable for transcripts but is independent of Y

  6. Latent variable for transcripts that is associated with Y but is independent of others

  7. Latent variable for outcome

  8. Observation matrices for genes, transcripts and outcome

  9. Filtered observation matrices by supervision criterion

  10. Number of pathway genes

  11. set of indices of gi’s elements involved in pathway

  12. estimator of 𝒜

  13. Number of pathway transcripts

  14. set of indices of xi’s elements involved in pathway

  15. estimator of B

  16. Tuning parameter of PMD decomposition method on row direction

  17. Tuning parameter of PMD decomposition method on column direction

  18. Singular value or sparse singular value for Sd-PMD, depending on the context

  19. Number of elements on c1 direction of search grid

  20. Number of elements on c2 direction of search grid

  21. Total subjects number or sample size

  22. Number of rows of matrix W, same as number of genes in analysis

  23. Number of columns of matrix W, same as number of transcripts in analysis

  24. Correlation between observation and the corresponding latent variable

  25. Number of subsamples to use IPMDW

  26. Predictability

  27. First left singular vector, sparse or not depends on the context

  28. First right singular vector, sparse or not depends on the context

  29. Importance of the G → X → Y path to the total effect of G on Y

  30. (1R2)/R2

  31. Preset instability level

  32. Cohen’s Kappa statistic

  33. Instability of ith element of vector u

  34. Instability of jth element of vector v

  35. Mean instability of u vector

  36. Mean instability of v vector

  37. Combined instability from u and v vectors

  38. Supremum instability at (c1, c2)

  39. Variance ratio coefficient between noise and y

  40. Total effect of G on Y, τ=βY|G.X+βX|GβY|X.G

Appendix 3: Annotations of DNA methylation sites and transcriptome from DNSMI on UCEC project.

Table 8:

Annotations and significance of 278 DNSMI selected DNA methylation sites from NSM generated from RDT1.

Composite Element ReferenceChromosomeGene symbolp-valueaEstimatebCorrelationc
cg00282704chr10CASC10|MIR19150.002−10.236−0.18
cg00363811chr10BTRC0.021−11.686−0.14
cg00451513chr10ASCC10.02212.0440.14
cg00520540chr10CDNF|HSPA140.028−11.545−0.13
cg00766678chr10NPM30.036−11.231−0.13
cg00997424chr10PI4K2A|RP11-548K23.110.029−9.053−0.13
cg01068136chr10DCLRE1A|NHLRC20.001−11.327−0.2
cg01087392chr10GBF10.036−9.99−0.13
cg01237870chr10MCM100.004−18.268−0.18
cg02016328chr10RAB180.035−15.245−0.13
cg02024446chr10C10orf111|RPP380.035−10.933−0.13
cg02156071chr10FAM204A0.015−12.841−0.15
cg02180545chr10C10orf2|MRPL430.017−9.124−0.14
cg02452627chr10ZNF4380.01−11.107−0.16
cg02550110chr10DDX500.019−12.005−0.14
cg02733266chr10GSTO10.005−11.123−0.17
cg02878913chr10SH3PXD2A0−23.138−0.27
cg02956254chr10RP11-298J20.40.04−11.503−0.13
cg03539850chr10PANK1|RP11-80H5.20.018−13.527−0.14
cg03576467chr10DNAJC9-AS1|MRPS160.033−15.373−0.13
RP11-152N13.5
cg03727700chr10DCLRE1A|NHLRC20.006−9.508−0.17
cg03801898chr10ADD3|ADD3-AS10.048−8.146−0.12
cg04036272chr10CCDC60.032−10.619−0.13
cg04126427chr10EIF3A0.002−12.379−0.18
cg04290666chr10WNT8B0.01612.090.15
cg04446777chr10BTRC0.024−11.41−0.14
cg04683551chr10CDNF|HSPA140.0224.4850.14
cg04959674chr10MMS19|UBTD10.018−13.782−0.14
cg05505307chr10MCM100.049−12.503−0.12
cg06206603chr10RP11-574K11.24|SEC24C0.014−10.294−0.15
cg07203258chr10DDX500.04−8.986−0.13
cg07217563chr10WDR370.012−12.144−0.15
cg07895186chr10EMX2|EMX2OS0.02123.7690.14
cg08069263chr10MXI10.032−12.995−0.13
cg08096168chr10CCDC60.045−8.923−0.12
cg08299755chr10ZFYVE270.025−13.161−0.14
cg09152955chr10NPM30.026−10.445−0.14
cg09269103chr10NFKB20.004−10.915−0.18
cg09333812chr10ARHGAP19|ARHGAP19-SLIT10.044−12.06−0.12
cg09478103chr10CAP1P2|ZNF4850.007−15.592−0.17
cg09655100chr10TCF7L20.003−11.73−0.18
cg09747456chr10PANK1|RP11-80H5.20.027−11.051−0.14
RP11-80H5.5
cg09886360chr10CSGALNACT2|RP11-351D16.30.014−10.535−0.15
cg10325336chr10RP11-574K11.24|SEC24C0.021−10.008−0.14
cg10708548chr10ARID5B0.014−9.667−0.15
cg10739686chr10KAT6B0.05−9.895−0.12
cg10800082chr10PDCD4|PDCD4-AS10.023−11.631−0.14
cg10878076chr10NDUFB8|RP11-411B6.60.0159.5110.15
cg10905918chr10RPS240.027−14.052−0.13
cg11223711chr10EIF3A0.012−11.642−0.15
cg11423178chr10HNRNPH3|PBLD0.04−12.218−0.13
cg11499984chr10BLOC1S20.006−13.085−0.17
cg11996395chr10NOLC10.033−10.888−0.13
cg12198729chr10BTRC0.011−12.527−0.15
cg12226046chr10PANK1|RP11-80H5.20.012−11.05−0.15
cg12563239chr10ANKRD260.02−10.82−0.14
cg13800022chr10ITGB1|RP11-462L8.10.014−16.688−0.15
cg13830636chr10RP11-574K11.24|SEC24C0.014−10.169−0.15
cg13962355chr10BTRC0.03−11.111−0.13
cg14039939chr10LRRC27|STK32C0.00112.2220.21
cg14052593chr10BMS1P4|DUSP8P50.018−13.196−0.14
|GLUD1P3|RP11-464F9.1
cg14461522chr10NPM30.006−14.121−0.17
cg14562081chr10TCF7L20.008−10.501−0.16
cg14700647chr10ASAH2B0.031−11.586−0.13
cg15322766chr10POLR3A0.035−10.921−0.13
cg15384821chr10EGR20.049−11.094−0.12
cg15523443chr10POLR3A0.012−12.58−0.15
cg15831653chr10DNAJC10.001−17.937−0.2
cg15939466chr10VTI1A|ZDHHC60.004−11.788−0.17
cg15952994chr10VTI1A|ZDHHC60.021−11.298−0.14
cg16754967chr10RSU10.002−11.832−0.18
cg17555499chr10CHCHD10.015−10.032−0.15
cg18493566chr10C10orf760.032−12.277−0.13
cg18510056chr10ZNF503-AS20.013−8.904−0.15
cg18762013chr10ZNF33A0.022−8.76−0.14
cg18913254chr10ANXA70.01−11.69−0.16
cg18928584chr10CUEDC20.04−11.02−0.13
cg19014323chr10HNRNPF0.033−9.228−0.13
cg19032306chr10CPEB3|MARCH50.008−10.692−0.16
cg19040518chr10NDST2|RP11-574K11.310.018−12.549−0.14
cg19138900chr10KLF60.038−7.942−0.13
cg20444320chr10STAM|STAM-AS10.014−11.784−0.15
cg21374208chr10DNAJC10.017−14.929−0.15
cg21949958chr10BUB30.027−9.949−0.14
cg23087635chr10INPP5A0.004−17.151−0.18
cg23319797chr10RAB180.049−12.962−0.12
cg23751407chr10RP11-95I16.20.028−9.458−0.13
cg23936098chr10NOLC10.007−15.037−0.16
cg23991622chr10VIM|VIM-AS10.016−12.909−0.15
cg24166097chr10NPM30.032−10.913−0.13
cg24573310chr10CISD10.042−10.687−0.12
cg25089494chr10C10orf131|ENTPD1-AS10.045−10.352−0.12
RP11-248J23.7
cg25355065chr10ARL3|SFXN20.048−10.477−0.12
cg25648639chr10ARHGAP120.015−12.949−0.15
cg26002628chr10ARID5B0.015−9.416−0.15
cg26306372chr10VIM|VIM-AS10.043−11.096−0.12
cg26625369chr10CDC123|NUDT50.037−11.197−0.13
cg26881277chr10PDCD4|PDCD4-AS10.003−12.846−0.18
cg26964061chr10MXI10.004−13.658−0.18
cg27255678chr10LZTS20.05−12.631−0.12
cg27510901chr10DNAJC10.046−11.448−0.12
cg00440043chr10ZEB1|ZEB1-AS10.062−9.479−0.11
cg00588577chr10CCAR10.161−9.448−0.09
cg00879184chr10MLLT100.16−6.801−0.09
cg01021053chr10ZWINT0.292−6.844−0.06
cg01042749chr10FAM178A|RP11-179B2.20.105−9.749−0.1
cg01154046chr10VIM|VIM-AS10.099−10.199−0.1
cg01367750chr10ACBD5|RP11-85G18.60.084−7.675−0.11
cg01431972chr10ZNF503-AS20.053−10.168−0.12
cg02150674chr10PHYH0.091−7.866−0.1
cg02351056chr10METTL10|RP11-12J10.30.159−8.332−0.09
cg02622557chr10EIF3A0.204−6.689−0.08
cg02952711chr10LRRC27|STK32C0.232−8.554−0.07
cg03020000chr10ARID5B0.179−8.616−0.08
cg03141879chr10PITRM1|RP11-298E9.70.2036.3070.08
cg03211233chr10SIRT10.273−7.445−0.07
cg03361817chr10ARID5B0.178−8.511−0.08
cg03524461chr10MLLT100.092−9.21−0.1
cg03588299chr10DIP2C0.2766.3340.07
cg03714691chr10WDR370.1496.3970.09
cg03922645chr10MEIG10.298−5.658−0.06
cg03941040chr10TFAM0.468−5.432−0.04
cg04167018chr10ECD|FAM149B10.109−10.809−0.1
cg04179819chr10TAF30.1413.5680.09
cg04534276chr10PPP3CB|PPP3CB-AS10.07−10.027−0.11
cg04622176chr10MCMBP|SEC23IP0.25−8.036−0.07
cg04646451chr10DDX500.29−6.457−0.06
cg04733624chr10ADK0.07417.3710.11
cg04749667chr10ECD|FAM149B10.064−9.771−0.11
cg05088677chr10CASC10|MIR19150.243−6.805−0.07
cg05313070chr10ARHGAP120.213−6.889−0.08
cg05420251chr10OLMALINC0.053−10.755−0.12
cg06583105chr10PPRC10.414−5.95−0.05
cg06649808chr10RP11-574K11.24|SEC24C0.133−8.762−0.09
cg06782748chr10CREM|RP11-297A16.20.313−5.926−0.06
cg07030336chr10VTI1A|ZDHHC60.311−4.968−0.06
cg07301505chr10PI4K2A|RP11-548K23.110.102−7.745−0.1
cg07636870chr10ACTR1A|SUFU0.273−5.608−0.07
cg07679896chr10RP11-298J20.40.084−10.818−0.11
cg07855525chr10TAF30.162−8.624−0.09
cg07900823chr10NUTM2B-AS1|RP11-182L21.60.14110.9840.09
cg08395899chr10UPF20.233−7.141−0.07
cg08616269chr10CCAR10.116−10.837−0.1
cg08668510chr10IDI1|WDR370.112−8.677−0.1
cg08797625chr10CAMK2G0.286−5.494−0.07
cg08799865chr10NT5C20.136−8.556−0.09
cg08905519chr10FAM208B0.09−12.262−0.1
cg09219177chr10ACBD5|RP11-85G18.60.149−8.413−0.09
cg09391093chr10RP11-393J16.4|ZNF250.077−9.92−0.11
cg09526975chr10SEPHS10.13−8.258−0.09
cg09563120chr10RP11-108L7.150.07−8.55−0.11
cg09688285chr10XPNPEP10.199−8.006−0.08
cg09933375chr10CCAR10.136−8.499−0.09
cg10295800chr10TFAM0.146−8.161−0.09
cg10436918chr10VTI1A|ZDHHC60.271−7.126−0.07
cg10526556chr10SEPHS10.338−6.629−0.06
cg10609984chr10RP11-393J16.4|ZNF250.202−6.433−0.08
cg10831391chr10PFKP0.06417.8270.11
cg10894697chr10CASP70.192−7.271−0.08
cg10928925chr10ZCCHC240.062−10.162−0.11
cg11271505chr10ZSWIM80.132−8.726−0.09
cg11420031chr10VPS26A0.126−9.04−0.09
cg11460820chr10RPS240.065−11.18−0.11
cg11504511chr10ZMIZ1|ZMIZ1-AS10.094−9.122−0.1
cg11655691chr10MICU10.146−8.186−0.09
cg11660725chr10ANKRD260.179−7.058−0.08
cg11814667chr10PDCD11|USMG50.077−11.843−0.11
cg11977348chr10SMC30.076−11.558−0.11
cg12143181chr10LIPA0.057−8.017−0.12
cg12144272chr10ZMIZ1|ZMIZ1-AS10.066−9.189−0.11
cg12276298chr10ECD|FAM149B10.234−7.105−0.07
cg12294817chr10METTL10|RP11-12J10.30.124−7.881−0.09
cg12536451chr10ZFYVE270.057−12.562−0.12
cg12580870chr10CCAR10.169−7.792−0.08
cg12823012chr10CCAR10.156−8.948−0.09
cg12832988chr10CDNF|HSPA140.085−8.824−0.11
cg13188511chr10CUL20.292−6.597−0.06
cg13320518chr10VTI1A|ZDHHC60.143−7.643−0.09
cg13509954chr10MTPAP0.477−4.996−0.04
cg13708259chr10C10orf2|MRPL430.325−5.19−0.06
cg13763308chr10ADK|AP3M10.111−11.26−0.1
cg13799287chr10WAC|WAC-AS10.253−9.547−0.07
cg13817732chr10BLOC1S20.319−5.838−0.06
cg14193565chr10INPP5F0.05−11.468−0.12
cg14409890chr10PCGF60.156−9.557−0.09
cg14434255chr10ENTPD70.244−6.679−0.07
cg14440794chr10FAM171A10.05112.8320.12
cg14631462chr10ZEB1|ZEB1-AS10.191−6.402−0.08
cg14694828chr10ZMYND110.074−9.632−0.11
cg14825384chr10CASP70.41−6.934−0.05
cg14924826chr10BBIP1|SHOC20.144−7.789−0.09
cg15055039chr10BAG30.423−5.22−0.05
cg15169471chr10LINC00863|NUTM2A-AS10.395−6.242−0.05
cg15172601chr10CDK10.064−12.138−0.11
cg15317221chr10ABI10.094−7.683−0.1
cg15317837chr10GTPBP4|RP11-363N22.30.454−5.371−0.05
cg15363487chr10VIM|VIM-AS10.2569.50.07
cg15433901chr10NMT20.121−8.11−0.09
cg15462502chr10BMS10.29−7.432−0.06
cg15563952chr10DHTKD10.188−8.475−0.08
cg15825287chr10NRBF20.21−7.643−0.08
cg15834928chr10LRRC27|STK32C0.346−5.805−0.06
cg15872329chr10BLOC1S20.084−9.828−0.11
cg16124546chr10ECD|FAM149B10.181−9.093−0.08
cg16139770chr10ARID5B0.261−8.344−0.07
cg16423650chr10DNMBP0.188−8.155−0.08
cg16584947chr10LARP4B0.057−9.119−0.12
cg16742925chr10PDCD11|USMG50.337−6.308−0.06
cg16905311chr10ARL5B|NSUN60.235−7.037−0.07
cg17012863chr10LIPA0.069−13.118−0.11
cg17122475chr10DIP2C0.057−15.102−0.12
cg17465063chr10MXI10.402−5.149−0.05
cg17586365chr10CDC123|NUDT50.103−8.543−0.1
cg17629447chr10CHUK|RP11-316M21.60.34−7.511−0.06
cg17710288chr10NPM30.068−10.053−0.11
cg17982459chr10SFR10.141−9.884−0.09
cg18035301chr10MAP3K80.257−6.526−0.07
cg18221224chr10ACBD50.12−8.052−0.1
cg18375586chr10FAM171A10.25−7.871−0.07
cg18409845chr10CPEB3|MARCH50.054−7.817−0.12
cg18691055chr10MKI670.275−5.129−0.07
cg18803045chr10PDCD4|PDCD4-AS10.173−6.725−0.08
cg18827378chr10CDK10.095−8.558−0.1
cg19038917chr10GSTO10.124−7.03−0.09
cg19210816chr10EIF3A0.075−8.966−0.11
cg19391892chr10DDX500.156−6.993−0.09
cg19402405chr10EGR20.304−5.531−0.06
cg19535032chr10KIF5B|Y_RNA0.106−8.799−0.1
cg19559179chr10C10orf760.055−12.012−0.12
cg19577016chr10ANAPC16|ASCC10.164−8.853−0.09
cg19603966chr10DNAJC10.336−6.415−0.06
cg19716967chr10FAM204A0.203−7.977−0.08
cg19839763chr10ITPRIP0.161−6.85−0.09
cg19874323chr10ARL5B|NSUN60.051−9.793−0.12
cg20203089chr10NFKB20.058−8.164−0.12
cg20264529chr10MTPAP0.065−11.269−0.11
cg20318353chr10ABI10.06−10.792−0.11
cg20355062chr10KLF60.158−9.552−0.09
cg20475000chr10PDCD11|USMG50.087−9.876−0.1
cg20489345chr10CASP70.072−11.237−0.11
cg20778294chr10PPRC10.112−11.411−0.1
cg21201659chr10MCMBP|SEC23IP0.137−10.717−0.09
cg22553140chr10PRDX30.353−6.281−0.06
cg22593633chr10ZMYND110.165−7.13−0.08
cg22635723chr10ADD3|ADD3-AS10.069−7.749−0.11
cg22664157chr10PWWP2B0.377−6.383−0.05
cg22860891chr10RBM170.288−6.565−0.06
cg23026419chr10ITPRIP0.128−6.523−0.09
cg23087130chr10ABI10.152−9.211−0.09
cg23635883chr10MASTL|YME1L10.143−8.063−0.09
cg23638686chr10INPP5A0.096−13.741−0.1
cg23654971chr10GBF10.184−8.348−0.08
cg24182333chr10PSAP0.165−9.404−0.08
cg24201716chr10CCDC186|MIR21100.344−6.744−0.06
cg24293903chr10ENTPD70.29−7.636−0.06
cg24315770chr10PDCD11|USMG50.169−8.374−0.08
cg24807448chr10SMC30.432−5.864−0.05
cg24826355chr10KIF5B|Y_RNA0.219−8.398−0.08
cg24980609chr10DPCD|POLL0.228−7.428−0.07
cg25243854chr10BCCIP|UROS0.075−13.147−0.11
cg25713684chr10TAF50.08−9.639−0.11
cg25822326chr10NET10.16−8.127−0.09
cg26022877chr10ACADSB|IKZF50.08−9.874−0.11
cg26075202chr10SIRT10.407−6.149−0.05
cg26097210chr10HNRNPH3|PBLD0.111−8.36−0.1
cg26213561chr10CASC10|MIR19150.336−6.234−0.06
cg26273962chr10SORBS10.112−10.027−0.1
cg26358059chr10GSTO10.348−5.792−0.06
cg26485946chr10IDI1|WDR370.116−8.325−0.1
cg26538046chr10WDR11|WDR11-AS10.207−7.981−0.08
cg26538214chr10KLF60.16−9.496−0.09
cg27350398chr10PITRM10.366−5.73−0.06
cg27352063chr10PPIF0.28710.9360.07
cg27445265chr10BCCIP|UROS0.103−9.767−0.1
cg27503573chr10PAOX0.391−5.837−0.05
cg27521563chr10ADRB10.35−5.867−0.06
cg27523141chr10ZNF37BP0.055−8.999−0.12
cg27636376chr10C10orf111|RPP380.381−7.108−0.05
  1. aSimple linear regression using percent tumor invasion as response variable.

  2. bSimple linear regression coefficient estimate using percent tumor invasion as response variable.

  3. cCorrelation with percent tumor invasion.

Table 9:

Annotations and significance of 39 DNSMI selected Transcriptome elements from NSM generated from RDT1.

Ensemble Gene IDChromosomeGene namep-valueap-valuebEstimatecCorrelationd
ENSG00000057608chr10GDI20.0020.4455e-060.19
ENSG00000095787chr10WAC0.0370.175−7.4e-050.13
ENSG00000099194chr10SCD00.0923e-060.22
ENSG00000107771chr10CCSER20.0310.5872.4e-050.13
ENSG00000108055chr10SMC30.0040.313.3e-050.18
ENSG00000108094chr10CUL20.0390.9594e-060.13
ENSG00000119969chr10HELLS0.0330.566−5.8e-050.13
ENSG00000136758chr10YME1L10.0250.71−1.1e-050.14
ENSG00000138107chr10ACTR1A0.020.803−2e-060.14
ENSG00000138160chr10KIF110.0050.297−4.1e-050.17
ENSG00000138182chr10KIF20B0.0040.1640.0002080.18
ENSG00000148498chr10PARD30.0070.726−1.3e-050.16
ENSG00000148660chr10CAMK2G0.0110.917−7e-060.15
ENSG00000151461chr10UPF20.0060.1676e−050.17
ENSG00000151465chr10CDC1230.0440.839−3e-060.12
ENSG00000155252chr10PI4K2A0.0330.3454.1e-050.13
ENSG00000165632chr10TAF30.0110.8431.9e-050.15
ENSG00000165637chr10VDAC20.0310.914−1e-060.13
ENSG00000165732chr10DDX210.0350.039−3.5e-050.13
ENSG00000166135chr10HIF1AN0.0410.816−2.1e-050.12
ENSG00000170759chr10KIF5B0.0150.586−6e-060.15
ENSG00000171314chr10PGAM10.0020.2281.9e-050.19
ENSG00000172731chr10LRRC200.0010.1683.6e-050.2
ENSG00000173848chr10NET10.0110.4924e-060.16
ENSG00000176171chr10BNIP30.0010.4168e-060.21
ENSG00000180066chr10C10orf910.0070.0360.0001440.16
ENSG00000181192chr10DHTKD10.0040.0294.8e-050.17
ENSG00000181915chr10ADO0.0050.0787.6e-050.17
ENSG00000187522chr10HSPA140.0020.2147.8e-050.19
ENSG00000196072chr10BLOC1S20.050.142−4.7e-050.12
ENSG00000196968chr10FUT110.0010.048.7e-050.21
ENSG00000197771chr10MCMBP0.0140.232−5.9e-050.15
ENSG00000198825chr10INPP5F0.0030.1640.0001550.18
ENSG00000213390chr10ARHGAP190.0030.603−6.2e-050.18
ENSG00000260917chr10AL158212.30.010.1190.0003610.16
ENSG00000108239chr10TBC1D120.0790.384−0.0001210.11
ENSG00000136738chr10STAM0.0830.628−3.2e-050.11
ENSG00000165660chr10ABRAXAS20.0760.684−3.6e-050.11
ENSG00000173145chr10NOC3L0.0890.4577.3e-050.1
  1. aSimple linear regression using percent tumor invasion as response variable.

  2. bMultiple linear regression using percent tumor invasion as response variable and all 39 genes as independent variables.

  3. cMultiple linear regression coefficient estimate using percent tumor invasion as response variable and all 39 genes as independent variables.

  4. dCorrelation with percent tumor invasion.

References

Badsha, M. B. and A. Q. Fu (2019): “Learning causal biological networks with the principle of Mendelian randomization,” Front. Genet., 10, 460.10.3389/fgene.2019.00460Search in Google Scholar PubMed PubMed Central

Benjamini, Y. and Y. Hochberg (1995): “Controlling the false discovery rate: a practical and powerful approach to multiple testing,” J. R. Stat. Soc. Series B Methodol., 57, 289–300.10.1111/j.2517-6161.1995.tb02031.xSearch in Google Scholar

Bonastre, E., S. Verdura, I. Zondervan, F. Facchinetti, S. Lantuejoul, M. D. Chiara, J. P. Rodrigo, J. Carretero, E. Condom, A. Vidal, D. Sidransky, A. Villanueva, L. Roz, E. Brambilla, S. Savola and M. Sanchez-Cespedes (2015): “PARD3 inactivation in lung squamous cell carcinomas impairs STAT3 and promotes malignant invasion,” Cancer Res., 75, 1287–1297.10.1158/0008-5472.CAN-14-2444Search in Google Scholar PubMed PubMed Central

Boronow, R., C. Morrow, W. Creasman, P. Disaia, S. Silverberg, A. Miller and J. Blessing (1984): “Surgical staging in endometrial cancer: clinical-pathologic findings of a prospective study.” Obstet. Gynecol., 63, 825–832.Search in Google Scholar

Chen, M. M., T. A. O’Mara, D. J. Thompson, J. N. Painter, The Australian National Endometrial Cancer Study Group (ANECS), J. Attia, A. Black, L. Brinton, S. Chanock, C. Chen, T. H. Cheng, L. S. Cook, M. Crous-Bou, J. Doherty, C. M. Friedenreich, M. Garcia-Closas, M. M. Gaudet, M. Gorman, C. Haiman, S. E. Hankinson, P. Hartge, B. E. Henderson, S. Hodgson, E. G. Holliday, P. L. Horn-Ross, D. J. Hunter, L. Le Marchand, X. Liang, J. Lissowska, J. Long, L. Lu, A. M. Magliocco, L. Martin, M. McEvoy, National Study Of Endometrial Cancer Genetics Group (NSECG), S. H. Olson, I. Orlow, L. Pooler, J. Prescott, R. Rastogi, T. R. Rebbeck, H. Risch, C. Sacerdote, F. Schumacher, V. Wendy Setiawan, R. J. Scott, X. Sheng, X. O. Shu, C. Turman, D. Van Den Berg, Z. Wang, N. S. Weiss, N. Wentzensen, L. Xia, Y. B. Xiang, H. P. Yang, H. Yu, W. Zheng, P. D. Pharoah, A. M. Dunning, I. Tomlinson, D. F. Easton, P. Kraft, A. B. Spurdle and I. De Vivo (2016): “GWAS meta-analysis of 16852 women identifies new susceptibility locus for endometrial cancer,” Hum. Mol. Genet., 25, 2612–2620.Search in Google Scholar

Cheng, T. H., D. J. Thompson, T. A. O’Mara, J. N. Painter, D. M. Glubb, S. Flach, A. Lewis, J. D. French, L. Freeman-Mills, D. Church, M. Gorman, L. Martin, National Study of Endometrial Cancer Genetics Group (NSECG), S. Hodgson, P. M. Webb, The Australian National Endometrial Cancer Study Group (ANECS), J. Attia, E. G. Holliday, M. McEvoy, R. J. Scott, A. K. Henders, N. G. Martin, G. W. Montgomery, D. R. Nyholt, S. Ahmed, C. S. Healey, M. Shah, J. Dennis, P. A. Fasching, M. W. Beckmann, A. Hein, A. B. Ekici, P. Hall, K. Czene, H. Darabi, J. Li, T. Dörk, M. Dürst, P. Hillemanns, I. Runnebaum, F. Amant, S. Schrauwen, H. Zhao, D. Lambrechts, J. Depreeuw, S. C. Dowdy, E. L. Goode, B. L. Fridley, S. J. Winham, T. S. Njølstad, H. B. Salvesen, J. Trovik, H. M. Werner, K. Ashton, G. Otton, T. Proietto, T. Liu, M. Mints, E. Tham, RENDOCAS, C. Consortium, M. Jun Li, S. H. Yip, J. Wang, M. K. Bolla, K. Michailidou, Q. Wang, J. P. Tyrer, M. Dunlop, R. Houlston, C. Palles, J. L. Hopper, AOCS Group, J. Peto, A. J. Swerdlow, B. Burwinkel, H. Brenner, A. Meindl, H. Brauch, A. Lindblom, J. Chang-Claude, F. J. Couch, G. G. Giles, V. N. Kristensen, A. Cox, J. M. Cunningham, P. D. P. Pharoah, A. M. Dunning, S. L. Edwards, D. F. Easton, I. Tomlinson and A. B. Spurdle (2016): “Five endometrial cancer risk loci identified through genome-wide association analysis,” Nat. Genet., 48, 667–674.10.1038/ng.3562Search in Google Scholar PubMed PubMed Central

Cochran, W. G. (1938): “The omission or addition of an independent variate in multiple linear regression,” J. Royal Stat. Soc., 5, 171–176.10.2307/2983654Search in Google Scholar

Cohen, J. (1960): “A coefficient of agreement for nominal scales,” Educ. Psychol. Meas., 20, 37–46.10.1177/001316446002000104Search in Google Scholar

Colaprico, A., T. C. Silva, C. Olsen, L. Garofano, C. Cava, D. Garolini, T. S. Sabedot, T. M. Malta, S. M. Pagnotta, I. Castiglioni, M. Ceccarelli, G. Bontempi and H. Noushmehr (2016): “TCGAbiolinks: an R/Bioconductor package for integrative analysis of TCGA data,” Nucleic Acids Res., 44, e71.10.1093/nar/gkv1507Search in Google Scholar PubMed PubMed Central

Davey Smith, G. and G. Hemani (2014): “Mendelian randomization: genetic anchors for causal inference in epidemiological studies,” Hum. Mol. Genet., 23, R89–R98.10.1093/hmg/ddu328Search in Google Scholar PubMed PubMed Central

Du, P., X. Zhang, C.-C. Huang, N. Jafari, W. A. Kibbe, L. Hou and S. M. Lin (2010): “Comparison of beta-value and m-value methods for quantifying methylation levels by microarray analysis,” BMC Bioinf., 11, 587.10.1186/1471-2105-11-587Search in Google Scholar PubMed PubMed Central

Eckart, C. and G. Young (1936): “The approximation of one matrix by another of lower rank,” Psychometrika, 1, 211–218.10.1007/BF02288367Search in Google Scholar

Feuerman, M. and A. R. Miller (2008): “Relationships between statistical measures of agreement: sensitivity, specificity and kappa,” J. Eval. Clin. Pract., 14, 930–933.10.1111/j.1365-2753.2008.00984.xSearch in Google Scholar

Gamazon, E. R., H. E. Wheeler, K. P. Shah, S. V. Mozaffari, K. Aquino-Michaels, R. J. Carroll, A. E. Eyler, J. C. Denny, D. L. Nicolae, N. J. Cox and H. K. Im (2015): “A gene-based association method for mapping traits using reference transcriptome data,” Nat. Genet., 47, 1091–1098.10.1038/ng.3367Search in Google Scholar

Goldstein, B. and I. G. Macara (2007): “The PAR proteins: fundamental players in animal cell polarization,” Dev. Cell, 13, 609–622.10.1016/j.devcel.2007.10.007Search in Google Scholar

Gray, R. and K. Wheatley (1991): “How to avoid bias when comparing bone marrow transplantation with chemotherapy.” Bone marrow transplant., 7, 9–12.Search in Google Scholar

Katan, M. (1986): “Apoupoprotein e isoforms, serum cholesterol, and cancer,” Lancet, 327, 507–508.10.1016/S0140-6736(86)92972-7Search in Google Scholar

Laprise, P. and U. Tepass (2011): “Novel insights into epithelial polarity proteins in drosophila,” Trends Cell Biol., 21, 401–408.10.1016/j.tcb.2011.03.005Search in Google Scholar PubMed

Lê Cao, K.-A., D. Rossouw, C. Robert-Granié and P. Besse (2008): “A sparse pls for variable selection when integrating omics data,” Stat. Appl. Genet. Mol. Biol., 7, 1–29.10.2202/1544-6115.1390Search in Google Scholar PubMed

Li, W.-M., C.-N. Huang, H.-L. Ke, C.-C. Li, Y.-C. Wei, H.-C. Yeh, L.-L. Chang, C.-H. Huang, P.-I. Liang, B.-W. Yeh, T. C. Chan, C. F. Li and W. J. Wu (2016): “MCM10 overexpression implicates adverse prognosis in urothelial carcinoma,” Oncotarget, 7, 77777–77792.10.18632/oncotarget.12795Search in Google Scholar PubMed PubMed Central

Liesa, M., M. Palacín and A. Zorzano (2009): “Mitochondrial dynamics in mammalian health and disease,” Physiol. Rev., 89, 799–845.10.1152/physrev.00030.2008Search in Google Scholar PubMed

Lin, G., K.-K. Ng, C.-J. Chang, J.-J. Wang, K.-C. Ho, T.-C. Yen, T.-I. Wu, C.-C. Wang, Y.-R. Chen, Y.-T. Huang, S. H. Ng, S. M. Jung, T. C. Chang and C. H. Lai (2009): “Myometrial invasion in endometrial cancer: diagnostic accuracy of diffusion-weighted 3.0-t mr imaging-initial experience,” Radiology, 250, 784–792.10.1148/radiol.2503080874Search in Google Scholar PubMed

Liu, H., K. Roeder and L. Wasserman (2010): “Stability approach to regularization selection (stars) for high dimensional graphical models.” In: J. D. Lafferty, C. K. I. Williams, J. Shawe-Taylor, R. S. Zemel and A. Culotta, (Eds.), Advances in Neural Information Processing Systems 23, Curran Associates, Inc. pp. 1432–1440.Search in Google Scholar

Martin-Belmonte, F. and M. Perez-Moreno (2012): “Epithelial cell polarity, stem cells and cancer,” Nat. Rev. Cancer, 12, 23–38.10.1038/nrc3169Search in Google Scholar PubMed

McGuire, S. (2016): “World Cancer Report 2014. Geneva, Switzerland: World Health Organization, international agency for research on cancer, WHO press, 2015,” Adv. Nut., 7, 418–419.10.3945/an.116.012211Search in Google Scholar PubMed PubMed Central

McHugh, M. L. (2012): “Interrater reliability: the kappa statistic,” Biochem. Med. 22, 276–282.10.11613/BM.2012.031Search in Google Scholar

Meinshausen, N. and P. Bühlmann (2010): “Stability selection,” J. R. Stat. Soc. Series B Stat. Methodol., 72, 417–473.10.1111/j.1467-9868.2010.00740.xSearch in Google Scholar

Miecznikowski, J. C., D. P. Gaile, X. Chen and D. L. Tritchler (2016): “Identification of consistent functional genetic modules,” Stat. Appl. Genet. Mol. Biol., 15, 1–18.10.1515/sagmb-2015-0026Search in Google Scholar PubMed

Morgan, M., V. Obenchain, J. Hester and H. Pagés (2017): “Summarizedexperiment: summarizedexperiment container.” R package version 1.8.1.Search in Google Scholar

Morgan, X. C., B. Kabakchiev, L. Waldron, A. D. Tyler, T. L. Tickle, R. Milgrom, J. M. Stempak, D. Gevers, R. J. Xavier, M. S. Silverberg and C. Huttenhower (2015): “Associations between host gene expression, the mucosal microbiome, and clinical outcome in the pelvic pouch of patients with inflammatory bowel disease,” Genome Biol., 16, 1-15.10.1186/s13059-015-0637-xSearch in Google Scholar PubMed PubMed Central

Okamoto, J., T. Hirata, Z. Chen, H. Zhou, I. Mikami, H. Li, A. Beltran, M. Johansson, L. Coussens, G. Clement, Y. Shi, F. Zhang, K. Koizumi, K. Shimizu, D. Jablons and B. He (2010): “EMX2 is epigenetically silenced and suppresses growth in human lung cancer,” Oncogene, 29, 5969–5975.10.1038/onc.2010.330Search in Google Scholar PubMed PubMed Central

O’Mara, T. A., D. M. Glubb, F. Amant, D. Annibali, K. Ashton, J. Attia, P. L. Auer, M. W. Beckmann, A. Black, M. K. Bolla, H. Brauch, H. Brenner, L. Brinton, D. D. Buchanan, B. Burwinkel, J. Chang-Claude, S. J. Chanock, C. Chen, M. M. Chen, T. H. T. Cheng, C. L. Clarke, M. Clendenning, L. S. Cook, F. J. Couch, A. Cox, M. Crous-Bous, K. Czene, F. Day, J. Dennis, J. Depreeuw, J. A. Doherty, T. Dörk, S. C. Dowdy, M. Dürst, A. B. Ekici, P. A. Fasching, B. L. Fridley, C. M. Friedenreich, L. Fritschi, J. Fung, M. García-Closas, M. M. Gaudet, G. G. Giles, E. L. Goode, M. Gorman, C. A. Haiman, P. Hall, S. E. Hankison, C. S. Healey, A. Hein, P. Hillemanns, S. Hodgson, E. A. Hoivik, E. G. Holliday, J. L. Hopper, D. J. Hunter, A. Jones, C. Krakstad, V. N. Kristensen, D. Lambrechts, L. L. Marchand, X. Liang, A. Lindblom, J. Lissowska, J. Long, L. Lu, A. M. Magliocco, L. Martin, M. McEvoy, A. Meindl, K. Michailidou, R. L. Milne, M. Mints, G. W. Montgomery, R. Nassir, H. Olsson, I. Orlow, G. Otton, C. Palles, J. R. B. Perry, J. Peto, L. Pooler, J. Prescott, T. Proietto, T. R. Rebbeck, H. A. Risch, P. A. W. Rogers, M. Rübner, I. Runnebaum, C. Sacerdote, G. E. Sarto, F. Schumacher, Scott RJ,, V. W. Setiawan, M. Shah, X. Sheng, X. O. Shu, M. C. Southey, A. J. Swerdlow, E. Tham, J. Trovik, C. Turman, J. P. Tyrer, C. Vachon, D. VanDen Berg, A. Vanderstichele, Z. Wang, P. M. Webb, N. Wentzensen, H. M. J. Werner, S. J. Winham, A. Wolk, L. Xia, Y. B. Xiang, H. P. Yang, H. Yu, W. Zheng, P. D. P. Pharoah, A. M. Dunning, P. Kraft, I. De Vivo, I. Tomlinson, D. F. Easton, A. B. Spurdle and D. J. Thompson (2018): “Identification of nine new susceptibility loci for endometrial cancer,” Nat. Commun., 9, 3166.10.1038/s41467-018-05427-7Search in Google Scholar PubMed PubMed Central

O’Mara, T. A., D. M. Glubb, P. F. Kho, D. J. Thompson and A. B. Spurdle (2019): “Genome-wide association studies of endometrial cancer: Latest developments and future directions,” Cancer Epidemiol. Biomarkers Prev., 28, 1095–1102.10.1158/1055-9965.EPI-18-1031Search in Google Scholar PubMed

Parkhomenko, E., D. Tritchler and J. Beyene (2009): “Sparse canonical correlation analysis with application to genomic data integration,” Stat. Appl. Genet. Mol. Biol., 8, 1–34.10.2202/1544-6115.1406Search in Google Scholar PubMed

Politis, D. N., J. P. Romano and M. Wolf (1999): New York: Subsampling, Springer Science & Business Media.10.1007/978-1-4612-1554-7Search in Google Scholar

Qiu, H., Q. Yan, X. Luo, H. Zhang, W. Bao and X. Wan (2013): “EMX2 is downregulated in endometrial cancer and correlated with tumor progression,” Int. J. Gynecol. Pathol., 32, 193–198.10.1097/PGP.0b013e31825d8049Search in Google Scholar PubMed

SEER: Stat Fact: Endometrial Cancer, Available online: http://seer.cancer.gov/statfacts/html/corp.html.Search in Google Scholar

Steck, P. A., M. A. Pershouse, S. A. Jasser, W. A. Yung, H. Lin, A. H. Ligon, L. A. Langford, M. L. Baumgard, T. Hattier, T. Davis, C. Frye, R. Hu, B. Swedlund, D. H. Teng and S. V. Tavtigian (1997): “Identification of a candidate tumour suppressor gene, MMAC1, at chromosome 10q23. 3 that is mutated in multiple advanced cancers,” Nat. Genet., 15, 356–362.10.1038/ng0497-356Search in Google Scholar PubMed

Sun, H., T. Enomoto, M. Fujita, H. Wada, K. Yoshino, K. Ozaki, T. Nakamura and Y. Murata (2001): “Mutational analysis of the PTEN gene in endometrial carcinoma and hyperplasia,” Am. J. Clin. Pathol., 115, 32–38.10.1309/7JX6-B9U9-3P0R-EQNYSearch in Google Scholar PubMed

Surget, S., M. P. Khoury and J.-C. Bourdon (2014): “Uncovering the role of p53 splice variants in human malignancy: a clinical perspective,” Onco Targets Ther., 7, 57–68.Search in Google Scholar

Waaijenborg, S., P. C. Verselewel de Witt Hamer and A. H. Zwinderman (2008): “Quantifying the association between gene expressions and dna-markers by penalized canonical correlation analysis,” Stat. Appl. Genet. Mol. Biol., 7, 1-29.10.2202/1544-6115.1329Search in Google Scholar PubMed

Weinstein, J. N., E. A. Collisson, G. B. Mills, K. R. M. Shaw, B. A. Ozenberger, K. Ellrott, I. Shmulevich, C. Sander, J. M. Stuart, Cancer Genome Atlas Research Network (2013): “The cancer genome atlas pan-cancer analysis project,” Nat. Genet., 45, 1113–1120.10.1038/ng.2764Search in Google Scholar PubMed PubMed Central

Wermuth, N. (1992): “On block-recursive linear regression equations,” Braz. J. Probab. Stat., 6, 1–32.Search in Google Scholar

Witten, D. M. and R. J. Tibshirani (2009): “Extensions of sparse canonical correlation analysis with applications to genomic data,” Stat. Appl. Genet. Mol. Biol., 8, 1–27.10.2202/1544-6115.1470Search in Google Scholar PubMed PubMed Central

Witten, D. M., R. Tibshirani and T. Hastie (2009): “A penalized matrix decomposition, with applications to sparse principal components and canonical correlation analysis,” Biostatistics, 10, 515–534.10.1093/biostatistics/kxp008Search in Google Scholar PubMed PubMed Central

Xu, W., H. Zhu, M. Gu, Q. Luo, J. Ding, Y. Yao, F. Chen and Z. Wang (2013): “DHTKD1 is essential for mitochondrial biogenesis and function maintenance,” FEBS Lett., 587, 3587–3592.10.1016/j.febslet.2013.08.047Search in Google Scholar PubMed

Zen, K., K. Yasui, Y. Gen, O. Dohi, N. Wakabayashi, S. Mitsufuji, Y. Itoh, Y. Zen, Y. Nakanuma, M. Taniwaki, T. Okanoue and T. Yoshikawa (2009): “Defective expression of polarity protein PAR-3 gene (PARD3) in esophageal squamous cell carcinoma,” Oncogene, 28, 2910–2918.10.1038/onc.2009.148Search in Google Scholar PubMed

Zuber, V., J. M. Colijn, C. Klaver and S. Burgess (2020): “Selecting likely causal risk factors from high-throughput experiments using multivariable Mendelian randomization,” Nat. Commun., 11, 1–11.10.1038/s41467-019-13870-3Search in Google Scholar PubMed PubMed Central


Supplementary Material

The online version of this article offers supplementary material (DOI: https://doi.org/10.1515/sagmb-2018-0026).


Published Online: 2020-02-29

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 3.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/sagmb-2018-0026/html
Scroll to top button