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Abstract: In many population genetic problems, parameter estimation is obstructed by an intractable
likelihood function. Therefore, approximate estimation methods have been developed, and with grow-
ing computational power, sampling-based methods became popular. However, these methods such as
Approximate Bayesian Computation (ABC) can be inefficient in high-dimensional problems. This led to the
development of more sophisticated iterative estimation methods like particle filters. Here, we propose an
alternative approach that is based on stochastic approximation. By moving along a simulated gradient or
ascent direction, the algorithm produces a sequence of estimates that eventually converges to the maxi-
mum likelihood estimate, given a set of observed summary statistics. This strategy does not sample much
from low-likelihood regions of the parameter space, and is fast, even when many summary statistics are
involved. We put considerable efforts into providing tuning guidelines that improve the robustness and
lead to good performance on problems with high-dimensional summary statistics and a low signal-to-noise
ratio. We then investigate the performance of our resulting approach and study its properties in simula-
tions. Finally, we re-estimate parameters describing the demographic history of Bornean and Sumatran
orang-utans.

Keywords: approximate inference; isolation-migrationmodel;maximum likelihood estimation; orang-utans;
population genetics; stochastic approximation.

1 Introduction

Both in the Bayesian as well as in the frequentist framework, statistical inference commonly uses the
likelihood function. Under a wide range of complex models however, no explicit formula is available. An
important example is the coalescent process that is commonly used to model the evolutionary history of
a sample of DNA sequences from a population (Marjoram and Tavaré, 2006). Even for relatively simple
demographic models, the likelihood function consists of a computationally infeasible number of terms
(Stephens, 2007). Similar situations occur with dynamical systems as used for example in systems biology
(Toni et al., 2009) and epidemiology (McKinley et al., 2009), but also in other fields like spatial statistics
(Soubeyrand et al., 2009) and queuing systems (Heggland and Frigessi, 2004). Here, we consider statistical
models with an intractable distribution theory, but a known data generating process under which data can
be simulated.

A recent approach to overcome this problem is Approximate Bayesian Computation (ABC) (Beaumont
et al., 2002). In its most basic form, it can be described by the following rejection algorithm: parameter values
are randomly drawn from the prior distribution, data sets are then simulated under these values. To reduce

*Corresponding author: Andreas Futschik, Department of Applied Statistics, Johannes Kepler University Linz,
Altenberger Straße 69, 4040 Linz, Austria; and UC Santa Barbara, Kavli Institute for Theoretical Physics, CA 93106, USA,
e-mail: andreas.futschik@jku.at. http://orcid.org/0000-0002-7980-0304
Johanna Bertl: Department of Molecular Medicine (MOMA), Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200
Aarhus N, Denmark
Gregory Ewing: École polytechnique fédérale de Lausanne, 1015 Lausanne, Switzerland
Carolin Kosiol: Centre for Biological Diverstity, University of St Andrews, St Andrews, Fife KY16 9TH, UK; and Institute of
Population Genetics, Vetmeduni Vienna, Veterinärplatz 1, 1210 Wien, Austria



292 | J. Bertl et al.: Approximate maximum likelihood estimation for population genetic inference

complexity, informative but low dimensional summaries are derived from the data sets. All parameter values
that gave rise to summary statistics sufficiently similar to those computed for the observed data are then
accepted as a sample from the posterior distribution. Hence, with a uniform prior (with support on a compact
subset of the parameter space taken large enough to contain themaximum likelihood estimator), ABC can be
used to obtain a simulation-based approximation of the likelihood surface and, subsequently, the maximum
likelihood estimate for the observed summary statistic values (Rubio and Johansen, 2013; see de Valpine,
2004 for a Markov Chain Monte Carlo (MCMC) approach).

The need for inferential tools in population genetics that allow for the analysis of large genomic datasets
was a major driver in the development of ABC, and it has successfully been used in population genetic
applications and also in other fields, see e.g. Beaumont (2010). However, the sampling scheme can be
inefficient in high-dimensional problems: the higher the dimension of the parameter space and the summary
statistics, the lower is the acceptance probability of a simulateddata set. Consequently,more data sets need to
be simulated to achieve a good estimate of the posterior distribution. Alternatively, the acceptance threshold
can be relaxed, but this increases the bias in the approximation to the posterior distribution. To reduce the
sampling burden, combinations of ABC and iterative Monte Carlo methods such as particle filters and MCMC
have been proposed that focus the sampling on the relevant regions of the parameter space (Beaumont et al.,
2009; Wegmann et al., 2009).

Here, we follow an alternative approach to obtain an approximatemaximum likelihood estimate. Instead
of using random samples from the entire parameter space, we adapt stochastic approximation methods
and propose two algorithms to approximate the maximum likelihood estimate. Similar to ABC, they rely
on lower-dimensional summary statistics of the data. With the classical stochastic gradient algorithm in k
dimensions, the gradient is approximated in each iteration by 2k evaluations of the likelihood (Kiefer and
Wolfowitz, 1952; Blum, 1954). For each parameter value of interest, they can be obtained by kernel density
estimation on summary statistics of simulated datasets. Alternatively, we use a simultaneous perturbations
algorithm, where independent of the parameter dimension only two noisy measurements are sufficient to
obtain an ascent direction (Spall, 1992). Stochastic gradient methods have also received recent interest in the
context of regression, as documented for instance by theoretical studies of Dieuleveut and Bach (2016); Bach
(2014).

Our approach is related to a method suggested in Diggle and Gratton (1984) (see also Fermanian
and Salanié, 2004). There, an approximate maximum likelihood estimate is obtained using a stochastic
version of the Nelder-Mead algorithm. However, the authors explore only applications to one-dimensional
i.i.d. data. In the context of indirect inference, Creel and Kristensen (2013) propose a simulated maximum
indirect likelihood (SMIL) estimator that is also based on approximations of the likelihood by kernel density
estimation on simulated summary statistics, but they do not use stochastic approximation for obtaining
estimates. In Meeds et al. (2015), a (Bayesian) MCMC algorithm is proposed where stochastic gradients
are obtained in a similar fashion as here. In the setting of hidden Markov models, Ehrlich et al. (2013)
have proposed a recursive maximum likelihood algorithm that also combines ABC methodology with the
simultaneous perturbations algorithm.

Here we focus on population genetic inference which is often quite challenging. In principle however,
our approach can also be applied in other contexts. We briefly mention that the proposed algorithms could
also be applied in connection with indirect inference, where summary statistics are derived from a tractable
auxiliary model (Drovandi et al., 2011).

2 Method

We start by describing two approximate maximum likelihood (AML) algorithms for optimizing the expected
value of a random function using noisy observations, the AML-finite difference (FD) and AML-stochastic
perturbations (SP), respectively. Next, we explain how these algorithms can be adapted to obtain maximum
likelihood estimates in complex models with intractable likelihood functions.
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2.1 Maximization by stochastic approximation

Here, we summarize stochastic approximation in its classic form. In Subsection 2.2., we discuss how
stochastic approximation can be adopted to obtain maximum likelihood estimates.

Let Y ∈ R be a random variable depending on Θ ∈ R
p. The function L(Θ) = E(Y | Θ) is to be maximized

in Θ, but L(Θ) as well as the gradient∇L(Θ) are unknown. If realizations y(Θ) of Y | Θ can be obtained for any
value of Θ, argmaxΘ∈Rp L(Θ) can be approximated by stochastic approximation methods (see Spall, 2003,
sections 6 and 7, for an overview).

Similar to gradient algorithms in a deterministic setting, the stochastic approximation algorithms are
based on the recursion

Θn = Θn−1 + an∇L(Θn−1) for n ∈ N, and a decreasing sequence an ∈ R
+

starting with some Θ0 ∈ R
p.

The unknown gradient can be substituted by an approximation based on observed finite differences. For
Θ ∈ R this algorithmwas first described in Kiefer andWolfowitz (1952), followed by a multivariate version in
Blum (1954), where the gradient is approximated by finite differences in each dimension. In iteration n, each
element l = 1, . . ., p of the gradient is approximated by

(
∇̂cn L(Θn)

)(l)
=

y(Θn + cnel) − y(Θn − cnel)
2cn

,

where el is the lth unit vector of lengthp, cn ∈ R
+ is a decreasing sequence and y(Θn + cnel) and y(Θn − cnel)

are independent realizations of Y | Θn + cnel and Y | Θn − cnel, respectively.
Thus, for each iteration of this algorithm, 2p observations of Y are needed. A computationally more

efficient method was introduced by Spall (1992): The finite differences approximation of the slope is only
obtained along one direction that is randomly chosen among the vertices of the unit hypercube, so only two
observations per iteration are necessary. More specifically, in iteration n, a random vector with elements

δ(l)n =

{
−1 with probability 1/2,
+1 with probability 1/2,

for l = 1, . . ., p is generated. Then, the gradient is approximated by

∇̂cn L(Θn) = δn
y(Θn + cnδn) − y(Θn − cnδn)

2cn
.

Spall showed that for a given number of simulations this algorithm reaches a smaller asymptotic mean
squared error in a large class of problems than the original version. Phrased differently, fewer realizations of
Y are usually necessary to reach the same level of accuracy. See Spall, 2003, Section 7, for a more detailed
overview.

2.2 Approximate maximum likelihood (AML) algorithms

Suppose, data Dobs are observed under model M with unknown parameter vector Θ ∈ R
p. Let L(Θ;Dobs) =

p(Dobs |Θ) denote the likelihood of Θ. For complex models often there is no closed form expression for the
likelihood, and for high dimensional data sets, the likelihood can be difficult to estimate. As in ABC, we there-
fore consider L(Θ; sobs) = p(sobs |Θ), an approximation to the original likelihood that uses a d-dimensional
vector of summary statistics sobs instead of the original dataDobs. Themore informative sobs is aboutDobs, the
more accurate is this approximation. In the rare cases where sobs can be chosen as a sufficient statistic for Θ,
L(Θ;Dobs) ∝ L(Θ; sobs).
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An estimate L̂(Θ; sobs) of L(Θ; sobs) can be obtained from simulations under the model M(Θ) using
kernel density estimation.With L̂(Θ; sobs) as our objective function, we approximate themaximum likelihood
estimate Θ̂ML of Θ using the following algorithm:

Algorithm (AML-FD). Let an , cn ∈ R
+ be two decreasing sequences and kn ∈ N a non-decreasing sequence.

Let Hn be a sequence of symmetric positive definite d × d matrices, the bandwidth matrices, and κ a d-variate
kernel function satisfying

∫
Rd κ(x)dx = 1. Define κHn (x) := (detHn)−1/2κ

(
H−1/2
n x

)
. Choose a starting

value Θ0.
For n = 1, 2, . . . , N:

1. Simulation of the gradient in Θn−1:
For l = 1, . . ., p:
(a) Simulate datasets D−

1 , . . . , D
−
kn fromM(Θ−) and D+

1 , . . . , D
+
kn fromM(Θ+)with Θ± = Θn−1 ± cnel.

(b) Compute the summary statistics S−
j on dataset D−

j and S+
j on D+

j for j = 1, . . . , kn.
(c) Estimate the likelihood L̂(Θ−; sobs) = p̂(sobs |Θ−) and L̂(Θ+; sobs) = p̂(sobs |Θ+) from S−

1 , . . . , S
−
kn

and S+
1 , . . . , S

+
kn , respectively, with kernel density estimation (e.g. Wand and Jones, 1995, equation 4.1):

L̂(Θ−; sobs) =
1
kn

kn∑
j=1

κHn

(
sobs − S−

j

)

and analogously for L̂(Θ+; sobs).
(d) Compute the l’th element of the finite differences approximation of the gradient of the likelihood,

∇L(Θn−1; sobs):

(
∇̂cn L̂(Θn−1; sobs)

)(l)
=

L̂(Θ+; sobs) − L̂(Θ−; sobs)
2cn

2. Updating Θn:

Θn = Θn−1 + an∇̂cn L̂(Θn−1; sobs)

The approximatemaximum likelihood estimate is obtained at the final step of this algorithm, i.e. Θ̂AML-FD,N :=
ΘN . Notice however, that more sophisticated versions of the algorithm involve averaging over the last
s steps.

Alternatively, an algorithm based on Spall’s simultaneous perturbations method can be defined as
follows:

Algorithm (AML-SP). Let an , cn ∈ R
+ be two decreasing sequences and kn ∈ N a non-decreasing sequence.

Let Hn be a sequence of symmetric positive definite d × d matrices, the bandwidth matrices, and κ a d-variate
kernel function satisfying

∫
Rd κ(x)dx = 1. Define κHn (x) := (detHn)−1/2κ

(
H−1/2
n x

)
. Choose a starting value

Θ0.
For n = 1, 2, . . . , N:

1. Simulation of the ascent direction in Θn−1:
(o) Generate a p-dimensional random vector δn with elements

δ(l)n =

{
−1 with probability 1/2,
+1 with probability 1/2,

(1)

for l = 1, . . ., p.
(a) Simulate datasets D−

1 , . . . , D
−
kn fromM(Θ−) and D+

1 , . . . , D
+
kn fromM(Θ+)with Θ± = Θn−1 ± cnδn.

(b) Compute the summary statistics S−
j on dataset D−

j and S+
j on D+

j for j = 1, . . . , kn.
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(c) Estimate the likelihood L̂(Θ−; sobs) = p̂(sobs |Θ−) and L̂(Θ+; sobs) = p̂(sobs |Θ+) from S−
1 , . . . , S

−
kn

and S+
1 , . . . , S

+
kn , respectively, with kernel density estimation:

L̂(Θ−; sobs) =
1
kn

kn∑
j=1

κHn

(
sobs − S−

j

)
(2)

and analogously for L̂(Θ+; sobs).
(d) Compute the finite differences approximation of the slope of the likelihood L(Θn−1; sobs) along δn:

∇̂cn L̂(Θn−1; sobs) = δn
L̂(Θ+; sobs) − L̂(Θ−; sobs)

2cn

2. Updating Θn:

Θn = Θn−1 + an∇̂cn L̂(Θn−1; sobs)

Here, the approximatemaximum likelihood estimate is denoted Θ̂AML-SP,N := ΘN . Inmore general statements,
we denote both approximate maximum likelihood estimates by Θ̂AML.

Instead of the likelihood, one might want to equivalently maximize the log-likelihood, which can be
preferable from a numerical point of view. This can be done both with the AML-FD and the AML-SP algorithm
by replacing L̂(Θ+; sobs) and L̂(Θ−; sobs) by their logarithms in step 1d.

In a Bayesian setting with a prior distribution π(Θ), the algorithms can be modified to approximate the
maximum of the posterior distribution, Θ̂MAP, by multiplying L̂(Θ−, sobs) and L̂(Θ+, sobs) with π(Θ−) and
π(Θ+), respectively.

2.3 Parametric bootstrap

Confidence intervals and estimates of the bias and standard error of Θ̂AML can be obtained by parametric
bootstrap: B bootstrap datasets are simulated from the model M(Θ̂AML) and the AML algorithm is run on
each dataset to obtain the bootstrap estimates Θ̂*

AML,1, . . . , Θ̂*
AML,B. These estimates reflect both the error of

the maximum likelihood estimator as well as the approximation error of the algorithm.
The bias can be estimated by

b̂* = Θ̄* − Θ̂AML,

where Θ̄* =
(∑B

i=1 Θ̂
*
i

)
/B. The corrected estimator is

Θ̂*
AML = Θ̂AML − b̂*.

The standard error of Θ̂AML can be estimated by the standard deviation of Θ̂*
1, . . . , Θ̂*

B,

ŝe* =

√√√√ 1
B − 1

B∑
i=1

(
Θ̂*
i − Θ̄*

)2
.

We compute separate bootstrap confidence intervals for eachparameter that are based on the assumption
that the distribution of Θ̂AML − Θ can be approximated sufficiently well by the distribution of Θ̂*

AML − Θ̂AML,
where Θ̂*

AML is the bootstrap estimator. Then, a two-sided (1 − α)-confidence interval is defined as[
2Θ̂AML − q(1−α/2)(Θ̂*

AML), 2Θ̂AML − q(α/2)(Θ̂*
AML)

]
,
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where q(β)(Θ̂*
AML) denotes the β quantile of Θ̂*

AML,1, . . . ,Θ̂*
AML,B (Davison and Hinkley, 1997, sections

2.2.1, 2.4).

3 Tuning guidelines

Confirming general observationsmade at the end of Section 2.1, the experience fromour simulations suggests
that the simultaneous perturbation approachAML-SP usually converges faster thanAML-FD. Notice however,
that we encountered a slightly higher proportion of runs that did not converge with AML-SP (see Section 4.1).

For both algorithms the performance strongly depends on proper tuning of the four main parameters
an (step size), cn (gradient approximation), kn (size of the simulated samples), and Hn (bandwidth of the
kernel density estimate). A proper choice of the kernel function can also be helpful. Another challenge we
encountered in our population genetic application was stochasticity: occasional large steps can by chance
lead very far away from the maximum.

To facilitate tuning, we first summarize general guidelines based on theory. As the resulting optimal
choices depend on the unknown likelihood function, we supplement these recommendations by practical
tuning guidelines. We found our proposed practical guidelines helpful to ensure both a high proportion of
convergent runs, and (in case of convergence) rapid convergence to solutions that are sufficiently close to
the true maximum of the likelihood. We first state these recommendations in general terms. As they require
additional parameter choices, we then state actual values we found to work well in our examples.

The guidelines ensure some degree of robustness, as they are adaptive. In particular, they take into
account problems occuring in recent steps of the algorithm, and include local information on the likelihood
surface for instance for deciding when to stop, when adapting the step sizes, and when choosing the kernel
bandwidth. We can imagine that even with our proposed adaptive tuning guidelines, convergence problems
might still occur in some applications, in particular when the likelihood surface is very complex. However,
we do not see this as a major drawback of our method for two reasons:
– It is always possible (and recommended) to estimate the likelihood at stopping, for different runs starting

from randomly selected starting points. A certain proportion of runs converging to the same point which
also provides the highest estimated likelihood value would give some confidence in this estimate. (In
principle the final estimate could still be a local optimumhowever, as global optimization can sometimes
be a very hard task.)

– In an initial step our algorithms can be applied to datasets simulated under the model of interest,
where the true solution is known. In cases where frequent convergence problems show up with the
recommended parameter settings, tuning parameters could be changed. If multiple local optima show
up, further independent runs from additional starting points would be an option.

3.1 Theoretical guidelines for choosing tuning parameters

The stochastic approximation part of our approximate maximum likelihood algorithm requires two tuning
parameter sequences, the stepsize an and the parameter cn responsible for the bias-variance trade-off of
the finite difference approximations to the derivative. According to Spall (2003, chap. 7), tuning constants
satisfying an , cn → 0 for n → ∞, as well as

∑∞
n=1 an < ∞ and

∑∞
n=1

a2n
c2n

< ∞ ensure convergence of the
algorithm. (Notice that there are further technical conditions for convergence, such as a unique optimum
and a uniformly bounded Hessian matrix.) It can be shown that for

an =
a

(n + A)α
and cn =

c
nγ

, (3)

optimum rates of convergence can be obtained when α = 1 and γ = 1/6. As discussed in Spall (2003, p. 187),
however, smaller values for α and γ often lead to a better practical performance. The constant A is usually
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taken as a small fraction of the maximum number of iterations N and guards against too large jumps in the
initial steps.

Another important factor affecting the algorithm is the precision of the kernel density estimate used.
Under smoothness conditions on the underlying likelihood, the kernel density estimate used for estimating
the likelihood is consistent, if kn → 0, Hn → 0 and nHd

n → ∞ in the case of d summary statistics. Notice
however that for stochastic approximation to work, the variance of the estimates does not need to tend
to zero. In particular large sample sizes kn are not needed in the individual steps. Nevertheless good
estimates of the gradient are obviously helpful. If we measure the quality of the pointwise density estimates
by the the mean squared error (MSE), optimizing the MSE [see Rosenblatt (1991)] suggests to choose
Hn = cn−(4+d), (for each diagonal enrtry of Hn) with a constant c* depending on the unknown likelihood
function.

As c* is unknown in practice, we use a data driven bandwidth selection rule with our algorithm. Many
different methods to estimate bandwidth matrices for multivariate kernel density estimation have been
proposed (see Scott, 2015, for an overview), and in principle any method that fulfills the convergence criteria
is valid to estimate Hn. For some types of densities, non-sparse bandwidth matrices can give a substantial
gain in efficiency compared to e.g. diagonal matrices (Wand and Jones, 1995, section 4.6). However, as the
bandwidth matrix is computed for each likelihood estimate, computational efficiency is important. In our
examples, we estimate a diagonal bandwidth matrix Hn using a multivariate extension of Silverman’s rule
(Härdle et al., 2004, equation 3.69). Using new bandwidthmatrices in each iteration introduces an additional
level of noise that can be reduced by using a moving average of bandwidth estimates.

In density estimation, the choice of a specific kernel function is usually considered less important than
the bandwidth choice. The kernel choice plays a more important role when used with our stochastic gradient
algorithm however. Indeed, to enable the estimation of the gradient even far away from the maximum, a
kernel function with infinite support is helpful. The Gaussian kernel is an obvious option, but when the
log-likelihood is used, the high rate of decay can by chance cause very large steps leading away from the
maximum. Therefore, we use the following modification of the Gaussian kernel:

κ(H1/2x) ∝
⎧⎨⎩ exp

(
−1

2 x
′H−1x

)
if x′H−1x < 1

exp
(
−1

2
√
x′H−1x

)
otherwise.

In degenerate cases where the likelihood evaluates to zero numerically, we replace the classical kernel
density estimate by a nearest neighbor estimate in step 1(c):

If L̂(Θ−; sobs) ≈ 0 or/and L̂(Θ+; sobs) ≈ 0 (with “≈” denoting “numerically equivalent to”), find

S−
min := argmin

S−
j

{∥∥∥S−
j − sobs

∥∥∥ : j = 1, . . . , kn
}

S+
min := argmin

S+j

{∥∥∥S+
j − sobs

∥∥∥ : j = 1, . . . , kn
}

and recompute the kernel density estimate L̂(Θ−; s) and L̂(Θ+; s) in step 1c using S−
min and S+

min, respectively,
as the only observation.

3.2 Heuristic tuning guidelines

Here, we summarize some practical recommendations that turned out to be useful in our simulations.
As the parameters we want to estimate may often lie in regions of different length, and to reflect the

varying slope of L in different directions of the parameter space, a good choice of a and c can speed up con-
vergence.We therefore replace a ∈ R

+ in eq. (3) by a p-dimensional diagonalmatrixa = diag
(
a(1), . . . , a(p)

)
with a(i) ∈ R

+ for i = 1, . . ., p (this is equivalent to scaling the space accordingly). The optimal choice of a and
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c depends on the unknown shape of L. Therefore, we propose the following heuristic based on suggestions
in Spall (2003, sections 6.6, 7.5.1, 7.5.2) and our own experience to determine these values as well as A ∈ N, a
shift parameter to avoid too fast decay of the step size in the first iterations.

Let N be the number of planned iterations and b ∈ R
p a vector that gives the desired stepsize in early

iterations in each dimension. Choose a starting value Θ0.
1. Set c to a small percentage of the total parameter range (or the search space, see Section 3.4), to obtain c1.
2. Set A = �0.1 * N�.
3. Choose a :

(a) Estimate ∇L(Θ0; sobs) by the median of K1 finite differences approximations (step 1 of the AML
algorithm), ¯̂∇c1 L̂(Θ0; sobs).

(b) Set

a(i) =

∣∣∣∣∣∣∣
b(i)(A + 1)α( ¯̂∇c1 L̂(Θ0; sobs)

)(i)

∣∣∣∣∣∣∣ for i = 1, . . . , p.

As a is determined using information about the likelihood in Θ0 only, it might not be adequate in
other regions of the parameter space. To be able to distinguish convergence from a too small step size, we
simultaneously monitor the growth of the likelihood function and the trend in the parameter estimates
to adjust a if necessary. Every N0 iterations the following three tests are conducted on the preceding N0
iterates:
– Trend test (too small a(i)): For each dimension i = 1, . . ., p a trend in Θ(i)

k is tested using the standard
random walk model

Θ(i)
k = Θ(i)

k−1 + β + ϵk ,

where β denotes the trend and ϵk ∼ N(0, σ2). The null hypothesis β = 0 can be tested by a t-test on the
differences Δk = Θ(i)

k − Θ(i)
k−1. If a trend is detected, a

(i) is increased by a fixed factor f ∈ R
+.

– Range test (too large a(i)): For each dimension i = 1, . . ., p, a(i) is set to a(i)/f if the trajectory of Θ(i)
k spans

more than πa% of the parameter range.
– Convergence test: Simulate K2 likelihood estimates at Θn−N0 and at Θn. Growth of the likelihood is then

tested by a one-sided Welch’s t-test. (Testing for equivalence could be used instead, see Wellek, 2010.)

We conclude that the algorithm has converged to a maximum only if the convergence test did not reject
the null hypothesis three times in a row and at the same time no adjustments of a were necessary.

The values of the tuning parameters we used in our examples presented in Section 4 are summarized in
Table 1.

Table 1: Setting of the tuning parameters in the examples.

Parameter Normal distribution Orang-utan data

N Max. 100,000 Max. 50,000
Search space [−100, 100] × . . . × [−100, 100] Scaled to [0, 1] × . . . × [0, 1]
c c = 2 c = 0.05
A 500 500
K1 100
K2 25
N0 1000
f 1.5
πa 70%
πmax 10%
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3.3 Starting points

To avoid starting in regions of very low likelihood, a set of randompoints should be drawn from the parameter
space and their simulated likelihood values compared to find good starting points. This strategy also helps
to avoid that the algorithm reaches only a local maximum. More details can be found in Section 4.

3.4 Constraints on the parameters

The parameter space will usually be subject to constraints (e.g. rates are positive quantities). They can be
incorporated by projecting the iterate to the closest point such that both Θ− as well as Θ+ are in the feasible
set (Sadegh, 1997). Even if there are no imperative constraints, it is advisable to restrict the search space
to a range of plausible values to prevent the algorithm from trailing off at random in regions of very low
likelihood.

To reduce the effect of large steps within the boundaries, we clamp the step size at πmax% of the range of
the search space in each dimension.

4 Examples

To study the performance of the AML algorithm, we first test it on themultivariate normal distribution. While
there is no need for simulation based inference for normal models, it allows us to compare the properties
of the AML estimator and the maximum likelihood estimator. We also compare the convergence speed
of the two different algorithms here. Then, we apply it to an example from population genetics. For this
purpose we use both simulated data, where the true parameter values are known, as well as DNA sequence
data from a sample of Bornean and Sumatran orang-utans and estimate parameters of their ancestral
history.

4.1 Multivariate normal distribution

One dataset, consisting of i.i.d. draws from a 10-dimensional normal distribution, is simulated such that the
maximum likelihood estimator for Θ is Θ̂ML = X̄ ∼ N (5 · 110, I10) where I10 denotes the 10-dimensional
identity matrix and 110 the 10-dimensional vector with 1 in each component. To estimate the distribution
of Θ̂AML-SP, the AML-SP algorithm is run 1000 times on this dataset with summary statistics S = X̄.

At start, 1000 points are drawn randomly on (−100, 100) × . . . ×(−100, 100). For each of them, the
likelihood is simulated and the 5 points with the highest likelihood estimate are used as starting points.
On each of them, the AML-SP algorithm is run with kn = 100 for at least 10,000 iterations and stopped as
soon as convergence is reached (for ≈90% of the sequences within 11,000 iterations). Again, the likelihood
is simulated on each of the five results and the one with the highest likelihood is considered as a realization
of Θ̂AML-SP. Based on these 1000 realizations of Θ̂AML-SP, the density, bias and standard error of Θ̂AML-SP are
estimated for each dimension (Table 2, Figure 1).

The results are extremely accurate: The densities of the 10 components of Θ̂AML-SP are symmetric around
the maximum likelihood estimate with a negligible bias. Compared to the standard error of Θ̂ML, which by
construction equals 1, the standard error of Θ̂AML-SP is nearly 20 times smaller. Bootstrap confidence intervals
that were obtained from B = 100 bootstrap samples for 100 datasets simulated under the same model as
above show a close approximation to the intended coverage probability of 95% (Table 2).

To investigate the impact of the choice of summary statistics on the results, we repeat the experiment
with the following set of summary statistics:
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Table 2: Properties of Θ̂AML-SP in the 10-dimensional normal distribution model using two different sets of summary statistics.

dim. S = X̄ S* (eq. 4)

b̂ ŝe p̂ b̂ ŝe p̂

1 −0.0016 0.0546 93 −0.0007 0.0660 93
2 0.0017 0.0544 94 −0.0002 0.0638 93
3 0.0004 0.0547 94 0.0007 0.0635 97
4 −0.0033 0.0567 90 −0.0032 0.0789 98
5 −0.0015 0.0584 95 −0.0000 0.0748 90
6 −0.0000 0.0565 94 0.0044 0.0757 90
7 0.0017 0.0557 96 0.0035 0.0686 95
8 −0.0007 0.0559 95 −0.0030 0.1140 96
9 −0.0013 0.0554 91 0.0809 0.0658 98
10 0.0001 0.0554 99 −0.0595 0.0922 92

Bias (b̂) and standard error (ŝe) of Θ̂AML-SP, estimated from 1000 runs of the AML-SP algorithm. Coverage probability of
bootstrap 95% confidence intervals (p̂) with B = 100, estimated from 100 datasets.
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Figure 1: Density of the components of Θ̂AML-SP obtained with S = X̄ in one dataset estimated from 1000 converged sequences
with a miminum length of 10,000 iterations by kernel density estimation. Vertical dashed line: Θ̂ML.

S* =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

X̄1
X̄2 + X̄3
X̄4 + X̄5

X̄7
X̄9

X̄2 − X̄3
X̄5 + X̄6
X̄7 + X̄8
X̄9 · X̄10
X̄6 + X̄4

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(4)

For ≈90% of the sequences, convergence was detected within 14,000 iterations. Bootstrap confidence
intervals are obtained for 100 simulated example datasets. Their coverage probability matches the nominal
95% confidence level closely (Table 2). The components behave very similar to the previous simulations,
except for the estimates of the density for components 9 and 10 (Figure 2). Compared to the simulations
with S = X̄, the bias of components 9 and 10 is considerably increased, but it is still much smaller than the
standard error of Θ̂ML. To investigate how fast the bias decreases with the number of iterations, we re-run the
above described algorithm for 100,000 iterations without earlier stopping (Figure 3). Both bias and standard
error decrease with the number of iterations.



J. Bertl et al.: Approximate maximum likelihood estimation for population genetic inference | 301

3.5 3.6 3.7 3.8 3.9 4.0 4.1

0
1
2
3
4
5
6

5.8 5.9 6.0 6.1 6.2

0
1
2
3
4
5
6

0

1

2

3

4

5

0
1
2
3
4

6
5

0

1

2

3

4

5

0
1
2
3
4

0

1

2

3

4
6
5

0

1

2

3

4

5

0

1

2

3

4

5

5.7 5.8 5.9 6.0 6.1 6.2 3.6 3.7 3.8 3.9 4.0 4.1 4.2 5.0 5.1 5.2 5.3 5.4 5.5 5.6

3.6 3.7 3.8 3.9 4.0 4.1 4.2 4.9 5.0 5.1 5.2 5.3 5.4 4.8 5.0 5.2 5.4 5.6 5.8
0.0

1.0

2.0

3.0

4.3 4.4 4.5 4.6 4.7 4.8 3.0 3.2 3.4 3.6

μAML
^(1) μAML

^(2) μAML
^(3) μAML

^(4) μAML
^(5)

μAML
^(6) μAML

^(7) μAML
^(8) μAML

^(9) μAML
^(10)

Figure 2: Density of the components of Θ̂AML-SP obtained with S* (eq. 4) in one dataset estimated from 1000 converged
sequences with a miminum length of 10,000 iterations by kernel density estimation. Vertical dashed line: Θ̂ML.
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Figure 3: Absolute bias and standard error of the AML estimator of μ9 and μ10 using the summary statistics in eq. (4) estimated
from 1000 runs of the algorithm on the same dataset.

For the comparison of the AML-FD and AML-SP algorithm, 1000 datasets are simulated under the same
normal distribution model as above. S* (eq. 4) is used as our vector of summary statistics.

For each dataset, one random starting value is drawn on the search space (0, 10) × . . . × (0, 10) and
the two approximate maximum likelihood algorithms AML-FD and SP are run on each of them with kn = 50.
Different values of c are tested in short preliminary runs and a small set of good values is used. Here, the
convergence diagnostics and the methods to make the algorithms more robust are not used (except from
shifting the iterates back into the search space if necessary).

For each algorithm, 5 million datasets are simulated. This results in different numbers of iterations (N):
For the FD algorithm, N = 5000, for the SP algorithm, N = 50,000. The results of the different algorithms
are compared after the same number of simulations. The corresponding runtimes are shown in Table 3. As
expected, one iteration of the FD algorithm takes approximately 10 times longer than one iteration of the SP
algorithm: the likelihood is estimated at 20 points in each iteration in the FD algorithm compared to 2 points
in the SP algorithm.

In the worst case (c = 1, SP), more than 50% of the runs enter regions of approximately zero likelihood.
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Table 3: Runtimes and errors.

Type Parameters K Total runtime Runtime per iteration Errors

FD c = 1 5000 1580.39 0.3161 29
c = 2 5000 1650.04 0.3300 22
c = 0.5 5000 1654.64 0.3309 116

SP c = 1 50,000 1549.79 0.0310 558
c = 2 50,000 1545.65 0.0309 364
c = 0.5 50,000 1607.65 0.0322 228

Runtime is measured in seconds. Errors: number of runs (out of 1000) that enter regions where the likelihood estimate is zero.
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Figure 4: Euclidean distance of Θ̂n to Θ̂ML. The distance is plotted only every percent of the iterations. Right panel: same as left
panel, but with both axes on a log-scale.

For c = 2, both algorithms behave very similar (Figure 4). For c = 1, the AML-SP algorithm converges
slightly faster and for c = 0.5 it converges considerably faster and the AML-FD algorithm needs many more
iterations to reach the same accuracy. This reflects its theoretical properties derived in Spall (1992).

However, the AML-SP algorithm is less stable than AML-FD and can more easily trail off randomly
to regions of very low likelihood. The SP algorithm even enters regions of zero likelihood (at standard
double precision) considerably more frequently (Table 3), causing problems with the computation of the
log-likelihood. In our simulations we could easily overcome these problems by the adjustments proposed in
Sections 3.2–3.4 that make the algorithmmore robust. But in regions of very low likelihood, small differences
in the likelihood values will still lead to large gradients of the log likelihood, and thus to large steps. Then, it
can help to reduce πmax.

In the following examples, we use the AML-SP algorithm and to simplify the notation, define Θ̂AML :=
Θ̂AML-SP.

4.2 The evolutionary history of Bornean and Sumatran orang-utans

Pongo pygmaeus and Pongo abelii, Bornean and Sumatran orang-utans, respectively, are Asian great apes
whose distributions are exclusive to the islands of Borneo and Sumatra. Recurring glacial periods led to
a cooler, drier, and more seasonal climate. Consequently the rain forest might have contracted and led
to isolated populations of orang-utans. At the same time, the sea level dropped and land bridges among
islands created opportunities formigration amongpreviously isolated populations. However, whether glacial
periods have been an isolating or a connecting factor remains poorly understood. Therefore, there has been a
considerable interest in using genetic data to understand the demographic history despite the computational
difficulties involved in such a population genetic analysis. We will compare our results to the analysis of the
orang-utan genome paper (Locke et al., 2011) and a more comprehensive study by Ma et al. (Ma et al., 2013);
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Figure 5: (A) Isolation-migration model for the ancestral history of orang-utans. Notation: NA, effective size of the ancestral
population; μBS (μSB), fraction of the Bornean (Sumatran) population that is replaced by Sumatran (Bornean) migrants per
generation (backwards migration rate); τ, split time in years; NB (NS), effective population size in Borneo (Sumatra). (B) Binned
joint site frequency spectrum (adapted from Naduvilezhath et al., 2011). (C) Folded joint site frequency spectrum of biallelic
SNPs at four-fold degenerate sites in the Bornean and Sumatran orang-utan samples.

these are analyses that have been performed genome-wide. Both studies use ∂a∂i (Gutenkunst et al., 2009), a
popular software that has beenwidely used for demographic inference. ∂a∂i is based on a numerical solution
of theWright-Fisher diffusion approximation.We use the orang-utan data set of Locke et al. (2011), consisting
of SNP data of four-fold degenerate (synonymous) sites taken from 10 sequenced individuals (five individuals
each per orang-utan population, haploid sample size 10). See the Appendix for more details on the dataset.

As in Locke et al. (2011) and Ma et al. (2013), we consider an Isolation-Migration (IM) model where a
panmictic ancestral population of effective sizeNA splits τ years ago into two distinct populations of constant
effective size NB (the Bornean population) and NS (the Sumatran population) with backward migration rates
μBS (fraction of the Bornean population that is replaced by Sumatran migrants per generation) and μSB (vice
versa; Figure 5A).

NA is set to the present effective population size that we obtain using the number of SNPs in our data set
and assuming an average per generation mutation rate per nucleotide of 2 · 10−8 and a generation time of
20 years (Locke et al., 2011), so NA = 17,400.

There are no sufficient summary statistics at hand, but for the IMmodel the joint site frequency spectrum
(JSFS) between the two populations was reported to be a particularly informative summary statistic (Tellier
et al., 2011). However, for N samples in each of the two demes, the JSFS has (N + 1)2 − 2 entries, so
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even for small datasets it is very high-dimensional. To reduce this to more manageable levels we follow
Naduvilezhath et al. (2011) and bin categories of entries (Figure 5B). As the ancestral state is unknown,we use
the folded binned JSFS that has 28 entries (see Figure 5C for the folded JSFS of the two population samples).
To incorporate observations ofmultiple unlinked loci, mean and standard deviation across loci are computed
for each bin, so the final summary statistics vector is of length 56.

The AML-SP algorithm with the JSFS as summary statistics was used together with the coalescent
simulation program msms (Ewing and Hermisson, 2010). This allows for complex demographic models and
permits fast summary statistic evaluation without using external programs and the associated performance
penalties.

4.2.1 Simulations

Before applying the AML-SP algorithm to the actual orang-utan DNA sequences, we tested it on simulated
data. Under the described IM model with parameters NB = NS = 17,400, μBS = μSB = 1.44 · 10−5 and
τ = 695,000, we simulated 25 datasets with 25 haploid sequences per deme, each of them consisting of
75 loci with 130 SNPs each. We define loci as unlinked stretches of DNA sequence, which are so short that
recombination within a locus can be disregarded.

For each dataset, 25 AML estimates were obtained with the same scheme: 1000 random starting points
were drawn from the parameter space; the likelihood was estimated with n = 40 simulations. Then, the five
valueswith thehighest likelihoodestimateswereusedas startingpoints for theAMLalgorithm. Thealgorithm
converged after 3000–25,000 iterations (average: ≈8000 iterations; average runtime of our algorithm: 11.7 h
on a single core).

For the migration rates μSB and μBS, the per dataset variation of the estimates is considerably smaller
than the total variation (Table 4). This suggests that the approximation error of the AML algorithm is small
in comparison to the error of Θ̂ML. For the split time τ and the population sizes NS and NB, the difference
is less pronounced, but still apparent. For all parameters, the average bias of the estimates is either smaller
or of approximately the same size as the standard error. As the maximum likelihood estimate itself cannot
be computed, it is impossible to disentangle the bias of Θ̂ML and an additional bias introduced by the AML
algorithm.

As an alternative measure of performance, we compare the likelihood estimated at the true parameter
values and the AML estimate with the highest estimated likelihood on each dataset (Table 5). In none of the
25 simulated datasets the likelihood at the true value is higher, whereas it is significantly lower in 11 of them
(significance was tested with a two-sided Welch test using a Bonferroni-correction to account for multiple
testing, i.e. for the 100 tests in Tables 5 and 7, a test with p-value <0.00025 is considered significant at an
overall significance level of 5%). This suggests that the AML algorithm usually produces estimates that are
closer to the maximum likelihood estimate than the true parameter value is.

Similarly, we compare our results to estimates obtained with δaδi, Θ̂δaδi (Gutenkunst et al., 2009). As
δaδi is based on the diffusion approximation, whereas we are using the coalescent, we do not expect the
maximum likelihood estimators to be equal, and the coalescent likelihood should be higher at Θ̂AML, if the
algorithm performs well. In all the 25 simulated datasets the coalescent likelihood at Θ̂δaδi is lower than at
Θ̂AML with the highest likelihood, and the difference is significant in 13 datasets (Table 5). To make sure that
the results are not biased due to possible convergence problems of δaδi, we use the true Θ as starting point.
In none of the runs, δaδi reported convergence problems.

To investigate the impact of the underlying parameter value on the quality of the estimates, simulation
results were obtained also for 25 datasets simulated with the divergence time τ twice as large. Here, all
parameter estimates, especially τ,NB andNS had larger standard errors and biases (Table 6). Apparently, the
estimation problem is more difficult for more distant split times. This may be caused by a flatter likelihood
surface and by stronger random noise in the simulations. Only the migration rates are hardly affected by the
large τ: a longer divergence time allows for more migration events that might facilitate their analysis. The
higher level of difficulty shows up also when comparing the likelihood at the true value and at Θ̂AML: in 13
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Table 4: Properties of Θ̂AML in the IM model with short divergence time (τ = 695,000 years).
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Figures: marginal densities of components of Θ̂AML, estimated by kernel density estimation. Black solid line: density of Θ̂AML.
Coloured dotted and dashed lines: density of Θ̂AML in three example datasets. Vertical black line: true parameter value.
Summaries: true, true parameter value; space, search space; mean, mean of Θ̂AML; median, median of Θ̂AML; bias, bias of Θ̂AML;
mean se, mean standard error of Θ̂AML per dataset; total se, standard error of Θ̂AML.

out of 25 datasets, the likelihood at Θ is significantly lower than at Θ̂AML, whereas it is significantly higher
in three cases (Table 7). The likelihood at Θ̂δaδi is significantly lower in 15 datasets and never significantly
higher.

4.2.2 Real data

We model the ancestral history of orang-utans with the same model and use the same summary statistics as
in the simulations. Also the datasets are simulated in the same manner.

To study the distribution of Θ̂AML on this dataset, the algorithm has been run 20 times with the same
scheme as in the simulations. The estimate with the highest likelihood is further used for bootstrapping.
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Table 5: Comparison of likelihood estimates at Θ, Θ̂AML and Θ̂δaδi in the IM-model with short divergence time (τ = 695,000
years).

Dataset Rank L(Θ) p-Value Rank L(Θ̂δaδi) p-Value Boxplot

1 12 0.05182 1 0.00000

2 2 0.00175 1 0.00000

3 1 0.00000 1 0.00000

4 19 0.01791 4 0.00686

5 7 0.01618 1 0.00023

6 24 0.14270 1 0.01523

7 3 0.00069 4 0.00405

8 4 0.00003 12 0.00413

9 13 0.05292 3 0.02100

10 21 0.12235 11 0.09453

11 5 0.00037 1 0.00294

12 9 0.00613 1 0.00000

13 1 0.00009 1 0.00000

14 1 0.00054 1 0.00000

15 25 0.32213 7 0.01725

16 1 0.00000 1 0.00000

17 1 0.00000 1 0.00000

18 1 0.00000 1 0.00000

19 1 0.00000 1 0.00008

20 1 0.00000 1 0.00000

21 1 0.00000 1 0.00000

22 6 0.03779 1 0.09898

23 1 0.00000 1 0.00000

24 1 0.00015 4 0.01592

25 23 0.24288 24 0.38258

−50 −40 −30 −20 −10 0 10

Rank: rank of L̂(Θ) or L̂(Θ̂δaδi), respectively, among L̂(Θ̂AML,1), . . . , L̂(Θ̂AML,25), where Θ̂AML,j denotes the j’th realization of Θ̂AML in
the dataset at hand; p-value: p-value of Welch’s t-test for H0 : L(Θ) = L(Θ̂AML,max) vs. H1 : L(Θ) /= L(Θ̂AML,max) with Θ̂AML,max =
argmax{L̂(Θ̂AML,j) : j = 1, . . . , 25}; boxplot: boxplot of log L̂(Θ̂AML,1), . . . , log L̂(Θ̂AML,25); grey ×, L̂(Θ); grey+, L̂(Θ̂δaδi).

Confidence intervals are obtained by parametric bootstrap with B = 1000 bootstrap datasets.
The bootstrap replicates are also used for bias correction and estimation of the standard error
(Table 8).
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Table 6: Properties of Θ̂AML in the IM model with long divergence time (τ = 1,390,000 years).
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Figures and summaries as in Table 4.

In Locke et al. (2011) andMa et al. (2013), parameters of two different IMmodels are estimated; we denote
them Θ̂1 and Θ̂2. The estimates are scaled to the ancestral population sizeNA = 17,372, and shown in Table 9.

Their model 1 is identical to the model considered here, so we simulate the likelihood at Θ̂1
within our framework for comparison. Since log L̂(Θ̂1) = −217.015 (se = 7.739) is significantly lower than
log L̂(Θ̂AML) = −162.732 (se = 7.258), it seems that Θ̂AML is closer to the maximum likelihood estimate than
the competing estimate. Note, however, that we are only using a subset of the data to avoid sites under
selection (see the Appendix for details) and that the authors report convergence problems of ∂a∂i in this
model.

For model 2, the ancestral population splits in two subpopulations of relative sizes s and 1 − s, and the
subpopulations experience exponential growth. A direct comparison of the likelihoods is impossible here,
because our results were obtained under a different model. However, a rough comparison with the ∂a∂i
estimates given in Locke et al. (2011) shows that the AML estimates for τ, NB and NS lie between Θ̂1 and
Θ̂2 and for μBS and μSB they are of similar size.
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Table 7: Comparison of likelihood estimates at Θ, Θ̂AML and Θ̂δaδi in the IM-model with τ = 1,390,000 years.

Dataset Rank L(Θ) p-Value Rank L(Θ̂δaδi) p-Value Boxplot

1 26 0.56775 25 0.40934

2 1 0.00000 1 0.00000

3 1 0.00000 1 0.00000

4 1 0.00002 16 0.06099

5 26 0.52427 6 0.00986

6 1 0.00000 1 0.00000

7 1 0.00020 1 0.00036

8 1 0.00001 1 0.00000

9 1 0.00279 1 0.01271

10 15 0.23090 3 0.05010

11 13 0.04446 2 0.00001

12 1 0.00000 1 0.00000

13 1 0.00000 1 0.00000

14 25 0.36420 12 0.01573

15 26 0.66990 1 0.00000

16 2 0.00015 1 0.00000

17 23 0.31862 17 0.06723

18 4 0.01892 8 0.06263

19 1 0.00000 1 0.00001

20 1 0.00000 1 0.00000

21 1 0.00000 1 0.00000

22 6 0.03567 1 0.00000

23 23 0.24540 6 0.02087

24 1 0.00000 1 0.00000

25 23 0.17278 1 0.00000

−50 −40 −30 −20 −10 0 10

Figures and summaries as in Table 5.

5 Discussion

In this article, two related algorithms to approximate the maximum likelihood estimator in models with an
intractable likelihood are proposed and carefully investigated. They rely on summary statistics computed
from simulated data under the model at hand. Therefore, the methods are flexible and applicable to a wide
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Table 8: Parameter estimates for the ancestral history of orang-utans.

μBS μSB τ NS NB

Θ̂AML 5.023e−06 4.600e−06 1,300,681 52,998 21,971
Θ̂*
AML 4.277e−06 3.806e−06 1,402,715 52,715 22,233

ŝe* 1.244e−06 9.366e−07 208,391 7223 2779
ŝe 1.992e−07 1.066e−07 194,868 6083 2963
Lower 0a 5.72e−06 715,590 31,476 13,290
Upper 6.627e−06 4.931e−06 1,820,852 67,118 27,426

aThis confidence interval was cut off at zero. Θ̂AML, approximate maximum likelihood estimate; Θ̂*
AML, bootstrap bias corrected

estimate; ŝe*, bootstrap standard error of Θ̂AML; ŝe, standard error of Θ̂AML in this dataset, estimated from 20 replicates of
Θ̂AML; lower and upper limits of the 95% simultaneous bootstrap confidence intervals. All bootstrap results were obtained with
B = 1000 bootstrap replicates. The simultaneous 95% confidence intervals are computed following a simple Bonferroni
argument, using coverage probabilities of 99% in each dimension (Davison and Hinkley, 1997, p. 232).

Table 9: Comparison of Θ̂AML with results from (Locke et al., 2011, Tab. S21-1) [same results for Model 2 reported in Ma et al.
(2013)], scaled with Ne = 17,400.

μBS μSB τ NS NB

Model 1 9.085e−07 7.853e−07 6,948,778 129,889 50,934
Model 2 1.518e−05 2.269e−05 630,931 35,976 10,093
Θ̂AML 5.023e−06 4.600e−06 1,300,681 52,998 21,971

Model 1: IM model as shown in Figure 5. Model 2: IM-model where the ancestral population splits in two subpopulations with a
ratio of s = 0.503 (estimated) going to Borneo and 1 − s to Sumatra and exponential growth in both subpopulations (Locke
et al., 2011, Fig. S21-3). Here, NB and NS are the present population sizes.

variety of problems. We provide examples that show that they reliably approximate the maximum likelihood
estimate in challenging applications. Based on extensive simulations, we provide tuning guidelines that
make the algorithms run efficiently and reliably.

Alternative simulation based approximate maximum likelihood methods have been proposed that
estimate the likelihood surface in an ABC like fashion (Creel and Kristensen, 2013; Rubio and Johansen,
2013) or using MCMC (de Valpine, 2004) by sampling from the whole parameter space. The maximum like-
lihood estimator is obtained subsequently by standard numerical optimization. Leaving aside the practical
challenges of actually computing the MLE, they study the asymptotic properties of their estimator for an
increasing number of simulations (Rubio and Johansen, 2013) and observations (Creel and Kristensen, 2013).

By providing tunig guidelines that reduce the number of simulations in low-likelihood regions, our
method presented here complements these results and emphasizes the practical applicability in high-
dimensional problems.

More generally speaking, our method is related to the class of simulated minimum distance estimators,
as described in Forneron and Ng (2015), among them the classical indirect inference estimators (Gouriéroux
et al., 1993). The use of an approximation to the likelihood function as distance measure connects our
estimator to the realm ofmaximum likelihood estimation, and also to ABCmethods (Gutmann and Corander,
2016).

For our considered population genetic application, we estimate parameters of the evolutionary history
of orang-utans and demonstrate that very high-dimensional summary statistics (here: 56 dimensions) can
be used successfully without any dimension-reduction techniques. Usually, high-dimensional kernel density
estimation is not recommended because of the curse of dimensionality (e.g.Wand and Jones, 1995, p. 90), but
stochastic approximation algorithms are explicitly designed to cope with noisy measurements. To this end,
we also introduce modifications of the algorithm that reduce the impact of single noisy likelihood estimates.
In our experience, this is crucial in settings with a low signal-to-noise ratio.

Furthermore, the examples show that the AML algorithm performs well in problems with a high-dimen-
sional and large parameter space: In our toy example involving the normal distribution, the 10-dimensional
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maximum likelihood estimate is approximated very precisely even though the search space spans 200 times
the standard error of Θ̂ML in each dimension.

However, we also observe a bias for a few of the estimated parameters. Partly, this can be attributed to the
bias of themaximum likelihood estimator itself. In addition, it is known that the finite differences approxima-
tion to the gradient in the Kiefer-Wolfowitz algorithm causes a bias that vanishes only asymptotically (Spall,
2003, section 6.4.1), and that is possibly increased by the finite-sample bias of the kernel density estimator.
In most cases though, the bias is smaller than the standard error of the approximate maximum likelihood
estimator and can be made still smaller by carrying out sufficiently long runs of the algorithm.

As informative summary statistics are crucial, the quality of the estimates obtained from our AML algo-
rithmwill also depend on an appropriate choice of summary statistics. This has been discussed extensively in
the context of ABC (Fearnhead and Prangle, 2012; Blum et al., 2013). General results and algorithms to choose
a small set of informative summary statistics should carry over to the AML algorithm.

In addition to the point estimate, we suggest to obtain confidence intervals by parametric bootstrap. The
bootstrap replicates canalsobeused for bias correction. Resampling inmodelswhere thedatahavea complex
internal structure catches both the noise of the maximum likelihood estimator as well as the approximation
error. Alternatively, the AML algorithmmay also complement the information obtained via ABC in a Bayesian
framework: the location of the maximum a posteriori estimate can be obtained from the AML algorithm.

Thepresentedwork shows thebroadapplicability of theAMLalgorithmandalso its robustness in settings
with high-dimensional summary statistics and a low signal-to-noise ratio.
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Appendix

Orang-Utan SNP data

This real data is based on two publications, De Maio et al. (2013) and Ma et al. (2013). For the first,
CCDS alignments of H. sapiens, P. troglodytes and P. abelii (references hg18, panTro2 and ponAbe2) were
downloaded from the UCSC genome browser (http://genome.ucsc.edu). Only CCDS alignments satisfying the
following requirements were retained for the subsequent analyses: divergence from human reference below
10%, no gene duplication in any species, start and stop codons conserved, no frame-shifting gaps, no gap
longer than 30 bases, no nonsense codon, no gene shorter than 21 bases, no gene with different number
of exons in different species, or genes in different chromosomes in different species (chromosomes 2a and
2b in non-humans were identified with human chromosome 2). From the remaining CCDSs (9695 genes,
79,677 exons) we extracted synonymous sites. We only considered third codon positions where the first two
nucleotides of the same codonwere conserved in the alignment, aswell as the first position of the next codon.

Furthermore, orang-utan SNP data for the two (Bornean and Sumatran) populations considered, each
with five sequenced individuals Locke et al. (2011), were kindly provided by X. Ma and are available on-
line (http://www.ncbi.nlm.nih.gov/projects/SNP/snp_viewTable.cgi?type=contact&handle=WUGSC_SNP&
batch_id=1054968). The final total number of synonymous sites included was 1,950,006. Among them, a
subset of 9750 four-fold degenerate synonymous sites that are polymorphic in the orang-utan populations
were selected.
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