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Abstract:

Gene-environment (GxE) interaction plays a pivotal role in understanding the genetic basis of complex disease.
When environmental factors are measured continuously, one can assess the genetic sensitivity over different
environmental conditions on a disease trait. Motivated by the increasing awareness of gene set based associa-
tion analysis over single variant based approaches, we proposed an additive varying-coefficient model to jointly
model variants in a genetic system. The model allows us to examine how variants in a gene set are moderated
by an environment factor to affect a disease phenotype. We approached the problem from a variable selection
perspective. In particular, we select variants with varying, constant and zero coefficients, which correspond
to cases of GxE interaction, no GxE interaction and no genetic effect, respectively. The procedure was imple-
mented through a two-stage iterative estimation algorithm via the smoothly clipped absolute deviation penalty
function. Under certain regularity conditions, we established the consistency property in variable selection as
well as effect separation of the two stage iterative estimators, and showed the optimal convergence rates of the
estimates for varying effects. In addition, we showed that the estimate of non-zero constant coefficients enjoy
the oracle property. The utility of our procedure was demonstrated through simulation studies and real data
analysis.

Keywords: B-spline, gene-set analysis, local quadratic approximation, SCAD penalty, variable selection
DOI: 10.1515/sagmb-2017-0008

1 Introduction

Complex human diseases are determined not only by genetic variants, but may also be affected by environmen-
tal factors and the interplay between them. Changes in gene expression under different environmental condi-
tions reveal the interaction between genes and the environment. These changes are less likely due to changes in
the gene sequence itself, but to structural changes such as DNA methylation or histone modification that con-
sequently play a regulatory role and modulate gene expression. Such epigenetic changes have been increasing
recognized as the epigenetic basis of gene-environment (GxE) interaction (Liu, Li & Tollefsbol, 2008). Identifica-
tion of GxE interaction could shed novel insights into the phenotypic plasticity of complex disease phenotypes
(Feinberg, 2004).

In a typical GxE interaction study, the environmental factor can be either discrete or continuous. For exam-
ple, smoking can be a discrete variable when evaluating the risk of asthma. When environmental variables are
measured on a continuous scale, a clearer picture of the interaction can be assessed since the varying patterns
of genetic effects responsive to environmental changes can be traced, leading to a better understanding of the
genetic heterogeneity under different environmental stimuli (Ma et al., 2011; Wu & Cui, 2013). As illustrated in
Wu and Cui (2013), one can assess the nonlinear GxE interaction when an environmental factor is measured in
a continuous scale. For example, individual obesity can be a factor when evaluating the risk of hypertension.
One can assess the nonlinear effect of a genetic factor on the risk of hypertension considering the heterogeneity
of individual obese conditions in a population, leading to a better understanding of disease heterogeneity.

When assessing GxE interactions, investigators have focused predominantly on single variant based anal-
ysis, such as the parametric methods in Guo (2000), the semi-parametric methods in Chatterjee and Carroll
(2005), Chen, Chatterjee, and Carroll (2013), and Maity et al. (2009), and the non-parametric methods in Ma et
al. (2011) and Wu and Cui (2013). Recently, there has been a significant increase in set-based genetic association
studies focusing on a set of variants, for example, the gene-centric analysis of Cui et al. (2008), the gene-set
analysis of Schaid et al. (2012) and Efron and Tibshirani (2007), and the pathway-based analysis of Wang, Li,
and Hakonarson (2011). By assessing the joint function of multiple variants in a set, one can obtain a better
interpretation of the disease signals and gain novel insights into disease etiology. Motivated by these set-based
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association studies, we propose a set-based framework to investigate how variants in a gene-set moderated by
an environment factor affect disease and in what form.

In a typical set-based association study, the number of variants d within a genetic system can be relatively
large compared to the sample size, which makes the regression coefficients estimation instable. The problem
can be approached from the perspective of variable selection. In this work, we extend our previous work on
nonlinear gene-environment interaction from a single variant based analysis to a multiple variant based analysis
under a penalized regression framework. We include variants that belong to a particular gene-set or pathway
which potentially interact with one or multiple environment factors through an additive varying-coefficient
model. We propose to select genetic variants with coefficient functions that are varying, non-zero constant and
zero corresponding to cases with GxE interactions, no GxE interactions and no genetic effects, respectively.
Our approach employs the power and merits of variable selection by simultaneously fitting all the variants
in a genetic system into a regression model, therefore avoiding the limitation of multiple testing corrections,
especially when the data dimension is large.

This paper is organized as follows. In Section 2, we describe the penalized least square estimation proce-
dure via B-spline basis expansion and smoothly clipped absolute deviation (SCAD) penalty, as well as the com-
putational algorithms. We also present the theoretical results including consistency in variable selection and
show the optimal convergence rates of the estimates of varying effects. We show that the estimates of non-zero
constant coefficients enjoy the oracle property in the sense that the asymptotic distribution of the non-zero con-
stant coefficient function is the same as that when the true model is known a priori. The merit of the proposed
method is demonstrated through extensive simulation studies in Section 3 and real data analysis in Section 4.
The technical proofs are relegated to the A.

2 Methods

2.1 Additive varying-coefficient model with SCAD penalty

Throughout this paper, we assume an environment variable (Z) is continuously measured through which we
can model the nonlinear interaction effect. For simplicity, we start the presentation with one environmental fac-
tor. Extension to multiple environmental factors are given in the end. Let (X, Y}, Z;), i =1, ..., n be independent
and identically distributed (i.i.d.) random vectors, then the varying coefficient (VC) model, initially proposed
by Hastie and Tibshirani (1993), has the form

d
Y, = Z:Bj(zi)xij +é&, 1)

j=0

where Xj; is the jth component of (d+1)-dimensional genetic vector X; with the first component X, being 1,
,B]-(-)’s are unknown varying-coefficient functions, Z, is the environmental variable, and ¢; is the random error
such that E(¢,|X,Z) = 0 and Var(g,|X,Z) = 0* < oo. In the model, we assume there are a total of d genetic
variants which are moderated by a common environmental factor Z.

The smooth functions {5;(-) }}i: , in (1) can be approximated by polynomial splines. Without loss of generality,
suppose that Z € [0, 1]. Let w, be a partition of the interval [0,1], with k, uniform interior knots

We ={0 =Wy o < Wy < oo <Wpg < Wy g = 1} fork =0, ,d.

Let &, be a collection of functions on [0,1] satisfying: (1) the function is a polynomial of degree p or less on
subintervals I; = [wy ;, Wy 11),8 = 0,...,k, —land I, = [w;; ,w; .,); and (2) the functions are p — 1 times

continuously differentiable on [0,1]. Let B(-)={B i1 () }IL; , be a set of normalized B spline basis of #,. Then for j =

L: -
0, ..., d, the VC functions can be approximated by basis functions ﬁj(Z )Y . ! . "yle]-l (Z), where L]- is the number
of basis functions in approximating the function g;(Z). By changing the equivalent basis, the basis expansion
can be reexpressed as

L;

I=1
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where the spline coefficient vector Y= 7ﬁ)T, and B j(-) = (sz(.), e, Bij('))T; Y1 and Vi correspond to the
constant and varying part of the coefficient function, respectively (Schumaker, 1981). We treat 7;, as a group. If
17}l = 0, then the jth predictor only has a non-zero constant effect; if Yj1= 0, then the predictor is redundant.

To carry out variable selection separating the varying, non-zero constant, and zero effects, we minimize the

penalized least square function,

n d L 2 d
1
Qly == Z Y- Z'Yj,lXiijl(Zi) + ZP/\l (Iyjll2)
ni= =0 I=1 =1
; 2)
+ Y P, (Dl = 0),
j=1
where 4, and 1, are the penalization parameters, p, (-) is the SCAD penalty function, defined as
Au fo<u<A
po(u) = _% ifA<u<al. @)
(‘”—zmz ifu>al.
In matrix notation, (2) can be reexpressed as,
d
QU =(Y =UpT (Y =Up)/n+ ) pr ()
=1
. ! 4)

+ Y DIy, = 0),
j=1

where Y = (Y,,...Y )0, v = (yg,..,yNT, and U := UX, Z) = U],.... UNT with U; = (X;,B(Z)7,
e, XigB(Z)T)T. The first penalty function in (4) is to separate the varying and constant effects by penalizing the
L, norm of the varying part of the coefficient functions. The indicator function in the 2nd penalty term helps
to penalize the variables of the constant effects. Both y;; and 4;, will be shrunk to zero if predictor X; has no
genetic effect. Since the indicator function in Q(7) leads to much difficulty in optimizing the penalized loss
function, we resort to the two stage iterative framework of great computational convenience described in 2.2. It
can be shown that the estimator from the iterative procedure is asymptotically equivalent to the minimizer in
(2) by the arguments in the proof of Theorem 1 and 2 in the A.

2.2 Computation algorithm

The SCAD penalty function is singular at the origin, and does not have continuous 2nd order derivatives,
therefore the regular gradient-based optimization cannot be applied. In this section, we develop an iterative
two-stage algorithm to minimize the penalized loss function using local quadratic approximation (LQA) to the
SCAD penalty. The two-stage strategy was adopted in Tang et al. (2012) for penalized quantile regression with
adaptive LASSO penalty. As in Fan and Li (2001), in a neighborhood of a given positive u, € R,

NOD)
patu) ~ py(itg) + A 2 g2y,
2u,

where p(A () =AI(u <A)+ %I (u > A)}foru >0and a=3.7. Here we use a similar quadratic approximation

by substituting u with ||')/]-*||2 and |fy].1| in LQA, forj=1, ..., d. Given an initial value of ')/;? such that ||’)']-* I, # 0 and
|'7j1| # 0, we have

)
PAYl) = A l) + AZHAY—(]”um*ni S AD) )
j* 2
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and

G

Ay = pa (7LD + (= 1P (6)
’ 2ty; 4| '

The sets of predictors with varying, non-zero constant, and zero effects are denoted by 7, € and Z respectively.

We implement the iterative algorithm in the following two-stage procedure. In stage 1, using the LQA (5) and
dropping the irrelevant constant terms, we minimize

Q) = (Y =Up" (Y = Uy + Z9'Q, (1), @)

where the initial spline vector y, is the unpenalized estimator, Q 1, (Yo) = diag{Q,,Q,, ..., Q,;}, where Q, = 0;,

SR SR . . . . .
Q]- =10, L forj=1, ..., d. Hence the estimator can be iteratively obtained as
ez 2 g

-1
7o = furu+ 2o, g7 Y. ®)
If all the predictors arein 7" at the beginning, then the jth predictor will be moved to % if ||'?Zg(m) l, =0, otherwise
it will stay in 7.
In stage 2, using the LQA (6) and dropping the irrelevant constant terms, we minimize the following penal-
ized loss only for the predictors in &,

Q) = (Y =UNT (Y =Un) + 292, (¥ ), ©)

T AV 6
where QAZ(’?Wg) = diag{Q,, Q,, ..., Q,} withQ, =0, Q; = {p“%’l DI(II'?Z%IIZ =0),0,... ,0} . The estimator can
L

A7
1]

be iteratively obtained as

-1
s = {utu+ Sa, 570Uy, (10)

If the jth predictor is in &, then it will be moved to Z if I'?Ei? |=0, otherwise it stays in 6.

We can obtain the estimator 4 at convergence from the iterative procedure between the two stages above, and
the estimated coefficient function in (1) as Bj(z) = BT(z)ﬁrj. B].(z) will be a varying function, non-zero constant
and zero if %; is in 7, ¢ and Z correspondingly.

2.3 Choosingthe tuning parameters

We choose the number of interior knots k,, the degree of the spline basis p, and the tuning parameters 4, and
4, by a data driven procedure. Here p and k,, control the smoothness of the coefficient functions, while 1, and
A, determine the threshold for variable selection. The Schwarz BIC criterion (1978) was used to choose k, and
p. Due to heavy computational costs, it becomes infeasible to simultaneously select p and k, for each varying-
coefficient function. Thus, we assume the same p and k,, for the varying-coefficient functions. The range for k,

is [max([0.5n @+ |, 1),|1.5n @+ |], where |x] denotes the integer part of x. The optimal pair of k, and p can be
selected via a two-dimensional grid search, according to the following criterion:

k,+p+1
BIC, , = log(RSS, ) + <n+>

log(n),

where RSSkwp =Y -Up"(Y-U¥),% = (’?OT ,07,...,00T. Conditional on the selected k, and p, 4, is the
minimizer of

dfy,
BICA1 = log(RSSA]) + Tlog(n),
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where RSSALI =(Y - U’?/\l)T(Y -Uuy A 4., is the minimizer of (7), and df 2, 18 the effective degree of freedom,
defined as the total number of predictors in 7" and €.
Conditional on %, , 4, is the minimizer of

dfy,
BICAZ = log(RSSAZ) + TIOg(n),

where RSS N, = Y — LI’?AZ)T(Y — U’?Az), '7/&2 is the minimizer of (9), and df 2, 1s the effective degree of freedom,
defined similarly as df , .

2.4 Asymptoticresults

Here we establish the asymptotic properties of the penalized least square estimators. Without loss of generality,
we assume there are v varying coefficients as ,B]-(-) = ﬂj(z), j=1,...,v, (c — v) non-zero constant coefficients as
,Bj(-) = ,B]- >0,j=v+1,..,c,and (d — c) zero coefficients as ,Bj(-) =0,j = (c+1),...,d. Our asymptotic results
are based on the following assumptions.

(A1) Let %, be the collection of all functions on the compact support [0,1] such that the r;th order derivatives
of the functions are Holder of order v, with r = v, + 15, i.e. W1 (z;) =1 (z,)| < Cylz; —z,/"* where 0 < z,,z, < 1
and C,, is a finite positive constant. Then ﬁj(z) e, j=0,1,..,0, forsomer > %

(A2) The density function of the index variable Z, f(z), is continuous and bounded away from 0 and infinity
on [0, 1], i.e. there exist finite positive constants C; and C, such that C; < f(z) < C, forall z € [0, 1].

(A3) Let A, < ... < A, be the eigenvalues of E[XX"|Z = z]. Assume that ;\j (k=0, ..., d) are uniformly bounded
away from 0 and infinity in probability. In addition, the random design vectors are bounded in probability.

(A4) For w, the partition of the compact interval [0,1] defined as {0 = w;, < w;; < ... <wj < Wji 1 =1}, ]
=0, ..., d, there exists a finite positive constant C; such that

max(wj gy — Wi, k =0,...,k,)

p = L3,
min(w; ;. — W,k =0,...,k,)

(A5) The tuning parameters satisfy k:max{A,,A,} — 0 and nék; 'min{A,, A,} — oo.
(A6) b, := maxj{lpxl(llﬁj*ll)h |p;2(|’yj,1|)| :'7].* #0,%, #0} > 0asn — oo, where '7]. is defined in the A.

(A7) lim inf, _ Jim infy_o.A]'p) (6) > 0 and lim inf,,_ lim infe_s.A5"p, (6) >0

n—oo n—oo

The above assumptions are commonly used in the literature on polynomial splines and variable selections. An
assumption similar to (Al) is found in Kim (2007) and Tang et al. (2012). (A1) guarantees certain degrees of
smoothness of the true coefficient function in order to improve goodness of approximation. (A2) and (A3) are
similar to those in Huang, Wu, and Zhou (2002, 2004)) and Wang, Li, and Huang (2008). (A4) suggests that the
knot sequence is quasi-uniform on [0,1], as in Schumaker (1981). (A5-A7) are conditions on tuning parameters,
of which (A5) was reported by Tang et al. (2012) while (A6) and (A7) are similar to those in Fan and Li (2001)
and Wang, Li, and Huang (2008).

Theorem 1 )
Under the assumptions (A1-A7) and suppose k, = O (nﬁ ), then we have

(1) ,Bij(z) are nonzero Cons:cfmt,j =v+1,...,cand ,[;/-(z) =0,j =c+1,...,d, with probability approaching 1;
(2) I,B].(z) - ﬁj(z)| = Op(nﬁ),]' =0, ..., v for any fixed z.

The proof can be found in A. Denote 8* = (B,,,,---,B.)" as the vector of true nonzero constant coefficients.
The following theorem establishes the asymptotic normality of 5*.

Theorem 2 )
Under the assumptions (A1-A7) and suppose k,, = O(n>+), thenas n — oo,

Vs (BT — B -5 Mo, 0?L_),

where X is defined as 22 in A, and 0 = E(¢?).
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3 Simulation

The performance of the proposed method was demonstrated through extensive simulation studies. We used
the percentage of choosing the true model out of total R replicates, defined as the oracle percentage, to evaluate
the accuracy of variable selection by identifying varying, non-zero constant and zero effects. The precision of
estimation was assessed by integrated mean squared error (IMSE). Let ﬁ;r) be the estimator of a nonparametric

ngrid
m=1

function Bj in the rth (1 < < R) replication, and {z,,,} be the grid points where ,BA]V) was evaluated. We used

the integrated mean squared error (IMSE) of Ek(z), defined as

R ngrid
IMSEB) = 2 Y. —— Y (B 2) = Bz,

r=1 ngrid m=1

to evaluate the estimation accuracy of coefficient §;, and the total integrated mean squared error (TIMSE) of all
the d coefficients, defined as TIMSEzz;fl:1 ﬁj(z), to evaluate the overall estimation accuracy. Note that IMSE(ﬁj)

is reduced to MSE(ﬁj) when ﬁj is a constant. The percentage of correctly selecting each individual true functions
(defined as the selection ratio) was used to evaluate the selection performance.

We considered multiple genetic factors X obtained from a gene-set or pathway, with the following additive
VC model,

d
Y; = Bo(Zy) + Z ;Bj(Zz‘)Xij + &
j=1

where SNP X;’s were coded with 3 categories (1, 0, —1) for genotypes (AA, Aa, aa) respectively. We simulated the
SNP genotype data based on the pairwise linkage disequilibrium(LD) structure. Suppose the two risk alleles A
and B of two adjacent SNPs have the minor allele frequencies (MAFs) p, and pp, respectively, with LD denoted as
d. Then the frequencies of four haplotypes can be expressed asp,, = (1—p4) (1—pp)+6, P4, = Pa(1—pp)—6,Pap =
(1—=pa)pg — 9, and p,p = papp + 6. Assuming Hardy-Weinberg equilibrium, the SNP genotype at locus 1 can
be simulated assuming a multinomial distribution with frequencies p?, 2p 4 (1—p,) and (1 —p,4)? for genotypes
AA, Aa, aa, respectively. We can then simulate genotype for locus 2 based on the conditional probability. For
example, P(BB|AA) = p’, 3 /paa, P(BLIAA) = pappap/Pas and P(bBIAA) = p?, /p44. So conditional on genotype
AA atlocus 1, the genotype at locus 2 can be generated according to a multinomial distribution with the derived
probabilities. The advantage of this simulation is that we can control the pairwise LD structure between adjacent
SNPs. We assumed pairwise correlation of = 0.5 which leads to 6 = r/(p4 (1 — p4)pg(1 — pp)). To save space,
we omitted the detailed simulation information which can be found in Cui et al. (2008). The coefficient functions
were set as: B,(z) = sin(27z), B,(z) = 2 — 3cos{(6z — 5)7t/3}, B5(z) = 3(2z — 1)3, Ba(z) = 2, Bs(z) = 2.5, and
B;(z) = 0 for j > 5. We evaluated the performance under 7 = 500 with 500 replicates. Better performance results
for large samples (n > 500) were observed, but were omitted to save space.

Figure 1 shows the selection ratio when d = 10, under different combinations of MAF and error distribution.
The height of the bars represents the selection percentage out of 500 replicates. The selection performance is
better under the normal error distribution, with relatively higher selection rate for the first five true functions
and lower false selection ratio for the rest, compared to the results obtained under the #(3) error. In genetic
association studies, model performance generally improves as the MAF increases. The same trend is observed
under our variable selection framework. For example, a higher false selection ratio was observed under the #(3)
error when p = 0.1. The false selection ratio decreases as MAF increases to 0.3. The result for d = 50 is presented
in Figure 2, which shows a very similar pattern. The results demonstrate the stable performance of the proposed
variable selection method.
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Figure 1: The selection ratio under different error distributions for different coefficient functions when d = 10. The hori-
zontal axis represents the SNPs.

Table 1 lists the oracle percentage (%) of choosing the true model out of all the simulation replicates, the
IMSE (inside the panel), and TIMSE (the last row) for the case with d = 10. In general, the model selection
performance improves as the MAF increases from 0.1 to 0.5. For example, the oracle percentage increases from
0.72 to 0.91 under the #(3) error with SCAD penalty, when the MAF increases from 0.1 to 0.3. We observed
dramatic reduction on the IMSE and TIMSE as the MAF increases. Under the normal error, the TIMSE is 0.4205
which reduces to 0.2007 when the MAF increases to 0.3 and further reduces to 0.1895 when p = 0.5. This result is
consistent with the general observation in a genetic association study in which typically a model performs better
as the MAF increases. It is worth mentioning that we observed dramatic improvement in model performance
when the MAF increases from 0.1 to 0.3, compared to the improvement when the MAF increases from 0.3 to 0.5.
For example, the IMSE for ,(u) reduces from 0.3285 to 0.1600, a 51% reduction when p increases from 0.1 to
0.3, while there is only a 1% reduction when p increases from 0.3 to 0.5 under the #(3) error distribution for the
SCAD penalty. This empirical observation shows the stable performance of the model under moderate allele
frequency.

Table 1: List of IMSE, TIMSE, and Oracle percentage (%) under /#'(0, 1) and ¢(3) error distributions when d = 10.

p=0.1 p=03 p=05

A4(0,1) error t(3) error 4(0,1) error t(3) error A4(0,1) error t(3) error

SCAD Oracle? SCAD Oracle SCAD Oracle SCAD Oracle SCAD Oracle SCAD Oracle

Oracle 0.976 1 0.72 1 0.992 1 0.91 1 0.98 1 0.894 1

%!

Bi(u) 0.0863 0.0891 0.3078 0.2247 0.0268 0.0273 0.0607 0.0601 0.0213 0.0214 0.0431 0.0451
B, (u) 0.1611 0.1667 0.3285 0.3557 0.1071 0.1174 0.1600 0.1746 0.1044 0.1106 0.1581 0.1725
Bs(u) 0.1264 0.1238 0.4890 0.2932 0.0561 0.0637 0.1360 0.1320 0.0497 0.0604 0.1101 0.1170
B.(u) 0.0270 0.0192 1.3307 0.0643 0.0086 0.0084 0.1111 0.0237 0.0077 0.0077 0.0439 0.0192
Bs(u) 0.0191 0.0174 0.2943 0.0475 0.0066 0.0065 0.0443 0.0222 0.0063 0.0063 0.0240 0.0135
TIMSE 0.4205 0.4162 29342 09855 0.2007 0.2233 0.5311 0.4126 0.1895 0.206 0.4072 0.3673

Oracle % refers to the percentage of selecting all variables that are used to generate the phenotype Y;
2Qracle refers to the oracle IMSE, that is, the IMSE calculated assuming that we know the true regression model.

Another observation from the simulation is that the model performs better under the normal error than
under the #(3) error. We observed a larger oracle percentage, smaller IMSE and TIMSE for the coefficient func-
tions under the normal error compared to the #(3) error. For example, the TIMSE for the SCAD penalty is 0.4205
under the normal error, while it is 2.9342 under the #(3) error for fixed p = 0.1. In addition, the oracle percentage,
IMSE and TIMSE under the normal error are all quite similar as those obtained as if the truth were known (the
oracle) in all cases, demonstrating the stable selection performance of the SCAD penalty.
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A similar pattern was observed when the data dimension increases to 50 (Table 2). As the MAF increases
from 0.1 to 0.3, we observed sharply decreased IMSE and TIMSE. Compared to the low dimensional case when
d = 10, the performance under p = 0.1 is relatively unstable. For example, the TIMSE for the SCAD method
is 3.3644 when d = 50, compared to 0.4205 when d = 10 under the normal error and p = 0.1. However, we
observed dramatic reduction in TIMSE when the MAF increases to 0.3 under d = 50. Thus, one has to be very
careful about the interpretation of the selection result under low MAF in real data analysis. We did additional
simulations when the sample size increases to 1000 and observed consistently improved results under different
scenarios (data not shown). In summary, the SCAD penalty function shows consistently good performance and
can separate varying, constant and zero effects under moderate allele frequencies. Coupled with the results
shown in Figure 1 and Figure 2, the proposed variable selection method shows relatively stable performance
to assess gene-environment interactions.

Table 2: List of IMSE, TIMSE, and Oracle percentage (%) under /#'(0, 1) and £(3) error distributions when d = 50.

p=01 p=03 p=05

A4(0,1) error t(3) error 4(0,1) error t(3) error A4(0,1) error t(3) error

SCAD Oracle SCAD Oracle SCAD Oracle SCAD Oracle SCAD Oracle SCAD Oracle

Oracle 0.908 1 0435 1 0.986 1 0.745 1 0.988 1 0.87 1

%

Bi(u) 0.1929 0.0884 0.5687 0.2209 0.0289 0.0278 0.0860 0.0599 0.0215 0.0216 0.0450 0.0434
B,(u) 0.2064 0.1684 0.3851 0.3340 0.1107 0.1137 0.1858 0.1742 0.1048 0.1123 0.1551 0.1608
Bs(u) 05235 0.1218 0.6934 0.2614 0.0817 0.0646 0.2205 0.1301 0.0608 0.0579 0.1754 0.1085
B.(u) 2.0918 0.0196 24522 0.0484 0.1083 0.0075 0.3865 0.0254 0.0470 0.0078 0.1681 0.0167
Bs(u) 0.3475 0.0158 0.5996 0.0445 0.0229 0.0068 0.0840 0.0220 0.0120 0.0053 0.0480 0.0190
TIMSE 33644 04140 57021 09092 0.3526 0.2204 1.2288 0.4117 0.2461 0.2050 0.6492 0.3484
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Figure 2: The selection ratio under different error distributions for different coefficient functions when d = 50. The hori-
zontal axis represents the SNPs.

To further assess the false positive controls of the proposed method, we generated the response
from the intercept only model, ie. Y; = p,(Z;,) + €. There are no main and interaction effects
associated with the disease phenotype. The average number of false positive effects for (d,error)=
(10,N(0, 1)), (10,£(3)), (50,N(0,1)), (50,t(3))) setups are 0.004, 0.042, 0.002 and 0.036, respectively. Overall, the
proposed method achieves satisfactory false positive controls under the null model.
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4 Casestudy

The body mass index of the mother (MBMI) is often used as a measure of the mothers’ body shape and degree
of obesity. Since the baby resides inside its mother’s womb, its environment is defined through its mother.
Increasing evidence indicates that both pre-pregnant weight (BMI) and weight gain in pregnancy have a major
influence on babies” birth weight (Stamnes Koepp et al., 2012). Due to the complicated interaction between the
genes of the fetus and the mother’s level of obesity, the birth weight might be different for a fetus with the same
genes but under different environment conditions. Thus, variation in birth weight could be totally or partially
explained by the underlying genetic machinery and how those genes respond to the mother’s obesity to affect
birth weight.

We applied the method to a real dataset from a study conducted in the Department of Obstetrics and Gyne-
cology at Sotero del Rio Hospital in Puente Alto, Chile. The initial objective of the study was to pinpoint genetic
variants associated with a binary response indicating large for gestational age (LGA) or small for gestational
age (SGA) infants based on the birthweight of new born babies. After data cleaning by removing SNPs with
MAF less than 0.05 or deviation from the Hardy-Weinberg equilibrium, the dataset contains 1536 new born
babies genotyped with 189 candidate genes covering 660 single nucleotide polymorphisms (SNPs).

Genes were mapped to the KEGG pathway using the GATHER software which can be accessed at http://-
gather.genome.duke.edu. A total 30 pathways based on 189 candidate genes were retrieved. We treated the
mother’s BMI as the environmental factor and the baby’s birth weight as the response variable; this was stan-
dardized before fitting to the model. Since some genes were mapped to multiple pathways, we did the variable
selection for each pathway separately. Table 3 shows the selection results with SNP ID, the gene and pathway
name the SNP(s) belong(s) to and the selected effect. Two SNPs in gene IL2 were mapped to two pathways and
both SNPs consistently show varying effects in the two pathways. SNP rs2069762 in gene IL2 was previously
reported to be associated with preterm birth and low birthweight in a Japanese population study (Sata F et
al., 2009). Several other SNPs in gene IL1B were also reported to be associated with low birthweight in that
paper. In addition, one SNP in gene IL1B in the Toll-like receptor signalling pathway was selected as a varying
effect. Two SNPs in gene COL1A2 were mapped to two pathways and both were selected as varying effects.
SNP rs997049 in gene IL1R1 was selected as a constant effect in two different pathways.

Table 3: List of selected SNPs in each pathway with constant and varying coefficients.

Pathway (# of genes)(# of SNPs) SNP ID Gene Selected Effect
Cytokine-cytokine receptor interaction(45)(123) rs2069762 L2 varying
rs2069772 IL2 varying
rs997049 IL1R1 constant
Complement and coagulation cascades(18)(53) rs2053044 ADRB2 constant
Jak-STAT signaling pathway(24)(65) rs2069762 IL2 varying
rs2069772 L2 varying
ECM-receptor interaction pathway(15)(95) rs2301643 COL1A2 varying
rs13240759 COL1A2 varying
Toll-like receptor signaling pathway(15)(21) rs3136558 IL1B constant
Focal adhesion(21)(109) 12301643 COL1A2 varying
rs13240759 COL1A2 varying
Apoptosis(8)(20) rs997049 IL1R1 constant
Glycolysis/Gluconeogenesis(1)(2) rs10891315 DLAT constant
Pyruvate metabolism(1)(2) rs10891315 DLAT constant

Figure 3 plots the varying coefficient function for two SNPs, SNP rs2039762 in the Cytokine-cytokine recep-
tor interaction pathway and SNP rs2301643 in the ECM-receptor interaction pathway. The varying pattern of
the function over mother’s BMI indicates the nonlinear interaction of the SNPs with mother’s BMI condition to
affect birth weight. When fitting a linear interaction model, no SNPs show significant interaction with mother’s
BMI (data not shown).


http://rivervalleytechnologies.com/products/

Automatically generated rough PDF by ProofCheck from River Valley Technologies Ltd

= Wuetal. DEGRUYTER

rs2069762 rs2301643
0.5

0.1+ n

= ] = 037
= -0.14 =

S S

<= ~0.34 «= 01 :

] -0.1+

-0.5 T T T T T T
20 25 30 20 25 30
MBMI MBMI

Figure 3: The estimated varying coefficient function for SNP rs2039762 in the Cytokine-cytokine receptor interaction
pathway and SNP rs2301643 in the ECM-receptor interaction pathway.

5 Discussion

The significance of GxE interactions in complex human disease traits has stimulated widespread discussion. As
reviewed in Cornelis et al. (2011), a number of statistical models have been proposed to assess gene effect under
different environmental exposures. The success of gene set based association analysis, as shown in Wang, Li,
and Hakonarson (2011), Cui et al. (2008), Wu and Cui (2013), and Schaid et al. (2012), motivated us to propose
a high dimensional variable selection approach to understand the mechanism of GxE interactions associated
with complex diseases. We adopted a penalized regression method within the VC model framework to inves-
tigate how multiple variants within a genetic system are moderated by environmental factors to influence the
phenotypic response.

Within the model-based regression framework, most GxE interactions are modeled via a product term be-
tween a G and an E variable (Hutter et al., 2013), so the contribution of a genetic variant to the phenotypic
variation is considered as a linear function in the environmental factor. Any non-linear interaction can be pur-
sued to relax the linearity assumption (Ma et al., 2011; Wu & Cui, 2013). As pointed out by one reviewer, sta-
tistical interactions introduced by R.A. Fisher, are defined as deviation from a generalized linear model, which
implicitly suggests a nonlinear relationship and is more general. To avoid confusion with the nonlinear GxE
interaction presented in this work, we make it clear that our nonlinear GxE interaction refers to the effect of a
genetic variant assessed as a nonlinear function of an environment variable.

In a GxE study, people are typically interested in assessing variants which are sensitive to environment
changes and those that are not. We can determine if a particular genetic variant is sensitive to environmental
stimuli by examining the status of the coefficient function. Varying-coefficients and constants can be separated
through B-spline basis expansions under a penalized framework. The varying coefficients correspond to GxE
effects and the constant effects correspond to no interaction effects. Through another penalty function, we can
further shrink the constant effect into zero if the corresponding SNP has no genetic effect. We developed a two-
stage iterative estimation procedure with double SCAD penalty functions. Although the two-stage strategy has
been adopted for regularized quantile regression with adaptive LASSO in Tang et al. (2012), our work signifi-
cantly differs in that we focused on the regularized least square regression and rigorously establish the asymp-
totic properties of the nonconvex double SCAD estimator under suitable regularity conditions. The potential
of non-convex penalty functions in investigating GxE interactions is far from fully understood or explored. As
a representative non-convex penalty function, the SCAD is adopted mainly due to its nice oracle properties as
stepping stones for building statistically sound and practically useful models to accommodate more complex
data structures. It is worth to mention that our method is fundamentally different from the work of Xue and Qu
(2012) and Antoniadis, Gijbels, and Lambert-Lacroix (2014) in which the authors developed a variable selection
framework under the additive VC model to distinguish zero vs varying coefficients. They did not distinguish
non-zero constant vs varying coefficients which is one of the key objects in understanding the mechanisms of
GxE interaction. Identification of the constant coefficients in the varying coefficient models is closely related
to the estimation of linear part in additive models. This line of work includes Hu and Xia (2012) and Zhang,
Cheng, and Liu (2011). None of the existing studies closely explore the automatic structure identification and
separation of different effects under the GxE framework.

The current work only demonstrates the case with one environmental factor. It is broadly recognized that the
etiology of many complex disease is less likely to be affected by one environmental factor but is more likely to be
heterogeneous. When multiple continuously measured environmental factors (say K;) are measured (denoted
as Z;), we can extend the current model to a more general case formulated as follows,

10
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d (K
Y = Z{Zﬁk](zlk)}x +e,

j=0

where X, = 1. The same estimation and variable selection framework can be applied to select important genetic
players that show sensitivity to different environmental stimuli. When discrete environmental variables such
as smoking status are also available, denote Z, as a collection of K, such variables, then we can fit the following
model

d (K
Y = Z{Zﬁk](zlkHZ% Zl}X +e

j=0

the partial linear varying-coefficient model. In addition to the two penalty functions specified in this

work, an additional penalty function should be imposed for {a}; to select important variants show-

ing interaction with Z,. In case of a binary response, we are interested in modeling E[Y|Z,,Z, X] =
;120 {ZII:; B (Zygo + ZlK:zl ocl]-Zzl} X;. We will investigate this in future studies.

The proposed method is not only restricted to quantitative phenotypes and can be extended to other types
of phenotypes. For example, in cancer prognostic studies, it can be modified as the Accelerated failure time
(AFT) model to accommodate the survival outcomes. Binary phenotypes significantly differ from quantitative
and survival outcomes in that they contain much less information, hence the accuracy of estimating nonlinear
interactions might be sacrificed. Nevertheless, extension to the binary case can be done by developing a coor-
dinate descent (CD) based iteratively reweighted least squares (IRLS) algorithm under the regularized logistic
regression framework. The CD based IRLS algorithm have been extensively used to extend regularized variable
selection methods from continuous phenotypes to binary phenotypes such as in case control studies.

In the model, we did not include any covariates. However, the proposed varying coefficient model can be
readily modified to allow for covariate effects. Typically, the covariates included in the model are predetermined
as important ones and are in low dimension, so their effects are not subject to penalization. Assuming there are
no interactions between genes and those covariates (those with interactions will be included in the model), one
can fit a regression model by regressing Y against those covariates only, assuming either linear on nonlinear
effects, Then focusing the obtained residuals (after removing the covariates effects) to do the rest of the analysis
by fitting the models described in this paper. It is also worth mentioning that the real data analysis in this work
does not take other covariates (e.g. gender and mother’s gestational age) effects into account, which may lead
to biased results. Due to this limitation, readers should be cautious when interpreting the real data analysis
results.
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A Technical Proofs

Useful notations and lemmas

For convenience, the following notations are adopted :
Yy = ('YoT/-- /’)’Z)T/ 'Y(a) CE r')’c)T
Y = (7v+111" /')’dl) Y w0 = (')’or DT,
'Y (c) — (7 o+17 0" r7 c ) 4 7 d) — (7v+1,1/ /'Yd,l)Tr
G, = (B(z)),...,B(2,))(B(z),...,B(z, >>T,
e=(e,..,e), @, =013 " U(U)ZU(U)Z,

— -1 T 1
Y, =n Z?:l u(v)iu(c)i/ Ai = U(C)i \an)n u(v)i/
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where U,y and U, are the sub design matrices corresponding to the predictors with varying and nonzero
constant coefficients respectively. We use || ® || to denote the L, norm | e ||, in the A.

We first provide several lemmas necessary for the proofs of Theorems 1 and 2. Lemma 1 follows directly
from the proof of Lemma A.3 in Huang, Wu, and Zhou (2004), and Lemma 2 follows from Corollary 6.21 of
Schumaker (1981).

Lemma 1
Under assumptions (A1-A3), there exists finite positive constants C; and C, such that all the eigenvalues of
(k,,/n)G,, fall between C; and C,, and therefore, G,, is invertible.

Lemma 2

Under assumptions (A1-A3), for some finite constant C,, there exists = (¥ [, ..., ¥ g)T

satisfying
1. ||’Ny]»*|| >C,,j=0,..,7 ’y]-l = ﬁ]», I '7j*|| =0,j=v+1,...,¢c '”y]- =0,j=c+1,..,4d;
2. sup, g lBj(2) — B(z)T ¥il=00,"),j=0,..d where¥} ; = ('71,1/'7ﬁ)T}

3. sup<z,x)e[0,1]de+l|xT,B(z) —Ux,2)T ¥1=0(k,".

Proofs of Theorem1
() Proof of Theorem 1(1), part1

Here we first show ﬁj(z) is constant for j = v+1, ...,d with probability approaching 1 as n — co, which amounts
to demonstrating || ¥ ]’.’fll =0,j =v+1,...,d with probability tending to 1, as n — oo. To this end, we first show

that a minimizer 4” % of Q, (7) exists in a neighborhood of 4 where

n d
Qi =) (Vi =Uf)* +n) py (.- (11)

i=1 j=1

Leta, = n_%kn +a,, wherea, := maxj{lpIAI(Ilﬁrj*ll)L |pIA2(|'7j,l|)| : '7].* +0, f”yj,l # 0}. The property of SCAD penalty
function implies that if max{A;,A,} — 0, 4, = 0. We show that for any given ¢ > 0, there exists a large constant C
such that

P{infis Q37 2 QM } 2 1-¢, (12)
where 4°° = 4 + «,,6. This suggests that with probability at least 1 — ¢ there exists a local minimum in the ball

{% + a,0 : 18]l < C}. Hence, there exists a local minimizer such that [I}* — 4| = O, («,,). A direct computation
yields

D,() =Q;(7") - Qi

= —2a, Z [e; + XTr(zp) ]UTS + a2, Z urss'u;
i=1

i=1
d
+ 1) [pa, U0 = pa, () |
j=1
=A A+ A+ A,

where ri(z) = B(Z)T'7j — ﬁj(z),]’ =1,...,.dand r(z) = (r,(2), ..., rd(z))T. By the fact E(¢;|U;, z;) = 0, we obtain that

M=

1
LY e uTs = 0,(81).
77 2578 = 0, (14D

1

Recall Lemma 2, then

12
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n
% Y X[ rz)U[8 = O, (k;"18])-
i=1
Therefore

A, = O, (i, I81)) + O, (1nk;"a,I8)) = O, (k;" ) 15].

We can also show that A, = Op(nzxfl)IIJIIZ. Then, by choosing a sufficiently large C, A; is dominated by A, uni-
formly in |I6]| = C. It follows from Taylor expansion that

d -
! ~ ’Y‘*

A<y [“nPM(II'yj*II)%||5j*||
j:1 ”r)/]*”

+ a2y, (3 DIBLIE (L + 0, (1))]
< ndu,a, 181 + nb, a2 1517

With assumption (A6), we can prove that A, dominates A; uniformly in [|§] = C. Therefore, (12) holds for
sufficiently large C, and we have [l — 4] = O, («,,).

In order to prove p;(z) is constant forj = v+ 1, ..., d in probability, it is sufficient to demonstrate that ;7 = 0,
j=v+1,...,d. Note that when max{A;,A,} — 0, a, = 0 for large n. Then we need to show that with probability
approaching 1 as n — oo, for any 4°° satisfying I¥°° — 4l = Op(n_ékn) and some small ¢, = Cn_ékn, we have

9Q,(7)
ar)/j,x-

<0, for —€, <7, <0, j=v+1,..,d;
>0, for 0 <. <& j=v+1,..,4d

where 7; , denotes the individual component of 7;,. It can be shown that,

a (Avc) n . ’ ) )
Q%—ZC = -2 Z u; [Y, - U9 + np, (1%;,.1)sgn(%;..)
o i=1

n n
=-2) Uyle; +X[rz)]—2) UU T —5"]
i=1 i=1
+np, (17;,.)sgn(775)
orae N -
=n\, [Op(Al—ln el ) 4 /\l_lpA(l’Yj,*l)sgn('y?fi)] .

By assumption (A5), /\1_111%:1/2 — 0. Then it follows from assumption (A7) that the sign of the derivative is
completely determined by that of i/}”i Therefore, 4°¢, the minimizer of Q;, is achieved at '?]”f =0,j=0v+1,...,4d.
This completes the proof of Theorem 1(1), part 1. O

(11) Proof of Theorem 1(2)

1
Next we establish the consistency of the varying coefficient estimators. Let &, = n™ 2k, + a,, ¥ o = Vo) + Xy 5,
5 5 T §T\T
Yy =V + 2404, 6 = (8,,6,)", and

n

QY)Y = Z (Yi - U(Twz")'(v) - u&)i')'(d))

i=1

2

d (13)
+n Y p (7D

j=o+1
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We first show that there exists a local minimizer of Q, (7,7 4))- It suffices to show that for any given ¢ > 0,
there exists a large constant C such that

P {infi5_cQ, (¥ o) ¥ ) = Qo) ¥ia))} = 1— & (14)

which implies that with probability at least 1 — ¢ there exists a local minimum in the ball Ty + a6, : 10, < C}
and {¥ 4 +a,8, : 16,1 < C}, respectively. Therefore, there exists local minimizers such that |17,y =% | = Op (a,,)
and ”'?(d) - '7(d)” = Op(“n)‘ We have

Dn(év/‘sd) = Qz(’7<v),’7(d>) - Qz('y(v)r'j’(d))
n

= —2u«, Z [e; + X]r(z) ] [lI(Tv)IJ(w + U(d)lé(d)]
=1

n
+ "sz Z [ (U)I‘S(U) + u(d)lé(d)]
i=1

d
+1 ) [pa, (A0 = pa, (7,01

j=o+1
=A A+ A+ A,

where 7(z) = (r,(2),...,7,(z))T and r,(z) = B(z)T4, — B,(z),j =1, ..., d. Since E(¢,]U,,, u.,,z;) =0, wehave
1 d j j j ] i~ (v) (d)

n
1
Y Ul 8 + Uy 8] = O, 18D (15)
i=1
With Lemma 2 we can show

n

Z V(Z ) [ ()i (U) + u(d)zé(d)] = Op (kz"8l) -

Combine the above two equations, we can obtain that

A= Op(nitxnllb‘ll) + O, (nk;,"a,BI) = O, (nk;,"a,,) 6]l

Since A, = Op (nai )|I81|?, it can be shown that by choosing a sufficiently large C, A is dominated by A, uniformly
in ||8]| = C. By Taylor expansion,

By Y [w, (D58 ;010

j=v+1
+ P, (17,408, (1 + 0(1)) ]
< (d —v)inw,a, 18] + nb,a? |52

Recall assumption A6, then it follows that, by choosing an enough large C, A, dominates A; uniformly in ||4]| =
Consequently (14) holds for sufficiently large C, and we have |7, — 7, = O,(a,) and |l7; — ¥4l = O,(a,). By
the definition of 9%, we have '?ffb Y = Op(zxn). Then forj=0, ..., v

~ 1 ~
1B;(z) — B (@I = / [B(2) — B;(2)] dz
gz/ [B(z)" ¥ (@) - B()" 4] dz
0

1
+2/ r2(z)dz
o)

2. ~ ~ ~
=~ -G, )

1
+2/ r2(z)dz
0 ]

= Al + Az'
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Recall Lemma 1, Lemma 2 and k, = O (7 ), we can demonstrate that A, = O, (k;'a2), A, = O, (k7). Ay is
dominated by A,, thus we finish the proof of Theorem 1(2). O

(111) Proof of Theorem 1(1), part 2

To show Bj(z) =0forj=c+1,...,4d,itis sufficient to demonstrate that '7]”“1 = 0, since the constancy of ﬁj(z), j=
v+1,...,d was already established in (B). By definition, when max{A,,A,} — 0, 4, = 0 for large n. Then we need
to prove that with probability approaching 1 as n — oo, for any %, and 7, satisfying |1y ,y =¥ )| = O, (n_ékn),

and ||'5r<d) - '7(,1)” = Op(nfékn), as well as some small ¢, = Crf%kn, we have

9Q, (Y vy Yay)

<0, for —€, <7, <0, j=c+1,..,4d;
a'7/]’,1

>0, for 0<7v;,<¢, j=c+1,..,d

It can be shown that

9, ¥ 0y Y ay) - - N
. ==2 Z U ;5 [Yi ~ Ul V) — u(Td)i')'(d)]
i, i=1

+np, (1F;,1)sgn(¥;,1)

=—-2 Z U i [e; + Xl.Tr(zl-)]

i=1

—2 Z U ULy [T = 7]
i=1
—2) Ul [T = Yal + 0, (9,Ds80(F;,)
i=1
Ll/z — ! ~ ~
:n/\z [OP (/\z—ln 2r+1 > + /\Z 1PA(|’)/j,1|)Sgn(’}/jll)i| .

By assumption (A5), A, In7t — 0. Then it follows from assumption (A7) that the sign of the derivative is
completely determined by that of ’7j,1~ Therefore, 4, the minimizer of Q,, is achieved at '?chl =0,j=c+1,..,d.
This completes the proof of Theorem 1(1). O

Proof of Theorem 2

In Theorem 1, we showed that both 'jr]-* =0,j=v+1,..,cand 7]- =0,j = c+1,...,d, hold with probability
approaching 1. Then Q, reduces to

2
QY)Y = Z (Yi ~ Ul V) — U{C){)’(c))
i

< 16
+n Y py (7D 1e)

j=v+1

=Yy V(o))
Since (’7(v),'7(c)) is the minimizer of Q, (., (), We obtain
9Q, ('7(u)f'7(c)) _

n
T = T =
E =-2 Z u(v)i [Yi - U(v)ﬂ(i)) - u(d)i')'(d)]
(v) i=1
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Q¥ 0y V(o) . T A T A
=2 Z U(c)i [Yi - u(v)i')'(v) - u(c)ﬂ'(c)]
i=1

ed g
v ‘ 17)
+n Y Py, (Dsgn(¥,,) = 0.
j=v+1
By applying Taylor expansion on P;\2(|’AY]-,1|) in (17), we have
Pro (71D = Py (70D + Py (177D Gy — 7,011 + 0, (D]
By the fact that pIM (|;yj,1|) =0asd, - 0,and pzz( 17j,11) = 0,(1) from the assumption, it follows that
Y P (F;a0s8n ;1) = 0,(F;, — 7;0)
j=u+1
= Op (?(c) - 7(c))'
Consequently, we have
1 v . - .
Y D Uiy [Yi = Uy o) = Ul Yo | +0,(Fioy = ¥e) = 0.
i=1
Following similar lines of arguments in Theorem 1, we can show
1y T T .
=) Uy |le+ X rz) +U Yoy —Yo)
n; i @i Y@ ~ Yw) (18)
+ UZ:)I.(')'@ - '7(c>)] + Op('7<6) ~ V) =0
Meanwhile, a straightforward calculation yields
1w T - _
= Upyle+Xru) +U (Yo — Vo)
n; ()[ (@ir (V) (v) (19)
+U<Tc)i(7(c) _'7<c>)] =0.
Recall the definition of ®, and ¥,,, (19) is equivalent to
1 n
Ao — =p-1]= e
Yw) =Y n {1’1 ; u(v)z [Sz (20)
+ XTr@z) ] + ¥ [V — T} -
Plugging (20) into (18) results in
1\ 1v
ANU de, + XTrzy-ur o125 'U, ..
n ; (c)i {ez + IT(ZZ) (v)i~n n ; (v)i
x [e, + X r(z,
[ 1 i l)]} (21)

1 - _ T A
= Z Ui [Uiy = i@ Uy ] ey =700
i=1
+0,Y o) = Vo)

Together with the facts that
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n
1 _ _
n
1
x — Z U,le; + X].Tr(z]-)]
j=1

and

n
— T
Z I U ), (U — Y10, U ;] = 0.

and recall the definition of A;, a direct computation from (21) leads to

AA T+o (1)] Vi(Yey =¥ (o)
Z +_ZAXTI’(Z)

+ — ZA l.I(U)ZCIJ_1 ! Z U, [E +X r(z; )]

= Al +A2 +A3.

i
SIH R

It follows from the law of large numbers that

where

5 =E[U (I-U, U,Ul)"'ul, )ug, | (22)
Consequently,

d 2
A, = M0, 073)
follows from central limit theorem. Because X; is bounded and |Ir(z)| = op(l), we have A, = op(l). Besides,
A lI(Tv)Z—O implies that A; = 0. Therefore, by Slutsky theorem, we complete the proof of Theorem 2. O
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