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Abstract:
Gene-environment (G×E) interaction plays a pivotal role in understanding the genetic basis of complex disease.
When environmental factors are measured continuously, one can assess the genetic sensitivity over different
environmental conditions on a disease trait. Motivated by the increasing awareness of gene set based associa-
tion analysis over single variant based approaches, we proposed an additive varying-coefficient model to jointly
model variants in a genetic system. The model allows us to examine how variants in a gene set are moderated
by an environment factor to affect a disease phenotype. We approached the problem from a variable selection
perspective. In particular, we select variants with varying, constant and zero coefficients, which correspond
to cases of G×E interaction, no G×E interaction and no genetic effect, respectively. The procedure was imple-
mented through a two-stage iterative estimation algorithm via the smoothly clipped absolute deviation penalty
function. Under certain regularity conditions, we established the consistency property in variable selection as
well as effect separation of the two stage iterative estimators, and showed the optimal convergence rates of the
estimates for varying effects. In addition, we showed that the estimate of non-zero constant coefficients enjoy
the oracle property. The utility of our procedure was demonstrated through simulation studies and real data
analysis.
Keywords: B-spline, gene-set analysis, local quadratic approximation, SCAD penalty, variable selection
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1 Introduction

Complex human diseases are determined not only by genetic variants, but may also be affected by environmen-
tal factors and the interplay between them. Changes in gene expression under different environmental condi-
tions reveal the interaction between genes and the environment. These changes are less likely due to changes in
the gene sequence itself, but to structural changes such as DNA methylation or histone modification that con-
sequently play a regulatory role and modulate gene expression. Such epigenetic changes have been increasing
recognized as the epigenetic basis of gene-environment (G×E) interaction (Liu, Li & Tollefsbol, 2008). Identifica-
tion of G×E interaction could shed novel insights into the phenotypic plasticity of complex disease phenotypes
(Feinberg, 2004).

In a typical G×E interaction study, the environmental factor can be either discrete or continuous. For exam-
ple, smoking can be a discrete variable when evaluating the risk of asthma. When environmental variables are
measured on a continuous scale, a clearer picture of the interaction can be assessed since the varying patterns
of genetic effects responsive to environmental changes can be traced, leading to a better understanding of the
genetic heterogeneity under different environmental stimuli (Ma et al., 2011; Wu & Cui, 2013). As illustrated in
Wu and Cui (2013), one can assess the nonlinear G×E interaction when an environmental factor is measured in
a continuous scale. For example, individual obesity can be a factor when evaluating the risk of hypertension.
One can assess the nonlinear effect of a genetic factor on the risk of hypertension considering the heterogeneity
of individual obese conditions in a population, leading to a better understanding of disease heterogeneity.

When assessing G×E interactions, investigators have focused predominantly on single variant based anal-
ysis, such as the parametric methods in Guo (2000), the semi-parametric methods in Chatterjee and Carroll
(2005), Chen, Chatterjee, and Carroll (2013), and Maity et al. (2009), and the non-parametric methods in Ma et
al. (2011) and Wu and Cui (2013). Recently, there has been a significant increase in set-based genetic association
studies focusing on a set of variants, for example, the gene-centric analysis of Cui et al. (2008), the gene-set
analysis of Schaid et al. (2012) and Efron and Tibshirani (2007), and the pathway-based analysis of Wang, Li,
and Hakonarson (2011). By assessing the joint function of multiple variants in a set, one can obtain a better
interpretation of the disease signals and gain novel insights into disease etiology. Motivated by these set-based
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association studies, we propose a set-based framework to investigate how variants in a gene-set moderated by
an environment factor affect disease and in what form.

In a typical set-based association study, the number of variants d within a genetic system can be relatively
large compared to the sample size, which makes the regression coefficients estimation instable. The problem
can be approached from the perspective of variable selection. In this work, we extend our previous work on
nonlinear gene-environment interaction from a single variant based analysis to a multiple variant based analysis
under a penalized regression framework. We include variants that belong to a particular gene-set or pathway
which potentially interact with one or multiple environment factors through an additive varying-coefficient
model. We propose to select genetic variants with coefficient functions that are varying, non-zero constant and
zero corresponding to cases with G×E interactions, no G×E interactions and no genetic effects, respectively.
Our approach employs the power and merits of variable selection by simultaneously fitting all the variants
in a genetic system into a regression model, therefore avoiding the limitation of multiple testing corrections,
especially when the data dimension is large.

This paper is organized as follows. In Section 2, we describe the penalized least square estimation proce-
dure via B-spline basis expansion and smoothly clipped absolute deviation (SCAD) penalty, as well as the com-
putational algorithms. We also present the theoretical results including consistency in variable selection and
show the optimal convergence rates of the estimates of varying effects. We show that the estimates of non-zero
constant coefficients enjoy the oracle property in the sense that the asymptotic distribution of the non-zero con-
stant coefficient function is the same as that when the true model is known a priori. The merit of the proposed
method is demonstrated through extensive simulation studies in Section 3 and real data analysis in Section 4.
The technical proofs are relegated to the A.

2 Methods

2.1 Additive varying-coefficient model with SCAD penalty

Throughout this paper, we assume an environment variable (Z) is continuously measured through which we
can model the nonlinear interaction effect. For simplicity, we start the presentation with one environmental fac-
tor. Extension to multiple environmental factors are given in the end. Let (X𝑖, 𝑌𝑖, 𝑍𝑖), i = 1, …, n be independent
and identically distributed (i.i.d.) random vectors, then the varying coefficient (VC) model, initially proposed
by Hastie and Tibshirani (1993), has the form

𝑌𝑖 =
𝑑

∑
𝑗=0

𝛽𝑗(𝑍𝑖)𝑋𝑖𝑗 + 𝜀𝑖, (1)

where Xij is the jth component of (d+1)-dimensional genetic vector Xi with the first component Xi0 being 1,
𝛽𝑗(⋅)’s are unknown varying-coefficient functions, Zi is the environmental variable, and εi is the random error
such that 𝐸(𝜀𝑖|𝑋, 𝑍) = 0 and 𝑉𝑎𝑟(𝜀𝑖|𝑋, 𝑍) = 𝜎2 < ∞. In the model, we assume there are a total of d genetic
variants which are moderated by a common environmental factor Z.

The smooth functions {𝛽𝑗(⋅)}𝑑
𝑗=0 in (1) can be approximated by polynomial splines. Without loss of generality,

suppose that Z ∈ [0, 1]. Let wk be a partition of the interval [0,1], with kn uniform interior knots

𝑤𝑘 = {0 = 𝑤𝑘,0 < 𝑤𝑘,1 < … < 𝑤𝑘,𝑘𝑛
< 𝑤𝑘,𝑘𝑛+1 = 1}, for 𝑘 = 0, ⋯ , 𝑑.

Let ℱ𝑛 be a collection of functions on [0,1] satisfying: (1) the function is a polynomial of degree p or less on
subintervals 𝐼𝑠 = [𝑤𝑘,𝑠, 𝑤𝑘,𝑠+1), 𝑠 = 0, … , 𝑘𝑛 − 1 and 𝐼𝑘𝑛

= [𝑤𝑗,𝑘𝑛
, 𝑤𝑗,𝑘𝑛+1); and (2) the functions are p − 1 times

continuously differentiable on [0,1]. Let 𝐵̄(⋅) = {𝐵̄𝑗𝑙(⋅)}
𝐿𝑗

𝑙=1 be a set of normalized B spline basis of ℱ𝑛. Then for j =

0, …, d, the VC functions can be approximated by basis functions 𝛽𝑗(𝑍) ≈ ∑
𝐿𝑗

𝑙=1 𝛾̄𝑗𝑙𝐵̄𝑗𝑙(𝑍), where Lj is the number
of basis functions in approximating the function 𝛽𝑗(𝑍). By changing the equivalent basis, the basis expansion
can be reexpressed as

𝛽𝑗(⋅) ≈
𝐿𝑗

∑
𝑙=1

𝛾𝑗,𝑙𝐵𝑗,𝑙(⋅) ≐ 𝛾𝑗,1 + 𝐵̃𝑇
𝑗 (⋅)𝛾𝑗,∗,

2
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where the spline coefficient vector 𝛾𝛾𝛾𝑗 = (𝛾𝑗,1,𝛾𝛾𝛾𝑇
𝑗∗)𝑇, and 𝐵̃𝑗(⋅) = (𝐵𝑗2(⋅), … , 𝐵𝑗𝐿𝑗

(⋅))𝑇; γj,1 and 𝛾𝛾𝛾𝑗∗ correspond to the
constant and varying part of the coefficient function, respectively (Schumaker, 1981). We treat 𝛾𝛾𝛾𝑗∗ as a group. If
‖𝛾𝛾𝛾𝑗∗‖2 = 0, then the jth predictor only has a non-zero constant effect; if γj,1 = 0, then the predictor is redundant.

To carry out variable selection separating the varying, non-zero constant, and zero effects, we minimize the
penalized least square function,

𝑄(𝛾𝛾𝛾) = 1
𝑛

𝑛

∑
𝑖=1

⎡⎢
⎣
𝑌𝑖 −

𝑑

∑
𝑗=0

𝐿

∑
𝑙=1

𝛾𝑗,𝑙𝑋𝑖𝑗𝐵𝑗𝑙(𝑍𝑖)⎤⎥
⎦

2

+
𝑑

∑
𝑗=1

𝑝𝜆1
(‖𝛾𝛾𝛾𝑗∗‖2)

+
𝑑

∑
𝑗=1

𝑝𝜆2
(|𝛾𝑗,1|)𝐼(‖𝛾𝛾𝛾𝑗∗‖2 = 0),

(2)

where λ1 and λ2 are the penalization parameters, 𝑝𝜆(⋅) is the SCAD penalty function, defined as

𝑝𝜆(𝑢) =
⎧{{
⎨{{⎩

𝜆𝑢 if 0 ≤ 𝑢 ≤ 𝜆
− (𝑢2−2𝑎𝜆𝑢+𝜆2)

2(𝑎−1) if 𝜆 < 𝑢 ≤ 𝑎𝜆
(𝑎+1)𝜆2

2
if 𝑢 > 𝑎𝜆.

. (3)

In matrix notation, (2) can be reexpressed as,

𝑄(𝛾𝛾𝛾) =(𝑌𝑌𝑌 − 𝑈𝑈𝑈𝛾𝛾𝛾)𝑇(𝑌𝑌𝑌 − 𝑈𝑈𝑈𝛾𝛾𝛾)/𝑛 +
𝑑

∑
𝑗=1

𝑝𝜆1(‖𝛾𝛾𝛾𝑗∗‖2)

+
𝑑

∑
𝑗=1

𝑝𝜆2(|𝛾𝑗,1|)𝐼(‖𝛾𝛾𝛾𝑗∗‖2 = 0),

(4)

where 𝑌𝑌𝑌 = (𝑌1, … , 𝑌𝑛)𝑇, 𝛾𝛾𝛾 = (𝛾𝛾𝛾𝑇
0 , … ,𝛾𝛾𝛾𝑇

𝑑 )𝑇, and 𝑈𝑈𝑈 ∶= 𝑈𝑈𝑈(𝑋𝑋𝑋, 𝑍) = (𝑈𝑇
1 , … , 𝑈𝑇

𝑛 )𝑇 with 𝑈𝑖 = (𝑋𝑖0𝐵(𝑍𝑖)𝑇,
… , 𝑋𝑖𝑑𝐵(𝑍𝑖)𝑇)𝑇. The first penalty function in (4) is to separate the varying and constant effects by penalizing the
L2 norm of the varying part of the coefficient functions. The indicator function in the 2nd penalty term helps
to penalize the variables of the constant effects. Both γj,1 and 𝛾𝛾𝛾𝑗∗ will be shrunk to zero if predictor Xj has no
genetic effect. Since the indicator function in 𝑄(𝛾𝛾𝛾) leads to much difficulty in optimizing the penalized loss
function, we resort to the two stage iterative framework of great computational convenience described in 2.2. It
can be shown that the estimator from the iterative procedure is asymptotically equivalent to the minimizer in
(2) by the arguments in the proof of Theorem 1 and 2 in the A.

2.2 Computation algorithm

The SCAD penalty function is singular at the origin, and does not have continuous 2nd order derivatives,
therefore the regular gradient-based optimization cannot be applied. In this section, we develop an iterative
two-stage algorithm to minimize the penalized loss function using local quadratic approximation (LQA) to the
SCAD penalty. The two-stage strategy was adopted in Tang et al. (2012) for penalized quantile regression with
adaptive LASSO penalty. As in Fan and Li (2001), in a neighborhood of a given positive 𝑢0 ∈ ℝ+,

𝑝𝜆(𝑢) ≈ 𝑝𝜆(𝑢0) +
𝑝′

𝜆(𝑢0)
2𝑢0

(𝑢2 − 𝑢2
0),

where 𝑝′

𝜆(𝑢) = 𝜆{𝐼(𝑢 ⩽ 𝜆)+ (𝑎𝜆−𝑢)+
(𝑎−1)𝜆 𝐼(𝑢 > 𝜆)} for 𝑢 >0 and a = 3.7. Here we use a similar quadratic approximation

by substituting u with ‖𝛾𝛾𝛾𝑗∗‖2 and |𝛾𝑗1| in LQA, for j = 1, …, d. Given an initial value of 𝛾𝛾𝛾0
𝑗 such that ‖𝛾𝛾𝛾𝑗∗‖2 ≠ 0 and

|𝛾𝑗1| ≠ 0, we have

𝑝𝜆(‖𝛾𝛾𝛾𝑗∗‖2) ≈ 𝑝𝜆(‖𝛾𝛾𝛾0
𝑗∗‖2) +

𝑝′

𝜆(‖𝛾𝛾𝛾0
𝑗∗‖2)

2‖𝛾𝛾𝛾0
𝑗∗‖2

(‖𝛾𝛾𝛾𝑗∗‖22 − ‖𝛾𝛾𝛾0
𝑗∗‖22) (5)

3
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and

𝑝𝜆(|𝛾𝛾𝛾𝑗,1|) ≈ 𝑝𝜆(|𝛾𝛾𝛾0
𝑗,1|) +

𝑝′

𝜆(|𝛾𝛾𝛾0
𝑗,1|)

2|𝛾𝛾𝛾0
𝑗,1|

(|𝛾𝛾𝛾𝑗,1|2 − |𝛾𝛾𝛾0
𝑗,1|

2). (6)

The sets of predictors with varying, non-zero constant, and zero effects are denoted by 𝒱, 𝒞 and 𝒵 respectively.
We implement the iterative algorithm in the following two-stage procedure. In stage 1, using the LQA (5) and
dropping the irrelevant constant terms, we minimize

𝑄1(𝛾𝛾𝛾) = (𝑌𝑌𝑌 − 𝑈𝑈𝑈𝛾𝛾𝛾)𝑇 (𝑌𝑌𝑌 − 𝑈𝑈𝑈𝛾𝛾𝛾) + 𝑛
2

𝛾𝛾𝛾𝑇ΩΩΩ𝜆1
(𝛾𝛾𝛾0)𝛾𝛾𝛾, (7)

where the initial spline vector 𝜸0 is the unpenalized estimator, ΩΩΩ𝜆1
(𝛾𝛾𝛾0) = diag{ΩΩΩ0,ΩΩΩ1, … ,ΩΩΩ𝑑}, where ΩΩΩ0 = 000𝐿,

ΩΩΩ𝑗 = {0,
𝑝𝑇

𝜆1(‖𝛾𝛾𝛾0
𝑗∗‖2)

‖𝛾𝛾𝛾0
𝑗∗‖2

, … ,
𝑝𝑇

𝜆1(‖𝛾𝛾𝛾0
𝑗∗‖2)

‖𝛾𝛾𝛾0
𝑗∗‖2

}
𝐿

for j = 1, …, d. Hence the estimator can be iteratively obtained as

̂𝛾𝛾𝛾𝒱 𝒞(𝑚) = {𝑈𝑈𝑈𝑇𝑈𝑈𝑈 + 𝑛
2
ΩΩΩ𝜆1

( ̂𝛾𝛾𝛾𝒱 𝒞(𝑚−1))}
−1

𝑈𝑈𝑈𝑇𝑌𝑌𝑌. (8)

If all the predictors are in 𝒱 at the beginning, then the jth predictor will be moved to 𝒞 if ‖ ̂𝛾𝛾𝛾𝒱 𝒞(𝑚)
𝑗∗ ‖2 = 0, otherwise

it will stay in 𝒱.
In stage 2, using the LQA (6) and dropping the irrelevant constant terms, we minimize the following penal-

ized loss only for the predictors in 𝒞,

𝑄2(𝛾𝛾𝛾) = (𝑌𝑌𝑌 − 𝑈𝑈𝑈𝛾𝛾𝛾)𝑇(𝑌𝑌𝑌 − 𝑈𝑈𝑈𝛾𝛾𝛾) + 𝑛
2

𝛾𝛾𝛾𝑇ΩΩΩ𝜆2
( ̂𝛾𝛾𝛾𝒱 𝒞)𝛾𝛾𝛾, (9)

where ΩΩΩ𝜆2
( ̂𝛾𝛾𝛾𝒱 𝒞) = diag{ΩΩΩ0,ΩΩΩ1, … ,ΩΩΩ𝑑} with ΩΩΩ0 = 000𝐿, ΩΩΩ𝑗 = {

𝑝𝑇
𝜆2(|𝛾̂𝒱 𝒞

𝑗,1 |)
|𝛾̂𝒱 𝒞

𝑗,1 | 𝐼(‖ ̂𝛾𝛾𝛾𝒱 𝒞
𝑗∗ ‖2 = 0), 0, … , 0}

𝐿
. The estimator can

be iteratively obtained as

̂𝛾𝛾𝛾𝒞 𝒵(𝑚) = {𝑈𝑈𝑈𝑇𝑈𝑈𝑈 + 𝑛
2
ΩΩΩ𝜆2

( ̂𝛾𝛾𝛾𝒞 𝒵(𝑚−1))}
−1

𝑈𝑈𝑈𝑇𝑌𝑌𝑌. (10)

If the jth predictor is in 𝒞, then it will be moved to 𝒵 if |𝛾̂𝒞 𝒵
𝑘,1 |=0, otherwise it stays in 𝒞.

We can obtain the estimator ̂𝛾𝛾𝛾 at convergence from the iterative procedure between the two stages above, and
the estimated coefficient function in (1) as ̂𝛽𝑗(𝑧) = 𝐵𝑇(𝑧) ̂𝛾𝛾𝛾𝑗. ̂𝛽𝛽𝛽𝑗(𝑧) will be a varying function, non-zero constant
and zero if ̂𝛾𝛾𝛾𝑗 is in 𝒱, 𝒞 and 𝒵 correspondingly.

2.3 Choosing the tuning parameters

We choose the number of interior knots kn, the degree of the spline basis p, and the tuning parameters λ1 and
λ2 by a data driven procedure. Here p and kn control the smoothness of the coefficient functions, while λ1 and
λ2 determine the threshold for variable selection. The Schwarz BIC criterion (1978) was used to choose kn and
p. Due to heavy computational costs, it becomes infeasible to simultaneously select p and kn for each varying-
coefficient function. Thus, we assume the same p and kn for the varying-coefficient functions. The range for kn

is [max(⌊0.5𝑛
1

(2𝑝+3) ⌋, 1), ⌊1.5𝑛
1

(2𝑝+3) ⌋], where ⌊𝑥⌋ denotes the integer part of x. The optimal pair of kn and p can be
selected via a two-dimensional grid search, according to the following criterion:

BIC𝑘𝑛,𝑝 = log(RSS𝑘𝑛,𝑝) +
(𝑘𝑛 + 𝑝 + 1)

𝑛
log(𝑛),

where RSS𝑘𝑛,𝑝 = (𝑌𝑌𝑌 − 𝑈𝑈𝑈 ̂𝛾𝛾𝛾)𝑇(𝑌𝑌𝑌 − 𝑈𝑈𝑈 ̂𝛾𝛾𝛾), ̂𝛾𝛾𝛾 = ( ̂𝛾𝛾𝛾𝑇
0 ,000𝑇, … ,000𝑇)𝑇. Conditional on the selected kn and p, λ1 is the

minimizer of

BIC𝜆1
= log(RSS𝜆1

) +
𝑑𝑓𝜆1

𝑛
log(𝑛),

4
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where RSS𝜆1
= (𝑌𝑌𝑌 − 𝑈𝑈𝑈 ̂𝛾𝛾𝛾𝜆1

)𝑇(𝑌𝑌𝑌 − 𝑈𝑈𝑈 𝛾̂̂𝛾̂𝛾 𝜆1
), ̂𝛾𝛾𝛾𝜆1 is the minimizer of (7), and df λ1

is the effective degree of freedom,
defined as the total number of predictors in 𝒱 and 𝒞.

Conditional on ̂𝛾𝛾𝛾𝜆1
, λ2 is the minimizer of

BIC𝜆2
= log(RSS𝜆2

) +
𝑑𝑓𝜆2

𝑛
log(𝑛),

where RSS𝜆2
= (𝑌𝑌𝑌 − 𝑈𝑈𝑈 ̂𝛾𝛾𝛾𝜆2

)𝑇(𝑌𝑌𝑌 − 𝑈𝑈𝑈 ̂𝛾𝛾𝛾𝜆2
), ̂𝛾𝛾𝛾𝜆2

is the minimizer of (9), and df λ2
is the effective degree of freedom,

defined similarly as df λ1
.

2.4 Asymptotic results

Here we establish the asymptotic properties of the penalized least square estimators. Without loss of generality,
we assume there are v varying coefficients as 𝛽𝑗(⋅) ≡ 𝛽𝑗(𝑧), 𝑗 = 1, … , 𝑣, (c − v) non-zero constant coefficients as
𝛽𝑗(⋅) ≡ 𝛽𝑗 > 0, 𝑗 = 𝑣 + 1, … , 𝑐, and (d − c) zero coefficients as 𝛽𝑗(⋅) ≡ 0, 𝑗 = (𝑐 + 1), … , 𝑑. Our asymptotic results
are based on the following assumptions.

(A1) Let ℋ𝑟 be the collection of all functions on the compact support [0,1] such that the r1th order derivatives
of the functions are Hölder of order r2 with r = r1 + r2, i.e. |ℎ𝑟1(𝑧1)−ℎ𝑟1(𝑧2)| ≤ 𝐶0|𝑧1 −𝑧2|𝑟2 where 0 ≤ 𝑧1, 𝑧2 ≤ 1
and C0 is a finite positive constant. Then 𝛽𝑗(𝑧) ∈ ℋ𝑟, j = 0, 1, …, v, for some 𝑟 ≥ 3

2
.

(A2) The density function of the index variable Z, f (z), is continuous and bounded away from 0 and infinity
on [0, 1], i.e. there exist finite positive constants C1 and C2 such that 𝐶1 ≤ 𝑓 (𝑧) ≤ 𝐶2 for all z ∈ [0, 1].

(A3) Let 𝜆̃0 ≤ … ≤ 𝜆̃𝑑 be the eigenvalues of 𝐸[XX𝑇|𝑍 = 𝑧]. Assume that 𝜆̃j (k = 0, …, d) are uniformly bounded
away from 0 and infinity in probability. In addition, the random design vectors are bounded in probability.

(A4) For wj, the partition of the compact interval [0,1] defined as {0 = 𝑤𝑗,0 < 𝑤𝑗,1 < … < 𝑤𝑗,𝑘𝑛
< 𝑤𝑗,𝑘𝑛+1 = 1}, j

= 0, …, d, there exists a finite positive constant C3 such that

max(𝑤𝑗,𝑘+1 − 𝑤𝑗,𝑘, 𝑘 = 0, … , 𝑘𝑛)
min(𝑤𝑗,𝑘+1 − 𝑤𝑗,𝑘, 𝑘 = 0, … , 𝑘𝑛)

≤ 𝐶3.

(A5) The tuning parameters satisfy 𝑘
1
2
𝑛max{𝜆1, 𝜆2} → 0 and 𝑛

1
2 𝑘−1

𝑛 min{𝜆1, 𝜆2} → ∞.

(A6) 𝑏𝑛 ∶= max𝑗{|𝑝
′′

𝜆1
(‖ ̃𝛾𝛾𝛾𝑗∗‖)|, |𝑝′′

𝜆2
(|𝛾̃𝑗,1|)| ∶ ̃𝛾𝛾𝛾𝑗∗ ≠ 0, 𝛾̃𝑗,1 ≠ 0} → 0 as n → ∞, where ̃𝛾𝛾𝛾𝑗 is defined in the A.

(A7) lim inf𝑛→∞lim inf𝜃→0+𝜆−1
1 𝑝′

𝜆1
(𝜃) > 0 and lim inf𝑛→∞lim inf𝜃→0+𝜆−1

2 𝑝′

𝜆2
(𝜃) > 0

The above assumptions are commonly used in the literature on polynomial splines and variable selections. An
assumption similar to (A1) is found in Kim (2007) and Tang et al. (2012). (A1) guarantees certain degrees of
smoothness of the true coefficient function in order to improve goodness of approximation. (A2) and (A3) are
similar to those in Huang, Wu, and Zhou (2002, 2004)) and Wang, Li, and Huang (2008). (A4) suggests that the
knot sequence is quasi-uniform on [0,1], as in Schumaker (1981). (A5–A7) are conditions on tuning parameters,
of which (A5) was reported by Tang et al. (2012) while (A6) and (A7) are similar to those in Fan and Li (2001)
and Wang, Li, and Huang (2008).

Theorem 1
Under the assumptions (A1–A7) and suppose 𝑘𝑛 = 𝑂 (𝑛

1
2𝑟+1 ), then we have

(1) ̂𝛽𝑗(𝑧) are nonzero constant, 𝑗 = 𝑣 + 1, … , 𝑐 and ̂𝛽𝑗(𝑧) = 0, 𝑗 = 𝑐 + 1, … , 𝑑, with probability approaching 1;
(2) | ̂𝛽𝛽𝛽𝑗(𝑧) − 𝛽𝛽𝛽𝑗(𝑧)| = 𝑂𝑝(𝑛

−𝑟
2𝑟+1 ), j = 0, …, v for any fixed z.

The proof can be found in A. Denote 𝛽∗ = (𝛽𝑣+1, … , 𝛽𝑐)𝑇 as the vector of true nonzero constant coefficients.
The following theorem establishes the asymptotic normality of ̂𝛽∗.

Theorem 2
Under the assumptions (A1–A7) and suppose 𝑘𝑛 = 𝑂(𝑛

1
2𝑟+1 ), then as n → ∞,

√𝑛Σ
1
2 ( ̂𝛽∗ − 𝛽∗)

𝑑
−−→ 𝒩(0, 𝜎2𝐼𝑐−𝑣),

where Σ is defined as 22 in A, and 𝜎2 = 𝐸(𝜀2𝑖 ).
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3 Simulation

The performance of the proposed method was demonstrated through extensive simulation studies. We used
the percentage of choosing the true model out of total R replicates, defined as the oracle percentage, to evaluate
the accuracy of variable selection by identifying varying, non-zero constant and zero effects. The precision of
estimation was assessed by integrated mean squared error (IMSE). Let ̂𝛽(𝑟)

𝑗 be the estimator of a nonparametric
function βj in the rth (1 ⩽ r ⩽ R) replication, and {𝑧𝑚}

𝑛grid
𝑚=1 be the grid points where ̂𝛽(𝑟)

𝑗 was evaluated. We used
the integrated mean squared error (IMSE) of ̂𝛽𝑘(𝑧), defined as

I𝑀𝑆𝐸( ̂𝛽𝑗(𝑧)) = 1
𝑅

𝑅

∑
𝑟=1

1
𝑛grid

𝑛grid

∑
𝑚=1

{ ̂𝛽(𝑟)
𝑘 (𝑧𝑚) − 𝛽𝑗(𝑧𝑚)}2,

to evaluate the estimation accuracy of coefficient βj, and the total integrated mean squared error (TIMSE) of all
the d coefficients, defined as TIMSE=∑𝑑

𝑗=1
̂𝛽𝑗(𝑧), to evaluate the overall estimation accuracy. Note that IMSE( ̂𝛽j)

is reduced to MSE( ̂𝛽j) when ̂𝛽j is a constant. The percentage of correctly selecting each individual true functions
(defined as the selection ratio) was used to evaluate the selection performance.

We considered multiple genetic factors X obtained from a gene-set or pathway, with the following additive
VC model,

𝑌𝑖 = 𝛽0(𝑍𝑖) +
𝑑

∑
𝑗=1

𝛽𝑗(𝑍𝑖)𝑋𝑖𝑗 + 𝜀𝑖,

where SNP Xi’s were coded with 3 categories (1, 0, −1) for genotypes (AA, Aa, aa) respectively. We simulated the
SNP genotype data based on the pairwise linkage disequilibrium(LD) structure. Suppose the two risk alleles A
and B of two adjacent SNPs have the minor allele frequencies (MAFs) pA and pB, respectively, with LD denoted as
δ. Then the frequencies of four haplotypes can be expressed as 𝑝𝑎𝑏 = (1−𝑝𝐴)(1−𝑝𝐵)+𝛿, 𝑝𝐴𝑏 = 𝑝𝐴(1−𝑝𝐵)−𝛿, 𝑝𝑎𝐵 =
(1 − 𝑝𝐴)𝑝𝐵 − 𝛿, and 𝑝𝐴𝐵 = 𝑝𝐴𝑝𝐵 + 𝛿. Assuming Hardy-Weinberg equilibrium, the SNP genotype at locus 1 can
be simulated assuming a multinomial distribution with frequencies 𝑝2𝐴, 2𝑝𝐴(1−𝑝𝐴) and (1−𝑝𝐴)2 for genotypes
AA, Aa, aa, respectively. We can then simulate genotype for locus 2 based on the conditional probability. For
example, 𝑃(𝐵𝐵|𝐴𝐴) = 𝑝2𝐴𝐵/𝑝𝐴𝐴, 𝑃(𝐵𝑏|𝐴𝐴) = 𝑝𝐴𝐵𝑝𝐴𝑏/𝑝𝐴𝐴 and 𝑃(𝑏𝑏|𝐴𝐴) = 𝑝2𝑎𝑏/𝑝𝐴𝐴. So conditional on genotype
AA at locus 1, the genotype at locus 2 can be generated according to a multinomial distribution with the derived
probabilities. The advantage of this simulation is that we can control the pairwise LD structure between adjacent
SNPs. We assumed pairwise correlation of r = 0.5 which leads to 𝛿 = 𝑟√(𝑝𝐴(1 − 𝑝𝐴)𝑝𝐵(1 − 𝑝𝐵)). To save space,
we omitted the detailed simulation information which can be found in Cui et al. (2008). The coefficient functions
were set as: 𝛽1(𝑧) = sin(2𝜋𝑧), 𝛽2(𝑧) = 2 − 3 cos{(6𝑧 − 5)𝜋/3}, 𝛽3(𝑧) = 3(2𝑧 − 1)3, 𝛽4(𝑧) = 2, 𝛽5(𝑧) = 2.5, and
𝛽𝑗(𝑧) = 0 for j > 5. We evaluated the performance under n = 500 with 500 replicates. Better performance results
for large samples (n > 500) were observed, but were omitted to save space.

Figure 1 shows the selection ratio when d = 10, under different combinations of MAF and error distribution.
The height of the bars represents the selection percentage out of 500 replicates. The selection performance is
better under the normal error distribution, with relatively higher selection rate for the first five true functions
and lower false selection ratio for the rest, compared to the results obtained under the t(3) error. In genetic
association studies, model performance generally improves as the MAF increases. The same trend is observed
under our variable selection framework. For example, a higher false selection ratio was observed under the t(3)
error when p = 0.1. The false selection ratio decreases as MAF increases to 0.3. The result for d = 50 is presented
in Figure 2, which shows a very similar pattern. The results demonstrate the stable performance of the proposed
variable selection method.
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Figure 1: The selection ratio under different error distributions for different coefficient functions when d = 10. The hori-
zontal axis represents the SNPs.

Table 1 lists the oracle percentage (%) of choosing the true model out of all the simulation replicates, the
IMSE (inside the panel), and TIMSE (the last row) for the case with d = 10. In general, the model selection
performance improves as the MAF increases from 0.1 to 0.5. For example, the oracle percentage increases from
0.72 to 0.91 under the t(3) error with SCAD penalty, when the MAF increases from 0.1 to 0.3. We observed
dramatic reduction on the IMSE and TIMSE as the MAF increases. Under the normal error, the TIMSE is 0.4205
which reduces to 0.2007 when the MAF increases to 0.3 and further reduces to 0.1895 when p = 0.5. This result is
consistent with the general observation in a genetic association study in which typically a model performs better
as the MAF increases. It is worth mentioning that we observed dramatic improvement in model performance
when the MAF increases from 0.1 to 0.3, compared to the improvement when the MAF increases from 0.3 to 0.5.
For example, the IMSE for 𝛽2(𝑢) reduces from 0.3285 to 0.1600, a 51% reduction when p increases from 0.1 to
0.3, while there is only a 1% reduction when p increases from 0.3 to 0.5 under the t(3) error distribution for the
SCAD penalty. This empirical observation shows the stable performance of the model under moderate allele
frequency.

Table 1: List of IMSE, TIMSE, and Oracle percentage (%) under 𝒩 (0, 1) and t(3) error distributions when d = 10.

p = 0.1 p = 0.3 p = 0.5

𝒩 (0,1) error t(3) error 𝒩 (0,1) error t(3) error 𝒩 (0,1) error t(3) error

SCAD Oracle2 SCAD Oracle SCAD Oracle SCAD Oracle SCAD Oracle SCAD Oracle
Oracle
%1

0.976 1 0.72 1 0.992 1 0.91 1 0.98 1 0.894 1

𝛽1(𝑢) 0.0863 0.0891 0.3078 0.2247 0.0268 0.0273 0.0607 0.0601 0.0213 0.0214 0.0431 0.0451
𝛽2(𝑢) 0.1611 0.1667 0.3285 0.3557 0.1071 0.1174 0.1600 0.1746 0.1044 0.1106 0.1581 0.1725
𝛽3(𝑢) 0.1264 0.1238 0.4890 0.2932 0.0561 0.0637 0.1360 0.1320 0.0497 0.0604 0.1101 0.1170
𝛽4(𝑢) 0.0270 0.0192 1.3307 0.0643 0.0086 0.0084 0.1111 0.0237 0.0077 0.0077 0.0439 0.0192
𝛽5(𝑢) 0.0191 0.0174 0.2943 0.0475 0.0066 0.0065 0.0443 0.0222 0.0063 0.0063 0.0240 0.0135
TIMSE 0.4205 0.4162 2.9342 0.9855 0.2007 0.2233 0.5311 0.4126 0.1895 0.206 0.4072 0.3673

1Oracle % refers to the percentage of selecting all variables that are used to generate the phenotype Y;
2Oracle refers to the oracle IMSE, that is, the IMSE calculated assuming that we know the true regression model.

Another observation from the simulation is that the model performs better under the normal error than
under the t(3) error. We observed a larger oracle percentage, smaller IMSE and TIMSE for the coefficient func-
tions under the normal error compared to the t(3) error. For example, the TIMSE for the SCAD penalty is 0.4205
under the normal error, while it is 2.9342 under the t(3) error for fixed p = 0.1. In addition, the oracle percentage,
IMSE and TIMSE under the normal error are all quite similar as those obtained as if the truth were known (the
oracle) in all cases, demonstrating the stable selection performance of the SCAD penalty.
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A similar pattern was observed when the data dimension increases to 50 (Table 2). As the MAF increases
from 0.1 to 0.3, we observed sharply decreased IMSE and TIMSE. Compared to the low dimensional case when
d = 10, the performance under p = 0.1 is relatively unstable. For example, the TIMSE for the SCAD method
is 3.3644 when d = 50, compared to 0.4205 when d = 10 under the normal error and p = 0.1. However, we
observed dramatic reduction in TIMSE when the MAF increases to 0.3 under d = 50. Thus, one has to be very
careful about the interpretation of the selection result under low MAF in real data analysis. We did additional
simulations when the sample size increases to 1000 and observed consistently improved results under different
scenarios (data not shown). In summary, the SCAD penalty function shows consistently good performance and
can separate varying, constant and zero effects under moderate allele frequencies. Coupled with the results
shown in Figure 1 and Figure 2, the proposed variable selection method shows relatively stable performance
to assess gene-environment interactions.

Table 2: List of IMSE, TIMSE, and Oracle percentage (%) under 𝒩 (0, 1) and t(3) error distributions when d = 50.

p = 0.1 p = 0.3 p = 0.5

𝒩 (0,1) error t(3) error 𝒩 (0,1) error t(3) error 𝒩 (0,1) error t(3) error

SCAD Oracle SCAD Oracle SCAD Oracle SCAD Oracle SCAD Oracle SCAD Oracle
Oracle
%

0.908 1 0.435 1 0.986 1 0.745 1 0.988 1 0.87 1

𝛽1(𝑢) 0.1929 0.0884 0.5687 0.2209 0.0289 0.0278 0.0860 0.0599 0.0215 0.0216 0.0450 0.0434
𝛽2(𝑢) 0.2064 0.1684 0.3851 0.3340 0.1107 0.1137 0.1858 0.1742 0.1048 0.1123 0.1551 0.1608
𝛽3(𝑢) 0.5235 0.1218 0.6934 0.2614 0.0817 0.0646 0.2205 0.1301 0.0608 0.0579 0.1754 0.1085
𝛽4(𝑢) 2.0918 0.0196 2.4522 0.0484 0.1083 0.0075 0.3865 0.0254 0.0470 0.0078 0.1681 0.0167
𝛽5(𝑢) 0.3475 0.0158 0.5996 0.0445 0.0229 0.0068 0.0840 0.0220 0.0120 0.0053 0.0480 0.0190
TIMSE 3.3644 0.4140 5.7021 0.9092 0.3526 0.2204 1.2288 0.4117 0.2461 0.2050 0.6492 0.3484

Figure 2: The selection ratio under different error distributions for different coefficient functions when d = 50. The hori-
zontal axis represents the SNPs.

To further assess the false positive controls of the proposed method, we generated the response
from the intercept only model, i.e. 𝑌𝑖 = 𝛽0(𝑍𝑖) + 𝜀𝑖. There are no main and interaction effects
associated with the disease phenotype. The average number of false positive effects for (d,error)=
(10, 𝑁(0, 1)), (10, 𝑡(3)), (50, 𝑁(0, 1)), (50, 𝑡(3))) setups are 0.004, 0.042, 0.002 and 0.036, respectively. Overall, the
proposed method achieves satisfactory false positive controls under the null model.
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4 Case study

The body mass index of the mother (MBMI) is often used as a measure of the mothers’ body shape and degree
of obesity. Since the baby resides inside its mother’s womb, its environment is defined through its mother.
Increasing evidence indicates that both pre-pregnant weight (BMI) and weight gain in pregnancy have a major
influence on babies’ birth weight (Stamnes Koepp et al., 2012). Due to the complicated interaction between the
genes of the fetus and the mother’s level of obesity, the birth weight might be different for a fetus with the same
genes but under different environment conditions. Thus, variation in birth weight could be totally or partially
explained by the underlying genetic machinery and how those genes respond to the mother’s obesity to affect
birth weight.

We applied the method to a real dataset from a study conducted in the Department of Obstetrics and Gyne-
cology at Sotero del Rio Hospital in Puente Alto, Chile. The initial objective of the study was to pinpoint genetic
variants associated with a binary response indicating large for gestational age (LGA) or small for gestational
age (SGA) infants based on the birthweight of new born babies. After data cleaning by removing SNPs with
MAF less than 0.05 or deviation from the Hardy-Weinberg equilibrium, the dataset contains 1536 new born
babies genotyped with 189 candidate genes covering 660 single nucleotide polymorphisms (SNPs).

Genes were mapped to the KEGG pathway using the GATHER software which can be accessed at http://-
gather.genome.duke.edu. A total 30 pathways based on 189 candidate genes were retrieved. We treated the
mother’s BMI as the environmental factor and the baby’s birth weight as the response variable; this was stan-
dardized before fitting to the model. Since some genes were mapped to multiple pathways, we did the variable
selection for each pathway separately. Table 3 shows the selection results with SNP ID, the gene and pathway
name the SNP(s) belong(s) to and the selected effect. Two SNPs in gene IL2 were mapped to two pathways and
both SNPs consistently show varying effects in the two pathways. SNP rs2069762 in gene IL2 was previously
reported to be associated with preterm birth and low birthweight in a Japanese population study (Sata F et
al., 2009). Several other SNPs in gene IL1B were also reported to be associated with low birthweight in that
paper. In addition, one SNP in gene IL1B in the Toll-like receptor signalling pathway was selected as a varying
effect. Two SNPs in gene COL1A2 were mapped to two pathways and both were selected as varying effects.
SNP rs997049 in gene IL1R1 was selected as a constant effect in two different pathways.

Table 3: List of selected SNPs in each pathway with constant and varying coefficients.

Pathway (# of genes)(# of SNPs) SNP ID Gene Selected Effect

Cytokine-cytokine receptor interaction(45)(123) rs2069762 IL2 varying
rs2069772 IL2 varying
rs997049 IL1R1 constant

Complement and coagulation cascades(18)(53) rs2053044 ADRB2 constant
Jak-STAT signaling pathway(24)(65) rs2069762 IL2 varying

rs2069772 IL2 varying
ECM-receptor interaction pathway(15)(95) rs2301643 COL1A2 varying

rs13240759 COL1A2 varying
Toll-like receptor signaling pathway(15)(21) rs3136558 IL1B constant
Focal adhesion(21)(109) rs2301643 COL1A2 varying

rs13240759 COL1A2 varying
Apoptosis(8)(20) rs997049 IL1R1 constant
Glycolysis/Gluconeogenesis(1)(2) rs10891315 DLAT constant
Pyruvate metabolism(1)(2) rs10891315 DLAT constant

Figure 3 plots the varying coefficient function for two SNPs, SNP rs2039762 in the Cytokine-cytokine recep-
tor interaction pathway and SNP rs2301643 in the ECM-receptor interaction pathway. The varying pattern of
the function over mother’s BMI indicates the nonlinear interaction of the SNPs with mother’s BMI condition to
affect birth weight. When fitting a linear interaction model, no SNPs show significant interaction with mother’s
BMI (data not shown).
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Figure 3: The estimated varying coefficient function for SNP rs2039762 in the Cytokine-cytokine receptor interaction
pathway and SNP rs2301643 in the ECM-receptor interaction pathway.

5 Discussion

The significance of G×E interactions in complex human disease traits has stimulated widespread discussion. As
reviewed in Cornelis et al. (2011), a number of statistical models have been proposed to assess gene effect under
different environmental exposures. The success of gene set based association analysis, as shown in Wang, Li,
and Hakonarson (2011), Cui et al. (2008), Wu and Cui (2013), and Schaid et al. (2012), motivated us to propose
a high dimensional variable selection approach to understand the mechanism of G×E interactions associated
with complex diseases. We adopted a penalized regression method within the VC model framework to inves-
tigate how multiple variants within a genetic system are moderated by environmental factors to influence the
phenotypic response.

Within the model-based regression framework, most G×E interactions are modeled via a product term be-
tween a G and an E variable (Hutter et al., 2013), so the contribution of a genetic variant to the phenotypic
variation is considered as a linear function in the environmental factor. Any non-linear interaction can be pur-
sued to relax the linearity assumption (Ma et al., 2011; Wu & Cui, 2013). As pointed out by one reviewer, sta-
tistical interactions introduced by R.A. Fisher, are defined as deviation from a generalized linear model, which
implicitly suggests a nonlinear relationship and is more general. To avoid confusion with the nonlinear G×E
interaction presented in this work, we make it clear that our nonlinear G×E interaction refers to the effect of a
genetic variant assessed as a nonlinear function of an environment variable.

In a G×E study, people are typically interested in assessing variants which are sensitive to environment
changes and those that are not. We can determine if a particular genetic variant is sensitive to environmental
stimuli by examining the status of the coefficient function. Varying-coefficients and constants can be separated
through B-spline basis expansions under a penalized framework. The varying coefficients correspond to G×E
effects and the constant effects correspond to no interaction effects. Through another penalty function, we can
further shrink the constant effect into zero if the corresponding SNP has no genetic effect. We developed a two-
stage iterative estimation procedure with double SCAD penalty functions. Although the two-stage strategy has
been adopted for regularized quantile regression with adaptive LASSO in Tang et al. (2012), our work signifi-
cantly differs in that we focused on the regularized least square regression and rigorously establish the asymp-
totic properties of the nonconvex double SCAD estimator under suitable regularity conditions. The potential
of non-convex penalty functions in investigating G×E interactions is far from fully understood or explored. As
a representative non-convex penalty function, the SCAD is adopted mainly due to its nice oracle properties as
stepping stones for building statistically sound and practically useful models to accommodate more complex
data structures. It is worth to mention that our method is fundamentally different from the work of Xue and Qu
(2012) and Antoniadis, Gijbels, and Lambert-Lacroix (2014) in which the authors developed a variable selection
framework under the additive VC model to distinguish zero vs varying coefficients. They did not distinguish
non-zero constant vs varying coefficients which is one of the key objects in understanding the mechanisms of
G×E interaction. Identification of the constant coefficients in the varying coefficient models is closely related
to the estimation of linear part in additive models. This line of work includes Hu and Xia (2012) and Zhang,
Cheng, and Liu (2011). None of the existing studies closely explore the automatic structure identification and
separation of different effects under the G×E framework.

The current work only demonstrates the case with one environmental factor. It is broadly recognized that the
etiology of many complex disease is less likely to be affected by one environmental factor but is more likely to be
heterogeneous. When multiple continuously measured environmental factors (say K1) are measured (denoted
as Z1), we can extend the current model to a more general case formulated as follows,

10

http://rivervalleytechnologies.com/products/


Au
to

m
at

ica
lly

ge
ne

ra
te

d
ro

ug
h

PD
Fb

yP
ro

of
Ch

ec
kf

ro
m

Ri
ve

rV
al

le
yT

ec
hn

ol
og

ie
sL

td
DE GRUYTER Wuet al.

𝑌 =
𝑑

∑
𝑗=0

⎧{
⎨{⎩

𝐾1

∑
𝑘=1

𝛽𝑘𝑗(𝑍1𝑘)
⎫}
⎬}⎭

𝑋𝑗 + 𝜀,

where X0 = 1. The same estimation and variable selection framework can be applied to select important genetic
players that show sensitivity to different environmental stimuli. When discrete environmental variables such
as smoking status are also available, denote Z2 as a collection of K2 such variables, then we can fit the following
model

𝑌 =
𝑑

∑
𝑗=0

⎧{
⎨{⎩

𝐾1

∑
𝑘=1

𝛽𝑘𝑗(𝑍1𝑘) +
𝐾2

∑
𝑙=1

𝛼𝑙𝑗𝑍2𝑙

⎫}
⎬}⎭

𝑋𝑗 + 𝜀,

the partial linear varying-coefficient model. In addition to the two penalty functions specified in this
work, an additional penalty function should be imposed for {𝛼}𝑙𝑗 to select important variants show-
ing interaction with Z2. In case of a binary response, we are interested in modeling 𝐸[𝑌|𝑍𝑍𝑍1,𝑍𝑍𝑍2,𝑋𝑋𝑋] =
∑𝑑

𝑗=0 {∑𝐾1
𝑘=1 𝛽𝑘𝑗(𝑍1𝑘) + ∑𝐾2

𝑙=1 𝛼𝑙𝑗𝑍2𝑙} 𝑋𝑗. We will investigate this in future studies.
The proposed method is not only restricted to quantitative phenotypes and can be extended to other types

of phenotypes. For example, in cancer prognostic studies, it can be modified as the Accelerated failure time
(AFT) model to accommodate the survival outcomes. Binary phenotypes significantly differ from quantitative
and survival outcomes in that they contain much less information, hence the accuracy of estimating nonlinear
interactions might be sacrificed. Nevertheless, extension to the binary case can be done by developing a coor-
dinate descent (CD) based iteratively reweighted least squares (IRLS) algorithm under the regularized logistic
regression framework. The CD based IRLS algorithm have been extensively used to extend regularized variable
selection methods from continuous phenotypes to binary phenotypes such as in case control studies.

In the model, we did not include any covariates. However, the proposed varying coefficient model can be
readily modified to allow for covariate effects. Typically, the covariates included in the model are predetermined
as important ones and are in low dimension, so their effects are not subject to penalization. Assuming there are
no interactions between genes and those covariates (those with interactions will be included in the model), one
can fit a regression model by regressing Y against those covariates only, assuming either linear on nonlinear
effects, Then focusing the obtained residuals (after removing the covariates effects) to do the rest of the analysis
by fitting the models described in this paper. It is also worth mentioning that the real data analysis in this work
does not take other covariates (e.g. gender and mother’s gestational age) effects into account, which may lead
to biased results. Due to this limitation, readers should be cautious when interpreting the real data analysis
results.
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A Technical Proofs

Useful notations and lemmas

For convenience, the following notations are adopted :
𝛾𝛾𝛾(𝑣) = (𝛾𝛾𝛾𝑇

0 , … ,𝛾𝛾𝛾𝑇
𝑣 )𝑇, 𝛾𝛾𝛾(𝑐) = (𝛾𝛾𝛾𝑇

𝑣+1, … ,𝛾𝛾𝛾𝑇
𝑐 )𝑇,

𝛾𝛾𝛾(𝑑) = (𝛾𝑇
𝑣+1,1, … , 𝛾𝑇

𝑑,1)
𝑇, 𝛾̃̃𝛾̃𝛾 (𝑣) = (𝛾̃̃𝛾̃𝛾 𝑇

0 , … , 𝛾̃̃𝛾̃𝛾 𝑇
𝑣 )𝑇,

𝛾̃̃𝛾̃𝛾 (𝑐) = (𝛾̃̃𝛾̃𝛾 𝑇
𝑣+1, … , 𝛾̃̃𝛾̃𝛾 𝑇

𝑐 )𝑇, 𝛾̃̃𝛾̃𝛾 (𝑑) = (𝛾𝑣+1,1, … , 𝛾𝑑,1)𝑇,
𝐺𝐺𝐺𝑛 = (𝐵(𝑧1), … , 𝐵(𝑧𝑛))(𝐵(𝑧1), … , 𝐵(𝑧𝑛))𝑇,
𝜀𝜀𝜀 = (𝜀1, … , 𝜀𝑛)𝑇, Φ𝑛 = 𝑛−1 ∑𝑛

𝑖=1 𝑈𝑈𝑈(𝑣)𝑖𝑈𝑈𝑈𝑇
(𝑣)𝑖,

Ψ𝑛 = 𝑛−1 ∑𝑛
𝑖=1 𝑈𝑈𝑈(𝑣)𝑖𝑈𝑈𝑈𝑇

(𝑐)𝑖, Λ𝑖 = 𝑈𝑈𝑈(𝑐)𝑖 − Ψ𝑇
𝑛Φ

−1
𝑛 𝑈𝑈𝑈(𝑣)𝑖,
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where 𝑈𝑈𝑈(𝑣) and 𝑈𝑈𝑈(𝑐) are the sub design matrices corresponding to the predictors with varying and nonzero
constant coefficients respectively. We use ‖ • ‖ to denote the L2 norm ‖ • ‖2 in the A.

We first provide several lemmas necessary for the proofs of Theorems 1 and 2. Lemma 1 follows directly
from the proof of Lemma A.3 in Huang, Wu, and Zhou (2004), and Lemma 2 follows from Corollary 6.21 of
Schumaker (1981).

Lemma 1
Under assumptions (A1–A3), there exists finite positive constants C1 and C2 such that all the eigenvalues of

(𝑘𝑛/𝑛)𝐺𝐺𝐺𝑛 fall between C1 and C2, and therefore, Gn is invertible.

Lemma 2
Under assumptions (A1–A3), for some finite constant C3, there exists 𝛾̃̃𝛾̃𝛾= (𝛾̃̃𝛾̃𝛾 𝑇

0 , … , 𝛾̃̃𝛾̃𝛾 𝑇
𝑑 )𝑇 satisfying

1. ‖𝛾̃𝑗∗‖ > 𝐶3, j = 0, …, v; 𝛾̃𝑗1 = 𝛽𝑗, ‖ 𝛾̃̃𝛾̃𝛾 𝑗∗‖ = 0, 𝑗 = 𝑣 + 1, … , 𝑐; 𝛾̃𝑗 = 000, 𝑗 = 𝑐 + 1, … , 𝑑;

2. supz∈[0,1]|𝛽𝑗(𝑧) − 𝐵(𝑧)𝑇 𝛾̃̃𝛾̃𝛾 𝑗| = 𝑂(𝑘−𝑟
𝑛 ), j = 0, …, d, where 𝛾̃̃𝛾̃𝛾 𝑗 = (𝛾̃𝑗,1, 𝛾̃̃𝛾̃𝛾 𝑇

𝑗∗)𝑇;

3. sup(𝑧,𝑥𝑥𝑥)∈[0,1]×𝑅𝑑+1 |𝑥𝑥𝑥𝑇𝛽(𝑧) − 𝑈𝑈𝑈(𝑥𝑥𝑥, 𝑧)𝑇 𝛾̃̃𝛾̃𝛾 | = 𝑂(𝑘−𝑟
𝑛 ).

Proofs of Theorem 1

(I) Proof of Theorem 1(1), part 1

Here we first show ̂𝛽𝑗(𝑧) is constant for 𝑗 = 𝑣+1, … , 𝑑 with probability approaching 1 as n → ∞, which amounts
to demonstrating ‖ 𝛾̂̂𝛾̂𝛾 𝑣𝑐

𝑗∗ ‖ = 0, 𝑗 = 𝑣 + 1, … , 𝑑 with probability tending to 1, as n → ∞. To this end, we first show
that a minimizer ̂𝛾𝛾𝛾𝒱 𝒞 of 𝑄1(𝛾𝛾𝛾) exists in a neighborhood of ̃𝛾𝛾𝛾 where

𝑄1(𝛾𝛾𝛾) =
𝑛

∑
𝑖=1

(𝑌𝑖 − 𝑈𝑈𝑈𝑇
𝑖 𝛾𝛾𝛾)2 + 𝑛

𝑑

∑
𝑗=1

𝑝𝜆1
(‖𝛾𝑗∗‖). (11)

Let 𝛼𝑛 = 𝑛− 1
2 𝑘𝑛 + 𝑎𝑛, where 𝑎𝑛 ∶= max𝑗{|𝑝

′

𝜆1
(‖ ̃𝛾𝛾𝛾𝑗∗‖)|, |𝑝′

𝜆2
(|𝛾̃𝑗,1|)| ∶ ̃𝛾𝛾𝛾𝑗∗ ≠ 0, 𝛾̃𝑗,1 ≠ 0}. The property of SCAD penalty

function implies that if max{𝜆1, 𝜆2} → 0, an = 0. We show that for any given ε > 0, there exists a large constant C
such that

𝑃 {inf‖𝛿‖𝛿‖𝛿‖=𝐶𝑄1( ̂𝛾𝛾𝛾𝒱 𝒞) ≥ 𝑄1( ̃𝛾𝛾𝛾)} ≥ 1 − 𝜀, (12)

where ̂𝛾𝛾𝛾𝑣𝑐 = ̃𝛾𝛾𝛾 + 𝛼𝑛𝛿𝛿𝛿. This suggests that with probability at least 1 − ε there exists a local minimum in the ball
{ ̃𝛾𝛾𝛾 + 𝛼𝑛𝛿𝛿𝛿 ∶ ‖𝛿𝛿𝛿‖ ≤ 𝐶}. Hence, there exists a local minimizer such that ‖ ̂𝛾𝛾𝛾𝑣𝑐 − ̃𝛾𝛾𝛾‖ = 𝑂𝑝(𝛼𝑛). A direct computation
yields

𝐷𝑛(𝛿𝛿𝛿) = 𝑄1( ̂𝛾𝛾𝛾𝑣𝑐) − 𝑄1( ̃𝛾𝛾𝛾)

= −2𝛼𝑛

𝑛

∑
𝑖=1

[𝜀𝑖 + 𝑋𝑇
𝑖 𝑟(𝑧𝑖)]𝑈𝑈𝑈𝑇

𝑖 𝛿𝛿𝛿 + 𝛼2
𝑛

𝑛

∑
𝑖=1

𝑈𝑈𝑈𝑇
𝑖 𝛿𝛿𝛿𝛿𝛿𝛿𝑇𝑈𝑈𝑈𝑖

+ 𝑛
𝑑

∑
𝑗=1

[𝑝𝜆1
(‖𝛾̂𝑣𝑐

𝑗∗ ‖) − 𝑝𝜆1
(‖𝛾̃𝑗∗‖)]

∶= Δ1 + Δ2 + Δ3

where 𝑟𝑗(𝑧) = 𝐵(𝑧)𝑇𝛾̃𝑗 − 𝛽𝑗(𝑧), j = 1, …, d and 𝑟(𝑧) = (𝑟1(𝑧), … , 𝑟𝑑(𝑧))𝑇. By the fact 𝐸(𝜀𝑖|𝑈𝑈𝑈𝑖, 𝑧𝑖) = 0, we obtain that

1
√𝑛

𝑛

∑
𝑖=1

𝜀𝑖𝑈𝑈𝑈𝑇
𝑖 𝛿𝛿𝛿 = 𝑂𝑝(‖𝛿𝛿𝛿‖).

Recall Lemma 2, then
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1
𝑛

𝑛

∑
𝑖=1

𝑋𝑇
𝑖 𝑟(𝑧𝑖)𝑈𝑈𝑈𝑇

𝑖 𝛿𝛿𝛿 = 𝑂𝑝(𝑘−𝑟
𝑛 ‖𝛿𝛿𝛿‖).

Therefore

Δ1 = 𝑂𝑝(√𝑛𝛼𝑛‖𝛿𝛿𝛿‖) + 𝑂𝑝(𝑛𝑘−𝑟
𝑛 𝛼𝑛‖𝛿𝛿𝛿‖) = 𝑂𝑝(𝑛𝑘−𝑟

𝑛 𝛼𝑛)‖𝛿𝛿𝛿‖.

We can also show that Δ2 = 𝑂𝑝(𝑛𝛼2
𝑛)‖𝛿𝛿𝛿‖2. Then, by choosing a sufficiently large C, Δ1 is dominated by Δ2 uni-

formly in ‖𝛿𝛿𝛿‖ = 𝐶. It follows from Taylor expansion that

Δ3 ≤ 𝑛
𝑑

∑
𝑗=1

⎡⎢
⎣
𝛼𝑛𝑝′

𝜆1(‖𝛾̃𝑗∗‖)
𝛾̃𝑗∗

‖𝛾̃𝑗∗‖
‖𝛿𝛿𝛿𝑗∗‖

+ 𝛼2
𝑛𝑝′′

𝜆1(‖𝛾̃𝑗∗‖)‖𝛿𝛿𝛿𝑗∗‖2(1 + 𝑜𝑝(1))]

≤ 𝑛√𝑑𝛼𝑛𝑎𝑛‖𝛿𝛿𝛿‖ + 𝑛𝑏𝑛𝛼2
𝑛‖𝛿𝛿𝛿‖2.

With assumption (A6), we can prove that Δ2 dominates Δ3 uniformly in ‖𝛿𝛿𝛿‖ = 𝐶. Therefore, (12) holds for
sufficiently large C, and we have ‖ ̂𝛾𝛾𝛾𝑣𝑐 − ̃𝛾𝛾𝛾‖ = 𝑂𝑝(𝛼𝑛).

In order to prove ̂𝛽𝑗(𝑧) is constant for 𝑗 = 𝑣+1, … , 𝑑 in probability, it is sufficient to demonstrate that ̂𝛾𝛾𝛾𝑣𝑐
𝑗∗ = 000,

𝑗 = 𝑣 + 1, … , 𝑑. Note that when max{𝜆1, 𝜆2} → 0, an = 0 for large n. Then we need to show that with probability
approaching 1 as n → ∞, for any ̂𝛾𝛾𝛾𝑣𝑐 satisfying ‖ ̂𝛾𝛾𝛾𝑣𝑐 − ̃𝛾𝛾𝛾‖ = 𝑂𝑝(𝑛− 1

2 𝑘𝑛) and some small 𝜀𝑛 = 𝐶𝑛− 1
2 𝑘𝑛, we have

𝜕𝑄1(𝛾𝛾𝛾)
𝜕𝛾𝑗,∗

< 0, for − 𝜀𝑛 < 𝛾𝑗,∗ < 0, 𝑗 = 𝑣 + 1, … , 𝑑;

> 0, for 0 < 𝛾𝑗,∗ < 𝜀𝑛, 𝑗 = 𝑣 + 1, … , 𝑑.

where 𝛾𝑗,∗ denotes the individual component of 𝛾𝛾𝛾𝑗∗. It can be shown that,

𝜕𝑄1( ̂𝛾𝛾𝛾𝑣𝑐)
𝜕𝛾̂𝑣𝑐

𝑗,∗
= −2

𝑛

∑
𝑖=1

𝑈𝑈𝑈𝑖𝑗 [𝑌𝑖 − 𝑈𝑈𝑈𝑇
𝑖 ̂𝛾𝛾𝛾𝑣𝑐] + 𝑛𝑝′

𝜆1
(|𝛾̂𝑗,∗|)sgn(𝛾̂𝑗,∗)

= −2
𝑛

∑
𝑖=1

𝑈𝑈𝑈𝑖𝑗[𝜀𝑖 + 𝑋𝑋𝑋𝑇
𝑖 𝑟(𝑧𝑖)] − 2

𝑛

∑
𝑖=1

𝑈𝑈𝑈𝑖𝑗𝑈𝑈𝑈𝑇
𝑖 [ ̃𝛾𝛾𝛾 − ̂𝛾𝛾𝛾𝑣𝑐]

+ 𝑛𝑝′

𝜆1
(|𝛾̂𝑗,∗|)sgn(𝛾̂𝑣𝑐

𝑗,∗)

= 𝑛𝜆1 [𝑂𝑝(𝜆−1
1 𝑛

−𝑟+1/2
2𝑟+1 ) + 𝜆−1

1 𝑝′

𝜆(|𝛾̂𝑗,∗|)sgn(𝛾̂𝑣𝑐
𝑗,∗)] .

By assumption (A5), 𝜆−1
1 𝑛

−𝑟+1/2
2𝑟+1 → 0. Then it follows from assumption (A7) that the sign of the derivative is

completely determined by that of 𝛾̂𝑣𝑐
𝑗,∗. Therefore, ̂𝛾𝛾𝛾𝑣𝑐, the minimizer of Q1, is achieved at ̂𝛾𝛾𝛾𝑣𝑐

𝑗∗ = 000, 𝑗 = 𝑣 + 1, … , 𝑑.
This completes the proof of Theorem 1(1), part 1. □

(II) Proof of Theorem 1(2)

Next we establish the consistency of the varying coefficient estimators. Let 𝛼𝑛 = 𝑛− 1
2 𝑘𝑛 + 𝑎𝑛, ̂𝛾𝛾𝛾(𝑣) = ̃𝛾𝛾𝛾(𝑣) + 𝛼𝑛𝛿𝛿𝛿𝑣,

̂𝛾𝛾𝛾(𝑑) = ̃𝛾𝛾𝛾(𝑑) + 𝛼𝑛𝛿𝛿𝛿𝑑, 𝛿𝛿𝛿 = (𝛿𝛿𝛿𝑇
𝑣 , 𝛿𝛿𝛿𝑇

𝑑 )𝑇, and

𝑄2(𝛾𝛾𝛾(𝑣),𝛾𝛾𝛾(𝑑)) =
𝑛

∑
𝑖=1

(𝑌𝑖 − 𝑈𝑈𝑈𝑇
(𝑣)𝑖𝛾𝛾𝛾(𝑣) − 𝑈𝑈𝑈𝑇

(𝑑)𝑖𝛾𝛾𝛾(𝑑))
2

+ 𝑛
𝑑

∑
𝑗=𝑣+1

𝑝𝜆2
(|𝛾𝑗,1|).

(13)

13
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We first show that there exists a local minimizer of 𝑄2(𝛾𝛾𝛾(𝑣),𝛾𝛾𝛾(𝑑)). It suffices to show that for any given ε > 0,
there exists a large constant C such that

𝑃 {inf‖𝛿‖𝛿‖𝛿‖=𝐶𝑄2( ̂𝛾𝛾𝛾(𝑣), ̂𝛾𝛾𝛾(𝑑)) ≥ 𝑄2( ̃𝛾𝛾𝛾(𝑣), ̃𝛾𝛾𝛾(𝑑))} ≥ 1 − 𝜀. (14)

which implies that with probability at least 1 − ε there exists a local minimum in the ball { ̃𝛾𝛾𝛾(𝑣) +𝛼𝑛𝛿𝛿𝛿𝑣 ∶ ‖𝛿𝛿𝛿𝑣‖ ≤ 𝐶}
and { ̃𝛾𝛾𝛾(𝑑)+𝛼𝑛𝛿𝛿𝛿𝑑 ∶ ‖𝛿𝛿𝛿𝑑‖ ≤ 𝐶}, respectively. Therefore, there exists local minimizers such that ‖ ̂𝛾𝛾𝛾(𝑣)− ̃𝛾𝛾𝛾(𝑣)‖ = 𝑂𝑝(𝛼𝑛)
and ‖ ̂𝛾𝛾𝛾(𝑑) − ̃𝛾𝛾𝛾(𝑑)‖ = 𝑂𝑝(𝛼𝑛). We have

𝐷𝑛(𝛿𝛿𝛿𝑣, 𝛿𝛿𝛿𝑑) = 𝑄2( ̂𝛾𝛾𝛾(𝑣), ̂𝛾𝛾𝛾(𝑑)) − 𝑄2( ̃𝛾𝛾𝛾(𝑣), ̃𝛾𝛾𝛾(𝑑))

= −2𝛼𝑛

𝑛

∑
𝑖=1

[𝜀𝑖 + 𝑋𝑇
𝑖 𝑟(𝑧𝑖)] [𝑈𝑈𝑈𝑇

(𝑣)𝑖𝛿𝛿𝛿(𝑣) + 𝑈𝑈𝑈𝑇
(𝑑)𝑖𝛿𝛿𝛿(𝑑)]

+ 𝛼2
𝑛

𝑛

∑
𝑖=1

[𝑈𝑈𝑈𝑇
(𝑣)𝑖𝛿𝛿𝛿(𝑣) + 𝑈𝑈𝑈𝑇

(𝑑)𝑖𝛿𝛿𝛿(𝑑)]
2

+ 𝑛
𝑑

∑
𝑗=𝑣+1

[𝑝𝜆2
(|𝛾̂𝑗,1|) − 𝑝𝜆2

(|𝛾̃𝑗,1)|]

∶= Δ1 + Δ2 + Δ3,

where 𝑟(𝑧) = (𝑟1(𝑧), … , 𝑟𝑑(𝑧))𝑇 and 𝑟𝑗(𝑧) = 𝐵(𝑧)𝑇𝛾̃𝑗 − 𝛽𝑗(𝑧), j = 1, …, d. Since 𝐸(𝜀𝑖|𝑈𝑈𝑈(𝑣), 𝑈𝑈𝑈(𝑑), 𝑧𝑖) = 0, we have

1
√𝑛

𝑛

∑
𝑖=1

𝜀𝑖[𝑈𝑈𝑈𝑇
(𝑣)𝑖𝛿𝛿𝛿(𝑣) + 𝑈𝑈𝑈𝑇

(𝑑)𝑖𝛿𝛿𝛿(𝑑)] = 𝑂𝑝(‖𝛿𝛿𝛿‖). (15)

With Lemma 2 we can show

1
𝑛

𝑛

∑
𝑖=1

𝑋𝑇
𝑖 𝑟(𝑧𝑖) [𝑈𝑈𝑈𝑇

(𝑣)𝑖𝛿𝛿𝛿(𝑣) + 𝑈𝑈𝑈𝑇
(𝑑)𝑖𝛿𝛿𝛿(𝑑)] = 𝑂𝑝 (𝑘−𝑟

𝑛 ‖𝛿𝛿𝛿‖) .

Combine the above two equations, we can obtain that

Δ1 = 𝑂𝑝(𝑛
1
2 𝛼𝑛‖𝛿𝛿𝛿‖) + 𝑂𝑝(𝑛𝑘−𝑟

𝑛 𝛼𝑛‖𝛿𝛿𝛿‖) = 𝑂𝑝(𝑛𝑘−𝑟
𝑛 𝛼𝑛)‖𝛿𝛿𝛿‖.

Since Δ2 = 𝑂𝑝(𝑛𝛼2
𝑛)‖𝛿𝛿𝛿‖2, it can be shown that by choosing a sufficiently large C, Δ1 is dominated by Δ2 uniformly

in ‖𝛿𝛿𝛿‖ = 𝐶. By Taylor expansion,

Δ3 ≤ 𝑛
𝑑

∑
𝑗=𝑣+1

[𝛼𝑛𝑝′

𝜆2(|𝛾̃𝑗,1|)sgn(𝛾̃𝑗,1)|𝛿𝑗1|

+ 𝛼2
𝑛𝑝′′

𝜆2(|𝛾̃𝑗,1|)𝛿2𝑗1(1 + 𝑜(1))]

≤ (𝑑 − 𝑣)
1
2 𝑛𝛼𝑛𝑎𝑛‖𝛿𝛿𝛿‖ + 𝑛𝑏𝑛𝛼2

𝑛‖𝛿𝛿𝛿‖2.

Recall assumption A6, then it follows that, by choosing an enough large C,Δ2 dominatesΔ1 uniformly in ‖𝛿𝛿𝛿‖ = 𝐶.
Consequently (14) holds for sufficiently large C, and we have ‖ ̂𝛾𝛾𝛾𝑣 − ̃𝛾𝛾𝛾𝑣‖ = 𝑂𝑝(𝛼𝑛) and ‖ ̂𝛾𝛾𝛾𝑑 − ̃𝛾𝛾𝛾𝑑‖ = 𝑂𝑝(𝛼𝑛). By
the definition of 𝛾𝛾𝛾𝑐𝑧, we have ̂𝛾𝛾𝛾𝑐𝑧

(𝑑) − ̃𝛾𝛾𝛾(𝑑) = 𝑂𝑝(𝛼𝑛). Then for j = 0, …, v

‖ ̂𝛽𝑗(𝑧𝑖) − 𝛽𝑗(𝑧)‖2 = ∫
1

0
[ ̂𝛽𝑗(𝑧) − 𝛽𝑗(𝑧)]2 𝑑𝑧

≤ 2∫
1

0
[𝐵𝐵𝐵(𝑧)𝑇 ̂𝛾𝛾𝛾𝑐𝑧

𝑗 (𝑧) − 𝐵𝐵𝐵(𝑧)𝑇 𝛾̃̃𝛾̃𝛾 𝑗]
2 𝑑𝑧

+ 2∫
1

0
𝑟2𝑗 (𝑧)𝑑𝑧

= 2
𝑛

( ̂𝛾𝛾𝛾𝑐𝑧
𝑗 − ̃𝛾𝛾𝛾𝑗)𝑇𝐺𝐺𝐺𝑛( ̂𝛾𝛾𝛾𝑐𝑧

𝑗 − ̃𝛾𝛾𝛾𝑗)

+ 2∫
1

0
𝑟2𝑗 (𝑧)𝑑𝑧

∶= Δ1 + Δ2.
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Recall Lemma 1, Lemma 2 and 𝑘𝑛 = 𝑂 (𝑛
1

2𝑟+1 ), we can demonstrate that Δ1 = 𝑂𝑝 (𝑘−1
𝑛 𝛼2

𝑛), Δ2 = 𝑂𝑝 (𝑘−2𝑟
𝑛 ). Δ1 is

dominated by Δ2, thus we finish the proof of Theorem 1(2). □

(III) Proof of Theorem 1(1), part 2

To show ̂𝛽𝑗(𝑧) = 0 for 𝑗 = 𝑐 + 1, … , 𝑑, it is sufficient to demonstrate that ̂𝛾𝛾𝛾𝑐𝑧
𝑗,1 = 0, since the constancy of 𝛽𝑗(𝑧), 𝑗 =

𝑣 + 1, … , 𝑑 was already established in (B). By definition, when max{𝜆1, 𝜆2} → 0, an = 0 for large n. Then we need
to prove that with probability approaching 1 as n → ∞, for any ̂𝛾𝛾𝛾(𝑣) and ̂𝛾𝛾𝛾(𝑑) satisfying ‖ ̂𝛾𝛾𝛾(𝑣) − ̃𝛾𝛾𝛾(𝑣)‖ = 𝑂𝑝(𝑛− 1

2 𝑘𝑛),
and ‖ ̂𝛾𝛾𝛾(𝑑) − ̃𝛾𝛾𝛾(𝑑)‖ = 𝑂𝑝(𝑛− 1

2 𝑘𝑛), as well as some small 𝜀𝑛 = 𝐶𝑛− 1
2 𝑘𝑛, we have

𝜕𝑄2(𝛾𝛾𝛾(𝑣),𝛾𝛾𝛾(𝑑))
𝜕𝛾𝑗,1

< 0, for − 𝜀𝑛 < 𝛾𝑗,1 < 0, 𝑗 = 𝑐 + 1, … , 𝑑;

> 0, for 0 < 𝛾𝑗,1 < 𝜀𝑛, 𝑗 = 𝑐 + 1, … , 𝑑.

It can be shown that

𝜕𝑄2( ̂𝛾𝛾𝛾(𝑣), ̂𝛾𝛾𝛾(𝑑))
𝜕𝛾̂𝑗,1

= − 2
𝑛

∑
𝑖=1

𝑈𝑈𝑈(𝑑)𝑖𝑗 [𝑌𝑖 − 𝑈𝑈𝑈𝑇
(𝑣)𝑖 ̂𝛾𝛾𝛾(𝑣) − 𝑈𝑈𝑈𝑇

(𝑑)𝑖 ̂𝛾𝛾𝛾(𝑑)]

+ 𝑛𝑝′

𝜆(|𝛾̂𝑗,1|)sgn(𝛾̂𝑗,1)

= − 2
𝑛

∑
𝑖=1

𝑈𝑈𝑈(𝑑)𝑖𝑗 [𝜀𝑖 + 𝑋𝑋𝑋𝑇
𝑖 𝑟(𝑧𝑖)]

− 2
𝑛

∑
𝑖=1

𝑈𝑈𝑈(𝑑)𝑖𝑗𝑈𝑈𝑈𝑇
(𝑣)𝑖 [ ̃𝛾𝛾𝛾𝑣 − ̂𝛾𝛾𝛾𝑣]

− 2
𝑛

∑
𝑖=1

𝑈𝑈𝑈(𝑑)𝑖𝑗𝑈𝑈𝑈𝑇
(𝑑)𝑖 [ ̃𝛾𝛾𝛾𝑑 − ̂𝛾𝛾𝛾𝑑] + 𝑛𝑝′

𝜆(|𝛾̂𝑗,1|)sgn(𝛾̂𝑗,1)

=𝑛𝜆2 [𝑂𝑝 (𝜆−1
2 𝑛

−𝑟+1/2
2𝑟+1 ) + 𝜆−1

2 𝑝′

𝜆(|𝛾̂𝑗,1|)sgn(𝛾̂𝑗,1)] .

By assumption (A5), 𝜆−1
2 𝑛

−𝑟+1/2
2𝑟+1 → 0. Then it follows from assumption (A7) that the sign of the derivative is

completely determined by that of 𝛾̂𝑗,1. Therefore, ̂𝛾𝛾𝛾𝑐𝑧, the minimizer of Q2, is achieved at ̂𝛾𝛾𝛾𝑐𝑧
𝑗,1 = 0, 𝑗 = 𝑐 + 1, … , 𝑑.

This completes the proof of Theorem 1(1). □

Proof of Theorem 2

In Theorem 1, we showed that both ̂𝛾𝛾𝛾𝑗∗ = 000, 𝑗 = 𝑣 + 1, … , 𝑐 and 𝛾̂𝑗 = 0, 𝑗 = 𝑐 + 1, … , 𝑑, hold with probability
approaching 1. Then Q2 reduces to

𝑄2(𝛾𝛾𝛾(𝑣),𝛾𝛾𝛾(𝑑)) =
𝑛

∑
𝑖=1

(𝑌𝑖 − 𝑈𝑈𝑈𝑇
(𝑣)𝑖𝛾𝛾𝛾(𝑣) − 𝑈𝑈𝑈𝑇

(𝑐)𝑖𝛾𝛾𝛾(𝑐))
2

+ 𝑛
𝑐

∑
𝑗=𝑣+1

𝑝𝜆2
(|𝛾𝑗,1|)

∶=𝑄2(𝛾𝛾𝛾(𝑣),𝛾𝛾𝛾(𝑐)).

(16)

Since ( ̂𝛾𝛾𝛾(𝑣), ̂𝛾𝛾𝛾(𝑐)) is the minimizer of 𝑄2(𝛾𝛾𝛾(𝑣),𝛾𝛾𝛾(𝑐)), we obtain

𝜕𝑄2( ̂𝛾𝛾𝛾(𝑣), ̂𝛾𝛾𝛾(𝑐))
𝜕 ̂𝛾𝛾𝛾(𝑣)

= −2
𝑛

∑
𝑖=1

𝑈𝑈𝑈(𝑣)𝑖 [𝑌𝑖 − 𝑈𝑈𝑈𝑇
(𝑣)𝑖 ̂𝛾𝛾𝛾(𝑣) − 𝑈𝑈𝑈𝑇

(𝑑)𝑖 ̂𝛾𝛾𝛾(𝑑)]

= 0;

15
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𝜕𝑄2( ̂𝛾𝛾𝛾(𝑣), ̂𝛾𝛾𝛾(𝑐))
𝜕 ̂𝛾𝛾𝛾(𝑐)

= −2
𝑛

∑
𝑖=1

𝑈𝑈𝑈(𝑐)𝑖 [𝑌𝑖 − 𝑈𝑈𝑈𝑇
(𝑣)𝑖 ̂𝛾𝛾𝛾(𝑣) − 𝑈𝑈𝑈𝑇

(𝑐)𝑖 ̂𝛾𝛾𝛾(𝑐)]

+ 𝑛
𝑐

∑
𝑗=𝑣+1

𝑝′

𝜆2(|𝛾̂𝑗,1|)sgn(𝛾̂𝑗,1) = 0.
(17)

By applying Taylor expansion on 𝑝′

𝜆2(|𝛾̂𝑗,1|) in (17), we have

𝑝′

𝜆2(|𝛾̂𝑗,1|) = 𝑝′

𝜆2(|𝛾𝑗,1|) + 𝑝′′

𝜆2(|𝛾𝑗,1|)(𝛾̂𝑗,1 − 𝛾𝑗,1)[1 + 𝑜𝑝(1)].

By the fact that 𝑝′

𝜆2(|𝛾̂𝑗,1|) = 0 as λ2 → 0, and 𝑝′′

𝜆2(|𝛾𝑗,1|) = 𝑜𝑝(1) from the assumption, it follows that

𝑐

∑
𝑗=𝑣+1

𝑝′

𝜆2(|𝛾̂𝑗,1|)sgn(𝛾̂𝑗,1) = 𝑜𝑝(𝛾̂𝑗,1 − 𝛾𝑗,1)

= 𝑜𝑝( ̂𝛾𝛾𝛾(𝑐) − 𝛾𝛾𝛾(𝑐)).

Consequently, we have

1
𝑛

𝑛

∑
𝑖=1

𝑈𝑈𝑈(𝑐)𝑖 [𝑌𝑖 − 𝑈𝑈𝑈𝑇
(𝑣)𝑖 ̂𝛾𝛾𝛾(𝑣) − 𝑈𝑈𝑈𝑇

(𝑐)𝑖 ̂𝛾𝛾𝛾(𝑐)] + 𝑜𝑝( ̂𝛾𝛾𝛾(𝑐) − 𝛾𝛾𝛾(𝑐)) = 0.

Following similar lines of arguments in Theorem 1, we can show

1
𝑛

𝑛

∑
𝑖=1

𝑈𝑈𝑈(𝑐)𝑖 [𝜀𝑖 + 𝑋𝑇
𝑖 𝑟(𝑧𝑖) + 𝑈𝑈𝑈𝑇

(𝑣)𝑖(𝛾𝛾𝛾(𝑣) − ̂𝛾𝛾𝛾(𝑣))

+ 𝑈𝑈𝑈𝑇
(𝑐)𝑖(𝛾𝛾𝛾(𝑐) − ̂𝛾𝛾𝛾(𝑐))] + 𝑜𝑝( ̂𝛾𝛾𝛾(𝑐) − 𝛾𝛾𝛾(𝑐)) = 0.

(18)

Meanwhile, a straightforward calculation yields

1
𝑛

𝑛

∑
𝑖=1

𝑈𝑈𝑈(𝑣)𝑖 [𝜀𝑖 + 𝑋𝑋𝑋𝑇
𝑖 𝑟(𝑢𝑖) + 𝑈𝑈𝑈𝑇

(𝑣)𝑖(𝛾𝛾𝛾(𝑣) − ̂𝛾𝛾𝛾(𝑣))

+𝑈𝑈𝑈𝑇
(𝑐)𝑖(𝛾𝛾𝛾(𝑐) − ̂𝛾𝛾𝛾(𝑐))] = 0.

(19)

Recall the definition of Φn and Ψn, (19) is equivalent to

̂𝛾𝛾𝛾(𝑣) − 𝛾𝛾𝛾(𝑣) =Φ−1
𝑛

⎧{
⎨{⎩
1
𝑛

𝑛

∑
𝑖=1

𝑈𝑈𝑈(𝑣)𝑖 [𝜀𝑖

+ 𝑋𝑋𝑋𝑇
𝑖 𝑟(𝑧𝑖)] + Ψ𝑛[𝛾𝛾𝛾(𝑐) − ̂𝛾𝛾𝛾(𝑐)]} .

(20)

Plugging (20) into (18) results in

1
𝑛

𝑛

∑
𝑖=1

𝑈𝑈𝑈(𝑐)𝑖
⎧{
⎨{⎩

𝜀𝑖 + 𝑋𝑇
𝑖 𝑟(𝑧𝑖) − 𝑈𝑈𝑈𝑇

(𝑣)𝑖Φ
−1
𝑛

1
𝑛

𝑛

∑
𝑖=1

𝑈𝑈𝑈(𝑣)𝑖

× [𝜀𝑖 + 𝑋𝑋𝑋𝑇
𝑖 𝑟(𝑧𝑖)]}

= 1
𝑛

𝑛

∑
𝑖=1

𝑈𝑈𝑈(𝑐)𝑖 [𝑈𝑈𝑈(𝑐)𝑖 − Ψ𝑇
𝑛Φ

−1
𝑛 𝑈𝑈𝑈(𝑣)𝑖]

𝑇 ( ̂𝛾𝛾𝛾(𝑐) − 𝛾𝛾𝛾(𝑐))

+ 𝑜𝑝( ̂𝛾𝛾𝛾(𝑐) − 𝛾𝛾𝛾(𝑐)).

(21)

Together with the facts that
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1
𝑛

𝑛

∑
𝑖=1

Ψ𝑇
𝑛Φ

−1
𝑛 𝑈𝑈𝑈(𝑣)𝑖 [𝜀𝑖 + 𝑋𝑇

𝑖 𝑟(𝑧𝑖) − 𝑈𝑈𝑈𝑇
(𝑣)𝑖Φ

−1
𝑛

× 1
𝑛

𝑛

∑
𝑗=1

𝑈𝑈𝑈(𝑣)𝑗[𝜀𝑗 + 𝑋𝑋𝑋𝑇
𝑗 𝑟(𝑧𝑗)]⎤⎥

⎦
= 0

and

1
𝑛

𝑛

∑
𝑖=1

Ψ𝑇
𝑛Φ

−1
𝑛 𝑈𝑈𝑈(𝑣)𝑖 [𝑈𝑈𝑈(𝑐)𝑖 − Ψ𝑇

𝑛Φ
−1
𝑛 𝑈𝑈𝑈(𝑣)𝑖]

𝑇 = 0.

and recall the definition of Λi, a direct computation from (21) leads to

⎡⎢
⎣
1
𝑛

𝑛

∑
𝑖=1

Λ𝑖Λ
𝑇
𝑖 + 𝑜𝑝(1)⎤⎥

⎦
√𝑛(𝛾𝛾𝛾(𝑐) − ̂𝛾𝛾𝛾(𝑐))

= 1
√𝑛

𝑛

∑
𝑖=1

Λ𝑖𝜀𝑖 + 1
√𝑛

𝑛

∑
𝑖=1

Λ𝑖𝑋𝑋𝑋𝑇
𝑖 𝑟(𝑧𝑖)

+ 1
√𝑛

𝑛

∑
𝑖=1

Λ𝑖𝑈𝑈𝑈𝑇
(𝑣)𝑖Φ

−1
𝑛

1
𝑛

𝑛

∑
𝑗=1

𝑈𝑈𝑈(𝑣)𝑗 [𝜀𝑗 + 𝑋𝑋𝑋𝑇
𝑗 𝑟(𝑧𝑗)]

∶= Δ1 + Δ2 + Δ3.

It follows from the law of large numbers that

1
𝑛

𝑛

∑
𝑖=1

Λ𝑖Λ
𝑇
𝑖

𝑝
−−→ Σ

where

Σ = 𝐸 [𝑈𝑈𝑈(𝑐) (𝐼 − 𝑈𝑈𝑈(𝑣)(𝑈𝑈𝑈(𝑣)𝑈𝑈𝑈𝑇
(𝑣))

−1𝑈𝑈𝑈𝑇
(𝑣))𝑈𝑈𝑈𝑇

(𝑐)] (22)

Consequently,

Δ1
𝑑

−−→ 𝒩(0, 𝜎2Σ)

follows from central limit theorem. Because Xi is bounded and ‖𝑟(𝑧)‖ = 𝑜𝑝(1), we have Δ2 = 𝑜𝑝(1). Besides,
∑𝑛

𝑖=1 Λ𝑖𝑈𝑈𝑈𝑇
(𝑣)𝑖=0 implies that Δ3 = 0. Therefore, by Slutsky theorem, we complete the proof of Theorem 2. □
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