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Abstract: Using publicly-available data from the Alzheimer’s Disease Neuroimaging Initiative, we investigate
the joint association between single-nucleotide polymorphisms (SNPs) in previously established linkage
regions for Alzheimer’s disease (AD) and rates of decline in brain structure. In an initial, discovery stage
of analysis, we applied a weighted RV test to assess the association between 75,845 SNPs in the Alzgene
linkage regions and rates of change in structural MRI measurements for 56 brain regions affected by AD,
in 632 subjects. After confirming association, we selected refined lists of 1694 and 22 SNPs via a bootstrap-
enhanced sparse canonical correlation analysis. In a final, validation stage, we confirmed association
between the refined list of 1694 SNPs and the imaging phenotypes in an independent data set. Genes
corresponding to priority SNPs having the highest contribution in the validation data have previously been
implicated or hypothesized to be implicated in AD, including GCLC, IDE, and STAMBPIandFAS. Though
the effect sizes of the 1694 SNPs in the priority set are likely small, further investigation within this set
may advance understanding of the missing heritability in AD. Our analysis addresses challenges in current
imaging-genetics studies such as biased sampling designs and high-dimensional data with low association
signal.

Keywords: Multivariate analysis; Linkage regions; Imaging genetics; Endophenotypes; Inverse probability
weighting; Variable importance probabilities.

1 Introduction

Alzheimer’s disease (AD) is a neurodegenerative disorder causing cognitive impairment and memory loss. The
estimated heritability of late-onset AD is 60%-80% (Gatz et al., 2006), and the largest susceptibility allele is
the €4 allele of APOE (Corder et al., 1993), which may play a role in 20% to 25% of AD cases. Numerous studies
have identified susceptibility genes which account for some of the missing heritability of AD, with many
associated variants having been identified through genome-wide association studies (GWAS) (e.g. Bertram
etal., 2008; Beecham et al., 2009; Kamboh et al., 2012). Apart from APOE, the associated variants have mostly
had moderate or small effect sizes, suggesting that the remaining heritability of AD may be explained by many
additional genetic variants of small effect.

Identifying susceptibility variants with small effect sizes in GWAS is challenging since strict multiple
testing corrections are required to maintain a reasonable family-wise error rate. This analysis focuses on
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leveraging information from prior family of studies of AD (Hamshere et al., 2007; Butler et al., 2009), by
looking for association in previously identified linkage regions reported on the Alzgene website (Biomedical
Research Forum, 2013). Linkage regions for AD are genomic regions that tend to be co-inherited with AD in
families. By definition, linkage regions include susceptibility genes that are co-transmitted with the disease.
The regions currently identified from family studies of AD are large, however, since families contain relatively
few transmissions. Further transmissions over multiple generations would provide more fine-grain informa-
tion about the location of susceptibility genes. Previous studies have fine-mapped a single linkage region
through association of AD with genetic variants in densely genotyped or sequenced regions (Scott et al., 2000;
Ertekin-Taner, 2003; Ziichner et al., 2008; Fallin et al., 2010), or have confirmed linkage to AD in genomic
regions identified from GWAS (Anna et al., 2011) . In this report, we aim to fine-map multiple linkage regions
for AD through multivariate association of their SNPs to the rates of atrophy in brain regions affected by AD.

We analyze data from two phases of the Alzheimer’s Disease Neuroimaging Initiative (Mueller et al.,
2005), ADNI-1 and ADNI-2, which are case-control studies of AD and mild-cognitive impairment. The rates of
atrophy in brain regions affected by AD are so-called endophenotypes: observable traits that reflect disease
progression. By investigating the joint association between the genomic variants and the neuroimaging
endophenotypes, we use the information about disease progression to supervise the selection of single-
nucleotide polymorphisms (SNPs). This multivariate approach to analysis stands in contrast to the commonly-
used mass-univariate approach (for a review, see Nathoo et al., 2017), in which separate regressions are fit
for each SNP, and the disease outcome is predicted by the minor allele counts. Simultaneous analysis of
association is preferred because the reduced residual variation leads to (i) a clearer assessment of the signal
from each SNP, (ii) increased power to detect signal, and (iii) a decreased false-positive rate (Hoggart et al.,
2008). We also employ inverse probability weighting to account for the biased sampling design of the ADNI-1
and ADNI-2 studies, an aspect of analysis that has not been accounted for in many previous imaging genetics
studies (Zhu et al., 2016).

Methods that explicitly account for gene structure have been proposed for analyzing the association
between multiple imaging phenotypes and SNPs in candidate genes (e.g. Wang et al., 2011; Greenlaw
et al., 2017). However, these methods become computationally intractable when analyzing data with tens of
thousands of genotyped variants. To select SNPs associated with disease progression, we instead use sparse
canonical correlation analysis (SCCA) to find a sparse linear combination of SNPs having maximal correlation
with the imaging endophenotypes. Multiple penalty schemes have been proposed to implement the sparse
estimation in SCCA (Parkhomenko et al., 2009; Witten et al., 2009; Lykou and Whittaker, 2010). We employ
an SCCA implementation that estimates the sparse linear combinations by computing sparse approximations
to the left singular vectors of the cross-correlation matrix of the SNP data and the neuroimaging endophe-
notype data (Parkhomenko et al., 2009). Sparsity is introduced through soft-thresholding of the coefficient
estimates (Donoho and Johnstone, 1994), which has been noted (Chalise and Fridley, 2012) to be similar in
implementation to a limiting form of the elastic-net (Zou and Hastie, 2005). A drawback of ¢;-type penalties
is that not all SNPs from an LD block of highly-correlated SNPs that are associated with the outcome will
be selected into the model (Zou and Hastie, 2005). We prefer an elastic-net-like penalty over alternative
implementations with ¢; penalties because it allows selection of all potentially associated SNPs regardless
of the linkage-disequilibrium (LD) structure in the data.

We may think of SNP genotypes as a matrix X and imaging phenotypes as a matrix Y measured on
the same n subjects. Robert and Escoufier (1976) showed that estimating the maximum correlation between
linear combinations of X and Y in canonical correlation analysis is equivalent to estimating the linear
combinations having the maximum RV coefficient, a measure of linear association between the multivariate
datasets (Escoufier, 1973). As the squared correlation coefficient between the first canonical variates, the RV
coefficient is well-suited for testing linear association in our context. We use a permutation test based on
the RV coefficient to assess the association between the initial list of SNPs in X and the phenotypes in Y.
A permutation test with the RV coefficient is preferred over a parametric hypothesis test since the permutation
null distribution is computed under the same conditions as the observed RV coefficient, resulting in a valid
hypothesis test. The outcome of this test is used to determine whether or not to proceed with a second
refinement stage that reduces the number of SNPs by applying SCCA.
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Tuning parameter selection can be difficult when data has low signal (Nathoo et al., 2016) and selection
of the soft-thresholding parameter in SCCA is challenging in our context. Since the number of SNPs exceeds
the sample size and many of the SNPs are expected to be unassociated with the phenotypes, large sample
correlations can arise by chance (Fan et al., 2011). Indeed, the prescribed procedure of selecting the penalty
parameter with highest predicted correlation across cross-validation test sets (Parkhomenko et al., 2009)
results in more than 98% of the SNPs remaining in the model. A prediction criterion for choosing the
penalty term may contribute to the lack of variable selection, allowing redundant variables into the model
(Leng et al., 2006). When the same tuning parameter is used for variable selection and shrinkage, redundant
variables tend to be selected to compensate for overshrinkage of coefficient estimates and losses in predictive
ability (Radchenko and James, 2008). In our case, there is effectively no variable selection and little insight is
gained by allowing for sparsity in the solution. To circumvent the lack of variable selection from SCCA, we fix
the tuning parameter to select about 10% of the SNPs (Wu et al., 2009) and then use resampling to determine
the relative importance of each SNP to the association with neuroimaging endophenotypes. Instead of using
the prediction-optimal penalty term, we fixed the soft-thresholding parameter for the SNPs to achieve variable
selection based on the rationale that no more than about 7500 SNPs, or approximately 10%, are expected to
be associated with the phenotypes. This choice is guided by prior experience in genetic association studies,
where the majority of genetic variants have no effect on the phenotypes, or an effect that is indistinguishable
from zero (Carbonetto and Stephens, 2012).

The organization of the manuscript is as follows. The Materials and Methods section describes the ADNI
data, the data processing procedures, and the methods applied for discovery, refinement, and validation. The
Results section presents the results of the analyses. The Discussion section notes challenges and successes
of the analysis, including considerations for modelling continuous phenotype data under a case-control
sampling design, and provides interpretation of the results.

2 Materials and methods

2.1 Materials

Figure 1 illustrates the data processing steps required to compute the quantities that are analyzed from the
raw data: adjusted minor allele counts of SNPs in the Alzgene linkage regions for the genomic data, and
adjusted predicted rates of change at 56 brain regions of interest (ROIs) from MRISs for the neuroimaging data.
The following subsections detail the data processing steps required to obtain the analysis and validation
datasets.

2.1.1 ADNI

Data used in the preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) database (adni.loni.usc.edu). The primary goal of ADNI has been to test whether serial
magnetic resonance imaging (MRI), positron emission tomography (PET), other biological markers, and
clinical and neuropsychological assessment can be combined to measure the progression of mild cognitive
impairment (MCI) and early Alzheimer’s disease (AD). Patients with MCI have a subjective memory concern
but no significant cognitive impairment, while patients with early Alzheimer’s disease have experienced
memory loss. The first phase of ADNI, ADNI-1, aimed to enroll approximately 800 study subjects, aged
55-90, of which 200 were cognitively normal (CN), 200 had mild Alzheimer’s disease (AD), and 400 had
mild cognitive impairment (MCI) (ADNI Procedures Manual, 2006, p. 3). The CN subjects were roughly age-
matched to the MCI and AD subjects. Subjects were assigned to a group following inclusion and exclusion
criteria based on clinical and cognitive tests. Mild AD subjects had mini-mental state examination (MMSE)
scores from 20-26 inclusive, clinical dementia rating (CDR) of 0.5 or 1.0, and met the National Institute of
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Figure 1: Flow chart of the steps to process the raw genomic and neuroimaging data into the analysis and validation datasets.
The target quantities, minor allele counts at SNPs in Alzgene linkage regions for the genomic data and predicted rates of
change at brain regions of interest for the neuroimaging data, are computed. Then, both sets of targets quantities are adjusted
for potentially confounding variables to obtain the data for analysis (ADNI-1) or validation (ADNI-2).

Neurological and Communicative Disorders and Stroke and the Alzheimer’s Disease and Related Disorders
Association (NINCDS/ADRDA) criteria for probable AD. MCI subjects had MMSE scores between 24-30, CDR
of 0.5, a memory complaint, and objective memory loss measured by education adjusted scores on Wechsler
Memory Scale Logical Memory II (Wechsler, 2009). Cognitively normal participants were non-depressed, with
MMSE scores between 24-30, and did not fit the criteria for the MCI or mild AD groups (ADNI Procedures
Manual, 2006, p. 3—4). The study subjects were enrolled from 50 sites in the US and Canada and were required
to commit to at least 2 years of follow up MRI.

ADNI-2 was a subsequent phase of ADNI that involved enrollment of new subject cohorts, as well as
continued follow-up of subjects enrolled in earlier phases. ADNI-2 enrolled a new cohort of subjects among
which 190 subjects were cognitively normal, 181 subjects had early MCI, 164 subjects had MCI, and 148
subjects had mild AD.

The ADNI-1 cohort was used in our initial analysis. To validate the findings of the initial analysis, a subset
of the ADNI-2 cohort was used that included new subjects in the same disease categories (CN, MCI and AD)
as the subjects in ADNI-1.

2.1.2 Imaging data

The neuroimaging phenotypes analyzed are predicted rates of change in cortical thickness and volumetric
measurements in brain regions obtained from magnetic resonance imaging (MRI) scans. ADNI subjects had
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1.5T MRI scans at either 6 or 12 month intervals during the 2- to 3-year follow-up period of the study and
we chose to analyse the longitudinal information on cortical thickness and regional volumes. While other
studies have compared the different study groups using imaging information from baseline (Shen et al., 2010;
Meda et al., 2012), the longitudinal information provides insight into the different rates of brain deterioration
experienced by people with negligible memory loss compared to those with more acute memory difficulties
and Alzheimer’s disease.

2.1.2.1 Segmentation

Segmentation is the process of identifying the locations of anatomical structures within an image. In these
data, the MRIs were segmented using Freesurfer (Fischl, 2012) software, identifying the locations of regions
of interest such as the hippocampus, cerebellum and ventricles. For each hemisphere, the 28 volumetric
and cortical thickness measurements used for analysis by Shen et al. (2010) were obtained via automated
parcellation of the segmented images in Freesurfer. Cortical thickness (thickness of gray matter) and volumes
of the regions of interest become increasingly atrophied as disease progresses, so we expect increased rates
of atrophy in participants with more memory concerns (the MCI and AD subjects) compared to the cognitively
normal subjects.

2.1.2.2 Predicting rates of change

Linear mixed effect models, given in Equation 1, were used to predict the rates of change in each brain region
of interest (ROI). Brief descriptions of the regions of interest are given in Appendix. A separate mixed model
was fit for each ROI, with random effects for subject-specific rates of change and fixed effects for average
rates of change within diagnostic subgroups. The response variable Y;; is a continuous measurement of
the cortical thickness or volume of a brain region of interest. In the specification of the model, fixed-effects
terms are denoted by 8, while random-effect terms are denoted by y. The covariates are (i) t, the time of
the follow-up visit at which the scan was conducted, with t € 0, 6, 12, 18, 24 months; (ii) MCI, a dummy
variable equal to 1 if subject i has mild cognitive impairment, and equal to 0 otherwise; and (iii) AD, a dummy
variable equal to 1 if subject i has Alzheimer’s disease, and equal to 1 otherwise. The ROI’s are indexed

by j:
Yije = Boj + B1jMCI + B;AD + Bsjt + B4 MCI x t + B5;AD X t + y14j + Yaijt + Eije o))

The predicted rate of change over the study period for subject i at ROI j is the sum of the disease-specific
estimated rate of change and the subject-specific predicted rate of change [?3 ;i + [34]~M CI + [3 5;AD + ¥5;;. The
Ime4 package (Bates et al., 2015) was used to fit the mixed effects model in R, and the conditional mode was
used to predict the random effect y,;. The normality of the predicted, subject-specific, random effects was
assessed by examining the Q-Q plots of the predictions at each ROI. The assumption of normality appeared
to be reasonable for all ROIs.

Figure 2 is a heatmap of the predicted rates of change, adjusted for potential confounding variables in
the sample, as discussed next. The heatmap illustrates how rates of change are more negative in subjects
with more advanced disease, indicating that the thickness of gray matter and the volumes of brain regions
of interest are shrinking more. Decreases in cortical thickness are more pronounced for subjects with AD (i.e.
their rates of changes are more negative for various cortical thickness measures). Similarly, the ventricles,
cavities in the brain filled with cerebrospinal fluid, have a more positive rate of change for subjects with more
advanced disease. As brain atrophy progresses, these cavities expand.

2.1.3 Genomic data

The ADNI-1 subjects were genotyped with the Illumina Human610-Quad BeadChip and the ADNI-2 subjects
were genotyped with the Illumina HumanOmniExpress BeadChip, both of which interrogate SNPs. All
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Figure 2: Heatmap of the neuroimaging phenotypes, clustered by similarity among ROIs and subjects. Each row corresponds
to a subject in the sample and each column corresponds to one of the 56 ROIs. The rows are annotated by the disease group

of the subject. The adjusted, predicted rates of change are shown for each region, where blue values indicate decreases in the
volume of thickness in the brain region, and orange values indicate increases in the volume of the brain region. Values for the
ventricles clustered on the far right, have an inverted relationships compared to the other ROIs since the ventricles are cavities
in the brain which expand as brain atrophy progresses. The thickness of gray matter, by contrast, decreases with atrophy.

genotyping information was downloaded from the LONI Image Data Archive (Laboratory of Neuroimaging,
2015). Pre-packaged PLINK (Purcell et al., 2007) files included genotyping information for 757 of the 818 ADNI-
1 subjects. Genotyping information for 793 of the ADNI-2 subjects were converted from CSV files to PLINK
binary files using a publicly-available conversion script (Hibar, 2014). The Human610-Quad BeadChip and
HumanOmniExpress BeadChip interrogated 620,901 and 730,525 SNPs respectively. APOE was genotyped
separately at study screening from DNA extracted from a blood sample.

2.1.3.1 Inclusion criteria

Subjects were included if their genotyping data were available, if they had a baseline MRI scan, and they had
at least one additional follow-up baseline scan. Of the 757 ADNI-1 subjects and 793 ADNI-2 subjects with SNP
data available, 696 and 583 had both a baseline scan and at least one additional follow-up scan, respectively.
Genomic quality control procedures outlined below in the Genomic quality control section were also applied,
widening the exclusion criteria, to obtain a more homogeneous sample.

2.1.3.2 Genomic quality control
Genomic quality control was performed with the freely-available software package PLINK. Thresholds
for SNP and subject exclusion were as defined in Shen et al. (2010), except that we required a more
conservative genotyping call rate for SNPs, as in Ge et al. (2012). Quality control was applied in three separate
phases:
— Phasel

1. Exclude SNPs with genotyping call rate < 95%
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2. Restrict sample to subjects with self-reported non-Hispanic Caucasian ethnicity and ‘white’ race.
— Phase?2
1. Exclude SNPs with minor allele frequency (MAF) < 5%, Hardy-Weinberg equilibrium (HWE)

p <107°.
2. Exclude subjects based on tests for multivariate outliers and tests of relationship and gender using
the genotyping data.
- Phase3

1. Exclude SNPs from sex chromosomes.
Details of the genomic quality control procedures that were applied may be found in Szefer (2014).

2.1.3.3 Genomic imputation

Imputation serves two key roles in the analysis: to preserve the sample size for the multivariate analysis by
replacing sporadically missing genotypes with imputed ones, and to impute SNPs not interrogated on the
ADNI-=2 chip that are interrogated on the ADNI-1 chip. Best-guess SNP genotypes were imputed in the ADNI-1
and ADNI-2 sample using the HapMap3 panel with NCBI build 36/hg18 using IMPUTE2 (Marchini and Howie,
2010), based on the imputation protocol in the IMPUTE2: 1000 Genomes Imputation Cookbook (Luan et al.,
2014). Haplotypes were phased with SHAPEIT (Delaneau et al., 2013), and PLINK and SHAPEIT/IMPUTE2
file formats were converted with GTOOL (Freeman, 2007-2012). Out of the 503,450 SNPs that passed quality
control in the ADNI-1 sample, sporadically missing genotypes were imputed at the 459,517 SNPs that were also
in the reference panel. Out of the 574,730 SNPs that passed quality control in the ADNI-2 sample, sporadically
missing genotypes were imputed at the 270,074 SNPs that were also on the ADNI-1 chip and in the reference
panel. The remaining 189,443 SNPs that were not genotyped in the ADNI-2 sample, but were in both the
ADNI-1 sample and the reference panel, were imputed into the sample. The genotyping rate in the imputed
data for the ADNI-2 sample was 98.2%, prior to filtering out SNPs with an IMPUTE2 info metric < 0.5. The
IMPUTE2 metric measures the reliability of imputed genotypes for a SNP, and takes a value of 1 when there is
no genotype uncertainty in the sample. When the metric is <0.5, the sample mean of the posterior variance
of imputed genotypes is at least half the variance that would be expected if alleles were sampled at random
(Marchini and Howie, 2010).

The quality of the imputation for a SNP is reported based on the IMPUTE2 certainty measure, which is
the average posterior probability of the best-guess genotypes in the sample. In the ADNI-1 data, the average
certainty was 100% for all SNPs in the Alzgene linkage regions. In the ADNI-2 data, the certainties ranged
from 69.1% to 100%, but 98.4% of the 31,301 imputed SNPs in the Alzgene linkage regions (defined below) had
certainties of 90% or more. Due to the scale of the analysis, the imputed genotypes were treated as known.
Ignoring genotype uncertainty is expected to lead to underestimates of the variance in the analysis of the
ADNI-2 but not the ADNI-1 data.

2.1.3.4 Alzgene linkage regions

To focus the analysis on regions that are likely to contain causal genetic variation, SNPs were included in the
analysis if they fell in the linkage regions reported by approximate physical position on the Alzgene website
(Bertram et al., 2007; Biomedical Research Forum, 2013). These linkage regions have been identified in meta-
analyses of family-based studies of Alzheimer’s disease (Hamshere et al., 2007; Butler et al., 2009). A total
of 75,845 SNPs from nine chromosomes were included in the analysis from the ADNI-1 sample. Table 1 shows
the number of SNPs in the ADNI-1 sample that fall in each linkage region. After filtering SNPs that had an
IMPUTE2 info metric <0.5, 75,818 SNPs remained in the ADNI-2 sample.

2.1.4 Adjustments for confounding

Covariate information cannot be explicitly included in SCCA, so both the imaging and genomic data
are adjusted for confounding variables in advance. Potential confounders in the analysis are population
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Table 1: The chromosome, band, and location on the Mb scale of the linkage regions of interest.

Chromosome Band Mb N
1 p31.1-g31.1 83-185 12,005
3 ql12.3-g25.31 103-173 10,689
6 p21.1-q15 43-91 6785
7 pter-q21.11 0-78 13,292
8 p22-p21.1 13-28 4149
9 p22.3-p13.3 20-35 2868
9 gq21.31-g32 80-100 3483
10 pl4-q24 10-100 15,274
17 q24.3-qter 67-79 2319
19 p13.3-gter 8-54 4981

N denotes the number of SNPs in the ADNI-1 data that fall in each linkage region.

stratification and APOE genotype. Population stratification is the phenomenon of systematic differences in
allele frequencies in a subpopulation arising because of differences in ancestry, while the €4 allele of APOE
is the largest known genetic risk factor for Alzheimer’s disease (Corder et al., 1993). Since true population
structure is not observed, we adjust for it in the data using the top ten principal coordinates from multi-
dimensional scaling. The top 10 principal coordinates account for 2.6% of the variability in the genotype data.
We also restrict the analysis to the white non-Hispanic subjects and remove multivariate outliers identified
in the top two principal coordinates as noted in the Genomic quality control section. We adjust for APOE
genotype as a precautionary measure, since it can account for the population stratification in the data, over
and above the principal components or principal coordinates (Lucotte et al., 1997).

Ten principal coordinates for each of the ADNI-1 and ADNI-2 datasets were obtained using ten-
dimensional multi-dimensional scaling on the pairwise IBS distance matrix, computed with PLINK from
121,795 and 118,012 approximately uncorrelated SNPs from the SNPs that passed quality control filters.
The SNP genotypes used to estimate the principal coordinates were from the complete imputed data. The
number of principal coordinate dimensions was chosen to follow a similar protocol for adjustment for
population stratification using principal components, in which ten axes of variation are suggested (Price
et al., 2006).

The data for analysis were obtained by adjusting the minor allele counts and predicted rates of change of
the brain ROIs for the ten principal coordinates, as well as for dummy variables for APOE genotype, using
weighted ordinary least squares regression. The weights account for certain diagnostic subgroups being
over-represented in the sample relative to their population frequency. Details on the computation of the
weights are presented in the next section. The residuals from each regression comprised the genomic (X)
and neuroimaging (Y) features analyzed.

2.2 Methods

Figure 3 illustrates each step in the data analysis process, from deriving inverse probability weights to
account for the biased sampling in ADNI-1 and ADNI-2, to discovering, refining and validating asso-
ciation between the adjusted minor allele counts at SNPs, which we call the genotypes, and the ad-
justed predicted rates of change at the brain regions of interest, which we call the neuroimaging pheno-

types.

2.2.1 Inverse probability weights

To account for the biased sampling in the ADNI-1 and ADNI-2 case-control studies, we estimated inverse
probability weights for each subject (Horvitz and Thompson, 1952). As subjects with early MCI were excluded
from ADNI-1, we defined the target population to be non-Hispanic, white Americans and Canadians aged
55-90 years who are cognitively normal or have been diagnosed with late MCI or Alzheimer’s disease.
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and the imaging endophenotypes, the
columns of Y. Use the weight vector w.

Weighted RV test
Conduct a permutation test for association
between X and Y by permuting the rows of
Y (the subjects) and the corresponding
weights. Use P = 1000 permutation
replicates to obtain the permutation null

Refinement
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ADNI-2

Validation

If association discovered, reduce set
of SNPs to investigate.

]

SCCA

Use sparse canonical correlation analysis
(SCCA) with fixed penalty terms to compute
sparse linear combinations of the columns
of X and Y. The columns of X and Y are
standardized to have weighted mean 0 and
unit weighted variance using weight vector
w.

Weighted RV test

Conduct a permutation test between X', .
and Y* (the “top hit” SNP set), and X', yocoy
and Y* (the “priority” SNP set) by permuting
the rows of Y* and the corresponding
weights in the weight vector w*.

[

|

Interpret RV statistic

Decompose the RV statistic into
SNP-specific components to identify SNPs
with relatively large contributions to the test
statistic.

distribution of the RV statistic. Resampling
Compute variable importance probabilities
(VIPs) by resampling the subjects, with
replacement and within disease group, and
applying SCCA. Use B = 10,000 resampling
replicates. The VIP of a SNP is the
proportion of bootstrap samples in which the
SNP is selected by SCCA.

I

Gene-Set Analysis
Look for overrepresentation of association
with cognitive decline in biologically related
sets of genes using GSA-SNP, a gene-set
analysis method. Use the variable exclusion
probability VEP = 1-VIP as a p-value-like
‘summary statistic of association between a
SNP and the imaging endophenotypes.

I

If association s over-represented in

SNPs from specific sets of biologically

related genes, investigate these sets;

otherwise, use importance information
to refine SNPs.

Refinement

For validation, reduce the size of the sets of
SNPs by only keeping SNPS with
importance probabilities = 50% (priority set)
and = 90% (“top-hit” set)

Figure 3: Flow chart of the analysis steps. The first row of column headings indicate the data sample used in the analysis
step. The second row of column headings denote the step in the analysis beginning with computing weights, discovering
association, refining the set of SNPs to investigate, and ending with validation of association with refined sets of SNPs and
the neuroimaging phenotypes.

Table 2: The number of subjects, np, from each disease group D that were analyzed in each study.

Sample nen nmc Npp n
ADNI-1 179 296 157 632
ADNI-2 116 104 45 265

The total number of subjects analyzed in each study is denoted by n.

The Alzheimer’s Association reports that 5.2 million Americans had Alzheimer’s disease in 2014
(Alzheimer’s Association, 2014). Additionally, data from the US census in 2010 (US Census Bureau, 2011)
indicate that approximately 23% of the American population is over the age of 55 and that the total
population is 308 million people. Based on this information, the approximate proportion of the American
population aged 55-90 years with Alzheimer’s disease is pap = 7.5%, rounded to the nearest half percent.
This calculation assumes that individuals aged 90 or more years and patients diagnosed with early MCI
represent negligible proportions of the population. We used a late MCI prevalence estimate of pyc = 5%
based on an urban study of people aged 65+ in New York (Manly et al., 2005), and assumed that the remaining
pen = 87.5% of the population of interest is cognitively normal. A breakdown of the number of subjects used
in the analysis by study is given in Table 2.

The inverse probability weights for each disease group, wpx for ADNI-1 and WBX for ADNI-2, are computed
as the assumed prevalence of the disease in the target population divided by the number of subjects
sampled from the disease group. In the ADNI-1 sample, the MCI subjects have wyc; = 0.11, AD subjects have
wap = 0.30 and CN subjects have wey = 3.09, where the weights have been standardized to sum to the ADNI-
1 sample size of n = 632. In the ADNI-2 sample, the MCI subjects have wy; = 0.13, the AD subjects have
Wjp = 0.44 and the CN subjects have wgy = 2.00, where the weights have been standardized to sum to the
ADNI-2 sample size of n = 265.
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2.2.2 Discovery

2.2.2.1 Weighted RV test

We tested the analysis dataset, ADNI-1, for linear association between the genomic data and the neuroimaging
data. The RV coefficient (Escoufier, 1973) is a multivariate generalization of Pearson’s r> and quantifies the
association between the columns of X, or the genotypes, and the columns of Y, the imaging endophenotypes.
The coefficient can be defined in terms of the sample covariance matrices Sxx and Syy, and the cross
covariance matrix Sxy (Omelka and Hudecova, 2013), where the (k, [)th element of Syy is defined as:

Sx,v, = % > i — x)ya — 70, @)

i=1

where x; = % Y xiand y = % >, vii- The (k, Dth elements of Sxx and Syy are defined similarly. The
RV coefficient is then written as:

Sk 1Sk,

RV =
\/Zk 2 S)Z(kxl 2k 2 S%/-kyl

and takes values between 0 and 1. When RV = 0, there is no linear association between the columns of X and
Y, and higher values of RV are indicative of more association.

As the test statistic, we used a weighted version of the RV coefficient (Omelka and Hudecova, 2013)
that calculates the sample variances and cross covariances accounting for the oversampling of AD and MCI
patients in the study. A permutation test with P = 10,000 permutations was used to assess the evidence
for association between X and Y, where the rows of Y and their associated inverse probability weights were
randomly permuted.

2.2.3 Refinement

2.2.3.1 SCCA and resampling

Sparse canonical correlation analysis (SCCA; Parkhomenko et al., 2009) is a multivariate method for estimat-
ing maximally correlated sparse linear combinations of the columns of two multivariate datasets collected
on the same n subjects, X and Y. To obtain a sparse linear combination of the SNP genotypes that is most
associated with a non-sparse linear combination of the imaging phenotypes, we used SCCA, a penalized
version of canonical correlation analysis. Sparse linear combinations contain some coefficients which are
zero; e.g. in penalized regression analysis, the predicted value is potentially a sparse linear combination of
the predictors. SCCA operates on the cross-correlation matrix, which is equivalent to the cross-covariance
matrix Syy as defined in Equation 2 when the columns of X and Y are standardized. SCCA estimates sparse
linear combinations aX and bY that have maximal correlation, where a and b are column vectors of length p
and g respectively. By operating on the cross-correlation matrix, the distance metric used is Euclidean, which
is appropriate since both the columns of X and Y are treated as continuous in the analysis; other distance
metrics for the genetic data are possible, however (Chang, 2017).

We initially applied SCCA to identify a sparse set of SNPs associated with the imaging endophenotypes.
Ten-fold cross validation was used to select the penalty parameter for the SNPs, A, for the SCCA. A search grid
for A, was defined as {0,104, . . ., 10~} with the values in the search grid being incremented by 0.0005. At the
i" element in the search grid, Ay, i» the sparse canonical-correlation coefficients, a; ; for the SNPs and b; ; for
the endophenotypes, were computed in training set j. The fitted coefficients from the training sets were then
used to compute the predicted sample-correlation coefficient in each test set: #; ; = Corr(a; ;X test;» bi Ytest,)-
The SNP penalty parameter A, was chosen as the element in the search grid that maximized the sum of
the predicted sample-correlation coefficients over the ten test sets. Under this cross-validation scheme,
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variable selection of the SNPs was minimal with more than 98% of the SNPs remaining in the active set.
Ruling out fewer than 2% of the SNPs in the Alzgene linkage regions is insufficient refinement for our
analysis.

Instead, we chose to incorporate bootstrap resampling to estimate the relative importance of each SNP
in the multivariate association. This approach of “bootstrap enhancement” has been applied previously in
neuroimaging studies (Bunea et al., 2011), to guide variable selection with the elastic-net and the lasso.
We obtained B = 100,000 bootstrap samples by sampling subjects with replacement within each disease
category. The weighted cross-correlation matrix S%) was computed for each bootstrap sample b, and a sparse
linear combination of the genomic markers was estimated, using the SCCA penalty parameter A;, = 0.012 for
soft-thresholding the SNP coefficients. A value of A;, = 0.012 was chosen so that approximately 10% of the
SNPs had non-zero estimated coefficients. If B, = (811, B2, - - - » Bpp) denotes the coefficient vector of the
sparse linear combination of the p SNPs, from bootstrap sample b, then the variable importance probability
for SNP k (VIP;) is defined as the proportion of bootstrap samples in which SNP k (k = 1, . . ., p) has a nonzero
coefficient, or is “selected”:

VIP, =

B
% S I(Bey # 0), where II(A) = 1 if condition A holds and 0 otherwise
b=1

2.2.3.2 Gene-set analysis

To reduce the initial list of 75,845 SNPs to a shorter list for validation and to gain insight into the biologically
related sets of genes associated with cognitive decline, we applied a gene-set analysis, as implemented in
GSA-SNP (Nam et al., 2010). GSA-SNP combines the evidence for SNP-specific associations into gene-level
summaries and assesses the pattern of association for genes in a given set, such as a functional pathway,
relative to genes outside the set. We used variable exclusion probabilities, VEP = 1 — VIP, to quantify the
SNP-specific evidence of association in lieu of p-values, and the second smallest VEP for SNPs in a gene as
the gene-level summary statistic. Our choice of the second smallest was based on the recommendation of Nam
et al. (2010) to use the second smallest rather than the smallest p-value as the gene-level summary statistic
to protect against the spuriously high association signal that may be introduced by longer genes. The re-
standardized version of GSA-SNP with the maxmean statistic (Efron and Tibshirani, 2007) was applied, with
default gene padding of 20,000 base pairs and Gene Ontology gene sets. We took P = 100 samples under the
permutation null hypothesis of no association to serve as the empirical reference distribution for VEPs from
ADNI-1. To ensure inclusive selection of SNPs, candidate gene sets were identified by Benjamini-Hochberg
corrected p-values with a liberal threshold of 0.8 for the false discovery rate.

2.2.3.3 Reduced sets of SNPs

Two subsets of the SNPs in the Alzgene linkage regions, with estimated importance probabilities >50% and
90%, were used for validation in the ADNI-2 sample. The cut-off values were chosen to reflect a relatively
liberal and stringent criterion, respectively. The set of SNPs with VIP > 50% is called the “priority set”, while
the SNPs with VIP > 90% is called the “top-hit” set.

2.2.4 Validation

We assessed the evidence for linear association between the top-hit and priority SNPs and all the imaging
phenotypes in the ADNI-2 validation sample using the RV-test with 1000 permutation replicates.

2.2.4.1 Interpretation of RV statistic

To further understand the observed association between SNPs in the priority set and endophenotypes in the
ADNI-2 validation data, we decomposed the RV test statistic into its SNP-specific components. Details on how
the SNP-specific contributions are calculated are described in the Results section.
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Figure 4: Plot of the —log10(VEP) of the SNPs in each of the Alzgene linkage regions. The dashed and dotted reference lines
indicate the VIP = 0.5 and VIP = 0.9 cut-offs used to define the priority and top-hit sets of SNPs, respectively.

3 Results

3.1 Discovery

The RV-test in the ADNI-1 data rejected the null hypothesis of no linear association between X and Y. The
observed RV coefficient was RV = 0.079, and the permutation test p-value was p < 0.001.

3.2 Refinement

The resampling procedure coupled with SCCA in the ADNI-1 data produces variable importance probabilities
(VIPs) for each SNP in the Alzgene linkage regions. Figure 4 is a Manhattan-like plot of the variable exclusion
probabilities, VEP = 1 — VIP, plotted on the —log;o scale, such that SNPs with VIP > 0.9, have values of
—logio(VEP) > 1. The dashed and dotted reference lines indicate the VIP = 0.5 and VIP = 0.9 cut-offs used
to identify the priority and top-hit sets of SNPs, respectively.

1694 SNPs had VIP > 0.5, a set of reduced SNPs we call the priority set. As expected, the priority SNPs,
Xreduced> Were associated with the endophenotypes in the ADNI-1 training data, based on a permutation RV
test (RV = 0.23). Using the stringent cut-off of VIP > 0.9 for SNP selection, 22 SNPs were included in the
“top-hit” set. There was no evidence of enrichment in biological pathways based on results from GSA-SNP.

Figure 4 shows that very few SNPs had VIP > 0.9, as evidenced by the sparse selection of SNPs with
—log1o(VEP) > 1in the plot. While the linkage region on chromosome 10 is the largest, it also has the most
SNPs with VIP > 0.9 and its SNPs have relatively high inclusion probabilities across the entire linkage region,
in contrast to the linkage region from chromosome 6, for example. The smaller linkage regions p22.3-p-13.3
on chromosome 9 and q24.3-qter on chromosome 17 have relatively low inclusion probabilities, overall.

3.3 Validation

Let Xjeqyceq @nd Xpop be the ADNI-2 validation data at the priority and top-hit sets of SNPs, respectively, and
let Y* be the validation endophenotype data. We were able to validate our finding of association between

the priority set of SNPs and the endophenotypes in the ADNI-2 data. The RV test of association between
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Figure 5: SNP-specific scores at the priority set SNPs in the ADNI-2 validation data, with scores defined as described in text.
SNPs with higher score contribute relatively more to the RV coefficient between X, .., and Y*. The dashed horizontal
reference line corresponds to a score of 1, or the average score for a SNP in the priority set in the ADNI-2 validation data.

X;oquceq and Y™ had an observed test statistic of RVps = 0.073, and a permutation p-value of p = 0.0021.
However, there was no evidence of association between the top-hit set of SNPs, Xfop, and the endophenotypes
(p = 0.79).

Figure 5 depicts the contribution of each SNP as a score, normalized to have mean 1 over all the SNPs in
the priority set, to the RV statistic. Before normalization, the contribution for SNP i in the priority set is a sum,

}‘?:1 S)Z(:educmy;, over the g = 56 endophenotypes in the cross-correlation matrix, S)Z(:educed y+» from the ADNI-2
validation data. Each point in the plot therefore represents the relative contribution of a given SNP to the RV
coefficient, summed over the 56 endophenotypes. SNPs with higher relative contributions can be viewed as
the SNPs driving the association found in the RV test.

Table 3 summarizes information about the top 20 scoring SNPs in the priority set, with gene annotations
obtained from SNPNexus (Ullah et al., 2012). SNPNexus was queried using assembly NCBI36/hg18, the UCSC
genome browser (Speir et al., 2015) and AceView (Thierry-Mieg and Thierry-Mieg, 2006). The resulting gene
symbols for annotated SNPs are reported in the Genes column of the table. We used the squared Pearson
correlation coefficient, r?, to measure the linkage disequilibrium (LD) between SNPs. Values of r* were
computed in R with the snpMatrix package (Clayton and Leung, 2007) using the N = 116 cognitively normal
subjects in the ADNI-2 data. LD blocks within the priority set are indicated by numbers in the first column of

Table 3, and are defined such that all SNPs within a block have pairwise r* greater than 0.7.

4 Discussion

In this report, we have taken a targeted approach to genetic association mapping of Alzheimer’s disease
by focusing on SNPs in Alzheimer’s disease linkage regions and on imaging endophenotypes for brain
regions affected by Alzheimer’s disease. We discovered association between SNPs in the linkage regions
and the imaging endophenotypes, refined the set of SNPs by selecting those with high variable inclusion
probabilities, and validated the refined set in an independent dataset. Here, we discuss our observations
about the benefits and pitfalls of applying data-integration methods such as sparse canonical correlation
analysis and the RV test in a high-dimensional data setting with low signal. We also discuss potential links
between Alzheimer’s disease and genes in the priority set that were ranked highly in the validation data.
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Table 3: The 20 SNPs with highest SNPs scores in the ADNI-2 dataset. Gene annotation obtained from SNPNexus queried with
the UCSC genome browser and AceView. LD blocks comprise blocks of SNPs where all SNPs are in LD with R? > 0.7.

LD block SNP score” CHR BP Band VIP Genes
rs17328231 5.96 1 95791119 1p31.1-q31.1 0.54
rs6439445 4.24 3 135119256 3g912.3-q25.31 0.72
rs16856619 4.08 3 146493435 3g12.3-g25.31 0.58
rs345015 5.70 3 146667792 3g912.3-g25.31 0.62
1 rs634364 4.18 6 53575551 6p21.1-q15 0.57 AK126334, BC050580,
AK125128, GCLC
1 rs525248 4.18 6 53576038 6p21.1-q15 0.57 AK126334,BC050580,
AK125128
2 rs2148885 3.82 10 21413099 10p14-q24 0.57 NEBL
2 rs11012530 5.06 10 21444536 10p14-q24 0.58 NEBL
3 rs7897675 5.06 10 38448572 10p14-q24 0.55 ZNF37A
3 rs17588142 5.06 10 38467714 10p14-q24 0.55
3 rs7080636 5.06 10 38659180 10p14-q24 0.50
3 rs34350622 5.17 10 41848403 10p14-q24 0.51
rs12255371 5.15 10 41970728 10p14-q24 0.51
rs7088870 3.91 10 73723319 10p14-q24 0.59
rs7094314 3.83 10 82321942 10p14-q24 0.55 SH2D4B
4 rs7904557 3.77 10 82326243 10p14-q24 0.56 SH2D4B
1s12768174 5.82 10 84889167 10p14-q24 0.74
rs10887866 4.48 10 90661730 10p14-q24 0.56 STAMBPL1, KIAA1373,
STAMBPL1andFAS
rs4646957 4.26 10 94219892 10p14-q24 0.54 IDE
rs1235382 4.13 19 49711347 19p13.3-qter 0.89 CEACAM20

*SNP-specific score indicating relative contribution to the RV statistic, as defined in text.

Initially, SCCA was used to find a subset of the SNPs in the linkage regions associated with the en-
dophenotypes, but very little variable selection was achieved. SCCA uses a prediction criterion to identify the
optimal soft-thresholding parameters for the sparse canonical variables, but using prediction error to select
the penalty term includes irrelevant variables in the active set (Leng et al., 2006). In addition, the prediction-
optimal value of the penalty term does not coincide with model selection consistency (Meinshausen and
Biihlmann, 2006). Instead, we fixed the soft-thresholding parameter for the SNPs to achieve variable selection
based on the rationale that no more than 7500 SNPs (approximately 10%) are expected to be associated
with the phenotypes. We applied bootstrapped-enhanced SCCA, a procedure analogous to the bootstrapped-
enhanced elastic net proposed by Bunea et al. (2011) for imaging applications. To obtain a reduced set of
SNPs to carry forward for validation, we thresholded the variable inclusion probabilities at 50%, as suggested
by these authors, and at 90%. Bootstrapping to aid variable selection has been shown to be consistent in
high-dimensional settings under some assumptions (Meinshausen and Biihlmann, 2010), and can improve
recovery of the true model in regularized regression (Bach, 2008).

In a low-signal context, we do not necessarily expect to replicate association of the 22 “top-hit" SNPs in
the validation data. For a fixed sample size, as the number of unassociated SNPs increases, the probability
of a truly associated SNP being within the top-ranked SNPs decreases (Zaykin, 2005). By contrast, the more
liberal threshold of VIP > 50% resulted in a larger, “priority” set of 1694 SNPs which could be validated and
was substantially refined from the initial list of 75,845.

The permutation-based RV test of association proved to be a powerful tool in different phases of the
analysis. This nonparametric test was computationally tractable and allowed us to uncover and validate
linear association between the two multivariate datasets, one of them very high-dimensional, in an analysis
setting with a low signal. Despite the evidence for association, the observed RV coefficient at each of the
discovery, refinement and validation stages of the analysis was not large (<0.1), consistent with SNPs having
small association effects. The presence of SNPs with small effects is anticipated, as previous studies have
found no large genetic effects apart from APOE (Ridge et al., 2013), for which we have already adjusted.
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The ADNI studies use a case-control design, in which subjects are sampled conditional on meeting
diagnostic criteria for either being cognitively normal, having late MCI, or having AD. Case-control designs
do not result in a random sample from the population and they cannot be used to make inference about the
population association between SNP genotypes and neuroimaging biomarkers without accounting for the
biased sampling. To account for the biased sampling, we have applied inverse probability weighting in our
analyses.

Investigation of the genes associated with the highest scoring SNPs in the validation data, reported in
Table 3, identified genes previously implicated in AD. On chromosome 6, Glutamate-Cysteine Ligase Catalytic
Subunit or GCLC, a gene annotation of the SNP rs634364, codes the first, rate-limiting enzyme of glutathione
synthesis. Glutathione is an important antioxidant which plays an integrated role in the regulation of cell
life, cell proliferation, and cell death (Pompella et al., 2003). The brain glutathione system is hypothesized to
play a role in the breakdown of proteins in the brain, such as Af peptides (Lasierra-Cirujeda et al., 2013),
and abundance of glutathione decreases with age and in some age-related disease (Liu et al., 2004). On
chromosome 10, the complex locus STAMPBLIandFAS is an annotation of rs10887866 and codes a protein
which plays a central role in programmed cell death (Choi and Benveniste, 2004). Through modulation of
programmed cell death and neuronal atrophy, FAS may play a role in AD (Erten-Lyons et al., 2010). Also on
chromosome 10, the gene insulin degrading enzyme (IDE) contains rs4646957 and codes the enzyme of the
same name. IDE has previously been implicated in the progression Alzheimer’s disease as it degrades the A8
peptides which are the main components in the amyloid plaques on the brains of subjects with Alzheimer’s
disease (Edland et al., 2003). Edland et. al. found that three IDE variants were associated with risk of AD in
subjects without copies of the 4 APOE risk allele, the allele which constitutes the largest genetic risk of AD.

Gene expression from the UCSC RNA-Seq GTEx track was also explored to determine if any of the genes
reported were highly expressed in the brain. On chromosome 10, Zinc Finger Protein 37A (ZNF37A), the gene
containing rs7897675, is most highly expressed in the cerebellum and cerebellar hemisphere of the brain,
regions related to motor function. Nebulette (NEBL), the gene annotation of rs2148885 and rs11012530, is most
highly expressed in the heart, but has next highest gene expression in the brain. In addition, association
fine-mapping under a linkage peak identified NEBL as a candidate gene for vitamin D levels in the blood
(Aslibekyan et al., 2016). Low vitamin D blood levels are associated with accelerated decline in cognitive
function in older adults (Miller et al., 2015).

Ten of the top 20 SNPs in Table 3 did not have associated gene annotations in the UCSC genome browser
or AceView. For these SNPs, flanking genes were queried with ALFRED (Rajeevan et al., 2011) and the UCSC
genome browser, since SNPs may “tag” causal variants in nearby genes. Genes were considered to be flanking
if they were within 1 Mb of the SNPs in the priority set, though many of the flanking genes reported are much
closer to the priority SNPs. On chromosome 3, 15643944 is approximately 22 kb proximal to the flanking
gene RAB6B. RAB6B is the brain-specific isoform of RAB6 (Wanschers et al., 2007), a family of proteins
which impair the processing of the amyloid precursor protein involved in the development of AD (Thyrock
et al., 2013). On chromosome 10, DDIT4 is approximately 17.5 kb proximal to rs7088870. DDIT4 produces the
REDDI1 protein, which enhances stress-dependent neuronal cell death and is involved in dysregulation of the
mammalian target of rapamycin (mTOR) pathway (Maiese, 2014). Dysregulation of mTOR is a hallmark of a
wide variety of brain disorders (Polman et al., 2012), and inhibition of mTOR is associated with AB-peptide-
related synaptic dysfunction in AD (Ma et al., 2010). Another flanking gene to rs7088870 is DNAJB12, which is
approximately 39.2 kb proximal to 1s7088870, and is involved in protein folding. The process of plaque build-
up in AD involves the accumulation of misfolded Af proteins, and DNAJB12 is highly expressed throughout
the brain (Tebbenkamp and Borchelt, 2010). Finally, in addition to being the gene annotation of rs7897674,
ZNF37A is also 15.4 kb proximal to the SNP rs17588142 on chromosome 10.

In summary, this analysis illustrates the application of novel methods for integration of high-dimensional
data with low signal. To focus on regions with increased prior probability of containing deleterious variants,
the analysis was restricted to SNPs within linkage regions for AD. In practice, the same methodology could be
applied to all available data if no linkage regions have previously been identified. However, we recommend
restricting analyses to linkage regions whenever possible to leverage information from prior work. The
objective was to obtain a refined list of SNPs to propose for further investigation. Naive application of SCCA
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did not lead to any refinement, potentially due to the data containing many small effects. Instead, we were
able to obtain refinement through bootstrapped-enhanced SCCA. Throughout, the analysis benefited from the
RV test to assess the evidence of linear association between two multivariate datasets: the high-dimensional
genomic data, and the multi-dimensional neuroimaging data. RV tests of SNPs selected based on variable
importance probabilities identified a priority set of 1694 SNPs in the ADNI-1 data that was associated with the
rates of changes in the brain regions of interest in the ADNI-2 validation set. Our final results are encouraging,
in that genes corresponding to SNPs with the highest contributions to the RV coefficient in the validation
data have previously been implicated or hypothesized to be implicated in AD, including GCLC, IDE, and
STAMBPIandFAS. We hypothesize that the effect sizes of the 1694 SNPs in the priority set are likely small,
but further investigation within this set may advance understanding of the missing heritability in late-onset
Alzheimer’s disease.
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Appendix

Table 1A: Imaging phenotypes defined as volumetric or cortical thickness measures of 28 x 2 = 56 regions of interest (ROls)
from automated Freesurfer parcellations.

ID Measurement Region of interest
AmygVol Volume Amygdala

CerebCtx Volume Cerebral cortex
CerebWM Volume Cerebral white matter
HippVol Volume Hippocampus
InfLatVent Volume Inferior lateral ventricle
LatVent Volume Lateral ventricle

EntCtx Thickness Entorhinal cortex
Fusiform Thickness Fusiform gyrus
InfParietal Thickness Inferior parietal gyrus
InfTemporal Thickness Inferior temporal gyrus

MidTemporal Thickness Middle temporal gyrus
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Table 1A (continued)

ID Measurement Region of interest

Parahipp Thickness Parahippocampal gyrus

PostCing Thickness Posterior cingulate

Postcentral Thickness Postcentral gyrus

Precentral Thickness Precentral gyurs

Precuneus Thickness Precuneus

SupFrontal Thickness Superior frontal gyrus

SupParietal Thickness Superior parietal gyrus

SupTemporal Thickness Superior temporal gyrus

Supramarg Thickness Supramarginal gyrus

TemporalPole Thickness Temporal pole

MeanCing Mean thickness Caudal anterior cingulate, isthmus cingulate, posterior cingulate, and rostral anterior
cingulate

MeanFront Mean thickness Caudal midfrontal, rostral midfrontal, superior frontal, lateral orbitofrontal, and medial
orbitofrontal gyri and frontal pole

MeanLatTemp Mean thickness Inferior temporal, middle temporal, and superior temporal gyri

MeanMedTemp Mean thickness Fusiform, parahippocampal, and lingual gyri, temporal pole and transverse temporal
pole

MeanPar Mean thickness Inferior and superior parietal gyri, supramarginal gyrus, and precuneus

MeanSensMotor ~ Mean thickness Precentral and postcentral gyri

MeanTemp Mean thickness Inferior temporal, middle temporal, superior temporal, fusiform, parahippocampal, and

lingual gyri, temporal pole and transverse temporal pole

Each of the phenotypes in the table corresponds to two phenotypes in the data: one for the left hemisphere and the other for
the right hemisphere.
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