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Abstract:Microbiomes, populations ofmicroscopic organisms, havebeen found tobe related tohumanhealth
and it is expected further investigations will lead to novel perspectives of disease. The data used to analyze
microbiomes is one of the newest types (the result of high-throughput technology) and the means to analyze
these data is still rapidly evolving. One of the distributions that have been introduced into the microbiome
literature, the Dirichlet-Multinomial, has received considerable attention. We extend this distribution’s use
uncover compositional relationships between organisms at a taxonomic level. We apply our new method in
two real microbiome data sets: one from human nasal passages and another from human stool samples.

Keywords: composition; constraints; Dirichlet-Multinomial; evolutionary algorithms; microbiome; model
selection.

1 Introduction
Human microbiomes are populations of microscopic organisms which live on or in a person. These popu-
lations have been found to relate to some diseases, with some illnesses associated with dramatic changes
in the microbiome (Cho and Blaser, 2012). Modern microbiome data is produced from next-generation
sequencing technology, which is itself a challenging, developing area of research. When a biological sample
formicrobiome analysis is collected fromaperson, it does not contain sequences just froma single organism’s
genome, but the genomes of many microscopic organisms, making the analysismetagenomic. Analyzing the
metagenomic signature of amicrobiome is wrought with the challenges of traditional sequencing technology
and compounded by the medley of information created by sequencing many organisms at once. With a
commonly used method, genetic sequences are returned without any indication whether some sequences
even came from the same organisms, let alone from the same species. These unlabelled sequences can be
compared to known sequences to categorize the sequence at higher taxonomic levels, such as the family or
genus. An issue arises in classifying the species, however, as classical (e.g. plant and animal) definitions
of species are inappropriate for bacteria. In light of this problem with the species-level taxa, a substitute
taxonomic level is introduced and used instead to operate at approximately the same level as species. This
so-called Operational Taxonomic Unit (OTU) is defined by sequence similarity.

Processingmicrobiome data results in a long list of sequences for every sample processed. Asmentioned,
these sequences can be aggregated to create a table tallying howmany of eachOTUwas found in each sample.
This OTU table forms the basis of many analyses. One approach is to analyze the relative proportions of
each OTU within the sample. A natural distribution to model proportions is the multinomial distribution, a
generalization of the binomial distribution. Unfortunately, microbiome data exhibit dramatic overdispersion
for such a simple distribution, making any results using just the multinomial questionable. One approach to
handle this overdispersion is through a more flexible variant of the distribution, the Dirichlet-Multinomial
(DM; Mosimann, 1962) distribution. Several uses and extensions to the DM have been introduced in the
microbiome literature for a variety of useful applications. A hypothesis test to see if the data are indeed
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suitably modelled by a DM was previously outlined (La Rosa et al., 2012). The DM has been used in sparse
variable selection (Chen et al., 2013), and been advocated as a realistic means of simulating microbiome
data (Chen et al., 2012). The DM has also been used in clustering algorithms to find structure using finite
mixture models (FMMs; Holmes et al., 2012). A clear advantage of using FMMs of DM is that it can be flexible
for modelling compositions of OTUs in samples. Since this approach can be used to model compositions,
we may be interested in extending the method further not only to analyze compositions but determine
relationships between the OTUs based on those compositions. In particular, we can focus on OTUs that exist
in approximately the same proportions in samples.

To discover these relationships, we take further advantage of the DM in a data-driven approach by
inferring 1) compositions through the model’s existing parameters, and 2) equalities amongst the compo-
sitions by (relative) equalities amongst themodel’s parameters. This shifts the focus of previous applications
of the DM from individual bacteria to the relationships between bacteria by discovering compositional
similarities. We briefly outline the concept of our proposed method with the following scenario. Consider
a DM modelling abundances of various bacteria across various biological samples. We may find that some
species occur in approximately the same proportions as other species, even though the actual abundances
vary between samples. We may then reasonably consider whether these compositional similarities indicate
some relationship between species. This approach would also then have the statistical desirable property of
resulting in a model with fewer free parameters with approximately the same quality of fit.

As mentioned, OTUs which exist in the same proportions may indicate some type of relationship. For
instance, organisms which consume a common food source, sufficiently abundant that competition is not
incited, could grow or maintain the same relative abundances. This could occur with genomically distinct
organisms that are functionally similar in the microbiome. A related possibility is that instead of a common
food source supplying these organisms directly, they supply some (chain of) intermediary organisms, which
in turn, create products that the genomically distinct organisms consume. As a reviewer pointed out, this
could be evidence of some type of mutualism between organisms. In the analysis of the nasal data, we show
that the constraints we find correspond to organisms known to compete opportunistically against each other
in the airways and simultaneously fought by the host immune system. We found this to be consistent with
our goal of devising a statistical approach that reflects real biological phenomena.

To address the problem of finding constraints, we employ an evolutionary algorithm (EA), a procedure
that finds solutions to problems that are “optimal” in some sense by randomly finding slightly “more optimal”
solutions. This process will consider a small collection of pairs of OTUs and consider if they exist in approxi-
mately equivalent proportions. The best candidates pairs are maintained and new pairs are considered until
new pairs are no more optimal than existing pairs. To our knowledge, this will be the first application of the
DM solving this type of problem in amicrobiome context, andwe believe the first introduction of evolutionary
algorithms to themicrobiome literature.Wewill use thismethod to infer relationships betweendifferentOTUs
and compare the results with a previous analysis on that data. We will also apply this method to data at
another taxonomic level, showing a limitation that occurs when OTUs have been agglomerated.

The remainder of the manuscript is outlined as follows. In Section 2 we will discuss the data motivating
this new approach. In Section 3, we will discuss our methodology, beginning with the necessary background
information in Section 3.1, and thenmethoddevelopment in Section 3.2.Wewill thenbriefly apply themethod
to a toy example to illustrate how to make inferences before applying it to the real data sets in the following
sections. We end the manuscript with a discussion of the advantages and limitations of using our method to
make inferences from microbiome data in Section 5.

2 Motivating examples

2.1 Nasal data

The first dataset motivating our methodology is a result of a study from data collected in 2011–2012 from the
upper airways of 74 infants, 10 children, and 33 adults, from nasal (69) and oral (49) passages, totalling 118
samples. We will consider data from the 69 nasal samples (18 adults, six children, and 45 infants) here.
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Detailed information onprocessing is available from the original publication (Stearns et al., 2015). Briefly,
the v3 region of the 16S rRNAwas amplified and sequenced using the IlluminaMiSeq instrument and aligned
with PANDASeq. Sequences were clustered into OTUs using AbundantOTU+ employing a 97% similarity
threshold. Taxonomies were assigned to the genus by the pipeline Quantitative Insights Into Microbial
Ecology (QIIME) using the Ribomosmal Database Project against the Greengenes reference database. OTUs
that were not classified with a confidence of at least 0.8 in QIIME were excluded. This original study
sought to discover differences in the upper repository tracts of children compared to adults. The authors
discovered increases inbothdiversity and loadofmicrobiome fromaperiodof high risk for respiratorydisease
(childhood) to the amaturedmicrobiome. This analysis employed a variety ofmethods including discovering
differential abundance, comparing diversity, and other class comparison approaches, which is not the goal
of our work.

2.2 Twins data

The second motivating data set is well-known in the microbiome data, used to analyze stool samples of lean
and obese twins and their mothers (Turnbaugh et al., 2008), grouped at the genera level (Holmes et al., 2012).
The original analysis discovered compositions and phylogenic similarities varied with consanguinity.

3 Methodology
Before introducing the proposed method itself, we first discuss the necessary technical detail of the back-
ground material used to develop the method. It briefly outlines the development of the DM, applications of
FMMs and terminology of EAs.

3.1 Background

3.1.1 The Dirichlet-Multinomial distribution

The multinomial distribution is suitable for representing counts from a population where the probability of
selecting a category, such as an OTU, remains (approximately) the same, independent of other selections,
and the total number of selections is fixed. The multinomial probability mass function of the multinomial is
given in Eq. (1).

p(x1, x2, . . . , xp) = Γ(x+ + 1)
p∏︁

j=1

ϕxj
j

Γ(xj + 1) (1)

Here, xj is the number of times OTU j is observed among p different types of OTUs, ϕj is the probability of
observing OTU j, and Γ is the gamma function. Note that we will use the common notation y+ =

∑︀
j yj,

yi+ =
∑︀

j yij, etc. throughout this paper when the indices are understood by the context, so in Eq. (1), x+
is the total number of OTUs observed in the sample.

To account for overdispersion, proportions may be considered to be random variables rather than fixed
values. In this case, the distribution to model proportions is often the conjugate prior of the multinomial, the
Dirichlet distribution, shown in Eq. (2),

f (ϕ1, ϕ2, . . . , ϕp) =
Γ(α+)∑︀p
j=1 Γ(αj)

p∏︁
j=1

ϕαj−1
j , (2)

where αj > 0 is a parameter dictating the dispersion of the proportion ϕj, and so it itself is a parameter
associated with OTU j. A compound distribution results by multiplying the two and integrating out the
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random proportions over the unit p − 1 simplex, resulting in the DM of Eq. (3).

p(x1, x2, . . . , xp) =
Γ(x+ + 1)Γ(α+)
Γ(x+ + α+)

p∏︁
j=1

Γ(xj + αj)
Γ(xj + 1)Γ(αj)

(3)

3.1.2 Finite mixture models

A finite mixture model (FMM) is a method of representing G distinct subpopulations, each of which can
possess its own probability density (or mass) function, fg, for g= 1, 2, . . . , G. The probability function of the
entire population can then be expressed as f (x) =

∑︀G
g=1 πg fg(x;Θg) where x= (x1, x2, . . . , xp) are the data,

πg is the proportion of the population in group g called themixing proportion, andΘg is the set of distribution
parameters that correspond to fg. The flexibility of a finite mixture model can be thought of as an additional
means of accommodating the heterogeneity of the data that cannot simply be attributed to covariates, such
as through a linear model, and can even be superior to them (McLachlan and Peel, 2000). Finite mixtures
of the DM were developed previously for microbiome analysis (Holmes et al., 2012) to identify subgroups
based on abundance, similar to previously considered enterotypes (Arumugam et al., 2011). Parameter and
group memberships of finite mixture models are typically solved using the Expectation-Maximization (EM)
algorithm (Dempster et al., 1977) or one of its variants.

3.1.3 Evolutionary algorithms

An evolutionary algorithm (EA) is a means of finding optimal solutions to a problem that mimics natural
selection whereby organisms (possible solutions) with better genes (properties) are favoured over successive
generations (iterations). A didactic example of an EA is the string evolver. Imagine one person (evaluator) has
a seven-digit phone number in mind and another person (guesser) is trying to guess it but only knows the
phone number is seven digits. The guesser begins by giving a collection of 10 randomly-generated seven-digit
numbers to the evaluator who ranks the numbers from most correct to least correct and tells the guesser the
ranking of each phone number based on how correct it is. The guesser discards the fiveworst phone numbers,
replacing them with a copy of each of the five best. The guesser then has two copies of each of the five phone
numbers, so one random digit in one of the two copies is changed to a random number. Now the guesser
has 10 numbers which could all be distinct. The process of the evaluator rating the phone numbers repeats
with the five best phone numbers being kept, copied, etc.. Eventually, the same five phone numbers will be
returned in several successive iterations. These five phone numbers will be potential solutions the guesser
has to the phone number the evaluator has in mind. Despite being random, this process of guessing a phone
number is far more efficient than having the guesser ask the evaluator to individually rate all ten million
possible random phone numbers (the brute-force approach).

As mentioned, EAs are inspired by the process of propagation and selection based on fitness, found in
nature. Although we do not provide a complete summary of these class of algorithms, we briefly outline EAs
and highlight some of the terminology (Ashlock, 2006) which was also the sourcemotiving our string evolver
example above. The reader is referred to this book or expert overviews and further reference (Bäck, 1996;
Bäck and Schwefel, 1996) on EAs.

There are several key components to an EAwhich wewill define here (and parenthetically illustrate from
the string evolver example). All of these terms are in reference to the EA, not the biological context. Although
not common in EA literature, we will append the word “evolutionary” or “EA” in front of EA terms where
necessary to distinguish them from their biological counterparts. An evolutionary gene is a trait that can
differ between solutions (one digit of the phone-number). An evolutionary organism is one potential solution
comprisedof genes (a complete phonenumber).Variational operatorsaremethodsof constructingnewphone
numbers. The only variational operator we considered in the phone number-example wasmutation: altering
exactly onegene inanorganism (alteringonedigit).Offspring are theorganisms resulting from theapplication
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of variational operators (new phone numbers resulting from copying old ones and changing a digit). Fitness
is some value assigned to an organism for the purpose of selection, pruning away organisms based on fitness.
In our example, the evaluator performed the task of evaluating the fitness of individuals for the purpose of
pruning away the lowest five scoring phone numbers.

In our microbiome context, we will propose an EA where compositional similarities, represented by
constraints in the statistical model, are the EA organisms and a standard statistical model-selection criterion
is our method of selection. This is akin to stepwise selection in multiple linear regression, but stepwise
selection is a special case of our method. Rather than constraints, the goal of stepwise selection is to
determine a subset of potential predictors in a model by successively adding a predictor at every iteration.
In stepwise selection, the case is special because every possible mutation (adding/removing a potential
predictor from themodel) is considered at every iteration, and only the single best organism (potential model
withpredictors) survives selection (basedon somecriterion likeBayesian InformationCriterion;BIC) to forma
newgeneration. This reduces the randomprocess to a deterministic one once the algorithmbegins in stepwise
regression. However, the more general undermentioned algorithm should be considered stochastic.

3.2 Methods development

Our goal is to determine relationships amongst OTUs by analyzing potential constraints of aDM, in particular,
a FMM of a DM. We will use nearly the same model as the previous FMM of a DM in the microbiome
research (Holmes et al., 2012) with one difference. The original paper imposed prior distributions, altering
the distribution of the data from a pure DM to one that is compounded with an inverse gamma. This was
done because the multinomial distribution is a limiting case of the DM, occurring when the parameters tend
to infinity,which clearly induces convergence issues. Imposing a prior on the parameters succeeds in quelling
estimates to remain finite but removed this special case of the DM. This can alter our impression of the data by
suggesting there is more dispersion thanmay actually exist in the data. Instead, we impose a very large cutoff
value for the parameters that, when exceeded, themodel is considered to be a puremultinomial distribution.
This is analogous to simply approximating a t distribution with a normal distribution when the degrees of
freedom is large.

The concept of using constrained models, especially in FMMs, has been explored in the literature
numerous times. A famous implementation isMCLUST (Banfield andRaftery, 1993), implemented in R (Fraley
and Raftery, 1999, 2002). In that application, constraints on model parameters are used to simultaneously
make the model more parsimonious while the constraints themselves are directly interpretable in a basic-
science point of view. We are inspired by this approach as the parameter constraints (values of different α
constrained to be equal) has biological meaning as OTU abundances are approximately equal.

3.2.1 EA construction

We will represent constraints through partitions of parameters where each partition has only one degree of
freedom. If two parameters exist in the same partition, then their value is necessarily forced to be equal to
each other. In an unconstrained model, every parameter is in a partition by itself. Every partition can be
represented by sets of equalities between every pair of parameters. Thus, the EA organism, a particular set of
constraints on the DM, is faithfully represented as a collection of EA genes: where an EA gene is a pairwise
constraint. A mutation in the EA will be imposing a new constraint to the EA organism and we avoid null
mutations by ensuringwe only allowmutationswhich can change the organism. Note that in some instances,
some additional equalities will be imposed by transitivity. For instance if α1 = α2 already in one candidate
model at one stage of the EA and the constraint α2 = α3 is imposed on the model, the constraint α1 = α3
must automatically be imposed. All three OTUs represented by α1, α2 and α3 will be considered to exist in
approximately the same proportions in the microbiome.
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When a constraint is imposed, rather than replace the value of one parameter another and completely
lose the information originally held by one parameter, we will replace both by the average of the two. In
general, when any partition is formed, each parameter in the partition will be replaced by the arithmetic
mean of original values of the parameters in the partition. This is intuitive but has a useful property specific
to the DM in complete-data log-likelihood shown in Eq. (4).

ℓ =
∑︁
i,g

zig
[︁
log Γ(αg+) − log Γ(xi+ + αg+) +

∑︁
j
log Γ(xij + αgj) − log Γ(αgj)

]︁
+ k (4)

Here, αgj is the parameter corresponding to OTU j in group g where the proportion of group g comprised
of OTU j is αgj

αg+
, zig represents the probability that observation i belongs in group g of the FMM, also called a

responsibility, and k is a constantwith respect to theDMparameters.We can see that thefirst pair of termsonly
involve αg+. If we change the value of one αgj but alter others so that the value of αg+ remains the same, this
aspect of the log-likelihood remains unchanged. Our goal will be to find ways to do this as much as possible
without unduly detrimenting the log-likelihood by finding parameters that are very close to each other and
replacing them with their average, thereby keeping the value of αg+ the same. This concept of maintaining
the sumof the αg+ values is drawn from the theoretical property of complete neutrality (Mosimann, 1962). This
property states that the removal of one variable in themodelwill not impact the values of the other parameters
in themodel, and so their relative ratioswill remain stable. This will also be the case in our approach: altering
the values of parameters as we describe will not influence other parameters nor our perception of the OTU’s
composition in the microbiome. Hence, this computational property reflects a very important interpretative
property.

Our goal in finding compositional similarities in the microbiome is reflected by sufficiently similar
parameters in themodel whichwewill constrain to be equal.Wemake two notes which aids the development
of our algorithm. First,anyfinal collectionof constraints canbedecomposed into a set of pairwise constraints.
Second, there exists a sequence (not necessarily unique) of successive pairwise constraints that can be added
incrementally to an unconstrainedmodel to arrive at any constrainedmodel. Therefore, wewill focus only on
pairwise constraints and represent the final set of constraints as sets of pairwise constraints. Model similarity
is again like the case of the t distribution. Two t distributionswith a large difference in degrees of freedom can
be considered to be approximately the same distribution when the degrees of freedom parameter from each
respective distribution is large. The same difference in degrees of freedom, however, may not be acceptable
to consider approximate equality if one of the degrees of freedom is small. For instance, the difference
between t distributions with 105 and 115 degrees of freedom is often negligible but the difference between
t distributions with 5 and 15 degrees of freedom is far more considerable. By way of this analogy, it should
thenmake sense to declare two distributions sufficiently similar when the reciprocal difference is sufficiently
close to zero. This shall be our approach to compare different distributions that differ only by one of the α
parameters.

Given a candidate set of constraints, the complete-data log-likelihood is re-evaluated and the effective
number of parameters in light of the constraints re-counted to estimate the BIC (Schwartz, 1978). We use
the BIC because it is well understood and enforces fewer free parameters, which we prefer, than than other
well-known criteria like the AIC. It has also specifically been favoured in the context of FMMs (Leroux, 1992;
Keribin, 2000) for many reasons including as a model selection criterion (Fraley and Raftery, 1998, 2002).

4 Examples
Before analyzing ourmotivating data, we illustrate ourmethod using a small simulated data set. The purpose
of this is to show how to make inferences from this method. We specifically explain how to interpret results
in various forms of a symmetric heatmap with this simple data before using it on our more complicated, real
data in following sections.



M.R. Shaikh and J. Beyene: Discovering relationships in microbiome data | 7

The final parameter is completely

unconstrained(free).

A B

The final parameter is constrained

to equal the variables in the

second block of parameters.

Figure 1: Heatmap representation of two potential solutions (sets of constraints) corresponding to the simulated data. The two
solutions differ only by how the last variable is (un)constrained. (A) The final parameter is completely unconstrained (free). (B)
The final parameter is constrained to equal the variables in the second block of parameters.

4.1 Simulated data

We construct 3 groups of data simulated from the DM distribution. Data were simulated using the dirmult
package in R, an implementation of the method examining overdispersion in allelic counts (Tvedebrink,
2010). Simulating from theDMhasbeen justifiedas a reasonable representationof abundances inmicrobiome
communities (Chen et al., 2012) and so we take this suggestion in constructing our example. Twelve of the
thirteen OTUs are designed to comprise of one of three proportions: 2.9%, 5.7%, and 11.4% of themicrobiome.
One OTU is purposely designed to occur in approximately 5.9% of samples, slightly different from one
collection of parameters to investigate the algorithm’s behaviour.

If we strictly use black and white (equality and inequality, respectively), we would visualize parameter
similarities as in Figure 1A with the order of OTUs along rows matching the order along columns. We have
designed the last variable to be similar to the second collection of parameters, so we may reasonably also
consider Figure 1B to be a valid solution. We can extend the interpretation from only black & white figures to
include shades, where light shades represent very different parameter values and dark shades representing
very similar parameter values.

We run the EM algorithm ten times and choose the result with the best BIC. We illustrate the absolute
reciprocal differences of the MLEs from the EM in Figure 2A. We can clearly see that although some
semblances of group structure are apparent, it does not indicate which parameters should be strictly equal.
We constructed an evolutionary algorithm and illustrate a sample organism from the evolved population in
Figure 2B. The elements of this heatmap are dichotomous as it indicates whether the constraint between the
two parameters was (or was not) imposed in this specific organism. Most, but not all, of the microbiome’s
compositional similarity we are looking for are present in this one solution. Averaging over one evolved
population, we see a result in Figure 2C that is more representative of the composition of our designed
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A B C D

Figure 2: Progressively broader prospectives of results from the EA. (A) shows the estimated reciprocal differences of the true
parameters. (B) shows an example of one organism of the converged population after running one EA. (C) shows the average
organism from running one EA. (D) shows the average organism across twelve different runs of the EA.

microbiome. Here, we see that based on the darkness of cells, more organisms from the evolved population
imposed the constraint.

As happens in biological evolution, a “founder effect” can considerably influence evolving populations.
That is, randomly occurring commonmutations which occur early during evolution can persist. To overcome
this, we repeat the entire EA, allowing differentmutations to evolve in each separate population. The result is
shown in Figure 2D. We can see that a very good approximation to our original microbiome structure without
having provided any input on what this structure should be. Therefore, we have found the compositional
similarities in the microbiome that we had created by design without providing any semblence of that
information to the algorithm.

With this example, we have illustrated that our method can faithfully determine how to reduce the
number of free parameters of the DM by averaging over several restarted EAs. We will apply this procedure in
the next example.

4.2 Nasal data

We run the EM algorithm and notice the value of the BIC increases as groups increase. Clearly the BIC
alone as a selection technique is inadequate but because we plan to continue altering the model with the
EA, we require some starting point. The three-component mixture model made groups of 16, 23, and 30
observations, which were very discernible: memberships of groups were very close to 1 or very close to 0,
and never moderately in between. The largest jump in BIC occurs from two to three groups so we choose the
three group model and to proceed to the EA. In this clustering, the first group was largely infants (12) but
adults also contributed (4). In the second group, the group was largely infants (21) with very few children (2)
and no adults. The third group was more heterogeneous with respect to age with infants (12) and children
(4) and adults (14). As we will discuss below, this breakdown, particularly with the youngest group, is
insightful in light of the discovered constraints. The resulting heatmaps are shown in Figure 3 and detailed
informationwhich lists the OTUs are shown in Figure 4 of Appendix A. OTUs are ordered by decreasing values
of α in heatmaps, which often (but interestingly, not always) correspond to where elements are grouped
together.
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Figure 3: The top three heatmaps shows the averaged values and the bottom three of heatmaps shows the organism with the
optimal BIC. A version with overlain phylogenic information labels is shown in Appendix A.

The heatmap corresponding to the organism with the best BIC and the heatmap averaging over con-
straints are shown in Figure 3 and detailed information about the taxonomies are shown in Appendix A.
Unlike the previous example, we see greater levels of uncertainty in the evolution as more moderate shades
manifest. Nonetheless, we still observe several clear patterns. Not surprisingly, many of the parameters,
which correspond to very few sequences found in the group per sample were grouped together, and therefore
the freedom from the majority of parameters, which correspond to very few of the actual sequences is
constrained, thereby increasing model fitness. This is not so surprising but what was more surprising was
that not all of the low-abundant sequences were grouped into a single large group. The group that had high
levels of Staphylococcus and Streptococcus, pathogenic genera (two left heatmaps), had the least constraints
while the other groups not dominated by these genera.

Between the two heatmaps representing the organism with the best BIC and the average heatmap, some
of the patterns are similar, but some are lost in one or the other heatmaps. For example, in the second
group – the group which essentially contain no adults – there are two large sets of constraints which have
the potential to overlap, and this is lost in the averaged heatmap as the two fuse together. Interestingly, this
overlap corresponds to genera such asPrevotella andFusobacterium.Prevotella is a genus known to be related
to infections and disease (Schwarzberg et al., 2014). Although Fusobacterium has recently gained attention
in the gut microbiome for recently being linked to colorectal carcinoma (Kostic et al., 2012), one species was
already known to be linked to sepsis of the jugular vein, typically a result of oropharyngeal infection (Kuppalli
et al., 2012) which makes sense as these samples are from nasal swabs. An OTU constrained to the same
Prevotellawas Haemophilus, which includes the species Haemophilus influenzae, an opportunistic pathogen
that although common can cause disease in some conditions (Jurcisek and Bakaletz, 2007), including
neonatal sepsis cases (Friesen and Cho, 1986; Kinney et al., 1993). These constraints occur specifically in
a group dominated by Moraxella (which includes well-known pathogenic species (Verduin et al., 2002)),
another OTU of Haemophilus, as well as genera known to include pathogenic organisms (Staphylococcus
and Streptococcus). Many of these organisms are common but opportunistic, related to or even causing some
illness, consistent with previous analysis that there seems to be a period at least among some children of a
period of high risk for respiratory and related illness. This suggests that the constraints our methods find are
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Figure 4: The top three heatmaps shows the averaged values and the bottom three of heatmaps shows the organism with the
optimal BIC. Overlain is the corresponding phylogenic information.

biologically meaningful, as these opportunistic pathogens are often in direct competition with one another.
It therefore seems that the growth during these opportunistic times are very related to each other.

4.3 Twins data

We used our novel approach to analyze the twins data set. Remarkably, we found that no constraints
improved the model beyond a selection event and so the algorithm terminated quickly in all instances.
The corresponding heatmaps were just diagonals, with constraints occurring randomly as artefacts of our
founding populations and so we do not display them here. Given how much data is agglomerated at the
genera level rather than with OTUs it is understandable that the model is unable to find entire genera that
should exist at the same level as other genera. It may also be an indication that analyses at higher taxonomic
levels lose enough information that the remaining information cannot highlight constraints. We consider
this failure of constraint discovery as a useful property as there are real scenarios where the method fails to
identify any constraints.

5 Discussion
In thismanuscript, we have introduced the two concepts to themicrobiome literature. First, we quantitatively
explored compositional similarities in a novel manner by taking advantage of previously unused properties
of a statistical model that has already found use in the microbiome literature. Second, we introduced the EA,
which, to our knowledge, has never been used for microbiome analysis.



M.R. Shaikh and J. Beyene: Discovering relationships in microbiome data | 11

We used our method to show how OTUs corresponding to genera related to infection and disease
appeared in very similar proportions and supports the message from the corresponding research regarding
opportunistic organisms in respiratory microbiomes of the young. This approach fails, however, when
information is agglomerated at the genera level, as shown in the twins data set. When data has been in a
way that the likelihood function suffers too much to warrant suggesting whole genera that exist in the same
proportions as each other. The approach we presented searched for constraints by allowing parameters of
the DM to represent OTUs, and constraints to represent relationships between organisms in the biological
sample.

Our approach has additional limitations as well. First, the method computationally expensive, though
this can be somewhat alleviated as it is trivially parallelizable. Second, themicrobiome is typically dominated
by several OTUs, and all other OTUs occur in dramatically decreasing proportions. Rarer OTUs can have
less weight in the BIC for model fit, though this is where most of the constraints occur. Therefore, another
fitness function, namely something designed specifically for the microbiome and rare OTUs, could even
more insightful. In light of the second example, if genera were desired to be constrained by compositional
similarity, a criterion that penalizes free parameters even more can make the algorithm find constraints even
among agglomerated data, as in the case of the twins data set example. Another limitation of the method we
present regards the suitability of the DMmodel itself. Although it has been used in themicrobiome literature,
it itself has limitations that our algorithm would carry with it. In particular, the DM only permits negative
correlations with data. Positive correlations do exist in microbiome data, and to an extent our algorithm
indirectly finds them but a model for the microbiome that directly permits positive correlations would be
more suitable. A natural candidate is the generalized DM (Connor and Mosimann, 1969) and although this
distribution does have a far more flexible covariance structure, it has the severe limitation that variables
must have a known, unique ordering used in analysis. Inferences made between different orderings can be
incompatible, making it inappropriate in a microbiome setting. Therefore, an alternative distribution would
more useful in microbiome analysis.
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Appendix A Detailed phylogenic information for nasal data
The detailed phylogenic information for the results from Section 4.2 is illustrated in Figure 3 is shown here in
Figure 4. This is best viewed electronically due to the small font size.
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Kinney, J. S., K. Johnson, C. Papasian, R. T. Hall, C. G. Kurth and M. A. Jackson (1993): “Early onset haemophilus influenzae

sepsis in the newborn infant.” Pediatr. Infect. Dis. J., 12, 739–742.
Kostic, A. D., D. Gevers, C. S. Pedamallu, M. Michaud, F. Duke, A. M. Earl, A. I. Ojesina, J. Jung, A. J. Bass, J. Tabernero,

J. Baselga, C. Liu, R. A. Shivdasani, S. Ogino, B. W. Birren, C. Huttenhower, W. S. Garrett and M. Meyerson (2012):
“Genomic analysis identifies association of fusobacterium with colorectal carcinoma,” Genome Res., 22, 292–298.

Kuppalli, K., D. Livorsi, N. J. Talati and M. Osborn (2012): “Lemierre’s syndrome due to fusobacterium necrophorum,” Lancet
Infect. Dis., 12, 808–815.

La Rosa, P. S., J. P. Brooks, E. Deych, E. L. Boone, D. J. Edwards, Q. Wang, E. Sodergren, G. Weinstock and W. D. Shannon (2012):
“Hypothesis testing and power calculations for taxonomic-based human microbiome data,” PLoS One, 7, e52078.

Leroux, B. G. (1992): “Consistent estimation of a mixing distribution,” Ann. Stat., 20, 1350–1360.
McLachlan, G. J. and D. Peel (2000): Finite mixture models, New York: John Wiley & Sons.
Mosimann, J. E. (1962): “On the compound multinomial distribution, the multivariate β-distribution, and correlations among

proportions,” Biometrika, 49, 65–82.
Schwartz, G. (1978): “Estimating the dimension of a model,” Ann. Stat., 6, 31–38.
Schwarzberg, K., R. Le, B. Bharti, S. Lindsay, G. Casaburi, F. Salvatore, M. H. Saber, F. Alonaizan, J. Slots, R. A. Gottlieb,

J. G. Caporaso and S. T. Kelley (2014): “The personal human oral microbiome obscures the effects of treatment on
periodontal disease,” PLoS One, 9, e86708.

Stearns, J. C., C. J. Davidson, S. McKeon, F. J. Whelan, M. E. Fontes, A. B. Schryvers, D. M. Bowdish, J. D. Kellner
and M. G. Surette (2015): “Culture and molecular-based profiles show shifts in bacterial communities of the upper
respiratory tract that occur with age,” ISME J., 9, 1246–1259.

Turnbaugh, P. J., M. Hamady, T. Yatsunenko, B. L. Cantarel, A. Duncan, R. E. Ley, M. L. Sogin, W. J. Jones, B. A. Roe, J. P. Affourtit,
M. Egholm, M. Egholm, B. Henrissat, A. C. Heath, R. Knight and J. I. Gordon (2008): “A core gut microbiome in obese and
lean twins,” Nature, 457, 480–484.

Tvedebrink, T. (2010): “Overdispersion in allelic counts and theta-correction in forensic genetics,” Theor. Popul. Biol., 78,
200–210.

Verduin, C. M., C. Hol, A. Fleer, H. van Dijk and A. van Belkum (2002): “Moraxella catarrhalis: from emerging to established
pathogen,” Clin. Microbiol. Rev., 15, 125–144.


	Statistical models and computational algorithms for discovering relationships in microbiome data
	1 Introduction
	2 Motivating examples
	2.1 Nasal data
	2.2 Twins data

	3 Methodology
	3.1 Background
	3.1.1 The Dirichlet-Multinomial distribution
	3.1.2 Finite mixture models
	3.1.3 Evolutionary algorithms

	3.2 Methods development
	3.2.1 EA construction


	4 Examples
	4.1 Simulated data
	4.2 Nasal data
	4.3 Twins data

	5 Discussion
	Appendix A Detailed phylogenic information for nasal data


