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Abstract: Model selection between competing models is a key consideration in the discovery of prognostic 
multigene signatures. The use of appropriate statistical performance measures as well as verification of bio-
logical significance of the signatures is imperative to maximise the chance of external validation of the gener-
ated signatures. Current approaches in time-to-event studies often use only a single measure of performance 
in model selection, such as logrank test p-values, or dichotomise the follow-up times at some phase of the 
study to facilitate signature discovery. In this study we improve the prognostic signature discovery process 
through the application of the multivariate partial Cox model combined with the concordance index, hazard 
ratio of predictions, independence from available clinical covariates and biological enrichment as measures 
of signature performance. The proposed framework was applied to discover prognostic multigene signatures 
from early breast cancer data. The partial Cox model combined with the multiple performance measures 
were used in both guiding the selection of the optimal panel of prognostic genes and prediction of risk within 
cross validation without dichotomising the follow-up times at any stage. The signatures were successfully 
externally cross validated in independent breast cancer datasets, yielding a hazard ratio of 2.55 [1.44, 4.51] for 
the top ranking signature.
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Introduction
In cancer medicine it is increasingly appreciated that tumours arising from the same anatomical site in 
different patients can represent distinct diseases at a molecular level. Advances in mRNA, miRNA and 
DNA analysis have allowed the classification of tumours at a molecular level and have the promise of 
guiding personalised treatment strategies. The largest impact is likely to be in the discovery of prognostic 
assays, which predict outcome in the absence of a specific treatment, and predictive assays that predict the 
outcome following a specified therapy. Gene expression microarrays have been at the forefront of complex 
analysis of tumour biology as they are able to capture the relative expression of tens of thousands of genes 
simultaneously. In addition, they represent a mature diagnostic platform with demonstrated clinical appli-
cability and suitable performance for in-vitro-diagnostic regulatory approval (Van’t Veer et al., 2002; Pillai 
et al., 2011).

In prognostic studies, where follow-up times are monitored instead of a binary outcome, the time to 
event data is typically analysed using Cox proportional hazards regression. An issue with this approach 
when applied to high throughput genomic data is multidimensionality where the number of genes analysed 
greatly exceeds the number of samples. Although modifications for analysing high dimensional data have 
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been proposed for the Cox model (Li and Gui, 2004; Gui and Li, 2005; Boulesteix and Strimmer, 2006; Witten 
and Tibshirani, 2010) and survival analysis for random forests (Ishwaran et al., 2008), time-to-event models 
for prediction have not been widely adopted in prognostic biomarker signature research. In fact, many prog-
nostic signature discovery studies do not utilise time-to-event analysis algorithms at all (see e.g., Schmidt 
et al., 2008) or use Cox regression for ranking the genes but dichotomise the follow-up times to estimate 
binary performance measures such as area under the ROC curve (see e.g., Wang et al., 2005). In one excep-
tion, Kammers and co-authors used Lasso penalised Cox regression to analyse two microarray data sets and 
reported the prognostic index and Brier scores for the predictions (Kammers et al., 2011).

The main contribution of this article is to introduce a completely continuous framework with perfor-
mance measures for model selection that do not dichotomise the follow-up times at any stage. To this end, 
we use partial Cox regression combined with the concordance index [Harrell’s C-index (Raykar et al., 2007; 
Harrell, Jr. 2010)] and hazard ratio based performance evaluation of the risk scores and follow-up times for 
the discovery of the optimal panel of prognostic genes. The C-index has been recommended as a general 
measure of the predictive power of prognostic biomarkers (Newson, 2006). It estimates the probability of 
concordance between predicted and observed time to event, with 0.5 for random predictions and 1 for pre-
dictions matching the order of observed event times (Harrell, Jr. 2010). For binary responses it is equiva-
lent (Newson, 2006) to the area under the receiving operator characteristic curve (AUC), a frequently used 
measure in binary classification problems. In addition, when selecting for the optimal signature among the 
generated signatures, we analyse the results for biological relevance and independence from technical and 
clinical covariates thereby ensuring clinical applicability. We present semi-automatic signature generation 
methods that follow the general guidelines of the Microarray Quality Control (MAQC) Consortium and have 
been designed with clinical utility in mind. We use this methodology to discover multigene signatures that 
predict risk of distant metastasis in early breast cancer and successfully validate in independent datasets.

Methods

Data sets

Three datasets with an endpoint defined by breast cancer distant metastasis were downloaded. These 
datasets included the GSE111211 Mainz study (Schmidt et  al., 2008, also analysed in Kammers et  al., 
2011), the GSE20342 Rotterdam study (Wang et al., 2005) and the GSE73903 TRANSBIG breast cancer study 
(Desmedt et al., 2007). In the TRANSBIG data, all events after 10 years were censored, as in the original 
publication. The effect of this additional censoring is studied in more detail in the Results section. Each 
of these three data sets were used once as training sets and the two remaining ones as external valida-
tion sets, composing a 3-by-3 table of results (Table 2). The samples were all profiled on the Affymetrix 
HG-U133A platform, containing 247,965 probes that can be summarised further to 22,283 probesets. These 
probesets roughly map to one or more human transcripts and represent a snapshot of expressed tran-
scripts in the samples.

A summary of the data sets is given in Table 1. Note that the number of events for the TRANSBIG data was 
62 in the original database but after censoring samples with more than 10 years of follow-up (as suggested in 
Desmedt et al., 2007) this was reduced to 50. In the available clinical covariates considered for confounding 
effects, missing values were replaced by median of the present values. Multilevel nominal covariates were 
represented by N–1 binary indicators, where N is the number of levels in a given covariate. Covariates with 

1 http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=gse11121.
2 http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=gse2034.
3 http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=gse7390.

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=gse11121
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=gse2034
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=gse7390
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Table 1 Summary of the data sets used in this paper.

Data set Samples Events Median follow-up time Clinical covariates

GSE2034 HG-U133A 286 107 86 (months) ER+
Rotterdam Brain relapse
GSE7390 HG-U133A 198 50 144.1 (months) Hospital
TRANSBIG Age

Size
Surgery
Histology
Grade
ER+

GSE11121 HG-U133A 200 46 90.5 (months) Grade
Mainz cohort Size

ER+ stands for estrogen receptor positive indicator. The data set identifiers are further explained under 
subsection Data sets.

underrepresented levels were discarded. In the clinical data for the TRANSBIG study, lymphocytic infiltration 
and angioinvasion contained too many missing values and were excluded. All of the breast cancer samples in 
these datasets were lymph node negative.

Pre-processing and exploratory analysis

To enable a multisample, multivariable analysis of the microarray data sets, pre-processing of the data 
including background correction, normalisation and probeset summarisation was first considered to ensure 
comparability of the gene expression levels. One option would be to combine all the chosen data sets and pre-
process them together. However, due to the chosen pre-processing being multichip (see below), this approach 
would not be feasible if the signature was taken to clinic due to new samples coming in one at a time. Using 
validation samples together with the model training samples in multichip pre-processing would also intro-
duce a positive bias similar to using validation samples as part of a training set when building a predictive 
model. All samples were independently background corrected per array using the per-sample background 
correction algorithm in Robust Multichip Average (RMA, Bolstad et al., 2003), the widely accepted pre-pro-
cessing tool for gene expression microarray data. Each of the training sets were quantile normalised and 
median polish summarised using RMA. The quantiles from training set normalisation and probe affinities 
from summarisation were then applied to the corresponding external validation or cross-validation test sets 
one sample at a time (Reference RMA, Katz et al., 2006). Affymetrix control probesets were discarded after 
probeset summarisation.

The concept of classification difficulty estimation was introduced in Popovici et al. (2010) for the purpose 
of exploring associations between variables and a binary endpoint. In brief, for each probeset a squared 
t-score is evaluated and the cumulative sum of the ordered squares is plotted to evaluate whether or not there 
is a strong association between the endpoint values and the data. For time-to-event analysis, we instead plot 
the cumulative sum of the ordered absolute univariate Cox coefficients. The cumulative sum is additionally 
compared to a negative control distribution obtained by permuting the follow-up time values of the samples 
along with their event indicators. In general, in both classification and Cox model difficulty estimation the 
resulting curve is monotonously increasing approaching a plateau after the most informative variables have 
been added (see Figure 2 for an example). For the Cox model difficulty estimation the RMA pre-processed 
probesets were filtered by 50% based on low variance and intensity (see Hackstadt and Hess, 2009, for moti-
vation) as within the actual signature discovery, see details below.
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Prognostic signature generation

In evaluating the generalisation performance and optimal length of the signatures, each of the training data 
sets was split into five folds of cross-validation repeated 10 times, with stratification such that the proportion 
of events and distributions of follow-up times were approximately equal between each fold of the cross-vali-
dation training sets and the full training set. Each cross-validation training set was normalised (quantile nor-
malisation, storing the training set quantiles) and summarised (median polish, storing the estimated probe 
affinities) and the obtained pre-processing models were applied to the cross-validation test sets. Analogously, 
the ref-RMA pre-processing models from the full training sets were eventually used to pre-process the valida-
tion sets sample by sample. It is emphasised that cross-validation was used to guide in the selection of the 
optimal signature length only and not for the training of any final signature per se. The final signatures were 
trained by repeating the feature selection process in the full training sets (see Simon, 2012, for motivation).

Within each cross-validation training set, the probesets were filtered by 50% based on variance and 
intensity (Hackstadt and Hess, 2009). Average rank of high variance and high intensity was used in the filter, 
retaining the highest ranked variables. To further lessen the computational burden within feature selec-
tion and to reduce the number of null variables, the probesets were further filtered down to approximately 
1000 probesets using a univariate Cox filter, based on the Cox proportional hazards (PH) model coefficients 
from univariate analyses of the probesets. This second filtering step is by no means obligatory and the pre-
sented feature selection method is not limited to starting with 1000 features should sufficient computational 
resources be available. Both of these hard thresholds (50% followed by down to approximately 1000 covari-
ates) were chosen instead of for example controlling for false discovery rate (FDR) in the filtering to ensure a 
consistent starting size of probesets for the feature selection for all folds and repeats of cross-validation. For 
the remaining probesets, an iterative backwards elimination feature selection procedure was applied using 
three-component partial Cox regression (Li and Gui, 2004), where the partial Cox coefficients of the probe-
sets were used for ranking (see Figure 1). During each iteration, 10% of the lowest ranking probesets were 
discarded after predicting the cross-validation test set risk scores (see Equation 1 for the definition of the risk 
score). No information leakage was allowed from the cross-validation test set, i.e. the probeset ranking was 
purely based on the coefficients from the cross-validation training set. This procedure was repeated until five 
probesets remained. The C-index (Harrell, Jr. 2010, see Equation 4) of the continuous cross-validation test set 
risk score predictions was evaluated as the main performance measure. Additionally, univariate hazard ratios 
of the cross-validation test set risk scores, dichotomised at risk score value 0 (Equation 2, i.e. low risk  < 0, high 
risk  > 0, Li and Gui, 2004), were evaluated. The process is summarised in Figure 1.

When deciding on the signature length, the signature lengths that maximise the HR and C-index in cross-
validation may not necessarily be the same. To aid in model selection, independence to clinical covariates 
was also evaluated within cross-validation. A generalised Cox PH likelihood ratio test (Equation 5) was used 
to this end in which a full model with dichotomised predictions and clinical covariates is compared to a 
reduced model with the clinical covariates only in predicting time to event.

In addition, signatures with the minimal number of probesets possible whilst maintaining performance 
were favoured. We suggest that the feature length selection step requires human guidance as different objec-
tives could influence the selection of the feature length, such as desire to migrate to another platform, error 
interval width and so on. Additionally, in the case where the selection is somewhat arbitrary, due to the 
similarity of the different performance measures, any feature length with comparable performance could be 
selected, and the one chosen and reported on here is only as an example. As a compromise, maximum signa-
ture length was set to 600 (Kennedy et al., 2011, used 634 probesets) and the signature length below 600 that 
maximised the C-index was chosen unless other criteria showed poor results for the same length.

To summarise generic model selection criteria for time-to-event and to aid the more inexperienced 
researchers in comparing competing models, we list here our recommendations for selecting between 
models, in order of importance:
1.	 Select the signature that maximises the (average) concordance index within cross-validation and whose 

error bars or confidence interval does not overlap the 50% limit.
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2.	 Select the signature that maximises the hazard ratio and whose error bars or confidence interval does 
not overlap one.

3.	 If clinical and/or technical confounder information is available, select the signature whose p-value in a 
Cox model likelihood ratio test of independence to the confounders is the lowest.

4.	 If none of the above criteria can distinguish between the highest ranking signatures, observe if biological 
processes related to the disease under study are more enriched in one signature versus another.

Our recommendations are based on our extensive experience in working with predictive classifier models 
where the analysis of the models is driven by AUC, whose extension into the time-to-event case the C-index is. 
However, it is often required to select a signature score dichotomisation threshold for binary classifier models 
afterwards to enable estimation of sensitivity, specificity, NPV and/or PPV. In these cases the serial process is 
AUC based model selection followed by threshold selection driven by clinical utility (e.g. a fixed specificity). 
In the time-to-event space this is akin to using the C-index as a primary measure for model selection followed 

Data split into cross-validation training and test sets

Complete
training data set Validation data

CV test setCV training set

Process repeated over cross-validation

RefRMA pre-processing

Filtering:

2. Univariate Cox PH filter down to ~1000 probesets

Iterative ranking of features and prediction

Predictions for all samples over
all considered feature lengths

Train model using available probesets.
Store feature scores for ranking

Train model using available probesets.
Store feature scores for ranking

Remove features
based on feature ranking

from training set

Remove features
based on feature ranking

from training set

Stop upon reaching # features
found optimal in CV

Final model
CV repeats

Select # of features for final model based
on CV predictions’:

- C-index

- HR
- Independence to clinical covariates

- C-index
Validation data predictions:

- HR
- Independence to clinical covariates

#1 #2 #3 #4 #5 #6 #N

Predict CV test set
and store predictions

for later use

Iterative ranking of features

1. 50% or 75% variance-intensity filter
Filtering:

2. Univariate Cox PH filter down to ~1000 probesets
1. 50% or 75% variance-intensity filter

RefRMA pre-processing
CV training set: Quantile normalisation and RMA summarisation. Full training set: Quantile normalisation and RMA summarisation.

CV test set: Normalisation and summarisation using reference
quantiles and probe affinities from training.

Validation data: Normalisation and summarisation using reference
quantiles and probe affinities from training.

RMA background correction per-array

Figure 1 Flowchart of the signature generation and evaluation process.
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by HR estimation. In both domains a likelihood ratio test can be used to assess independence from clinical 
and/or technical covariates (logistic regression in binary classification and Cox model in time-to-event).

The partial Cox regression algorithm (Li and Gui, 2004) was chosen for the biomarker discovery analyses 
because it is theoretically based on the same idea as partial least squares (PLS) regression, an established 
method in high dimensional analyses (Boulesteix and Strimmer, 2006). It is also analogous to principal com-
ponents analysis in that the first few latent components explain most of the information in the data. Addi-
tionally, partial Cox requires no parameter tuning in nested cross-validation and therefore the computational 
complexity is modest compared to the Lasso Cox approach taken by the authors in Kammers et al. (2011).

Due to the public unavailability of the original implementation, Partial Cox regression will be made avail-
able in R from the package PartialCox. The C-index and many other useful functions are available in the 
package Hmisc.

Definitions of important parameters and statistics

The risk score used in this publication is defined as the linear combination of the signature probeset values 
multiplied by their corresponding partial Cox model coefficients, first subtracted by the training set probeset 
mean values (see Li and Gui, 2004) for the Cox model and risk score definitions:

	
ˆ( ) ,new new trainy β= − ′x x � (1)

where ynew is the continuous risk score for the new sample, xnew is the vector of individual probeset values for 
the new sample, trainx  is the vector of probeset mean values from the training set and β̂  are the partial Cox 
model coefficients from training.

The risk scores have by definition a sample mean of zero (Li and Gui, 2004), and dichotomisation of the 
risk scores for hazard ratio calculation is obtained via the indicator function,

	
0,newyI >

�
(2)

which equates to one for positive values and zero otherwise.
The hazard ratio of predictions is given by

	 ,
bpe �

(3)

where bp is the Cox model coefficient from a Cox model when modelling survival time by the dichotomised 
signature risk scores.

The concordance index is best understood by considering the ordered follow-up times as a directed 
graph, as in Raykar et al. (2007). The total number of edges in the ordered follow-up time graph depends 
mainly on the number of events, as an edge is drawn only from events to any event or censoring having a 
follow-up time greater than that of the event considered. The concordance index is obtained by counting the 
number of edges in the graph where the predicted survival times for the samples agree with the direction of 
the edges, divided by the total number of edges:

	
( ) ( )
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�

(4)

where ε denotes the total number of edges in the graph, Ti are the follow-up times, f(xi) are the predicted sur-
vival times and ( ) ( )<1

i jf x f x  is an indicator variable that is one when f(xi) < f(xj) is true, zero otherwise. The risk 
scores have an inverse relationship with predicted survival times, i.e. high risk score implies low predicted 
survival time. Therefore, for risk scores, f(xi) < f(xj) in Equation 4 needs to be replaced by frisk(xi) > frisk(xj).
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The likelihood ratio statistic used in evaluating the effect of clinical covariates (confounders) is given by

	
2
1

ˆ ˆ2(ln ln )~ ,reduced fullL L χ− −
�

(5)

where the Cox model log-likelihoods ˆ(ln )L  and chi-square distribution values can readily be obtained from 
standard statistical software packages. The degrees of freedom default to one as the model order difference 
is always one here.

Results

Prognostic signature generation results

Three datasets were selected to test our methodology. The Mainz dataset (Schmidt et al., 2008) consists of 
microarray data from 200 lymph node negative, ER positive (ER+ve) and negative (ER−ve) patients who did 
not receive systemic adjuvant therapy. The number of metastatic recurrences recorded was 46, 18 of which 
were beyond 5 years. The Rotterdam dataset (Wang et al., 2005) consists of microarray data from 286 lymph 
node–negative ER+ve and ER−ve patients who did not receive adjuvant systemic therapy. Ninety three meta-
static recurrences were reported, although no data is available after 5 years. Finally the TRANSBIG study 
(Desmedt et al., 2007) consists of microarray data from 198 ER+ve and ER−ve patients who also did not receive 
adjuvant systemic therapy after surgery. Fifty patients developed metastatic recurrence before 10 years of 
which 14 occurred after 5 years. Importantly, these datasets are entirely independent and therefore ideal for 
testing our methodology for identifying and validating clinically meaningful prognostic signatures. Although 
microarray data is used here solely, the proposed methodology is applicable to other high dimensional data 
equally well.

Analysis of associations between predictors (probesets in case of Affymetrix microarrays) and time to 
distant metastasis for each of the three training sets revealed that the association between the data and sur-
vival time (time to distant metastasis) is stronger than expected by chance. This is shown by the thick solid 
curve being above the 97.5% quantile (upper dashed line) of the negative control distribution (Figure 2).

Signature generation and evaluation was then performed (summarised in Figure 1). The test set predic-
tion results from all the 10 cross-validation repeats are shown in Figures 3 (C-index), 4 (HR) and 5 (minus 
log10 p-values of independence to clinical covariates) for the different training data sets. A decreasing trend 
in performance can be observed towards the shorter signature lengths, with the minus log p-values (Figure 5) 
following the same trends as the HR (Figure 4). There was clearly no steep drop in performance at any signa-
ture length, therefore leading to an amount of redundancy in selecting the optimal feature length. As differ-
ent studies have different objectives, e.g. it might be required to optimise the signature for maximum hazard 
ratio, to minimise error bars or limit the number of genes to  < 20 to enable migration to qPCR, all this informa-
tion must be considered in a human decision guided fashion. Here emphasis was placed such that signature 
lengths that maximise the C-index below 600 variables are highlighted for the results from the Mainz and 
Rotterdam datasets, whereas for the TRANSBIG results the highlighted signature length (252) maximises HR 
and gives a good compromise on C-index.

Final prognostic signatures for each data set were generated by repeating the iterative feature selection 
process on the respective full data set. Final partial Cox models were trained at the chosen feature lengths 
(Mainz: 531, Rotterdam: 386, TRANSBIG: 252). For average performance of signatures of these lengths in cross-
validation see the diagonal entries of Table 2. The overlap of the final signature probesets for the three breast 
cancer signatures is depicted in a Venn diagram (Figure 6). The small observed overlap in the probesets 
comprising the three signatures shows that there is clearly some redundancy in which probesets to choose 
to predict the same endpoint, as the signatures largely validate across the data sets (see prognostic signature 
validation results below).
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Indeed the most frequently observed Gene Ontology biological processes shown to be statistically signifi-
cant (p < 0.01) in all three signatures were cell cycle processes, RNA splicing and metabolic processes, all of 
which may have implications in cancer development. The results for the functional analysis using the KEGG 
database revealed a number of pathways of interest including the erythropoietin (EPO) signalling pathway 
which has been shown to influence numerous cellular functions including proliferation, apoptosis, and drug 
resistance, all of which could possibly contribute towards decreased survival (Hedley et  al., 2011). Genes 
involved in MAP kinase signalling were also significantly enriched in these signatures. Abnormalities in MAP 
kinase have been shown to affect most cellular processes required by tumours in order to survive, and thus 
play a critical role in the development and progression of cancer (Dhillon et al., 2007).

Prognostic signature validation results

The final models were applied to the independent validation data sets, yielding C-index values and uncor-
rected hazard ratios as shown in the off-diagonal entries of Table 2. Bootstrap quantile-based 95% confi-
dence intervals were calculated for the C-index. The confidence intervals for HR were estimated using a 1.96 
standard error interval around the In(HR). In terms of the HR confidence intervals not containing the value 
1, the signatures from the Mainz and Rotterdam datasets validate externally. None of the C-index confidence 
intervals contain the value 0.5 and therefore all of the signatures validate based on C-index alone.

Correction of the hazard ratios for clinical covariates was not feasible due to different sets of covariates in 
the three data sets. However, an assessment of the clinical covariate confounding for the validation set predic-
tions is summarised in Table 3 in terms of Cox model likelihood ratio test p-values. The p-values for the exter-
nal validation set predictions were 0.003 and 0.101 when using the signature derived from the Mainz data set in 
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Figure 2 Cox model generation difficulty estimate plots. X-axis shows the percentage probesets included in the cumulative 
sum. Permutation based negative control distribution quantiles are plotted in dashed lines.
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Figure 3 Concordance index summaries over considered feature lengths and cross-validation repeats. Means (circles) of the 10 
cross-validation repeats are plotted with the two standard deviation (2SD) based prediction intervals. Dashed grey line corresponds 
to concordance index of 0.5. Y-axis: C-index for the cross-validation test set predictions. X-axis: Probeset lengths evaluated.

predicting Rotterdam and TRANSBIG, respectively. When using the signature derived from the Rotterdam data, 
the p-values were 0.093 and 0.002 for Mainz and TRANSBIG. The higher (0.101 and 0.093) p-values are con-
cordant with low proportional hazards assumption check p-values that indicate a violation of the proportional 
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Figure 4 Hazard ratio summaries over considered feature lengths and cross-validation repeats. The means (circles) and 2SD 
intervals were evaluated on the natural logarithmic scale and then exponentiated back to original scale. Dashed grey line corre-
sponds to HR of 1. Y-axis: Hazard ratios of dichotomised cross-validation test set predictions. X-axis: Probeset lengths evaluated.

hazards assumption for these combinations of signatures and validation data; see results below and the dis-
cussion section for the implications. The p-values for the predictions from the TRANSBIG dataset model were 
well above 0.05 and therefore independence to clinical covariates could not be shown given the samples size.
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Figure 5 Minus log10 p-value summaries from likelihood ratio testing of importance of the predictions given the clinical covari-
ates. Dashed grey line corresponds to 0.05 level on the log-scale. Y-axis: Mean minus log10 p-values of the cross-validation test 
set predictions. X-axis: Probeset lengths evaluated.

The proportional hazards assumption was verified for the dichotomised validation set predictions. The 
p-values for checking this assumption were evaluated using the correlation between the scaled Schoenfeld 
residuals for the dichotomised predictions and the ranking of individual follow-up times. Table 2 shows these 
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Table 2 Performance measures for the breast cancer distant metastasis cross-validation test (diagonal) and validation set (off-
diagonal) predictions.

Model Mainz Rotterdam TRANSBIG

Data 531PS 386PS 252PS
Mainz C [CI]: 0.671 0.629 [0.540, 0.708] 0.613 [0.517, 0.703]

HR [CI]: 2.75 2.04 [1.13, 3.68] 1.66 [0.86, 3.20]
HR p-val: 0.018 0.134
PH p-val 0.027 0.005

Rotterdam C [CI]: 0.617 [0.562, 0.667] 0.667 0.610 [0.555, 0.659]
HR [CI]: 2.09 [1.37, 3.19] 2.56 1.71 [1.00, 2.91]
HR p-val: 0.0006 0.049
PH p-val 0.084 0.112

TRANSBIG C [CI]: 0.648 [0.576, 0.719] 0.654 [0.581, 0.723] 0.669
HR [CI]: 2.55 [1.20, 5.43] 2.55 [1.44, 4.51] 3.85
HR p-val: 0.015 0.001
PH p-val 0.031 0.305

“C” denotes concordance index, “HR” hazard ratio, “CI” the 95% confidence interval (validation sets only), “HR p-val” the 
p-value for testing HR = 1 (validation sets only) and “PH p-val” the p-value for testing the proportional hazards assumption 
with a low value implying a violation (validation sets oncly). The values on the diagonal represent average performance in 
cross-validation.
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Figure 6 Venn diagram of the probeset content for the three finalised breast cancer signatures.

p-values were below 0.05 (indicating a violation) when using either of the Rotterdam or TRANSBIG dataset 
signatures to predict the Mainz data, as well as when using the Mainz dataset signature in predicting risk of 
distant metastasis in the TRANSBIG data.

The Kaplan-Meier plots of the validation set predictions are shown in Figure 7 for the three breast cancer 
signatures.

The effect of varying the definition of censoring in the TRANSBIG data set on the resulting hazard ratios 
was also briefly considered. Reducing the censoring threshold from 10 to 5 years increased the HR to 5.12 
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and the C-index to 0.667, compared to 2.55 and 0.617 when using the recommended censoring threshold of  
10 years. Using the data without censoring any events, the HR was just above 1 and the C-index was 0.602. See 
Figure 8 for Kaplan-Meier plots when varying the censoring threshold.

Discussion
In this study we have taken a novel approach to generate multigene signatures using time to event data 
combined with comprehensive model selection criteria. Primary emphasis in the selection of signatures 
was placed on the concordance index and the simple univariate hazard ratio of the cross-validation test set 
predictions, supported by evaluations of biological enrichment and independence from available clinical 
covariates.

Using the Mainz dataset for training, a prognostic signature of 531 probesets was chosen based on per-
formance under cross-validation (see Figures 3–5). This signature validated in the Rotterdam dataset with a 
HR for risk of distant metastasis following surgery of 2.09 [1.37, 3.19] (p-value  = 0.0006) and in the TRANSBIG 
dataset with a HR of 2.55 [1.20, 5.43] (p-value  = 0.0154). Importantly, due to our methodology, the signature 
performance was independent from known prognostic factors such as tumour size, grade, ER status and age 
(p-values for predictions in Table 3, column 2, below 0.05). The performance characteristics of our signature 
compares favourably to a B-cell metagene that yielded a HR of 1.28 on Rotterdam data high-grade tumours 
and HR of 1.2 on the TRANSBIG data set enriched for younger patients (Schmidt et al., 2008).

The Rotterdam dataset was also used to generate a signature of 386 probesets. This signature validated 
with a HR for metastatic recurrence of 2.04 [1.13, 3.68], (p-value  = 0.0175) and 2.55 [1.44, 4.51], (p-value  = 0.0013) 

Table 3 Likelihood ratio test p-values for the breast cancer validation set predictions and clinical 
covariates (confounders).

Model Mainz Rotterdam TRANSBIG

Data 531PS 386PS 252PS
Mainz Predictions: 0.093 0.307

Grade: 0.052 0.035
Size: 0.207 0.136

Rotterdam Predictions: 0.003 0.230
ER+: 0.981 0.826
Brain relapse: 0.0002 0.0001

TRANSBIG Predictions: 0.101 0.002
Hosp. Guy: 0.029 0.004
Hosp. Igr: 0.290 0.127
Hosp. Jrh: 0.145 0.126
Hosp. Kar: 0.114 0.018
Age: 0.344 0.325
Size: 0.031 0.011
Surgery: 0.960 0.735
Hist. 1: 0.763 0.446
Hist. 2: 0.452 0.179
Hist. 3: 0.610 0.474
Grade: 0.736 0.830
ER+: 0.287 0.272

The p-values are obtained by testing the multivariate Cox model likelihood of the predictions and the 
clinical covariates in modelling survival time versus reduced models. For each entry in the table the 
corresponding covariate was dropped and the likelihood ratio p-value of the reduced model was evalu-
ated. Low p-values imply a significant drop in the likelihood.
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Figure 7 Kaplan-Meier plots of dichotomised validation set predictions. The solid curves represent the predicted low and high 
risk groups. Bootstrap based 2.5% and 97.5% quantiles are shown for the survival probability curves.

in the Mainz and TRANSBIG datasets, respectively. This signature was also independent from known prog-
nostic factors in the TRANSBIG dataset (Table 3), indicating clinical utility.

The validation performance of the signatures from both the Mainz and Rotterdam datasets compare 
favourably with prognostic signatures that have entered clinical practice; the MammaPrint 70 gene signature 
(Van’t Veer et al., 2002) yielded an unadjusted HR of 2.32 in external validation (TRANSBIG data, Buyse et al., 
2006) and Oncotype DX achieved an adjusted HR of 2.81 (Paik et al., 2004), thereby demonstrating the poten-
tial clinical utility of the prognostic signatures generated using our approach.
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A 252 probeset signature was generated from the TRANSBIG dataset. The performance for this signature, 
however, was inferior to the other two signatures developed here when evaluated in the Mainz and Rotter-
dam datasets with HR evaluated at 1.66 [0.86, 3.20], (p-value  = 0.1341) and 1.71 [1.00, 2.91], (p-value  = 0.0487), 
respectively. The performance was independent from grade and tumour size in the two datasets (Table 3). 
Although it is unclear why this signature failed to perform as well as the other two, it is interesting to note that 
the mean patient age was 46 in TRANSBIG vs. 60 and 54 in the Mainz and Rotterdam datasets, respectively. 
The greater representation of younger women in the TRANSBIG training set may result in over representa-
tion of specific molecular subtypes such as Basal-like tumours (Millikan et al., 2008) thereby reducing the 
ability of the signature to validate in older populations. Interestingly, the Kaplan-Meier plot in Figure 7A  
demonstrates that this signature predicts the outcome in the Mainz dataset until 5 years after which the per-
formance drops. This may indicate that this signature does not capture the biology representing late recur-
rence adequately and highlights the risks in dichotomising a population based on an arbitrary time point to 
develop a prognostic signature.

One of the key assumptions in the Cox model is that of proportional hazards (PH). In a regression setting 
this means that the survival and hazard curves for the predicted risk groups must be parallel over time, i.e. 
these curves must not cross. For a quantitative test, we used the Schoenfeld residuals from the Cox model to 
test this proportionality, where a p-value  < 0.05 (relationship between residuals and time) means that the pro-
portional hazards assumption should be rejected and we cannot rely on the ratio of the hazard functions being 
accurate. Therefore, when these assumptions are violated, alternative measures such as the C-index give a 
more accurate measure of signature performance in this setting, since it does not rely on these assumptions.

The PH assumption check (Table 2) confirms that in some cases there was a reason to doubt the assump-
tion with respect to the predicted dichotomised risk. The PH test p-values for the dichotomised predictions 
from the Rotterdam and TRANSBIG data based signatures were below 0.05 for prediction upon the Mainz 
patient samples. Similarly, the PH test p-value when using the Mainz data based signature in prediction of 
the TRANSBIG data was smaller than 0.05. In these cases the C-index is likely to give a better view of the 
predictive performance as it is a rank correlation based measure and does not depend on the proportional 
hazards assumption. This is clearly illustrated in the Kaplan-Meier plot in Figure 8A, where the signature ini-
tially stratified the patients well (C-index  > 0.6) but the PH assumption is violated and HR is very close to one. 
Consequently we advocate that hazard ratios should always be accompanied by the corresponding PH check 
p-values and C-index values. In all of the three breast cancer signatures the average C-index under cross-
validation was approximately 0.67 and the validation set C-index values between 0.61 and 0.65, showing only 
a minor positive bias between cross-validation and independent validation. Factors influencing the observed 
minor drop from cross-validation to validation may include differences in population, laboratories, reagents 
and temporal differences.
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Figure 8 Kaplan-Meier plot of dichotomised TRANSBIG data set predictions using the 531 probeset signature generated from 
the Mainz data. The solid curves represent the predicted low and high risk groups. (A) Data taken as is. (B) All samples with 
follow-up of more than 5 years censored.
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Conclusions
In this paper we presented rigorous model selection criteria and developed a semi-automated signature gen-
eration framework that was used to discover prognostic multigene assays using time to event data. To facili-
tate model selection between different signature lengths and conditions, we applied four model selection 
criteria in parallel, namely the concordance index, hazard ratio, independence from clinical covariates and 
biological enrichment of the signature genes. Considering multiple criteria in parallel aided in selecting sig-
natures that validated externally, as is evident from the results across the three breast cancer data sets. We 
now plan to test this methodology using multi-analyte data generated by other technologies that are enter-
ing mainstream molecular profiling such as next-generation sequencing, metabolomics arrays and protein 
arrays, and also work on shortening the signatures using forward feature selection methods.

Funding: This project was part funded by Invest Northern Ireland through the European Regional Development Fund (RD1208001).
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