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1 Introduction
The study of functional data analysis ismotivated by its applications in various fields of statistical estimations
and statistical inverse problems (see Ramsay and Silverman [18], Bosq [1], Müller and Stadtmüller [17] and
the references therein). One of the most common assumptions in the studies of statistical inverse problems
is to deal with compact operators. This is due to their tractable spectral properties. The functional Hodrick–
Prescott filter is often formulated as a statistical inverse problem that reconstructs an “optimal smooth sig-
nal” y that solves an equation Ay = v corrupted by a noise v, which is a priori unobservable, from observa-
tions x corrupted by a noise u, which is also a priori unobservable, i.e.,

{
x = y + u,
Ay = v,

(1.1)

where A : H1 → H2 is a compact operator between two appropriate Hilbert spaces H1 and H2.
By introducing a smoothing operator B, the “optimal smooth signal” y(B, x) associated with x is de-

fined by
y(B, x) := argmin

y
{‖x − y‖2H1

+ ⟨Ay, BAy⟩H2} (1.2)

provided that
⟨Ah, BAh⟩H2 ≥ 0, h ∈ H1. (1.3)

In [5], the optimal smoothing operator is characterized as theminimizer of the difference between the optimal
smoothing signal and the best predictor E[y|x] of the signal given the data x, when the noise u and the sig-

Boualem Djehiche: Department of Mathematics, Royal Institute of Technology, 10044 Stockholm, Sweden,
e-mail: boualem@math.kth.se
*Corresponding author: Astrid Hilbert: School of Computer Science, Physics and Mathematics, Linnaeus University,
Vejdesplats 7, 35195 Växjö, Sweden, e-mail: astrid.hilbert@lnu.se
Hiba Nassar: School of Computer Science, Physics and Mathematics, Linnaeus University, Vejdesplats 7, 35195 Växjö,
Sweden, e-mail: hiba.nassar@lnu.se



34 | B. Djehiche, A. Hilbert and H. Nassar, On the functional Hodrick–Prescott filter

nal v are independentHilbert space-valuedGaussian randomvariableswith zeromeans and covariance oper-
ators Σu and Σv. For more details on the classical Hodrick–Prescott filter, the reader is referred to [3, 4, 9, 21].

In this paper, we extend the functional Hodrick–Prescott filter to the casewhere the operator A is not nec-
essarily compact. Moreover, we show that the optimal smoothing parameter preserves the structure obtained
in [5] for the compact case.

An important class of non-compact operators to which we wish to extend the Hodrick–Prescott filter
includes the Laplace operator

A = −
d2

dt2
with Dirichlet boundary conditions and with domain

D(A) = {y ∈ H2([0, 1]) : y(0) = y(1) = 0},

where H2([0, 1]) is the Sobolev space of functions whose weak derivatives of order less than or equal to two
belong to L2([0, 1]) (see, e.g., [2] for further examples).

The paper is organized as follows. In Section 2,we generalize the functionalHodrick–Prescott filter under
the assumption that the operator A is closed and densely defined with closed range. In Section 3, we prove
that the optimal smoothing operator maintains the same form when the covariance operators Σu and Σv are
trace class operators. In Section 4, we illustrate this filter with two examples. Finally, in Section 5, we extend
this characterization to the case where the covariance operators Σu and Σv are not trace class such as, e.g.,
white noise.

2 A functional Hodrick–Prescott filter with closed operator
Let H1 and H2 be two separable Hilbert spaces with norms ‖ ⋅ ‖Hi and inner products ⟨ ⋅ , ⋅ ⟩Hi , i = 1, 2, and let
x ∈ H1 be a functional time series of observables. Given a linear operator A : H1 → H2, the Hodrick–Prescott
filter extracts an “optimal smooth signal” y ∈ H1 that solves an equation Ay = v corrupted by a noise v, which
is a priori unobservable, from observations x corrupted by a noise u, which is also a priori unobservable, i.e.,

{
x = y + u,
Ay = v.

The optimality of the extracted signal is achieved by the following Tikhonov–Phillips regularization of (1.1)
by introducing a linear operator B : H2 → H2 which acts as a smoothing parameter, i.e.,

y(B, x) := argmin
y

{‖x − y‖2H1
+ ⟨Ay, BAy⟩H2}

provided that
⟨Ah, BAh⟩H2 ≥ 0, h ∈ H1.

As suggested in [5], the optimal smoothing operatorminimizes the gap between the conditional expected
value E[y|x] of y given x, which is the best predictor of y given x, and y(B, x), i.e.,

B̂ = argmin
B

‖E[y|x] − y(B, x)‖2H1
. (2.1)

The main purpose of this work is to extend the characterization of the optimal smoothing operator ob-
tained in [5] to the case where the linear operator A is not necessarily compact and u and v are independent
Hilbert space-valued generalized Gaussian random variables with zero means and covariance operators Σu
and Σv.

Assumption 1. We assume for the linear operator A : H1 → H2 that
(i) it is closed and defined on a dense subspaceD(A) of H1;
(ii) its range Ran(A) is closed.
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Its Moore–Penrose generalized inverse A† is defined on

D(A†) = Ran(A) + Ran(A)⊥,

i.e., Ker(A†) = Ran(A)⊥. Note thatAssumption1 is equivalent to the fact thatA† is bounded (see [7, 8, 11, 14]).
For all v ∈ D(A†), the set of all solutions of the equation

Ay = v, y ∈ D(A),

is given by
{y† + y0 : y0 ∈ Ker(A)},

where y† is the unique minimal-norm solution given by y† = A†v (see [13]). Hence, for arbitrary y0 ∈ Ker(A),
we have

y = y0 + A†v (2.2)

and, in view of (1.1),
x = y0 + A†v + u. (2.3)

Let Π := A†A. By the Moore–Penrose equations, we have ΠA† = A†, Π2 = Π and Π∗ = Π (self-adjoint).
Therefore, Π is an orthogonal projector. It is easily checked that, for every ξ ∈ H1, the elements Πξ and
(IH1 − Π)ξ are orthogonal, i.e.,

⟨Πξ, (IH1 − Π)ξ⟩ = 0

and
Ker(A) = Ker(Π) = Ran(IH1 − Π).

Moreover, we have (IH1 − Π)y = y0 and A†v = Πy.
In the next proposition, we show that (1.2) has a unique solution for a class of linear smoothing opera-

tors B satisfying (1.3).

Proposition 2.1. Let A : H1 → H2 be a closed, linear operator such that its domain is dense in H1. Assume
further that the smoothing operator B : H2 → H2 is closed, densely defined and satisfies

⟨Ah, BAh⟩H2 ≥ 0, h ∈ H1. (2.4)

Then, there exists a unique y(B, x) ∈ H1 which minimizes the functional

JB(y) = ‖x − y‖2H1
+ ⟨Ay, BAy⟩H2 .

This minimizer is given by the formula

y(B, x) = (IH1 + A∗BA)−1x. (2.5)

Proof. It is immediate to check that theminimizer of the functional ‖x − y‖2H1
+ ⟨Ay, BAy⟩H2 is (IH + A∗BA)−1x

(see [10]) provided that the function (IH + A∗BA)−1 exists everywhere. But, since the operator D := √BA is
closed and densely defined, thanks to a result by Neumann (see [19, Chapter VII, Section 118]), we have that
(IH + A∗BA)−1 = (I + D∗D)−1 exists everywhere and is bounded.

3 Hodrick–Prescott filter associated with trace class covariance
operators

In this section, we prove that the optimal smoothing operator which solves (2.1) has the same structure as
in [5], when u and v are independent Gaussian random variables with zero mean and trace class covariance
operators Σu and Σv (see [22]).
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In view of (2.2) and (2.3), a stochastic model for (x, y) being determined by models for y0 and (u, v), we
assume the following.

Assumption 2. y0 deterministic.

Assumption 3. u and v are independent Gaussian random variables with zero mean and covariance operators
Σu and Σv respectively.

Assumption 2 is made to ease the analysis. The independence between u and v imposed in Assumption 3 is
natural because a priori there should not be any dependence between the “residual” u which is due to the
noisy observation x and the required degree of smoothness of the signal y.

Assumption 3 implies that Πy = A†v and u are also independent. Thus, with regard to the decomposition

x = y0 + Πy + Πu + (IH1 − Π)u,

it is natural to assume that even the orthogonal random variables Πu and (IH1 − Π)u are independent. This
would mean that the input x is decomposed into three independent random variables. This is actually the
case for the classical Hodrick–Prescott filter. Also, as wewill show below, thanks to this property, the optimal
smoothing operator has the form of a “noise-to-signal ratio” in line with the classical Hodrick–Prescott filter.

Assumption 4. The orthogonal (in H1) random variables Πu and (IH1 − Π)u are independent, i.e.,

ΠΣu = ΣuΠ. (3.1)

We note that (3.1) is equivalent to
ΠΣuΠ = ΠΣu .

Given Assumptions 2 and 3, by (2.2) and (2.3), it holds that (x, y) is Gaussian with mean (E[x], E[y]) =
(y0, y0) and covariance operator

Σ = (
Σu + Qv Qv
Qv Qv

) ,

where
Qv := A†Σv(A†)∗.

Lemma 3.1. The linear operator Qv is trace class. Moreover, the linear operator

T := Qv[Σu + Qv]−1/2

is Hilbert–Schmidt.

Proof. Since the covariance operator Σv is a trace class operator, Σ1/2v is Hilbert–Schmidt. Therefore, A†Σ1/2v
is Hilbert–Schmidt, since, by Assumption 1, A† is bounded. Hence,

Qv = A†Σ1/2v (A†Σ1/2v )∗

is a trace class operator since it is a product of two Hilbert–Schmidt operators. Furthermore, since Σu + Qv
is injective and trace-class, the operator [Σu + Qv]1/2 is Hilbert–Schmidt. Hence, T := Qv[Σu + Qv]−1/2 is
Hilbert–Schmidt.

Wemayapply [16, Theorem2] to obtain the conditional expectationof the signal y given the functional data x,
i.e.,

E[y|x] = y0 + Qv[Σu + Qv]−1(x − y0).

The following theorem is a generalization of [5, Theorem 4].

Theorem 3.2. Under Assumptions 1–4, the smoothing operator

B̂ := (A†)∗ΣuA∗Σ−1v (3.2)
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is the unique operator which satisfies

B̂ = argmin
B

‖E[y|x] − y(B, x)‖H1 ,

where the minimum is taken with respect to all linear, closed and densely defined operators B which satisfy the
positivity condition (2.4).

Proof. The proof is similar to that of [5, Theorem 4].

4 Examples
In this section, we apply Theorem 3 to two examples for which the operators are densely defined with closed
range.

Example 4.1. Inspired by an example discussed in [12], we consider the operator A : l2 → l2 defined by

A(x1, x2, x3, . . . , xn , . . .) = (0, 2x2, 3x3, . . . , nxn , . . .)

with domain
D(A) = {x := (x1, x2, x3, . . . , xn , . . .) ∈ l2 :

∞
∑
j=1

|jxj|2 < ∞}.

This operator is self-adjoint, unbounded, closed and densely defined withD(A) = l2.
Now consider the Hodrick–Prescott filter associated with the operator A under the assumption that u

and v are independent Gaussian random variables with zero means and covariance operators of trace class
of the form

Σux = (σu1x1, σ
u
2x2, σ

u
3x3, . . . , σ

u
nxn , . . .)

and
Σvx = (σv1x1, σ

v
2x2, σ

v
3x3, . . . , σ

v
nxn , . . .),

respectively.
In view of the form of the operator A, an appropriate class of smoothing operators B is

B(x1, x2, x3, . . . , xn , . . .) = (b1x1, b2x2, b3x3, . . . , bnxn , . . .),

where the coefficients bn, n = 1, 2, . . . , are chosen so that the operator B is closed, densely defined and sat-
isfies the positivity condition (2.4). In view of Theorem 3.2, the optimal smoothing operator B given by (3.2)
reads

B̂x = A−1ΣuAΣ−1v x = (0,
σu2
σv2
x2,

σu3
σv3
x3, . . . ,

σun
σvn
xn , . . .), x ∈ l2.

Moreover, the corresponding optimal signal given by (2.5) is

y(B̂, x) = (IH1 + A∗B̂A)−1x = (x1,
1

4b̂2 + 1
x2,

1
9b̂3 + 1

x3, . . . ,
1

n2b̂n + 1
xn , . . .),

where

b̂j :=
σuj
σvj
, j = 1, 2, . . . .

Example 4.2. Consider the Laplace operator

A = −
d2

dt2
with Dirichlet boundary conditions and with domain

D(A) = {y ∈ H2([0, 1]) : y(0) = y(1) = 0},

where H2([0, 1]) is the Sobolev space of functions whose weak derivatives of order less than or equal to two
belong to L2([0, 1]).
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The signal process y corrupted by v satisfies

Ay(t) = −
d2y(t)
dt2

= v(t), y ∈ D(A), (4.1)

The Laplacian A is a one-to-one, non-negative, self-adjoint, closed and unbounded operator with do-
main D(A) dense in L2([0, 1]) (see, e.g., [2]). The eigenvalues and eigenvectors of A satisfy

{
{
{

λn = n2π2, n ≥ 1, n ∈ ℕ,

en(t) = √2 sin nπt.

The inverse of the operator A is a self-adjoint Hilbert–Schmidt operator given by

(A−1x)(t) =
1

∫
0

G(t, s)x(s) ds,

where the Green’s function G : [0, 1] × [0, 1] → [0, 1] is given by

G(t, s) := {
(1 − t)s, 0 ≤ s ≤ t,
t(1 − s), t ≤ s ≤ 1.

Hence, the operator A can be written as

Ay(t) =
∞
∑
n=1

n2π2⟨y, en⟩en(t)

and the solution of (4.1) is given in terms of eigenvalues and eigenvectors by

y(t) = A−1v(t) =
∞
∑
n=1

1
n2π2

⟨v, en⟩en(t).

Now, consider the Hodrick–Prescott filter associated with the operator A under the assumption that u
and v are independent Gaussian random variables with zero means and covariance operators of trace class
of the form

Σuh(t) =
∞
∑
n=1

σun⟨h, en⟩en(t)

and
Σvh(t) =

∞
∑
n=1

σvn⟨h, en⟩en(t),

respectively, where the sums converge in the operator norm.
The smoothing operator B is defined as

Bh(t) =
∞
∑
n=1

βn⟨h, en⟩en(t),

where the coefficients βn, n = 1, 2, . . . , are chosen so that the operator B is closed, densely defined and sat-
isfies the positivity condition (2.4). By Theorem 3.2, the optimal smoothing operator B given by (3.2) reads

B̂h(t) = A−1ΣuAΣ−1v h(t) =
∞
∑
n=1

σun
σvn

⟨h, en⟩en(t).

The corresponding optimal signal given by (2.5) is

y(B̂, x) = (IL2(0,1) + A∗B̂A)−1x =
∞
∑
n=1

(1 + n4π4
σun
σvn

)
−1
⟨x, en⟩en(t).
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5 Extension to non-trace class covariance operators
In this section, we show that the characterization (3.2) of the optimal smoothing operator is preserved even
when the covariance operators of u and v are not necessarily trace class operators.

We assume that u ∼ N(0, Σu) and v ∼ N(0, Σv), where Σu and Σv are self-adjoint, positive-definite and
bounded, but not trace class operators on H1 and H2, respectively. One important case of this extension is
when u and v are white noise with covariance operators of the form Σu = σu IH1 and Σv = σv IH2 , respectively,
for some constants σu and σv.

Following Rozanov [20] (see also Lehtinen, Päivärinta and Somersalo [15]), we consider these Gauss-
ian variables as generalized random variables on an appropriate Hilbert scale (or nuclear countable Hilbert
space), where the covariance operators can bemaximally extended to self-adjoint, positive-definite, bounded
and trace class operators on an appropriate domain.

We first construct the Hilbert scale appropriate to our setting. This is performed using the linear opera-
tor A as follows (see Engl, Hanke and Neubauer [6] for further details).

In view of Assumption 1, the operator A† : H2 → H1 is linear and bounded. PuttingH3 := Ran A, thenH3
is a Hilbert space since it is a closed subspace of the Hilbert space H2. Let Ā† be the restriction of A† on H3,
i.e., Ā† : H3 → H1. Then, Ā† is an injective bounded linear operator.

Remark 5.1. In view of the Hodrick–Prescott filter (1.1), we have v ∈ Ran(A) = H3, i.e., it can be seen as an
H3-random variable with covariance operator Σv : H3 → H3.

Set
K1 := (Ā†(Ā†)∗)−1 : H1 → H1.

We can define the fractional power of the operator K1 by

Ks1h = (Ā†(Ā†)∗)−sh, h ∈ H1, s ≥ 0,

and we define its domain by
D(Ks1) := {h ∈ H1 : (Ā†(Ā†)∗)−sh ∈ H1}.

LetM be the set of all elements x for which all the positive integer powers of K1 are defined, i.e.,

M :=
∞
⋂
n=0

D(Kn1).

For s ≥ 0, let Hs1 be the completion ofMwith respect to the Hilbert space norm induced by the inner product

⟨x, y⟩Hs1 := ⟨Ks1x, K
s
1y⟩H1 , x, y ∈ M,

and let H−s1 := (Hs1)∗ denote the dual of H
s
1 equipped with the inner product

⟨x, y⟩H−s
1
:= ⟨K−s1 x, K

−s
1 y⟩H1 , x, y ∈ M.

Then, (Hs1)s∈ℝ is the Hilbert scale induced by the operator K1.
The operator

K2 := ((Ā†)∗Ā†)−1 : H3 → H3

has the same properties as K1. Repeating the same procedure as before, we get that (Hs3)s∈ℝ is the Hilbert
scale induced by the operator K2, where the norm in Hn3 is given by ‖h‖Hn3 = ‖Kn2h‖H3 , h ∈ Hn3 .

Noting that

H−n1 = Im((Ā†(Ā†)∗)n) = (Ā†(Ā†)∗)n(H1),
H−n3 = Im(((Ā†)∗Ā†)n) = ((Ā†)∗Ā†)n(H3)

with ker((Ā†(Ā†)∗)n) = ker(Ā†) = {0} and ker(((Ā†)∗Ā†)n) = ker((Ā†)∗) = ker(Ā) = ker(A), it follows that the
operator Ā† extends to a continuous operator from H−n3 into H−n1 , the operator Ā = A extends to a continuous
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operator from H−n1 into H−n3 and the operators Ā†(Ā†)∗ and (Ā†)∗Ā† extend as well to continuous operators
onto H−n1 and H−n3 , respectively.

Extending the Hodrick–Prescott filter to the larger Hilbert spaces H−n1 and H−n3 due to the flexibility of-
fered by the Hilbert scale, where n is chosen so that the second moments E[‖x‖2H−n

1
], E[‖y‖2H−n

1
], E[‖u‖2H−n

1
]

and E[‖v‖2H−n
3
] of the Gaussian random variables x, y, u and v in H−n1 and H−n3 , respectively, are finite. This

amounts to making their respective covariance operators

Σ̃u = (Ā†(Ā†)∗)nΣu(Ā†(Ā†)∗)n ,

Σ̃v = ((Ā†)∗Ā†)nΣv((Ā†)∗Ā†)n

and

Σ̃ = (
Σ̃u + Q̃v Q̃v
Q̃v Q̃v

) ,

where the operator
Q̃v := Ā† Σ̃v(Ā†)∗

is trace class.
We make the following assumption.

Assumption 5. There is n0 > 0 such that the covariance operators Σ̃u , Σ̃ and Σ̃v are trace class on the Hilbert
spaces H−n1 and H−n3 , respectively.

It is worth noting that since y0 ∈ ker(A) = ker(((Ā†)∗Ā†)n), then ‖y0‖H−n
1

= ‖(Ā†(Ā†)∗)ny0‖H1 = 0. Hence, the
H−n1 × H−n1 -valued random vector (x, y) has mean (E[x], E[y]) = (0, 0).

Summing up, by Assumption 5, for n ≥ n0, the vector (x, y) is an H−n1 × H−n1 -valued Gaussian vector with
mean (0, 0) and covariance operator Σ̃. Thus, by [16, Theorem 2], we have

E[y|x] = Q̃v[Σ̃u + Q̃v]−1x a.s. in H−n1

provided that the operator
̃T := Σ̃XY Σ̃−1/2X

is Hilbert–Schmidt. But, in view of Assumption 5 and Lemma (3.1), the operator T is Hilbert–Schmidt.
The deterministic optimal signal associated with x in H−n1 , n ≥ n0, is given by (cf. Proposition 2.1)

y(B, x) = (IH−n
1

+ A∗BA)−1x,

which is the unique minimizer of the functional

JB(y) = ‖x − y‖2H−n
1

+ ⟨Ay, BAy⟩H−n
3

with a linear operator B : H−n3 → H−n3 such that ⟨Ah, BAh⟩H−n
3

≥ 0 for all h ∈ H−n1 .
The following theorem gives an explicit expression of the optimal smoothing operator B̂.

Theorem 5.2. Let Assumption 5 hold. Then, the unique optimal smoothing operator associated with the
Hodrick–Prescott filter associated with H−n1 -valued data x is given by

B̂h := (Ā†)∗ Σ̃uA∗ Σ̃−1v h, h ∈ H−n3 . (5.1)

Proof. The proof is similar to that of [5, Theorem 6].

5.1 The white noise case: Optimality of the noise-to-signal ratio

In this section, we show that the optimal smoothing operator B̂ given by (5.1) reduces to the noise-to-signal
ratio, where u and v are white noises. Assume that u and v are independent and Gaussian random variables
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with zeromeans and covariance operators Σu = σu IH1 and Σv = σv IH3 ,where IH1 and IH3 denote theH1 andH3
identity operators, respectively, and σu and σv are constant scalars. Assumption 5 reduces to the following
assumption.

Assumption 6. There is an n0 > 0 such that (Ā†(Ā†)∗)2n and ((Ā†)∗Ā†)2n are trace class for all n ≥ n0.

Under this assumption, the associated covariance operators

Σ̃u = (Ā†(Ā†)∗)nΣu(Ā†(Ā†)∗)n = σu(Ā†(Ā†)∗)2n ,

Σ̃v = ((Ā†)∗Ā†)nΣv((Ā†)∗Ā†)n = σv((Ā†)∗Ā†)2n

and

Q̃v = σvA†((A†)∗A†)2n(A†)∗ = σv(A†(A†)∗)2n+1

are trace class and (5.1), which gives the optimal smoothing operator B̂, reduces to

B̂ = (Ā†)∗ Σ̃uA∗ Σ̃−1v h =
σu
σv
IH−n

3
,

i.e., B̂ is the noise-to-signal ratio which is in the same pattern as in the classical Hodrick–Prescott filter.

Funding: The first author gratefully acknowledges the financial support of the Swedish Export Credit Corpo-
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