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1 Introduction
Let B = (Bt , t ≥ 0) be a bifractional Brownian motion (bifBm) with parameters H ∈ (0, 1) and K ∈ (0, 1],
defined on some probability space (Ω,F, P). (Here and in the following, we assume that F is the sigma-
field generated by B.) This means that B is a centered Gaussian process with the covariance function
E[BsBt] = RH,K(s, t), where

RH,K(s, t) =
1
2K

((t2H + s2H)K − |t − s|2HK). (1.1)

The case K = 1 corresponds to the fractional Brownian motion (fBm) with Hurst parameter H. The process B
has no stationary increments, but it has the quasi-helix property (in the sense of J. P. Kahane)

2−K |t − s|2HK ≤ E(|Bt − Bs|2) ≤ 21−K |t − s|2HK , (1.2)

so B has γ -Hölder continuous paths for any γ ∈ (0, HK) thanks to the Kolmogorov–Centsov theorem and it
is a self-similar process, that is, for any constant a > 0, the processes (Bat , t ≥ 0) and (aHKBt , t ≥ 0) have
the same distribution. The bifBm B can be extended for 1 < K < 2 with H ∈ (0, 1) and HK ∈ (0, 1) (see [1]).
We refer to [6, 8, 9, 13] for further details on the subject.

An example of an interesting problem related to B is the study of the asymptotic behavior of the quadratic
variation of B on [0, 1], defined as

Zn =
n−1
∑
i=0

[n2HK(B(i+1)/n − Bi/n)2 − E((Bi+1 − Bi)2)], n ≥ 1.
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Let us consider the correct renormalization Vn of Zn, given as

Vn =
Zn

√Var(Zn)
. (1.3)

Recall that if Y, Z are two real-valued random variables, then the Kolmogorov distance between the law of Y
and the law of Z is given by

dKol(Y, Z) = sup
−∞<z<∞

|P(Y ≤ z) − P(Z ≤ z)|.

In the particular case of the fBm (that is, when K = 1) and thanks to the seminal works of Breuer andMajor [4],
Dobrushin andMajor [5], Giraitis and Surgailis [7] and Taqqu [14], it is well known that we have the following
as n →∞.
∙ If 0 < H < 3/4, then

Vn
σH√n

law
Ú→ N(0, 1).

∙ If H = 3/4, then
Vn

σH√n log n
law
Ú→ N(0, 1).

∙ If H > 3/4, then
Vn
n2H−1

law
Ú→ Z ∼ “Hermite random variable”.

Here, σH > 0denotes an explicit constant dependingonly onH.Moreover, explicit bounds for theKolmogorov
distance between the law of Vn and the standard normal law are obtained by [11, Theorem 4.1], [3, Theo-
rem 1.2] and [10, Theorem 5.6]. The following cases hold true. For some constant cH depending only on H,
we have the bounds

dKol(Vn ,N(0, 1)) ≤ cH ×

{{{{{{{{{{{{
{{{{{{{{{{{{
{

1
√n

if H ∈ (0, 5/8),

(log n)3/2

√n
if H = 5/8,

n4H−3 if H ∈ (5/8, 3/4),
1

√log n
if H = 3/4.

On other hand, Bercu, Nourdin and Taqqu [2] proved the almost sure central limit theorem (ASCLT) for Vn.
Recently, Tudor [15] studied the subfractional Brownian motion case.

Let us now describe the results that we will prove in the present paper. First, in Theorem 3.3, we use
Malliavin calculus and Stein’s method to derive, in the case when HK ∈ (0, 3/4], explicit bounds for the Kol-
mogorov distance between the law of Vn and the standard normal law. More precisely, according to the value
of HK, we consider the cases

dKol(Vn ,N(0, 1)) ≤ cH,K ×

{{{{{{
{{{{{{
{

n−1/2 if HK ∈ (0, 1/2],

n2HK−3/2 if HK ∈ [1/2, 3/4),
1

√log n
if HK = 3/4,

where cH,K is a constant depending only on H and K. In Theorem 4.2, we prove the almost sure central limit
theorem for Vn.

The rest of the paper is organized as follows. Section 2 deals with preliminaries concerning Malliavin
calculus, Stein’smethod and related topics needed throughout the paper. Section 3 and Section 4 contain our
main results, concerning Berry–Esseen bounds and the ASCLT for the quadratic variation of the bifractional
Brownian motion.
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2 Preliminaries
In this section,we briefly recall somebasic facts concerningGaussian analysis andMalliavin calculus that are
used in this paper; we refer to [12] for further details. Let H be a real separable Hilbert space. For any q ≥ 1,
we denote by H⊗q (resp. H⊙q) the qth tensor product (resp. qth symmetric tensor product) of H. We write
X = {X(h), h ∈ H} to indicate a centered isonormal Gaussian process on H. This means that X is a centered
Gaussian family, defined on some probability space (Ω,F, P) and such that E[X(g)X(h)] = ⟨g, h⟩H for every
g, h ∈ H. (Here and in the following, we assume that F is the sigma-field generated by X.)

For every q ≥ 1, letHq be the qthWiener chaos of X, that is, the closed linear subspace of L2(Ω) generated
by the random variables {Hq(X(h)), h ∈ H, ‖h‖H = 1}, where Hq is the qth Hermite polynomial defined as

Hq(x) = (−1)qex
2/2 dq

dxq
(e−x2/2).

The mapping Iq(h⊗q) = Hq(X(h)) provides a linear isometry between the symmetric tensor product H⊙q

(equipped with the modified norm ‖ ⋅ ‖H⊙q = √q!‖ ⋅ ‖H⊗q ) and Hq. Specifically, for all f, g ∈ H⊙q and q ≥ 1,
one has

E[Iq( f )Iq(g)] = q!⟨ f, g⟩H⊗q . (2.1)

On the other hand, it is well known that any random variable Z belonging to L2(Ω) admits the chaotic expan-
sion

Z = E[Z] +
∞
∑
q=1

Iq( fq), (2.2)

where the series converges in L2(Ω) and the kernels fq, belonging to H⊙q, are uniquely determined by Z.
Let {ek , k ≥ 1}be a complete orthonormal system inH. Given f ∈H⊙p and g ∈H⊙q, for every r = 0, . . . , p∧q,

the rth contraction of f and g is the element of H⊗(p+q−2r) defined as

f ⊗r g =
∞
∑

i1=1,...,ir=1
⟨ f, ei1 ⊗ ⋅ ⋅ ⋅ ⊗ eir⟩H⊗r ⊗ ⟨g, ei1 ⊗ ⋅ ⋅ ⋅ ⊗ eir⟩H⊗r .

In particular, note that f ⊗0 g = f ⊗ g and, moreover, f ⊗p g = ⟨f, g⟩H⊗p when p = q. Since, in general, the
contraction f ⊗r g is not necessarily symmetric, we denote its symmetrization by f ⊗̃r g ∈ H⊙(p+q−2r). When
f ∈ H⊙q, we write Iq( f ) to indicate its qth multiple integral with respect to X. If f ∈ H⊙p and f ∈ H⊙q, then
the formula

Ip( f )Iq(g) =
p∧q
∑
r=0

r!(p
r
)(
q
r
)Ip+q−2r( f ⊗̃r g) (2.3)

is useful in computing the product of such multiple integrals.
Let S be the set of all smooth cylindrical random variables, that is, ones that can be expressed as

F = f(X(ϕ1), . . . , X(ϕn)) for n ≥ 1, where f : ℝn → ℝ is a C∞-function such that f and all its derivatives
have at most polynomial growth and ϕi ∈ H. The Malliavin derivative of F with respect to X is the square
integrable H-valued random variable defined as

DF =
n
∑
i=1

∂f
∂xi

(X(ϕ1), . . . , X(ϕn))ϕi .

In particular, DX(h) = h for every h ∈ H. As usual, D1,2 denotes the closure of the set of smooth random
variables with respect to the norm

‖F‖21,2 = E[F
2] + E[‖DF‖2H].

The Malliavin derivative D verifies the chain rule, that is, if φ : ℝn → ℝ is C1b and if (Fi)i=1,...,n is a sequence
of elements ofD1,2, then φ(F1, . . . , Gn) ∈ D1,2 and we have

Dφ(F1, . . . , Gn) =
n
∑
i=1

∂φ
∂xi

(F1, . . . , Gn)DFi .
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Recall the following results concerning CLT and ASCLT for multiple stochastic integrals.

Theorem 2.1 (Nourdin and Peccati [11]). Let q ≥ 2 be an integer and let F = Iq( f) with f ∈ H⊙q. Then,

dKol(F, N) ≤ √E[(1 −
1
q
‖DF‖2H)

2
], (2.4)

where N ∼ N(0, 1).

Theorem 2.2 (Bercu, Nourdin and Taqqu [2]). Let q ≥ 2 be an integer and let {Gn}n≥1 be a sequence of the form
Gn = Iq( fn) with fn ∈ H⊙q. Assume that E[G2n] = q!‖ fn‖2H⊗q = 1 for all n and that

Gn
law
Ú→ N ∼ N(0, 1)

as n →∞. If the conditions

(i)
∞
∑
n=2

1
n log2n

n
∑
k=1

1
k
‖ fk ⊗r fk‖H⊗2(q−r) < ∞ for every 1 ≤ r ≤ q − 1,

(ii)
∞
∑
n=2

1
n log3n

n
∑
k,l=1

|⟨ fk , fl⟩H⊗q |
kl
< ∞

are satisfied, then {Gn}n≥1 satisfies an ASCLT. In other words, almost surely, for any bounded and continuous
function φ : ℝ → ℝ,

1
log n

n
∑
k=1

1
k
φ(Gk) → Eφ(N)

as n →∞.

From now, assume on one hand that X = B is a bifBm with parameters H ∈ (0, 1) and K ∈ (0, 1] and on the
other hand that H is a real separable Hilbert space defined by denoting the set of allℝ-valued step functions
on [0,∞) by E and by definingH as the Hilbert space obtained by closing Ewith respect to the scalar product

⟨1[0,s], 1[0,t]⟩H = RH,K(s, t) =
1
2K

((t2H + s2H)K − |t − s|2HK).

In particular, one has Bt = B(1[0,t]).

3 Berry–Esseen bounds in the CLT for the quadratic variation of
the bifBm

In this section, we prove that a CLT holds for everyHK ∈ (0, 3/4], where Vn was defined in (1.3). Using Stein’s
method, we also derive the Berry–Esseen bounds for this convergence.

3.1 General setup

Let us define
θ(i, j) = 2−K(γ (i, j) + ρ(i − j)), i, j ∈ ℕ,

where
γ (i, j) = ((i + 1)2H + ( j + 1)2H)K − (i2H + ( j + 1)2H)K − ((i + 1)2H + j2H)K + (i2H + j2H)K (3.1)

and
ρ(r) = |r + 1|2HK + |r − 1|2HK − 2|r|2HK , r ∈ ℤ. (3.2)

Observe that the function γ is symmetric and that ρ(0) = 2, ρ(x) = ρ(−x) and ρ behaves asymptotically as

ρ(r) = 2HK(2HK − 1)|r|2HK−2, |r| → ∞. (3.3)

In particular,∑r∈ℤ ρ2(r) < ∞ if and only if HK ∈ (0, 3/4).
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We will use the notation

δk/n = 1[k/n,(k+1)/n] and σ = √
1
8 ∑
r∈ℤ

ρ2(r). (3.4)

Using the self-similarity property of B and (1.1), we deduce that

n2HK⟨δi/n , δj/n⟩H = n2HKE((B(i+1)/n − Bi/n)(B(j+1)/n − Bj/n)) = E((Bi+1 − Bi)(Bj+1 − Bj)) = θ(i, j).

Hence, we can write the quadratic variation of B with respect to a subdivision

πn = {0 <
1
n
<
2
n
< ⋅ ⋅ ⋅ < 1}

of [0, 1] as

Zn =
n−1
∑
k=0

[n2HK(B(k+1)/n − Bk/n)2 − θ(k, k)]

=
n−1
∑
k=0

[n2HK(I1(δk/n))2 − θ(k, k)]

= I2(n2HK
n−1
∑
k=0

δ⊗2k/n
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

gn

)

= I2(gn). (3.5)

Thus, we can also write the correct renormalization Vn of Zn, defined in (1.3), as

Vn =
Zn

√Var(Zn)
=

I2(gn)
√Var(Zn)

. (3.6)

Before computing the Kolmogorov distance, we start with the following results which are used throughout
the paper. Here and in the following, the notation an ⊴ bn means that supn≥1 |an|/|bn| < ∞.

Lemma 3.1. The following assertions hold true.
(i) Fixing y ≥ 0 (resp. x ≥ 0), the function x → γ (x, y) (resp. y → γ (x, y)), defined in (3.1), is increasing for

H ∈ (0, 1/2].
(ii) For any H ∈ (0, 1) and K ∈ (0, 1], the function γ is negative and, for j large, we have

γ (0, j) ∼ cH,K j2HK−2, (3.7)
γ ( j, j) ∼ cH,K j2HK−2. (3.8)

If j ≤ l, then

|γ ( j, l)| ≤ cH,K l2HK−2, (3.9)

where cH,K is an explicit constant depending only on H and K.

Proof. For (i), fixing y ≥ 0 gives

∂γ
∂x

(x, y) = 2HK(x + 1)2H−1[((x + 1)2H + (y + 1)2H)K−1 − ((x + 1)2H + y2H)K−1]

− 2HKx2H−1[(x2H + (y + 1)2H)K−1 − (x2H + y2H)K−1]

= 2HK[g(1 + x) − g(x)], (3.10)

where

g(x) = x2H−1[(x2H + (y + 1)2H)K−1 − (x2H + y2H)K−1].
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If H ∈ (0, 1/2] and K ∈ (0, 1], then γ is increasing since the function g is increasing in (0,∞). Indeed,

g�(x) = (2H − 1)x2H−2[(x2H + (y + 1)2H)K−1 − (x2H + y2H)K−1]
+ 2H(K − 1)x4H−2[(x2H + (y + 1)2H)K−2 − (x2H + y2H)K−2]

≥ 0.

For (ii), in order to show that γ is negative, it suffices to remark the decreasing property of the function

p : x ∈ [0,∞) → (a + x)K − (b + x)K .

By a straightforward expansion of the function γ , we can easily prove (3.7) and (3.8).
If H ≤ 1/2, by (i), the function x → |γ (x, y)| is decreasing. Thus, we deduce that

|γ (k, l)| ≤ |γ (0, l)| ∼ cH,K l2HK−2.

IfH > 1/2,we rewrite γ as γ (k, l) = gk(1 + l) − gk(l), where gk(x) := ((k + 1)2H + x2H)K − (k2H + x2H)K . Apply-
ing the mean value theorem, for some xk,l ∈ [l, l + 1], we obtain

|γ (k, l)| = 2HKx2H−1k,l [(x2Hk,l + k
2H)K−1 − (x2Hk,l + (k + 1)

2H)K−1]

≤ 2HK(l + 1)2H−1[(l2H + k2H)K−1 − (l2H + (k + 1)2H)K−1].

Again, by the mean value theorem on y → (l2H + y2H)K−1, for some yk,l ∈ [k, k + 1], we have

[(l2H + k2H)K−1 − (l2H + (k + 1)2H)K−1] = 2H(K − 1)y2H−1k,l [l2H + y2Hk,l ]
K−2.

Consequently, for k ≤ l, we have

|γ (k, l)| ≤ 4H2K(1 − K)(l + 1)2H−1(k + 1)2H−1[l2H + k2H]K−2 ≤ cH,K l2HK−2

and (ii) follows.

Proposition 3.2. Let Zn be the sequence defined in (3.5) and let σ be the constant given by (3.4).
(i) Assume that 0 < HK < 3/4. Then,

Var(Zn)
42−Knσ2

→ 1 (3.11)

as n →∞.
(ii) Assume that HK = 3/4. Then,

Var(Zn)
42−Kσ2n log n

→ 1 (3.12)

as n →∞.

Proof. To show (3.11), we write

Var(Zn)
42−Knσ2

− 1 = n−1

42−Kσ2
E[I22(gn)] − 1

=
n−1

23−2Kσ2
‖gn‖2H⊗2 − 1

=
n4HK−1

23−2Kσ2
n−1
∑
k,l=0

⟨δ⊗2k/n , δ
⊗2
l/n⟩H⊗2 − 1

=
n4HK−1

23−2Kσ2
n−1
∑
k,l=0

⟨δk/n , δl/n⟩2H − 1

=
n−1

23−2Kσ2
n−1
∑
k,l=0

θ2(k, l) − 1

=
n−1

8σ2
n−1
∑
k,l=0

γ2(k, l) + ( n
−1

8σ2
n−1
∑
k,l=0

ρ2(k − l) − 1) + n
−1

4σ2
n−1
∑
k,l=0

γ (k, l)ρ(k − l)

=: J1(n) + J2(n) + J3(n).
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As in the proof of [11, Theorem 4.1], we have

J2(n) → 0 (3.13)

as n →∞. On the other hand,

J1(n) =
n−1

8σ2
n−1
∑
k,l=0

γ2(k, l) = n
−1

8σ2
n−1
∑
k=0

γ2(k, k) + n
−1

4σ2
∑

0≤k<l≤n−1
γ2(k, l) =: J1,1(n) + J1,2(n).

By (3.8), the sum

J1,1(n) =
n−1

8σ2
n−1
∑
k=0

γ2(k, k)

behaves as
n−1

8σ2
n−1
∑
k=0

k4HK−4,

which goes to zero as n →∞, since HK < 3/4. Thus,

J1,1(n) → 0 (3.14)

as n →∞. Now, we study the convergence of J1,2(n). We first fix two positive constants α and β such that
α + β = 1 and 4HK − 2 < β < 1. We deduce from (3.9) that

J1,2(n) =
n−1

4σ2
∑

0≤k<l≤n−1
γ2(k, l) ≤ CH,K

n−1

4σ2
∑

0≤l≤n−1
l4HK−3 ≤ CH,K

n−α

4σ2
∑

0≤l≤n−1
l4HK−3−β → 0

as n →∞. Hence,
J1,2(n) → 0 (3.15)

as n →∞. Combining (3.14) and (3.15) leads to

J1(n) → 0 (3.16)

as n →∞. Finally, from (3.16) and (3.13), together with the Cauchy–Schwarz inequality, we have

|J3(n)| ≤
n−1

4σ2
n−1
∑
k,l=0

|γ (k, l)ρ(k − l)|

≤ (
n−1

4σ2
n−1
∑
k,l=0

γ2(k, l))
1/2

(
n−1

4σ2
n−1
∑
k,l=0

ρ2(k − l))
1/2

= 2√J1(n)( J2(n) + 1), (3.17)

which goes to zero as n →∞ and the convergence (3.11) follows.
We now prove (3.12). Following similar arguments as in the proof of (3.11), we have

Var(Zn)
42−Kσ2n log n

− 1 = n−1

8σ2 log n

n−1
∑
k,l=0

γ2(k, l) + ( n−1

8σ2 log n

n−1
∑
k,l=0

ρ2(k − l) − 1)

+
n−1

4σ2 log n

n−1
∑
k,l=0

γ (k, l)ρ(k − l)

=
1

log n J1(n) +
1

log n J2(n) +
1

log n J3(n).

From [3, p. 490] we have
1

log n J2(n) → 0 (3.18)
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as n →∞. On the other hand, since HK = 3/4 and from the fact that

log n ∼
n−1
∑
1

1
k
,

we deduce easily from (3.16) and (3.17) that

1
log n J1(n) +

1
log n J3(n) → 0

as n →∞.

3.2 A Berry–Esseen bound for 0 < HK ≤ 3/4

Our first main result is summarized in the following theorem.

Theorem 3.3. Let N ∼ N(0, 1) and let Vn be defined by (3.6). Then, Vn converges in distribution to N. In addi-
tion, for some constant cH,K depending uniquely on H and K and for every n ≥ 1, we have

dKol(Vn , N) ≤ cH,K ×

{{{{{{{
{{{{{{{
{

1
√n

if HK ∈ (0, 1/2],

n2HK−3/2 if HK ∈ [1/2, 3/4),
1

√log n
if HK = 3/4.

Proof. From (3.5) we have

DZn = 2n2HK
n−1
∑
k=0

I1(δk/n)δk/n

and

‖DZn‖2H = 4n
4HK

n−1
∑
k,l=0

I1(δk/n)I1(δl/n)⟨δk/n , δl/n⟩H,

and by the multiplication formula (2.3) we get

‖DZn‖2H = 4n
4HK

n−1
∑
k,l=0

I2(δk/n ⊗̃ δl/n)⟨δk/n , δl/n⟩H + 4n4HK
n−1
∑
k,l=0

⟨δk/n , δl/n⟩2H

= 4n4HK
n−1
∑
k,l=0

I2(δk/n ⊗̃ δl/n)⟨δk/n , δl/n⟩H + E‖DZn‖2H.

Combining this with the fact that E‖DZn‖2H = 2Var(Zn), we obtain that

1
2 ‖DVn‖

2
H − 1 =

2n4HK
Var(Zn)

n−1
∑
k,l=0

I2(δk/n ⊗̃ δl/n)⟨δk/n , δl/n⟩H.

It follows that

E[(
1
2 ‖DVn‖

2
H − 1)

2
] =

4n8HK

Var2(Zn)
E[(

n−1
∑
k,l=0

I2(δk/n ⊗̃ δl/n)⟨δk/n , δl/n⟩H)
2
]

=
8n8HK

Var2(Zn)

n−1
∑

i,j,k,l=0
⟨δi/n , δj/n⟩H⟨δk/n , δl/n⟩H⟨δi/n ⊗̃ δj/n , δk/n ⊗̃ δl/n⟩H⊗2

=
8n2

Var2(Zn)
A(n), (3.19)
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where

A(n) = n8HK−2
n−1
∑

i,j,k,l=0
⟨δi/n , δj/n⟩H⟨δk/n , δl/n⟩H⟨δi/n ⊗̃ δj/n , δk/n ⊗̃ δl/n⟩H⊗2

=
n8HK−2

2

n−1
∑

i,j,k,l=0
⟨δi/n , δj/n⟩H⟨δk/n , δl/n⟩H(⟨δi/n , δk/n⟩H⟨δj/n , δl/n⟩H + ⟨δi/n , δl/n⟩H⟨δj/n , δk/n⟩H)

= n8HK−2
n−1
∑

i,j,k,l=0
⟨δi/n , δj/n⟩H⟨δi/n , δk/n⟩H⟨δk/n , δl/n⟩H⟨δj/n , δl/n⟩H.

Hence, using that fact that
|ab| ≤ 12 (a

2 + b2), a, b ∈ ℝ,

we have

|A(n)| ≤ n
8HK−2

2

n−1
∑

i,j,k=0
|⟨δi/n , δj/n⟩H⟨δi/n , δk/n⟩H|(

n−1
∑
l=0

⟨δk/n , δl/n⟩2H)

+
n8HK−2

2

n−1
∑

i,j,k=0
|⟨δi/n , δj/n⟩H⟨δi/n , δk/n⟩H|(

n−1
∑
l=0

⟨δj/n , δl/n⟩2H)

= n8HK−2
n−1
∑

i,j,k=0
|⟨δi/n , δj/n⟩H⟨δi/n , δk/n⟩H|(

n−1
∑
l=0

⟨δk/n , δl/n⟩2H). (3.20)

By (3.9) and (3.3) we obtain

n4HK
n−1
∑
l=0

⟨δk/n , δl/n⟩2H =
n−1
∑
l=0
θ2(k, l)

≤ 21−2K(
n−1
∑
l=0
γ2(k, l) +

n−1
∑
l=0
ρ2(k − l))

= 21−2K(
k
∑
l=0
γ2(k, l) +

n−1
∑
l=k+1

γ2(k, l) +
n−1−k
∑
r=−k

ρ2(r))

≤ 21−2K(
k
∑
l=0
k4HK−4 +

n−1
∑
l=1
l4HK−4 + 2

n−1
∑
r=0

ρ2(r))

⊴ 1 +
n−1
∑
l=0
l4HK−4. (3.21)

On the other hand, by using (3.3) we get

n4HK−2
n−1
∑

i,j,k=0
|⟨δi/n , δj/n⟩H⟨δi/n , δk/n⟩H| =

1
n2

n−1
∑

i,j,k=0
|θ(i, j)θ(i, k)|

=
1
n2

n−1
∑
i=0

(
n−1
∑
j=0

|θ(i, j)|)
2

≤
1
n2

n−1
∑
i=0

(
n−1
∑
j=0

|γ (i, j)| +
n−1
∑
j=0

|ρ(i − j)|)
2

= 2−2K 1
n2

n−1
∑
i=0

(
i
∑
j=0

|γ (i, j)| +
n−1
∑
j=i+1

|γ (i, j)| +
n−1−i
∑
r=−i

|ρ(r)|)
2

≤ 2−2K 1
n2

n−1
∑
i=1

(i2HK−1 +
n−1
∑
j=1
j2HK−2 + 2

n−1
∑
r=0

|ρ(r)|)
2

⊴
1
n2

n−1
∑
i=1
i4HK−2 + 1

n(
n−1
∑
j=1
j2HK−2)

2
. (3.22)
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By (3.20), (3.21) and (3.22) we have

|A(n)| ⊴ 1
n2

n−1
∑
i=1
i4HK−2 + 1

n(
n−1
∑
j=1
j2HK−2)

2
:= D(n). (3.23)

If 0 < HK < 1/2, then

D(n) = 1
n2

n−1
∑
i=1
i4HK−2 + 1

n(
n−1
∑
j=1
j2HK−2)

2
≤
1
n

∞
∑
i=1
i4HK−3 + 1

n(
∞
∑
j=1
j2HK−2)

2
⊴
1
n
. (3.24)

If 1/2 ≤ HK < 3/4, then, by using the fact that for α > −1 we have

n−1
∑
k=1

rα ∼ n
α+1

α + 1

as n →∞, we get

D(n) = 1
n2

n−1
∑
i=1
i4HK−2 + 1

n(
n−1
∑
j=1
j2HK−2)

2
≤
n−1
∑
i=1
i4HK−4 + (

n−1
∑
j=1
j2HK−5/2)

2
⊴ n4HK−3. (3.25)

Combining (2.4), (3.19), (3.11), (3.24) and (3.25), we deduce that

dKol(Vn , N) ⊴
{{
{{
{

1
√n

if HK ∈ (0, 1/2],

n2HK−3/2 if HK ∈ [1/2, 3/4).

Assume now that HK = 3/4. From (3.20), (3.21) and (3.22), together with the fact that

n−1
∑
r=1

r−1 ∼ log n

as n →∞, we have

|A(n)|
log2n
⊴

1
log n(

1
n2

n−1
∑
i=1
i−1 + 1

n(
n−1
∑
j=1
j−1/2)

2
) ⊴

1
log n (3.26)

and this completes the proof of the theorem.

4 The almost sure central limit theorem
We are going now to prove the second main result of this paper, which states the ASCLT of the bifractional
Brownian motion and its quadratic variation.

Proposition 4.1. For all H ∈ (0, 1) and K ∈ (0, 1], and for any bounded and continuous function φ : ℝ → ℝ,
we have, almost surely,

1
log n

n
∑
k=1

1
k
φ(k−HKBk) → Eφ(N)

as n →∞, where N ∼ N(0, 1).

Proof. The proof is straightforward by applying [2, Thorem 4.1 and Corollary 3.7] and the fact that

|E[BjBl]| = 2−K(( j2H + l2H)K − | j − l|2HK) ≤ 2−K( j2HK + l2HK − | j − l|2HK) = 21−K |E[BHKj BHKl ]|,

where BHK is a fractional Brownian motion with Hurst parameter HK.
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Theorem 4.2. If HK ∈ (0, 3/4], then the sequence (Vn)n≥0 satisfies the ASCLT. In other words, for any bounded
and continuous function φ : ℝ → ℝ, we have, almost surely,

1
log n

n
∑
k=1

1
k
φ(Vk) → Eφ(N)

as n →∞, where N ∼ N(0, 1).

Proof. We shall make use of Theorem 2.2. From Theorem 3.3, (Vn)n satisfies the CLT, so it remains to check
conditions (i) and (ii). The cases HK ∈ (0, 3/4) and H = 3/4 are treated separately. By (3.6), we can write
Vn = I2(gn), where

gn =
n2HK

√Var(Zn)

n
∑
k=1

δ⊗2k/n ,

which implies that

gn ⊗1 gn =
n4HK

Var(Zn)

n
∑
k,l=1

⟨δk/n , δl/n⟩Hδk/n ⊗ δl/n .

We deduce that
‖gn ⊗1 gn‖2H⊗2 =

n2

Var2(Zn)
A(n). (4.1)

Assume that HK ∈ (0, 3/4). Combining (3.11), (3.23), (3.24) and (3.25), we have

‖gn ⊗1 gn‖2H⊗2 ⊴ (n−1 + n4HK−3) ⊴
{
{
{

n−1 if HK ∈ (0, 1/2),
n4HK−3 if HK ∈ [1/2, 3/4).

Consequently, condition (i) in Theorem 2.2 is satisfied.
On the other hand, by (3.11), for k < l, we have

⟨gk , gl⟩H⊗2 =
(kl)2HK

√Var(Zk)√Var(Zl)

k−1
∑
i=0

l−1
∑
j=0

⟨δi/k , δj/l⟩2H

≤ cH,K
1

√kl

k−1
∑
i=0

l−1
∑
j=0
θ2(i, j)

≤ cH,K
1

√kl
[
k−1
∑
i=0

l−1
∑
j=0
ρ2(i − j) + ( ∑

0≤i≤j≤k−1
+
k−1
∑
i=0

l−1
∑
j=k

)γ2(i, j)].

As in the proof of [2, Theorem 5.1], we obtain that

1
√kl

k−1
∑
i=0

l−1
∑
j=0
ρ2(i − j) ≤ cH,K√

k
l
.

Using Lemma 3.1, we obtain

1
√kl

∑
0≤i≤j≤k−1

γ2(i, j) ≤ cH,K√
k
l ∑
0≤i≤k−1

i4HK−4 ≤ cH,K√
k
l

and, again from Lemma 3.1, we have

1
√kl

k−1
∑
i=0

l
∑
j=k
γ2(i, j) ≤ 1

√kl

k−1
∑
i=0

l
∑
j=1
j4HK−4 ≤ cH,K√

k
l
.

Combining all the above bounds, we obtain

⟨gk , gl⟩H⊗2 ≤ cH,K√
k
l
.

Finally, condition (ii) in Theorem 2.2 is satisfied.
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Now, suppose that HK = 3/4. It follows from (4.1), (3.12) and (3.26) that

‖gk ⊗1 gk‖2H⊗2 =
k2 log2k
Var2(Zk)

A(k)
log2k
≤ cH,K log−1k,

which leads to
∞
∑
n=2

1
n log2n

n
∑
k=1

1
k
‖gk ⊗ gk‖H⊗2 ≤ cH,K

∞
∑
n=2

1
n log2n

n
∑
k=1

1
k√log k

≤ cH,K
∞
∑
n=2

1
n log3/2n

< ∞.

To finish the proof, it suffices to show that

⟨gk , gl⟩H⊗2 ≤ cH,K√
k log l
l log k (4.2)

for all k > l. According to (3.12), we have

⟨gk , gl⟩H⊗2 =
(kl)2HK

√Var(Zk)√Var(Zl)

k−1
∑
i=0

l−1
∑
j=0

⟨δi/k , δj/l⟩2H

≤
cH,K

√l log k√k log l

k−1
∑
i=0

l−1
∑
j=0
θ2(i, j)

≤
cH,K

√l log k√k log l
[
k−1
∑
i=0

l−1
∑
j=0
ρ2(i − j) + ( ∑

0≤i≤j≤k−1
+
k−1
∑
i=0

l−1
∑
j=k

)γ2(i, j)].

As in the proof of [2, Proposition 6.4], we have

1
√l log k√k log l

k−1
∑
i=0

l−1
∑
j=0
ρ2(i − j) ≤ cH,K√

k log l
l log k

for all 1 ≤ k ≤ l. Using Lemma 3.1 and the fact that
n−1
∑
r=1

r−1 ∼ log n

as n →∞, we deduce that

1
√l log k√k log l

∑
0≤i≤j≤k−1

γ2(i, j) ≤ cH,K
k log l

√l log k√k log l
≤ cH,K√

k log l
l log k . (4.3)

Again from Lemma 3.1, we obtain that

1
√l log k√k log l

k−1
∑
i=0

l−1
∑
j=k
γ2(i, j) ≤ cH,K√

k log l
l log k , (4.4)

which completes the proof of the theorem.
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