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1 Introduction

Let B = (B¢, t > 0) be a bifractional Brownian motion (bifBm) with parameters H € (0, 1) and K € (0, 1],
defined on some probability space (Q, F, P). (Here and in the following, we assume that F is the sigma-
field generated by B.) This means that B is a centered Gaussian process with the covariance function
E[BsB¢t] = Ry k(s, t), where
1
Ry (s, t) = Z—K((tZH + 2K ¢ — 5 |2HE), (1.1)

The case K = 1 corresponds to the fractional Brownian motion (fBm) with Hurst parameter H. The process B
has no stationary increments, but it has the quasi-helix property (in the sense of J. P. Kahane)

27Kt — s|2HK < (B, — Bg|?) < 217K |t — 521K, (1.2)

so B has y-Holder continuous paths for any y € (0, HK) thanks to the Kolmogorov—-Centsov theorem and it
is a self-similar process, that is, for any constant a > 0, the processes (B, t > 0) and (a'™® B, t > 0) have
the same distribution. The bifBm B can be extended for 1 < K < 2 with H € (0, 1) and HK € (0, 1) (see [1]).
We refer to [6, 8, 9, 13] for further details on the subject.

An example of an interesting problem related to B is the study of the asymptotic behavior of the quadratic
variation of B on [0, 1], defined as

n-1
Zn =Y [n*™(B(is1)/m - Bin)* — E((Biz1 - B)»)], n=1.
i=0
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Let us consider the correct renormalization V), of Z,,, given as

Zn
Vp= —2 . (1.3)
" WVar(Zy)
Recall that if Y, Z are two real-valued random variables, then the Kolmogorov distance between the law of Y
and the law of Z is given by

dxal(Y,Z) = sup |P(Y <2z)-P(Z<2z).
—00<Z<00
In the particular case of the fBm (that is, when K = 1) and thanks to the seminal works of Breuer and Major [4],
Dobrushin and Major [5], Giraitis and Surgailis [7] and Taqqu [14], it is well known that we have the following
asn — oo.

e If0< H < 3/4, then

V1% 30, 1).

O'H\/ﬁ

o IfH =3/4, then
Vo law

———— — N(0, 1).
ogynlogn

o« IfH > 3/4,then
Vo law

pr Y — Z ~ “Hermite random variable”.
Here, oy > 0 denotes an explicit constant depending only on H. Moreover, explicit bounds for the Kolmogorov
distance between the law of V,, and the standard normal law are obtained by [11, Theorem 4.1], [3, Theo-
rem 1.2] and [10, Theorem 5.6]. The following cases hold true. For some constant cy depending only on H,
we have the bounds

% ifH ¢ (0,5/8),
n
(g™ e 1 5/
dkol(Va, NO, 1) < cyx { V1 ’
nt-3 ifH e (5/8,3/4),
1
o if H = 3/4.

On other hand, Bercu, Nourdin and Tagqu [2] proved the almost sure central limit theorem (ASCLT) for V.
Recently, Tudor [15] studied the subfractional Brownian motion case.

Let us now describe the results that we will prove in the present paper. First, in Theorem 3.3, we use
Malliavin calculus and Stein’s method to derive, in the case when HK ¢ (0, 3/4], explicit bounds for the Kol-
mogorov distance between the law of V;, and the standard normal law. More precisely, according to the value
of HK, we consider the cases

n-1/2 if HK € (0, 1/2],

dol(Vi, N(O, 1)) < e x {277 if HK € [1/2,3/4),

if HK = 3/4,

logn
where cp k is a constant depending only on H and K. In Theorem 4.2, we prove the almost sure central limit
theorem for V.

The rest of the paper is organized as follows. Section 2 deals with preliminaries concerning Malliavin
calculus, Stein’s method and related topics needed throughout the paper. Section 3 and Section 4 contain our
main results, concerning Berry—Esseen bounds and the ASCLT for the quadratic variation of the bifractional
Brownian motion.
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2 Preliminaries

In this section, we briefly recall some basic facts concerning Gaussian analysis and Malliavin calculus that are
used in this paper; we refer to [12] for further details. Let £ be a real separable Hilbert space. For any g > 1,
we denote by $H®7 (resp. $H°7) the gth tensor product (resp. gth symmetric tensor product) of £. We write
X = {X(h), h € $H} to indicate a centered isonormal Gaussian process on $). This means that X is a centered
Gaussian family, defined on some probability space (Q, F, P) and such that E[X(g)X(h)] = (g, h), for every
g, h € 9. (Here and in the following, we assume that J is the sigma-field generated by X.)

Forevery g > 1, let }{, be the gth Wiener chaos of X, that is, the closed linear subspace of L?(Q) generated
by the random variables {H,(X(h)), h € 9, [|hls = 1}, where Hy is the qth Hermite polynomial defined as

2 q 2
Hyo) = (1) &)

The mapping I,(h®?) = Hy(X(h)) provides a linear isometry between the symmetric tensor product $°?
(equipped with the modified norm | - [[ses = v/q!| - lles) and H,. Specifically, for all f, g € $°¢ and g > 1,
one has

Elly(F)Ig(8)] = q{f. &) sy (2.1)

On the other hand, it is well known that any random variable Z belonging to L?(Q) admits the chaotic expan-
sion
Z=E[Z]1+ ) I(fy, (2.2)
q=1
where the series converges in L?(Q) and the kernels f;, belonging to $°9, are uniquely determined by Z.
Let {ex, k > 1} be a complete orthonormal system in $. Given f € $H°? and g € H°4, foreveryr=0,...,pAq,
the rth contraction of f and g is the element of $®P+4-2" defined as

f®,g= Z (f,e,-l®---®ei,)5m®(g,e,-l®---®e1~,)ﬁ®r.
i1=1,.00ir=1

In particular, note that f ® g = f ® g and, moreovet, f ®, g = (f, ) se» When p = q. Since, in general, the
contraction f ®, g is not necessarily symmetric, we denote its symmetrization by f &, g € H°P*+9-2", When
f € 5%, we write I4(f) to indicate its gth multiple integral with respect to X. If f € H°P and f € $H®, then

the formula
PAq

BA1E = Y (PN pra-2F8re) (2.3)

r=0
is useful in computing the product of such multiple integrals.

Let 8 be the set of all smooth cylindrical random variables, that is, ones that can be expressed as
F=f(X(¢1),...,X(¢yn)) for n > 1, where f: R" - R is a €*-function such that f and all its derivatives
have at most polynomial growth and ¢; € $. The Malliavin derivative of F with respect to X is the square
integrable $-valued random variable defined as

pF=¥ %X@l), cos (@) i
i=1 =1

In particular, DX(h) = h for every h € §. As usual, D2 denotes the closure of the set of smooth random
variables with respect to the norm
IFI3 , = ELF?] + E[IDF|}].

The Malliavin derivative D verifies the chain rule, that is, if ¢ : R" — Ris Gzl, and if (Fj)ij=1
of elements of D2, then ¢(F1, ..., G,) € D>? and we have

n is a sequence

.....

n
0
DY(F1, ..., ) = Y. 5(Fi,..., Gu)DFy.
o 9Xi
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Recall the following results concerning CLT and ASCLT for multiple stochastic integrals.

Theorem 2.1 (Nourdin and Peccati [11]). Let g > 2 be an integer and let F = I;(f) with f € $°9. Then,

dgor(F, N) < \/E[(l - énDFuéc)z], (2.4)
where N ~ N(0, 1).

Theorem 2.2 (Bercu, Nourdin and Taqqu [2]). Let g > 2 be an integer and let {G,},>1 be a sequence of the form
Gn = I4(fn) with f,, € $®4. Assume that E[G2] = q'||fn ||52.)®q =1 for all n and that

law

Gn _’N~N(Oy 1)

as n — oo. If the conditions
S 1 &1
0] —Ifk ®r frllge2an < 0o foreveryl <r<gq-1,
n; nlog’n ,Z’l k

n

(iD) °Z°: 1 z [{fi> f1) 5324 co

inlog’n, iz K

are satisfied, then {Gn}n>1 satisfies an ASCLT. In other words, almost surely, for any bounded and continuous
functiongp : R - R,

1S 1060 - EeW)
logn = k(p k ¢
asn — oo.

From now, assume on one hand that X = B is a bifBm with parameters H € (0, 1) and K € (0, 1] and on the
other hand that $) is a real separable Hilbert space defined by denoting the set of all R-valued step functions
on [0, co) by € and by defining §) as the Hilbert space obtained by closing £ with respect to the scalar product

1
(110,51, Lio,e1) % = R,k (s, ) = Z—K((t”’ + 2K ¢ - 5|2HK),

In particular, one has B; = B(1[o,7).

3 Berry—-Esseen bounds in the CLT for the quadratic variation of
the bifBm

In this section, we prove that a CLT holds for every HK ¢ (0, 3/4], where V,, was defined in (1.3). Using Stein’s
method, we also derive the Berry—Esseen bounds for this convergence.

3.1 General setup

Let us define
63i,j) =27y (i, j) +pi-j), 1i,jeN,
where
y(@)) =+ D+ G+ D)) - @7 4 (G + 1)2H) = (1 + 1)?H + K+ @2H 4 jPHHK (3.1)

and
p(r) = [r+ 12HK 4 | — 12K _ gy 2HE v e 72, (3.2)

Observe that the function y is symmetric and that p(0) = 2, p(x) = p(-x) and p behaves asymptotically as
p(r) = 2HK(2HK - 1)|r|?%=2 || - co. (3.3)

In particular, ¥,., p%(r) < oo if and only if HK € (0, 3/4).
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We will use the notation

iin = Liign,(k+1ymy and 0 = \j > p2(r). (3.4)

reZ

Using the self-similarity property of B and (1.1), we deduce that
21885/, 8im) 6 = N?HXE((B(is1y/n — Biym)(B(+1)/n — Bjn)) = E((Bis1 — Bi)(Bj+1 — B)) = 6(, j).

Hence, we can write the quadratic variation of B with respect to a subdivision
1 2
nn:{0<—<—<-~<1}
n n

of [0, 1] as

Zn = Z [n*"(B(ks1)/n — Bim)® - 0(k, k)]

Z [n*HK (11 (8k/m)) - O(K, k)]

(S )

8n
=I>(gn)- (3.5)

Thus, we can also write the correct renormalization V, of Z,, defined in (1.3), as

_ Zn _ I>(gn)
WVar(Z,) WVar(Z,)

(3.6)

Before computing the Kolmogorov distance, we start with the following results which are used throughout
the paper. Here and in the following, the notation a, < b, means that sup,», |anl/|bnl < co.

Lemma 3.1. The following assertions hold true.

(i) Fixing y > 0 (resp. x = 0), the function x — y(x,y) (resp. y — y(x,y)), defined in (3.1), is increasing for
H e (0,1/2].

(if) Forany H € (0, 1) and K € (0, 1], the function y is negative and, for j large, we have

y(0, ) ~ cp xj* K2, (3.7)

yG, j) ~ cu xj2HE2. (3.8)
Ifj < L, then

ly(, DI < e g P52, (3.9)

where cy,k is an explicit constant depending only on H and K.
Proof. For (i), fixing y > 0 gives
%(x, y) = 2HK(x + D20+ 12+ (y + D = (e )2+ y2)E
“2HKPH (2] 4 (y + 1)2H)K-1 _ (2H 4 y2H)K-1,
= 2HK[g(1 + x) - g(X)], (3.10)
where

g(X) — XZH—l[(XZH + (y + 1)2H)K—1 _ (X2H + yZH)K—l]'
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If H € (0,1/2] and K € (0, 1], then y is increasing since the function g is increasing in (0, co). Indeed,
gl(x) — (ZH _ 1)X2H72[(X2H + (y + 1)2H)K71 _ (XZH + yZH)Kfll
+ ZH(K _ 1)X4H—2[(X2H + (y + 1)2H)K—2 _ (XZH + yZH)K—Z]
> 0.
For (ii), in order to show that y is negative, it suffices to remark the decreasing property of the function
p:x€[0,00) = (a+x)K—(b+x)K.

By a straightforward expansion of the function y, we can easily prove (3.7) and (3.8).
If H < 1/2, by (i), the function x — |y (x, y)| is decreasing. Thus, we deduce that

ly(k, D] < |y (0, D] ~ cg 12752,

IfH > 1/2, werewritey asy(k, I) = gx(1 + 1) — gx(I), where gy (x) := ((k + 1)2H + x2H)K _ (k2H 4 x2H)K Apply-
ing the mean value theorem, for some xj,; € [I, [ + 1], we obtain

ly (k, DI = 2HEXRHOGH + k21— 07 + (ke + 1)2H)% 1)
< 2HK(L+ 1)?H7H 17 4+ 121 — (P 4 (K + 1)K,
Again, by the mean value theorem on y — (1> + y?H)X=1_for some yy ; € [k, k + 1], we have
[(12H 4 K2HYK-1 _ (2H o (k4 1)2H)K-1] = 2 F(K — 1)y12<’I-II—I[IZH +Y§§]K72-
Consequently, for k < I, we have
ly(k, D] < 4H?K(1 - K)(1 + 1)2H 7 (ke + 1)2H71[12H 4 12HK=2 < oy  2HK2
and (ii) follows. O

Proposition 3.2. Let Z, be the sequence defined in (3.5) and let o be the constant given by (3.4).
(i) Assume that O < HK < 3/4. Then,

% 1 (3.11)
asn — co.
(ii) Assume that HK = 3/4. Then,
Var(Z,) (3.12)

42-Kg2nlogn
asn — oo.

Proof. To show (3.11), we write
Var(Z,) nt 5
42Kng2 L= 42 K2 ELL(8n)] -1
-1

n 2
mllgnllﬁm -1

n4HK-1 n-1
®2 6®2

T 232K g2 klzo<5l</n’ 5o~ 1

pAHK-1 n-1 ,
= K1 k;o(ak/m Sim)g —1

nt "21 )
= 3257 9 (k, I) -1
23 ZKO-Z Ko

-1 -1

“TYy (k,1)+(— p (k—l>—1>+— y(k, Dptc - D)
802 2o 802 o 402 2,

=: J1(n) + J2(n) + J3(n).
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As in the proof of [11, Theorem 4.1], we have
Jo(n) - 0 (3.13)

as n — oo. On the other hand,

—1"1 -1

Jim = 2 iy(k,l)— ;2 vk D i Y VD =00 + 10,
k,1=0

0<k<l<n-1
By (3.8), the sum

-1 n-1

_n- 2
Jia(n) = o ;;)y (k, k)

behaves as
-1 n-1

n
n- z JAHK=4
80?2 =
which goes to zero as n — oo, since HK < 3/4. Thus,
]1,1(71) -0 (3.14)

as n — oo. Now, we study the convergence of J; ,(n). We first fix two positive constants a and f such that
a+ B =1and 4HK - 2 < 8 < 1. We deduce from (3.9) that

n-1 n-1 -
Jizm=— Y yD<Cuk— » 1" <Cux Yy KSR 0
40? 0<k<l<n-1 402 O<l<n-1 4o? O<li<n-1
as n — oo. Hence,
J1,2(n) — 0 (3.15)

as n — oo. Combining (3.14) and (3.15) leads to
Ji(n) -0 (3.16)

as n — oo. Finally, from (3.16) and (3.13), together with the Cauchy-Schwarz inequality, we have

)] < 72— v Z ly (k, Dp(k = )]
k,1=0

_ 1/2 n,l n-1 1/2
( Z (k,l)> ( Zp(k—l))

klO klO

=2vhi(m)(J2(n) + 1), (3.17)

which goes to zero as n — oo and the convergence (3.11) follows.
We now prove (3.12). Following similar arguments as in the proof of (3.11), we have

Var(Z,) N
-D-1
42-Kg2nlogn 80210gnk;0y e (8 Zlognkéop 0
-1 n-1
+ W k%OY(k’ I)P(k - l)

= i) () + T ().
ogn logn logn

From [3, p. 490] we have
1
——J2(n) — 0 (3.18)
logn
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as n — 0o. On the other hand, since HK = 3/4 and from the fact that

n-1 1

logn ~ -,
T k

we deduce easily from (3.16) and (3.17) that

1 1
@]1(71) + @]3(”) -0

asn — oo. O

3.2 ABerry-Esseen bound for0 < HK < 3/4

Our first main result is summarized in the following theorem.

Theorem 3.3. Let N ~ N(0, 1) and let V,, be defined by (3.6). Then, V,, converges in distribution to N. In addi-
tion, for some constant cy x depending uniquely on H and K and for every n > 1, we have

1 .
- if HK € (0,1/2],

dxol(Vn, N) < e x {n2HK=3/2 if HK € [1/2, 3/4),

if HK = 3/4.

1
vlogn
Proof. From (3.5) we have

n-1
DZ, = 20" 11 (8k/n)Bksn
k=0

and

n-1
IDZyl1, = 4n* ™" 11 (Biyn)I1(81yn) (Bk/ns Bty 5
k,1=0

and by the multiplication formula (2.3) we get
n-1 n-1
IDZal1% = 415" L (8ijn & 81/)(Skjns Biynds + 40K Y (Bipm, Bim)

k,1=0 k,1=0

n-1
= 4n"HK Z IZ(5k/n é"sl/nxsk/n: 61/n>5’) + ]E"DZn”jza-
k,l1=0

Combining this with the fact that E|DZ,|}, = 2 Var(Zy,), we obtain that

1 5 2tk nol _
SIDVally - 1= s kéolz(‘sk/n & 81/n) (Sk/ns Styn) sy
It follows that
1 5 2 4nB8HK n-1 2
IE[(—DV -1)]:—1[5[( Ly (8/n & 1/n)(Bi/n» 6 )]
51DVl Var(Z,) k%‘o 2(81/n ® 81/n) {6k, Sim) 5

8ndHK n-1

= Var’(Z,) ; I; 0<5i/n’ B s {6k O1yn) 5 (8i/n ® 8jn, Okjn ® 81yn) 52
1,],K,l=

8n?

= VarZ—(Z,,)A(n)’ (3.19)
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where

n-1
A(n) = n®HK=2 Z (6i/n, Oj/n) 5 (Ok/ns 61/n) 5 {8i/n ® Bjjns Ok/n ® 81/n) 2
i,j,k,1=0
n8HK-2  n-1
i,j,k,1

)

(6i/ns Oj/n) 5 (Okns 61n) 5 ({8isns 6k/n) 5{8j/ns Oun) s + (Bisns 61n) 5 {8j/m, Okn) )

,),k,1=0

n-1
n8HK-2 z (6i/n; Oj/n) 5{0isn> Ok/n) 5 {8k/n> O1/n) 5 (Bjm,s Oyn) s+
i.j,J1=0

Hence, using that fact that
1
lab| < z(a2 +b?), a,beR,

we have

n8HK 2 n-1 n-1
Al < —— |<6,~/n,6j/n>ﬁ<6i/n,5k/n>y)|(Z(«Sk/n,é‘zm;)

i,j,k=0 1=0
n8HK 2 n-1 n-1
+— Z |(5i/n,6j/n>.6<6i/na6k/n>fj|( Z(5j/n,51/n)323)
i,j,k=0 =0
n-1
i/ns Oj/n)H\0i/ns Ok/n/H k/ns Ol/n .
nBHK=2 |<6 8j/m) 5 (Bifns Sim) sl Y. (Bims Buynds, |- (3.20)
i,j,k=0 1=0

By (3.9) and (3.3) we obtain

n-1 n-1
nN (Sm, )y = Y. 07k, D)
1=0 =0
n-1 n-1
< leK( Z vk, 1)+ Z p?(k - l))

k n-1-k
=2 ZK(Zy%k D+ Z y2(k, ) + Z P <r>)

I=k+1 r=—k
<21 2K<Zk4HK 4+ ZI4HK 4+2 zp (r)>
r=0
al+ Z [AHK=4 (3.21)
=0

On the other hand, by using (3.3) we get

1S
ntHe Z [{8i/n, 8jm) s {8im, Sin) sl = = 16(i, j)0(, k)|
1,j,k=0 i,j,k=0
1 n-1 /n-1 2
=52 ( 2. led, 1)|)
i=0 \ j=
1 n-1 2
<= ( ly@, j)l + Z Ip(i —m)
=i\ jo =0
1 1 l - n-1-i 2
=25 ) (Z Yo S iy Ip(r)I)
%0 \j=0 j=i+1 r=—i
- - 2
<2 in 2HK-1 | Z 2HK-2 znzl| (
= 2 p(r)l
n i=1 j=1 r=0

1 n=1 n-1 2
| F Z 4HK- 2 < Z 2HK- 2) . (322)
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By (3.20), (3.21) and (3.22) we have

n-1 n-1 2
A(n)| 2 izz 4HK=2 (ZjZHK-Z) := D(n). (3.23)

j=1

If0 < HK < 1/2, then

15 13 I N |
D(n) _ n Z 4HK 2 < Z ]ZHK 2> < H Z A4HK-3 H( ZJZHK 2) 4 E (3.24)
i=1 i=1 j=1

If 1/2 < HK < 3/4, then, by using the fact that for « > —1 we have

S

na+1

as n — 0o, we get
o unke2 . 1O 28k 2o HK "C 2HK / ’ HEK
D(n) = jAHK=2 —( j2 2> <) it “+( j2 52) < ntHk=3, (3.25)
; - ,-:zl] 1; ];1

Combining (2.4), (3.19), (3.11), (3.24) and (3.25), we deduce that

=S if HK € (0, 1/2],
dKol(Vn’ N) d \/ﬁ

n2HK=312 §fHK € [1/2, 3/4).

Assume now that HK = 3/4. From (3.20), (3.21) and (3.22), together with the fact that

n-1
z rt~logn
r=1
as n — oo, we have
An 1 (17 (SHIPAG 1
| ( )l l _2 Z + = 1/2 < I (326)
log?n ~ logn i1 j:l ogn

and this completes the proof of the theorem. O

4 The almost sure central limit theorem
We are going now to prove the second main result of this paper, which states the ASCLT of the bifractional
Brownian motion and its quadratic variation.

Proposition 4.1. For all H € (0, 1) and K € (0, 1], and for any bounded and continuous function ¢ : R - R,
we have, almost surely,

1 n

-HK
logn 2 LOUTKB) — Ep(N)

as n — oo, where N ~ N(0, 1).
Proof. The proof is straightforward by applying [2, Thorem 4.1 and Corollary 3.7] and the fact that
|E[B]Bl]| _ sz((jZH + IZH)K _ |] _ I|2HK) < 27K(j2HK + IZHK _ |] _ l|2HK) — ZlleE[B]HKB{‘IK”’

where BK is a fractional Brownian motion with Hurst parameter HK. O
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Theorem 4.2. If HK € (0, 3/4], then the sequence (Vy)n>o Satisfies the ASCLT. In other words, for any bounded
and continuous function ¢ : R — R, we have, almost surely,
1 &1
—— Y —p(V Ep(N
ogn 2, k#(V0) — Eo)
as n — oo, where N ~ N(0, 1).

Proof. We shall make use of Theorem 2.2. From Theorem 3.3, (V,), satisfies the CLT, so it remains to check
conditions (i) and (ii). The cases HK € (0, 3/4) and H = 3/4 are treated separately. By (3.6), we can write
Vn = I2(gn), where

n2HK  n
_ 92
Var(Zy) i) kin
which implies that
4HK
8n®1 8n = V (Zn z <6k/n: 61/n>5’)6k/n ® 6l/n
We deduce that "
n
lgn ®1 gn”%m = ———A(n). (4.1)

Var?(Z,)
Assume that HK € (0, 3/4). Combining (3.11), (3.23), (3.24) and (3.25), we have
nt if HK € (0, 1/2),

lgn ®1 gnll2e, < (n7 + n*HET3) g
1ol n“HK=3if HK € [1/2, 3/4).

Consequently, condition (i) in Theorem 2.2 is satisfied.
On the other hand, by (3.11), for k < I, we have

(kl)ZHK

N ®2 = 5 61 ]
(8> 810 mm ZO]ZO( i S0,
<c \/—_ 2 (l )
1 k-1 2 ( ) < k—1l—1> 2(‘ )]
S CHK—F— p1-j)+ + Yy ().
\/k— i=0 j=0 O<i<j<k-1  i=0 j=k

As in the proof of [2, Theorem 5.1], we obtain that

X _
. k
pii-j) < CH,K\/T-

k

|
o
T

||M
||M

,\/__
Using Lemma 3.1, we obtain

1 205 3 k s4HK-4 ;
Vi Z Y(l:])SCH,K\j7 Z i <o\

O<i<j<k-1 O<i<k-1
and, again from Lemma 3.1, we have
k-1 1 k-1 1 e \j;
IZ(:) JZ’:(Y (i, ) Z Z < CHK\ 7

Combining all the above bounds, we obtain

k
(k> 8 sye2 < CHK\],

Finally, condition (ii) in Theorem 2.2 is satisfied.
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Now, suppose that HK = 3/4. It follows from (4.1), (3.12) and (3.26) that

2 2
K2log’k Ak) _ enlog- k.

2
gk ®1 gkllge: =

Var?(Zy) log’k
which leads to
(e} 1 n 1 n [ee] 1
—|| ® gillege2 < € ———— <oo.
,gz nlog’n kz Sk®8klo K Z > nlog’n kzl kx/log ,,zz nlog®?n
To finish the proof, it suffices to show that
klogl
® 2
(8k»> 81 g2 < CH,K\/”ng (4.2)
for all k > 1. According to (3.12), we have
(kl)zHK k-11-1 5
(8k> 81 g2 = (Gisk» 8j/1)
vVar(Zy)~/Var(Z;) ;)];) l S
 cwx k=11-1 ,
DIDINAH)
x/llog kvklogl (=5 =5
e ISy 5,
p (i—j)+< + )y (i,j)]-
llogkvklogll {55 O<igj<k-1 i=0 j=k
As in the proof of [2, Proposition 6.4], we have
k-11-1 klOgl
ZZP (i-)) < CcHr\[T7—=%
x/llog x/klog 200 llogk
forall 1 < k < I. Using Lemma 3.1 and the fact that
Z r1~logn
as n — oo, we deduce that
1 2 klogl \]klogl
—_— (i,j)<c —_—. (4.3)
Jllog kvklogl Ogigzgk_l Vb s O e kkog 1 logk
Again from Lemma 3.1, we obtain that
k=11-1
klogl
(i,j) < cm, \j —_—, (4.4)
\/llogk\/klog ;);(y D=cux llog k
which completes the proof of the theorem. O
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