Home Algorithms and methodological challenges in the development and application of quantitative systems pharmacology models: a case study in type 2 diabetes
Article
Licensed
Unlicensed Requires Authentication

Algorithms and methodological challenges in the development and application of quantitative systems pharmacology models: a case study in type 2 diabetes

  • Victor Sokolov EMAIL logo
Published/Copyright: November 8, 2022

Abstract

Quantitative systems pharmacology (QSP) is a relatively new modelling discipline, formed within the ever-growing domain of model-informed drug development and actively evolving throughout the last decade. This modelling technique is based on the systems analysis and is used to get a quantitative rather than qualitative understanding of systems dynamics and explore the mechanisms of action of a drug. However, there is no well-defined methodology for the QSP model development, which significantly complicates the practical application of these models. In the current work, we overview the existing mathematical models of antidiabetic therapies and propose a modelling method, which overcomes common limitations and is able to produce a physiologically based mechanistic model describing gliflozin action in type 2 diabetes mellitus. From the practical standpoint, sensitivity analysis preformed in this work helped to reveal subpopulation of patients with better response to gliflozin therapy.

MSC 2010: 92C32; 92C45; 92D25; 93A10

Acknowledgment

The author thanks Gennady Bocharov and Kirill Peskov for mentorship, guidance and feedback throughout the scientific career, and Cristina Leon for invaluable help with the arrangement of this article.

References

[1] American Diabetes Association, 2. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes—2020. Dia. Care 43 (2020), S14–S31.10.2337/dc20-S002Search in Google Scholar PubMed

[2] J. P. F. Bai, B. J. Schmidt, K. G. Gadkar, V. Damian, J. C. Earp, C. Friedrich, P. H. van der Graaf, R. Madabushi, C. J. Musante, K. Naik, M. Rogge, and H. Zhu, FDA-Industry Scientific Exchange on assessing quantitative systems pharmacology models in clinical drug development: a meeting report, summary of challenges/gaps, and future perspective. AAPS J. 23 (2021), 60.10.1208/s12248-021-00585-xSearch in Google Scholar PubMed

[3] Y. Bard, Nonlinear Parameter Estimation. Academic Press, New York, 1974.Search in Google Scholar

[4] K. T. Baron, S. Macha, U. C. Broedl, V. Nock, S. Retlich, and M. Riggs, Population pharmacokinetics and exposure-response (efficacy and safety/tolerability) of empagliflozin in patients with type 2 diabetes. Diabetes Ther. 7 (2016), 455–471.10.1007/s13300-016-0174-ySearch in Google Scholar PubMed PubMed Central

[5] R. J. Bauer, NONMEM tutorial Part II: Estimation methods and advanced examples. CPT Pharmacometrics Syst. Pharmacol. 8 (2019), 538–556.10.1002/psp4.12422Search in Google Scholar PubMed PubMed Central

[6] K. W. Beach, A theoretical model to predict the behavior of glycosylated hemoglobin levels. J. Theor. Biol. 81 (1979), 547–561.10.1016/0022-5193(79)90052-3Search in Google Scholar PubMed

[7] L. Z. Benet and M. Rowland, Pharmacometrics: A new journal section. Journal of Pharmacokinetics and Biopharmaceutics 10 (1982), 349–350.10.1007/BF01065167Search in Google Scholar

[8] R. N. Bergman, Y. Z. Ider, C. R. Bowden, and C. Cobelli, Quantitative estimation of insulin sensitivity. Am. J. Physiol. 236 (1979), E667–677.10.1152/ajpendo.1979.236.6.E667Search in Google Scholar PubMed

[9] E. L. Bradshaw, M. E. Spilker, R. Zang, L. Bansal, H. He, R. D. O. Jones, K. Le, M. Penney, E. Schuck, B. Topp, A. Tsai, C. Xu, M. J. M. A. Nijsen, and J. R. Chan, Applications of quantitative systems pharmacology in model-informed drug discovery: perspective on impact and opportunities. CPT Pharmacometrics Syst Pharmacol. 8 (2019), 777–791.10.1002/psp4.12463Search in Google Scholar PubMed PubMed Central

[10] A. Cornish-Bowden, Fundamentals of Enzyme Kinetics. Wiley-Blackwell, Weinheim, Germany, 2012.Search in Google Scholar

[11] A. De Gaetano and O. Arino, Mathematical modelling of the intravenous glucose tolerance test. J. Math. Biol. 40 (2000), 136–168.10.1007/s002850050007Search in Google Scholar PubMed

[12] R. A. DeFronzo, E. Ferrannini, L. Groop, R. R. Henry, W. H. Herman, J. J. Holst, F. B. Hu, C. R. Kahn, I. Raz, G. I. Shulman, D. C. Simonson, M. A. Testa, and R. Weiss, Type 2 diabetes mellitus. Nat. Rev. Dis. Primers. 1 (2015), 15019.10.1038/nrdp.2015.19Search in Google Scholar PubMed

[13] D. Devineni, D. Polidori, C. R. Curtin, J. Murphy, S.-S. Wang, H. Stieltjes, and E. Wajs, Pharmacokinetics and pharmacodynamics of once- and twice-daily multiple-doses of canagliflozin, a selective inhibitor of sodium glucose co-transporter 2, in healthy participants. Int. J. Clin. Pharmacol. Ther. 53 (2015), 438–446.10.5414/CP202324Search in Google Scholar PubMed

[14] B. Efron and R. Tibshirani, Bootstrap methods for standard errors, confidence intervals, and other measures of statistical accuracy. Statist. Sci. 1 (1986), 54–75.10.1214/ss/1177013815Search in Google Scholar

[15] S. Ermakov, B. J. Schmidt, C. J. Musante, and C. J. Thalhauser, A survey of software tool utilization and capabilities for quantitative systems pharmacology: what we have and what we need. CPT Pharmacometrics Syst. Pharmacol. 8 (2019), 62–76.10.1002/psp4.12373Search in Google Scholar PubMed PubMed Central

[16] A. Field, J. Miles, and Z. Field, Discovering statistics using R. Sage, Los Angeles–London–New Delhi–Singapore– Washington, DC, 2012.Search in Google Scholar

[17] C. Ghezzi, D. D. F. Loo, and E. M. Wright, Physiology of renal glucose handling via SGLT1, SGLT2 and GLUT2. Diabetologia 61 (2018), 2087–2097.10.1007/s00125-018-4656-5Search in Google Scholar PubMed PubMed Central

[18] K. M. Hallow, P. J. Greasley, G. Helmlinger, L. Chu, H. J. Heerspink, and D. W. Boulton, Evaluation of renal and cardiovascular protection mechanisms of SGLT2 inhibitors: model-based analysis of clinical data. American Journal of Physiology-Renal Physiology 315 (2018), F1295–F1306.10.1152/ajprenal.00202.2018Search in Google Scholar PubMed PubMed Central

[19] B. Hamrén, E. Björk, M. Sunzel, and M. Karlsson, Models for plasma glucose, HbA1c, and hemoglobin interrelationships in patients with type 2 diabetes following tesaglitazar treatment. Clin. Pharmacol. Ther. 84 (2008), 228–235.10.1038/clpt.2008.2Search in Google Scholar PubMed

[20] G. Helmlinger, N. Al-Huniti, S. Aksenov, K. Peskov, K. M. Hallow, L. Chu, D. Boulton, U. Eriksson, B. Hamrén, C. Lambert, E. Masson, H. Tomkinson, and D. Stanski, Drug-disease modeling in the pharmaceutical industry—where mechanistic systems pharmacology and statistical pharmacometrics meet.European Journal of Pharmaceutical Sciences. 109 (2017), S39–S46.10.1016/j.ejps.2017.05.028Search in Google Scholar PubMed

[21] P. J. Higgins and H. F. Bunn, Kinetic analysis of the nonenzymatic glycosylation of hemoglobin. J. Biol. Chem. 256 (1981), 5204–5208.10.1016/S0021-9258(19)69387-7Search in Google Scholar

[22] P. M. Jauslin, N. Frey, and M. O. Karlsson, Modeling of 24-hour glucose and insulin profiles of patients with type 2 diabetes. J. Clin. Pharmacol. 51 (2011), 153–164.10.1177/0091270010362536Search in Google Scholar PubMed

[23] P. M. Jauslin, M. O. Karlsson, and N. Frey, Identification of the mechanism of action of a glucokinase activator from oral glucose tolerance test data in type 2 diabetic patients based on an integrated glucose-insulin model. J. Clin. Pharmacol. 52 (2012), 1861–1871.10.1177/0091270011422231Search in Google Scholar PubMed

[24] P. M. Jauslin, H. E. Silber, N. Frey, R. Gieschke, U. S. H. Simonsson, K. Jorga, and M. O. Karlsson, An integrated glucose-insulin model to describe oral glucose tolerance test data in type 2 diabetics. J. Clin. Pharmacol. 47 (2007), 1244–1255.10.1177/0091270007302168Search in Google Scholar PubMed

[25] C. K. Johnston, R. J. Eudy-Byrne, A. Elmokadem, V. Nock, J. Marquard, N. Soleymanlou, M. M. Riggs, K.-H. Liesenfeld, A model-informed drug development (MIDD) approach for a low dose of empagliflozin in patients with type 1 diabetes. Pharmaceutics. 13 (2021), 485.10.3390/pharmaceutics13040485Search in Google Scholar PubMed PubMed Central

[26] V. A. Karpel’ev, Yu. I. Filippov, Yu. V. Tarasov, M. D. Boyarsky, A. Yu. Mayorov, M. V. Shestakova, and I. I. Dedov, Mathematical modeling of the blood glucose regulation system in diabetes mellitus patients. Annals RAMS. 70 (2015), 549–560.10.15690/vramn.v70.i5.1441Search in Google Scholar PubMed

[27] B. Komoroski, N. Vachharajani, Y. Feng, L. Li, D. Kornhauser, and M. Pfister, Dapagliflozin, a novel, selective SGLT2 inhibitor, improved glycemic control over 2 weeks in patients with type 2 diabetes mellitus. Clin. Pharmacol. Ther. 85 (2009), 513–519.10.1038/clpt.2008.250Search in Google Scholar PubMed

[28] M. Lavielle and F. Mentré, Estimation of population pharmacokinetic parameters of saquinavir in HIV patients with the MONOLIX software. J. Pharmacokinet. Pharmacodyn. 34 (2007), 229–249.10.1007/s10928-006-9043-zSearch in Google Scholar PubMed PubMed Central

[29] R. Lledó-García, N. A. Mazer, and M. O. Karlsson, A semi-mechanistic model of the relationship between average glucose and HbA1c in healthy and diabetic subjects. J. Pharmacokinet. Pharmacodyn. 40 (2013), 129–142.10.1007/s10928-012-9289-6Search in Google Scholar PubMed

[30] R. Madabushi, P. Seo, L. Zhao, M. Tegenge, and H. Zhu, Review: role of model-informed drug development approaches in the lifecycle of drug development and regulatory decision-making. Pharm Res. 39 (2022), 1669–1680.10.1007/s11095-022-03288-wSearch in Google Scholar PubMed PubMed Central

[31] R. Malka, D. M. Nathan, and J. M. Higgins, Mechanistic modeling of hemoglobin glycation and red blood cell kinetics enables personalized diabetes monitoring. Sci. Transl. Med. 8 (2016), 359ra130.10.1126/scitranslmed.aaf9304Search in Google Scholar PubMed PubMed Central

[32] S. Marino, I. B. Hogue, C. J. Ray, and D. E. Kirschner, A methodology for performing global uncertainty and sensitivity analysis in systems biology. Journal of Theoretical Biology 254 (2008), 178–196.10.1016/j.jtbi.2008.04.011Search in Google Scholar PubMed PubMed Central

[33] J. Melin, J. Parkinson, and D. Rekic, Dapagliflozin pharmacokinetics is similar in adults with type 1 and type 2 diabetes mellitus, Abstr 8427. pp. 27, Montreux, Switzerland, 2018.Search in Google Scholar

[34] P. A. Milligan, M. J. Brown, B. Marchant, S. W. Martin, P. H. van der Graaf, N. Benson, G. Nucci, D. J. Nichols, R. A. Boyd, J. W. Mandema, S. Krishnaswami, S. Zwillich, D. Gruben, R. J. Anziano, T. C. Stock, and R. L. Lalonde, Model-based drug development: a rational approach to efficiently accelerate drug development. Clin. Pharmacol. Ther. 93 (2013), 502–514.10.1038/clpt.2013.54Search in Google Scholar PubMed

[35] J. B. Møller, R. V. Overgaard, M. C. Kjellsson, N. R. Kristensen, S. Klim, S. H. Ingwersen, and M. O. Karlsson, Longitudinal modeling of the eelationship between mean plasma glucose and HbA1c following antidiabetic treatments. CPT Pharmacometrics Syst. Pharmacol. 2 (2013), e82.10.1038/psp.2013.58Search in Google Scholar PubMed PubMed Central

[36] H. B. Mortensen, A. Vølund, and C. Christophersen, Glucosylation of human haemoglobin A. Dynamic variation in HbA1c described by a biokinetic model. Clin. Chim. Acta. 136 (1984), 75–81.10.1016/0009-8981(84)90249-3Search in Google Scholar

[37] T. H. T. Nguyen, M. Mouksassi, N. Holford, N. Al-Huniti, I. Freedman, A. C. Hooker, J. John, M. O. Karlsson, D. R. Mould, J. J. Pérez Ruixo, E. L. Plan, R. Savic, J. G. C. van Hasselt, B. Weber, C. Zhou, E. Comets, and F. Mentré, For the Model Evaluation Group of the International Society of Pharmacometrics (ISoP) Best Practice Committee, Model evaluation of continuous data pharmacometric models: metrics and graphics. CPT Pharmacometrics Syst. Pharmacol. 6 (2017), 87–109.10.1002/psp4.12161Search in Google Scholar

[38] M. J. M. A. Nijsen, F. Wu, L. Bansal, E. Bradshaw-Pierce, J. R. Chan, B. M. Liederer, J. T. Mettetal, P. Schroeder, E. Schuck, A. Tsai, C. Xu, A. Chimalakonda, K. Le, M. Penney, B. Topp, A. Yamada, and M. E. Spilker, Preclinical QSP modeling in the pharmaceutical industry: an IQ consortium survey examining the current landscape: preclinical QSP in pharmaceutical industry. CPT Pharmacometrics Syst. Pharmacol. 7 (2018), 135–146.10.1002/psp4.12282Search in Google Scholar PubMed PubMed Central

[39] S. M. Osterman-Golkar and H. W. Vesper, Assessment of the relationship between glucose and A1c using kinetic modeling. J. Diabetes Complications. 20 (2006), 285–294.10.1016/j.jdiacomp.2005.07.009Search in Google Scholar PubMed

[40] M. J. Page, J. E. McKenzie, P. M. Bossuyt, I. Boutron, T. C. Hoffmann, C. D. Mulrow, L. Shamseer, J. M. Tetzlaff, E. A. Akl, S. E. Brennan, R. Chou, J. Glanville, J. M. Grimshaw, A. Hróbjartsson, M. M. Lalu, T. Li, E. W. Loder, E. Mayo-Wilson, S. McDonald, L. A. McGuinness, L. A. Stewart, J. Thomas, A. C. Tricco, V. A. Welch, P. Whiting, and D. Moher, The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 372 (2021), n71.10.1136/bmj.n71Search in Google Scholar PubMed PubMed Central

[41] J. Parkinson, B. Hamrén, M. C. Kjellsson, and S. Skrtic, Application of the integrated glucose-insulin model for cross-study characterization of T2DM patients on metformin background treatment. Brit. J. Clin. Pharmacol. 82 (2016), 1613–1624.10.1111/bcp.13069Search in Google Scholar PubMed PubMed Central

[42] C. C. Peck, W. H. Barr, L. Z. Benet, J. Collins, R. E. Desjardins, D. E. Furst, J. G. Harter, G. Levy, T. Ludden, and J. H. Rodman, Opportunities for integration of pharmacokinetics, pharmacodynamics, and toxicokinetics in rational drug development. J. Clin. Pharmacol. 34 (1994), 111–119.10.1007/978-1-4757-1520-0_26Search in Google Scholar

[43] B. A. Perkins, N. Soleymanlou, J. Rosenstock, J. S. Skyler, L. M. Laffel, K.-H. Liesenfeld, D. Neubacher, M. M. Riggs, C. K. Johnston, R. J. Eudy-Byrne, A. Elmokadem, J. T. George, J. Marquard, and V. Nock, Low-dose empagliflozin as adjunct-to-insulin therapy in type 1 diabetes: A valid modelling and simulation analysis to confirm efficacy. Diabetes Obes. Metab. 22 (2020), 427–433.10.1111/dom.13945Search in Google Scholar PubMed PubMed Central

[44] M. M. Riggs, L. J. Seman, A. Staab, T. R. MacGregor, W. Gillespie, M. R. Gastonguay, H. J. Woerle, and S. Macha, Exposure-response modelling for empagliflozin, a sodium glucose cotransporter 2 (SGLT2) inhibitor, in patients with type 2 diabetes. Brit. J. Clin. Pharmacol. 78 (2014), 1407–1418.10.1111/bcp.12453Search in Google Scholar PubMed PubMed Central

[45] M. M. Riggs, A. Staab, L. Seman, T. R. MacGregor, T. T. Bergsma, M. R. Gastonguay, and S. Macha, Population pharmacokinetics of empagliflozin, a sodium glucose cotransporter 2 inhibitor, in patients with type 2 diabetes. J. Clin. Pharmacol. 53 (2013), 1028–1038.10.1002/jcph.147Search in Google Scholar PubMed

[46] P. V. Röder, B. Wu, Y. Liu, and W. Han, Pancreatic regulation of glucose homeostasis. Exp. Mol. Med. 48 (2016), e219–e219.10.1038/emm.2016.6Search in Google Scholar PubMed PubMed Central

[47] R. M. Røge, S. Klim, S. H. Ingwersen, M. C. Kjellsson, and N. R. Kristensen, The effects of a GLP-1 analog on glucose homeostasis in type 2 diabetes mellitus quantified by an integrated glucose insulin model. CPT Pharmacometrics Syst. Pharmacol. 4 (2015), e00011.10.1002/psp4.11Search in Google Scholar PubMed PubMed Central

[48] M. Shah, L. Stolbov, T. Yakovleva, W. Tang, V. Sokolov, R. C. Penland, D. Boulton, and J. Parkinson, A model-based approach to investigating the relationship between glucoseinsulin dynamics and dapagliflozin treatment effect in patients with type 2 diabetes. Diabetes Obes. Metab. 23 (2021), 991–1000.10.1111/dom.14305Search in Google Scholar PubMed

[49] L. B. Sheiner, Computer-aided long-term anticoagulation therapy. Comput. Biomed. Res. 2 (1969), 507–518.10.1016/0010-4809(69)90030-5Search in Google Scholar PubMed

[50] L. B. Sheiner, Learning versus confirming in clinical drug development, Clin. Pharmacol. Ther. 61 (1997), 275–291.10.1016/S0009-9236(97)90160-0Search in Google Scholar PubMed

[51] L. B. Sheiner and S. L. Beal, Evaluation of methods for estimating population pharmacokinetics parameters. I. Michaelis-Menten model: routine clinical pharmacokinetic data. J. Pharmacokinet. Biopharm. 8 (1980), 553–571.10.1007/BF01060053Search in Google Scholar

[52] H. E. Silber, N. Frey, and M. O. Karlsson, An integrated glucose-insulin model to describe oral glucose tolerance test data in healthy volunteers. J. Clin. Pharmacol. 50 (2010), 246–256.10.1177/0091270009341185Search in Google Scholar PubMed

[53] H. E. Silber, P. M. Jauslin, N. Frey, R. Gieschke, U. S. H. Simonsson, and M. O. Karlsson, An integrated model for glucose and insulin regulation in healthy volunteers and type 2 diabetic patients following intravenous glucose provocations. J. Clin. Pharmacol. 47 (2007), 1159–1171.10.1177/0091270007304457Search in Google Scholar PubMed

[54] D. J. Venzon and S. H. Moolgavkar, A Method for computing profile-likelihood-based confidence intervals. Applied Statistics 37 (1988), 87.10.2307/2347496Search in Google Scholar

[55] W. de Winter, J. DeJongh, T. Post, B. Ploeger, R. Urquhart, I. Moules, D. Eckland, and M. Danhof, A mechanism-based disease progression model for comparison of long-term effects of pioglitazone, metformin and gliclazide on disease processes underlying type 2 diabetes mellitus. J. Pharmacokinet. Pharmacodyn. 33 (2006), 313–343.10.1007/s10928-006-9008-2Search in Google Scholar PubMed

[56] W. de Winter, A. Dunne, X.W. de Trixhe, D. Devineni, C.-H. Hsu, J. Pinheiro, and D. Polidori, Dynamic population pharmacokinetic-pharmacodynamic modelling and simulation supports similar efficacy in glycosylated haemoglobin response with once or twice-daily dosing of canagliflozin. Brit. J. Clin. Pharmacol. 83 (2017), 1072–1081.10.1111/bcp.13180Search in Google Scholar PubMed PubMed Central

[57] T. Yakovleva, V. Sokolov, L. Chu, W. Tang, P. J. Greasley, H. Peilot Sjögren, S. Johansson, K. Peskov, G. Helmlinger, D. W. Boulton, and R. C. Penland, Comparison of the urinary glucose excretion contributions of SGLT2 and SGLT1: A quantitative systems pharmacology analysis in healthy individuals and patients with type 2 diabetes treated with SGLT2 inhibitors. Diabetes Obes. Metab. 21 (2019), 2684–2693.10.1111/dom.13858Search in Google Scholar PubMed

[58] NIH Workgroup, Quantitative and Systems Pharmacology in the Post-genomic Era: New Approaches to Discovering Drugs and Understanding Therapeutic Mechanisms, 2011. (Paper presented at the QSP Workshop Group).Search in Google Scholar

Received: 2022-09-24
Accepted: 2022-09-28
Published Online: 2022-11-08
Published in Print: 2022-11-25

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 8.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/rnam-2022-0025/pdf
Scroll to top button