Home Numerical simulation of aberrated medical ultrasound signals
Article
Licensed
Unlicensed Requires Authentication

Numerical simulation of aberrated medical ultrasound signals

  • Katerina A. Beklemysheva , Georgiy K. Grigoriev , Nikolay S. Kulberg , Igor B. Petrov , Aleksey V. Vasyukov and Yuri V. Vassilevski EMAIL logo
Published/Copyright: October 31, 2018

Abstract

Transcranial ultrasound examination is hampered by the skull which acts as an irregular aberrator of the ultrasound signal. Numerical recovery of the ultrasound field can help in elimination of aberrations induced by the skull. In this paper, we address the simulation of medical phantom scanning through silicon aberrators with wave notching. The numerical model is based on the 2D acoustic equations which are solved by the wavefront construction raytracing method. Numerical B-scan images are compared with experimental B-scan images.

MSC 2010: 65M25; 74J20
  1. Funding:The research was supported by Russian Science Foundation grant 14-31-00024.

References

[1] K. Aki and P. Richards, Quantitative Seismology. Theory and Methods. W. H. Freeman and Company, San Francisco, 1980.Search in Google Scholar

[2] ATL Labs, Model 539 Multipurpose Phantom, http://www.atslaboratories-phantoms.com/resources/2012-539.pdfSearch in Google Scholar

[3] S. I. Baskakov, Radio Engineering Circuits and Signals: Textbook for High Schools. Vysshaya Shkola, Moscow, 1988 (in Russian).Search in Google Scholar

[4] K. Beklemysheva, A. Danilov, G. Grigoriev, A. Kazakov, N. Kulberg, I. Petrov, V. Salamatova, A. Vasyukov, and Yu.Vassilevski, Transcranial ultrasound of cerebral vessels in silico: proof of concept. Russ. J. Numer. Anal. Math. Modelling 31(2016), No. 5, 317-328.10.1515/rnam-2016-0030Search in Google Scholar

[5] K. Beklemysheva, A. Danilov, I. Petrov, V. Salamatova, Yu. Vassilevski, and A. Vasyukov, Virtual blunt injury of human thorax: age-dependent response of vascular system. Russ. J. Numer. Anal. Math. Modelling 30 (2015), No. 5, 259-268.10.1515/rnam-2015-0023Search in Google Scholar

[6] K. A. Beklemysheva, A. S. Ermakov, I. B. Petrov, and A. V. Vasyukov, Numerical simulation of the failure of composite materials by using the grid-characteristic method. Math. Models Comput. Simul. 5 (2016), No. 8, 557-567.10.1134/S2070048216050033Search in Google Scholar

[7] S. Buske and U. Kastner, Efficient and accurate computation of seismic traveltimes and amplitudes. Geophys. Prosp. 52 (2004), 313-322.10.1111/j.1365-2478.2004.00417.xSearch in Google Scholar

[8] V. Červený, Seismic Ray Theory. Cambridge University Press, New York, 2001.10.1017/CBO9780511529399Search in Google Scholar

[9] V. Červený, Seismic rays and ray intensities in inhomogeneous anisotropic media. Geophys. J. R. Astr. Soc. 29 (1972), 1-13.10.1111/j.1365-246X.1972.tb06147.xSearch in Google Scholar

[10] R. Coman and D. Gajewski, Ray tracing by wavefront construction in 3-D, anisotropic media. 71st Internat. Meeting Abstract, Soc. Expl. Geophys. (2001) 1265-1268.Search in Google Scholar

[11] S. Crampin, The dispersion of surface waves in multilayered anisotropic media. Geophys. J. R. Astr. Soc. 21 (1970), 387-402.10.1111/j.1365-246X.1970.tb01799.xSearch in Google Scholar

[12] S. Kim and R. Cook, 3-d traveltime computation using second-order ENO scheme. Geophysics 64 (1999), 1867-1876.10.1190/1.1444693Search in Google Scholar

[13] H.-L. Lai, R. L. Gibson Jr., and K.-J. Lee, Quasi-shear wave raytracing by wavefront construction in 3-D anisotropic media. J. Appl. Geophys. 69(2009), 82-95.10.1016/j.jappgeo.2009.06.002Search in Google Scholar

[14] G. Lambare, P. S. Lucio, and A. Hanyga, Two-dimensional multivalued traveltime and amplitude maps by uniform sampling of a ray field. Geophys. J. Int. 125 (1996), 584-598.10.1111/j.1365-246X.1996.tb00021.xSearch in Google Scholar

[15] K. J. Lee, Efficient ray tracing algorithms based on wavefront construction and model based interpolation method. Doctoral Dissertation. M. S., Texas A&M University, (2005).Search in Google Scholar

[16] A. Leidenfrost, N. Ettrich, D. Gajewski, and D. Kosloff, Comparison of six different methods for calculating traveltimes. Geophys. Prosp. 47(1999), 269-297.10.1046/j.1365-2478.1999.00124.xSearch in Google Scholar

[17] Lord Rayleigh, On waves propagated along the plane surface of an elastic solid. Proc. London Math. Soc. 1 (1885), 4-11.Search in Google Scholar

[18] P. S. Lucio, G. Lambare, and A. Hanyga, 3D multidimensional travel time and amplitude maps. Pure Appl. Geophys. 148 (1996), 449-479.10.1007/BF00874575Search in Google Scholar

[19] E. L. Madsen, H. J. Sathoff, and J. A. Zagzebski, Ultrasonic shear wave properties of soft tissues and tissue-like materials. J. Acoust. Soc. Am. 74 (1983), No. 5, 1346-1355.10.1121/1.390158Search in Google Scholar

[20] K. M. Magomedov and A. S. Kholodov, The construction of difference schemes for hyperbolic equations based on characteristic relations. USSR Comput. Math. Math. Physics 2 (1969), No. 9, 158-176.10.1016/0041-5553(69)90099-8Search in Google Scholar

[21] T. D. Mast, L. M. Hinkelman, L. A. Metlay, M. J. Orr, and R. C. Waag, Simulation of ultrasonic pulse propagation, distortion, and attenuation in the human chest wall. J. Acoust. Soc. Amer. 6 (1999), 3665-3677.10.1121/1.428209Search in Google Scholar PubMed

[22] T. J. Moser, Shortest path calculation of seismic rays. Geophysics 56 (1991), 59-67.10.1190/1.1442958Search in Google Scholar

[23] J. Qian and W. Symes, An adaptive finite-difference method for traveltimes and amplitudes. Geophysics 67 (2002), 167-176.10.1190/1.1451472Search in Google Scholar

[24] A. B. Sergienko, Digital Signal Processing. St. Petersburg, 2006 (in Russian).Search in Google Scholar

[25] G. H. Spencer and M. V. R. K. Murty, General ray tracing procedure. J. Opt. Soc. Amer. 52 (1962), No. 6, 672-678.10.1364/JOSA.52.000672Search in Google Scholar

[26] N. M. Tole and H. Ostensen, Basic Physics of Ultrasonographic Imaging. World Health Organization, 2005.Search in Google Scholar

[27] H. J. A. van Avendonk, A. J. Harding, J. A. Orcutt, and W. S. Holbrook, Hybrid shortest path and ray bending method for traveltime and raypath calculation. Geophysics 66 (2001), 648-653.10.1190/1.1444955Search in Google Scholar

[28] Yu. Vassilevski, K. Beklemysheva, G. Grigoriev, N. Kulberg, I. Petrov, and A. Vasyukov, Numerical modelling of medical ultrasound: phantom-based verification. Russ. J. Numer. Anal. Math. Modelling 32 (2017), No. 5, 339-346.10.1515/rnam-2017-0032Search in Google Scholar

[29] V. Vinje, E. Iversen, and H. Gjøystdal, Traveltime and amplitude estimation using wavefront construction. Geophysics 58 (1993), 1157-1166.10.1190/1.1443499Search in Google Scholar

[30] I. Wald, W. R. Mark, J. Gunther, S. Boulos, T. Ize, W. Hunt, S.G. Parker, and P. Shirley, State of the art in ray tracing animated scenes. In: Eurographics 2007 State of the Art Reports, 2007, 89-116.10.1111/j.1467-8659.2008.01313.xSearch in Google Scholar

Received: 2018-07-02
Accepted: 2018-08-21
Published Online: 2018-10-31
Published in Print: 2018-11-27

© 2018 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 20.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/rnam-2018-0023/html?lang=en
Scroll to top button