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Abstract: The paper is focused on study of non-stationary piecewise-linear processes on Poisson point flows
with independent identically distributed random variables at support points. An approach to calculate the
correlation function of the process on the base of the total probability formula is considered. A general ex-
pression for the correlation function of a non-stationary process is obtained. Particular cases are considered.
Using the method of direct simulation, it is shown numerically that the correlation function of the process
has a point of inflection.
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Some approaches to modelling the piecewise-linear non-Gaussian processes on point flows were considered
in [1] relative to simulation of price series and the study of various trading algorithms based on these models.
The corresponding models use intervals between points of flow and the distributions of process values at
support points as input characteristics. Various approaches to construction of processes were considered, in
particular, the alternation of distributions for ascending and descending sections of the polyline was used
with the help of a special Markov chain.

Special piecewise-linear processes were used in [9] for construction of models for climate prediction. The
typical peculiarity of such processes is that the segments of a piecewise-linear function form a discontinu-
ous function. These researches have shown a prospect of using simulation algorithms for piecewise-linear
processes to solve practical problems.

The issues related to the study of different types of piecewise-linear processes on point flows were con-
sidered in [3–8]. Those processes are modifications of piecewise-constant processes on point flows proposed
and studied previously in [2]. One has to specify probabilistic characteristics of point flows and distribution
of random variables at those points to apply numerical stochastic modelling of piecewise-linear processes
which, in their turn, may be used for description of some real processes, for example, for modelling solar
radiation scattering processes in stochastic cloudy media, modelling climate series, etc. The way of specifi-
cation of random values in Poisson processes essentially determines the properties of the process. Thus, for
example, specifying additive random variables [3] with successively increasing number of summands at flow
points, we get a non-stationary process, and specifying them as independent identically distributed random
variables [4, 5], we get an asymptotically stationary one. In particular, one-point characteristics were consid-
ered for such types of processes and their asymptotic properties were studied. An approach to the study of
correlation structure of piecewise-linear processes on Poisson flows was proposed in [5].

In this paper we present the results of study of a process on Poisson flows whose values are IIDRV with
finite variance at Poisson support points. Considering processes of such type, we obtained exact expressions
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for various its characteristics determining the correlation structure of the process. The properties of those
characteristics were studied numerically.

1 Statistical characteristics of a piecewise-linear process on
Poisson flows with independent identically distributed variables
at support points

In this paperwe studyanapproach to calculationof the correlation functionandcharacteristics of the random
process related to it [4]:

Y(t) = (Yk+1 − Yk)
t − Sk

Sk+1 − Sk
+ Yk = (Yk+1 − Yk)Qk(t) + Yk , Sk ⩽ t < Sk+1, k = 0, 1, . . . (1.1)

Here S0 = 0, Sk = ∑ki=1 Xi , while Xi are independent positive random variables with the density f(x) =
λ exp(−λx), λ > 0 . Note that k = k(t) is an integer-valued random variable,

k(t) = Min{k ⩾ 1 : Sk ⩾ t} ∈ [0,∞), t > 0

used to denote the number of a random interval Sk ⩽ t < Sk+1 covering the point t [3]. Aswas indicated above,
we consider the random variables Yk as IID with an arbitrary one-dimensional probability distribution and
finite variance.

The formal representation of the correlation function of this process (1.1) has the form

corr(Y(t), Y(t + h)) = r(t, h) = E[Y(t)Y(t + h)] − E[Y(t)]E[Y(t + h)]
√D[Y(t)]√D[Y(t + h)]

. (1.2)

Represent the points of process (1.1) in the form

S0 = 0, Sn = S0 + X1 + X2 + . . . + Xn
Sn+1 = Sn + Xn+1

Sm = Sn+1 + Xn+2 + . . . + Xn+m+1
Sm+1 = Sm + Xn+m+2, n ⩾ 1, m ⩾ 1

(1.3)

and the independent variables Yn, Yn+1, Ym, and Ym+1 corresponding to these points are identically dis-
tributed and do not depend on Q(t) = Qn(t) = Qn(t)(t) and Q(t + h) = Qm(t + h) = Qm(t+h)(t + h). The flow
points Sn, Sn+1 and Sm, Sm+1 and also the values Yn, Yn+1 and Ym, Ym+1 determine two different segments of
piecewise-linear function (1.1).

In order to calculate E[Y(t)Y(t + h)] in (1.2), we consider the following events:

1a. B1,nm(t, t + h) = {Sn < t, t < Sn+1 < t + h, Sn+1 < Sm < t + h, Sm+1 > t + h}
n = 1, 2, . . . , m = 1, 2, . . .

The events of this group of events (see Fig. 2) consist in the fact that the points t and t + h, where t, h > 0,
belong to two nonadjacent intervals and Sn ⩽ t < Sn+1 and Sn+1+m ⩽ t + h < Sn+1+m+1, and the beginning of
the first interval is at the point Sn < t, n = 1, 2, . . ., and the beginning of the second interval is Sn+1+m > Sn+1,
m = 1, 2, . . .

2a. B2,nm(t, t + h) = {Sn ⩽ t, Sn+m > t + h}
n =1, 2, . . . , m = 1.

The events from this group of events (see Fig. 3) consist in the fact that the points t and t+h belong to the
same interval and Sn ⩽ t < Sn+1 and Sn ⩽ t + h < Sn+1, and its beginning is at the point Sn < t, n = 1, 2, . . .

3a. B3,nm(t, t + h) = {Sn ⩽ t, t < Sn+m ⩽ t + h, Sn+m+1 > t + h}
n = 1, 2, . . . , m = 1.
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Fig. 1: Trajectory of the process Y(t).

Fig. 2: Events B1,nm(t, t + h).

Fig. 3: Events B2,nm(t, t + h).

Fig. 4: Events B3,nm(t, t + h).

The events of this group of events (see Fig. 4) consist in the fact that the points t and t+ h, where t, h > 0,
belong to two adjacent intervals and Sn ⩽ t < Sn+1, Sn+1 ⩽ t + h < Sn+2, and the beginning of the first interval
is at the point Sn < t, n = 1, 2, . . .

4a. B4,nm(t, t + h) = {Sn+m−1 > t + h}, n = 1, m = 1.

This event (see Fig. 5) consists in the fact that the points t and t+h belong to the same interval S0 ⩽ t < S1

5a. B5,nm(t, t + h) = {t < Sn ⩽ t + h, Sn+m > t + h}, n = 1, m = 1.
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Fig. 5: Events B4,nm(t, t + h).

Fig. 6: Events B5,nm(t, t + h).

Fig. 7: Events B6,nm(t, t + h).

Fig. 8: Events B7,nm(t, t + h).

This event (see Fig. 6) consists in the fact that the points t and t + h belong to two adjacent intervals and
S0 ⩽ t < S1, S1 ⩽ t + h < S2

6a. B6,nm(t, t + h) = {t < Sn ⩽ t + h, Sn < Sn+1 ⩽ t + h, Sn+1 < Sn+m+1 ⩽ t + h, Sn+m+2 > t + h}
n = 1, m = 1, 2, . . .

The events of this group of events (see Fig. 7) consist in the fact that the points t and t + h belong to two
nonadjacent intervals and S0 ⩽ t < S1, Sm+2 ⩽ t+h < Sm+3, and the beginning of the second interval satisfies
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the inequality S1+m > S1, m = 1, 2, . . .

7a. B7,nm(t, t + h) = {(t < Sn ⩽ t + h, Sn < Sn+1 ⩽ t + h, Sn+m+1 > t + h, Sm+1 > Sm}
n = 1, m = 1.

This event (see Fig. 8) consists in the fact that the points t and t + h belong to two intervals S0 ⩽ t < S1
and S2 ⩽ t + h < S3, and one interval (S1, S2) lies between these intervals.

Taking into account events 1a–7a, the formula of total probability for calculation of the mean E[Y(t)Y(t +
h)] takes the form

E[Y(t)Y(t + h)] = s(t, h) =
7
∑
k=1

sk(t, h) =
∞
∑
n=1

∞
∑
m=1

P[B1,nm(t, t + h)]E[Y(t)Y(t + h)|B1,nm(t, t + h)]

+
∞
∑
n=1

P[B2,n1(t, t + h)]E[Y(t)Y(t + h)|B2,n1(t, t + h)] +
∞
∑
n=1

P[B3,n1(t, t + h)]E[Y(t)Y(t + h)|B3,n1(t, t + h)]

+ P[B4,11(t, t + h)]E[Y(t)Y(t + h)|B4,11(t, t + h) + P[B5,11(t, t + h)]E[Y(t)Y(t + h)|B5,11(t, t + h)

+
∞
∑
m=1

P[B6,1m(t, t + h)]E[Y(t)Y(t + h)|B6,1m(t, t + h) + P[B7,11(t, t + h)]E[Y(t)Y(t + h)|B7,11(t, t + h)].

(1.4)
In order to get the probabilities of events 1a–7a, we calculate the joint distribution density of the variables

Sn, Sn+1, Sm, and Sm+1, n,m = 1, 2, . . . Assuming (1.3), this density has the form

fSnSn+1SmSm+1 (y1, y2, y3, y4) = λ4 (λy1)n−1(n − 1)!
λm−1(y3 − y2)m−1

(m − 1)!
e−λy4 .

In this case the probabilities of events 1a–7a are determined by the relations

1b. P(B1,nm(t, t + h)) = λn+m+1e−λ(t+h)
tn

n!
hm+1

(m + 1)!
, n = 1, 2, . . . , m = 1, 2, . . .

2b. P(B2,nm(t, t + h)) = λn
tn

n!
e−λ(t+h), n = 1, 2, . . .

3b. P(B3,nm(t, t + h)) = e−λ(t+h)h
λn+1tn

n!
, n = 1, 2, . . . , m = 1

4b. P(B4,nm(t, t + h)) = e−λ(t+h), n = 1
5b. P(B5,nm(t, t + h)) = λhe−λ(t+h), n = 1

6b. P(B6,nm(t, t + h)) =
λm+2hm+2

(m + 2)!
e−λ(t+h), n = 1, m = 1, 2, . . .

7b. P(B7,nm(t, t + h)) = λ2e−λ(t+h)
h2

2
, n = 1, m = 1.

It is easy to show that the sumof these probabilities equals one. Let uswrite down the conditional distribution
densities of the variables Sn, Sn+1, Sm, Sm+1 under fulfillment of conditions 1a–7a.

1c. f(y1, y2, y3, y4 󵄨󵄨󵄨󵄨 B1,nm(t, t + h)) =
λyn−11 (y3 − y2)m−1e−λy4nm(m + 1)

e−λ(t+h)tnhm+1

2c. f(y1, y2 󵄨󵄨󵄨󵄨 B2,nm(t, t + h)) =
λnyn−11 e−λy2

tne−λ(t+h)

3c. f(y1, y2, y3 󵄨󵄨󵄨󵄨 B3,nm(t, t + h)) =
λyn−11 e−λy3n

htn
eλ(t+h)

4c. f(y1 󵄨󵄨󵄨󵄨 B4,nm(t, t + h)) =
λe−λy1
e−λ(t+h)

5c. f(y1, y2 󵄨󵄨󵄨󵄨 B5,nm(t, t + h)) =
λe−λy2
he−λ(t+h)

6c. f(y1, y2, y3, y4 󵄨󵄨󵄨󵄨 B6,nm(t, t + h)) = λ
(m + 2)(m + 1)m(y3 − y2)m−1

hm+2e−λ(t+h)
e−λy4

7c. f(y1, y2, y3 󵄨󵄨󵄨󵄨 B7,nm(t, t + h)) =
2λe−λy3
e−λ(t+h)h2

.
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Taking into account 1b–7b, 1c–7c, and the relations

Qn(t) =
t − Sn

Sn+1 − Sn
, Qm(t + h) =

t + h − Sm
Sm+1 − Sm

and also that Yk and Yl, k ̸= l, are IID variables with EYk = µ and DYk = σ2, in total probability formula (1.4)
for E[Y(t)Y(t + h)] for the conditional means we have

1d. E[Y(t)Y(t + h) 󵄨󵄨󵄨󵄨 B1,nm(t, t + h)]

= E[((Yn+1 − Yn)
t − Sn

Sn+1 − Sn
+ Yn) ((Ym+1 − Ym)

t + h − Sm
Sm+1 − Sm

+ Ym) 󵄨󵄨󵄨󵄨 B1,nm(t, t + h)]

= E[([(Yn+1 − Yn)(Ym+1 − Ym)
t − Sn

Sn+1 − Sn
t + h − Sm
Sm+1 − Sm

] + [(Yn+1 − Yn)Ym
t − Sn

Sn+1 − Sn
]

+ [Yn(Ym+1 − Ym)
t + h − Sm
Sm+1 − Sm

] + [YnYm]) 󵄨󵄨󵄨󵄨 B1,nm(t, t + h)] = E[Yn]E[Ym] = µ
2

s1(t, h) = µ2
∞
∑
n=1

∞
∑
m=1

λn+m+1e−λ(t+h) t
n

n!
hm+1

(m + 1)!
= µ2e−λ(t+h)(1 − eλt)(1 − eλh + λh)

2d. E[Y(t)Y(t + h) 󵄨󵄨󵄨󵄨 B2,nm(t, t + h)]

= E[((Yn+1 − Yn)
t − Sn

Sn+1 − Sn
+ Yn)((Yn+1 − Yn)

t + h − Sn
Sn+1 − Sn

+ Yn) 󵄨󵄨󵄨󵄨 B2,nm(t, t + h)]

= 2σ2E[ t − Sn
Sn+1 − Sn

t + h − Sn
Sn+1 − Sn

󵄨󵄨󵄨󵄨 B
(2)
n (t, t + h)] − σ2E[

t − Sn
Sn+1 − Sn

󵄨󵄨󵄨󵄨 B
(2)
n (t, t + h)]

− σ2E[ t + h − SnSn+1 − Sn
󵄨󵄨󵄨󵄨 B2,n1(t, t + h)] + σ

2 + µ2

s2(t, h) =
∞
∑
n=1

λn t
n

n!
e−λ(t+h)E[Y(t)Y(t + h) 󵄨󵄨󵄨󵄨 B

(2)
n (t, t + h)]

= 2σ2
∞
∑
n=1

λn t
n

n!
e−λ(t+h)

t

∫
0

∞

∫
t+h

t − y1
y2 − y1

t + h − y1
y2 − y1

λnyn−11 e−λy2

tne−λ(t+h)
dy2dy1

− σ2
∞
∑
n=1

λn t
n

n!
e−λ(t+h)

t

∫
0

∞

∫
t+h

t − y1
y2 − y1

λnyn−11 e−λy2

tne−λ(t+h)
dy2dy1

− σ2
∞
∑
n=1

λn t
n

n!
e−λ(t+h)

t

∫
0

∞

∫
t+h

t + h − y1
y2 − y1

λnyn−11 e−λy2

tne−λ(t+h)
dy2dy1 + (σ2 + µ2)(e−λh − e−λ(t+h))

= 2σ2
t

∫
0

∞

∫
t+h

t − y1
y2 − y1

t + h − y1
y2 − y1

λ2eλy1e−λy2dy2dy1 − σ2
t

∫
0

∞

∫
t+h

t − y1
y2 − y1

λ2eλy1e−λy2dy2dy1

− σ2
t

∫
0

∞

∫
t+h

t + h − y1
y2 − y1

λ2eλy1e−λy2dy2dy1 + (σ2 + µ2)(e−λh − e−λ(t+h))

3d. E[Y(t)Y(t + h) 󵄨󵄨󵄨󵄨 B3,n1(t, t + h)]

= E[((Yn+1 − Yn)
t − Sn

Sn+1 − Sn
+ Yn) ((Yn+2 − Yn+1)

t + h − Sn+1
Sn+2 − Sn+1

+ Yn+1) 󵄨󵄨󵄨󵄨 B3,n1(t, t + h)]

= −σ2E[ t − Sn
Sn+1 − Sn

t + h − Sn+1
Sn+2 − Sn+1

󵄨󵄨󵄨󵄨 B3,n1(t, t + h)] + σ
2E[ t − Sn

Sn+1 − Sn
󵄨󵄨󵄨󵄨 B3,n1(t, t + h)] + µ

2
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s3(t, h) =
∞
∑
n=1

e−λ(t+h)h λ
n+1tn

n!
E[Y(t)Y(t + h) 󵄨󵄨󵄨󵄨 B3,n1(t, t + h)]

= σ2
∞
∑
n=1

e−λ(t+h)h λ
n+1tn

n! (
E[ t − Sn

Sn+1 − Sn
󵄨󵄨󵄨󵄨 B3,n1(t, t + h)] − E[

t − Sn
Sn+1 − Sn

t + h − Sn+1
Sn+2 − Sn+1

󵄨󵄨󵄨󵄨 B3,n1(t, t + h)])

+ µ2λh(e−λh − e−λ(t+h))

= λ3σ2
t

∫
0

(
t+h

∫
t

(
∞

∫
t+h

t − y1
y2 − y1

y3 − t − h
y3 − y2

eλy1e−λy3dy3)dy2)dy1 + µ2λh(e−λh − e−λ(t+h))

4d. E[Y(t)Y(t + h) 󵄨󵄨󵄨󵄨 B4,11(t, t + h)] = E[((Y1 − Y0)
t
S1
+ Y0)((Y1 − Y0)

t + h
S1
+ Y0) 󵄨󵄨󵄨󵄨 B4,11(t, t + h)]

= 2σ2E[ tS1
t + h
S1
󵄨󵄨󵄨󵄨 B4,11(t, t + h)] − σ

2E[ tS1
󵄨󵄨󵄨󵄨 B4,11(t, t + h)] − σ

2E[ t + hS1
󵄨󵄨󵄨󵄨 B4,11(t, t + h)] + σ

2 + µ2

s4(t, h) = 2σ2λte−λ(t+h) − 2σ2λ2t(t + h)Γ[0, λ(t + h)] − 2σ2λtΓ[0, λ(t + h)] − σ2λhΓ[0, λ(t + h)]
+ (σ2 + µ2)e−λ(t+h)

5d. E[Y(t)Y(t + h) 󵄨󵄨󵄨󵄨 B5,11(t, t + h)]

= E[((Y1 − Y0)
t − S0
S1 − S0

+ Y0) ((Y2 − Y1)
t + h − S1
S2 − S1

+ Y1) 󵄨󵄨󵄨󵄨 B5,11(t, t + h)]

= −σ2E[ tS1
t + h − S1
S2 − S1

󵄨󵄨󵄨󵄨 B5,11(t, t + h)] + σ
2E[ tS1
󵄨󵄨󵄨󵄨 B5,11(t, t + h)] + µ

2

s5(t, h) = λhe−λ(t+h)( − σ2E[
t
S1

t + h − S1
S2 − S1

󵄨󵄨󵄨󵄨 B5,11(t, t + h)] + σ
2E[ tS1
󵄨󵄨󵄨󵄨 B5,11(t, t + h)] + µ

2)

= −σ2
t+h

∫
t

∞

∫
t+h

t
y1

t + h − y1
y2 − y1

λ2e−λy2dy2dy1 + σ2
t+h

∫
t

λt
y1
e−λ(t+h)dy1 + µ2λhe−λ(t+h)

6d. E[Y(t)Y(t + h) 󵄨󵄨󵄨󵄨 B6,1m(t, t + h)]

= E[((Y1 − Y0)
t − S0
S1 − S0

+ Y0)((Ym+1 − Ym)
t + h − Sm
Sm+1 − Sm

+ Ym) 󵄨󵄨󵄨󵄨 B6,1m(t, t + h)] = µ
2

s6(t, h) = e−λ(t+h)(eλh − 1 − λh −
1
2
λ2h2)µ2

7d. E[Y(t)Y(t + h) 󵄨󵄨󵄨󵄨 B7,11(t, t + h)]

= E[((Y1 − Y0)
t − S0
S1 − S0

+ Y0)((Y3 − Y2)
t + h − S2
S3 − S2

+ Y2) 󵄨󵄨󵄨󵄨 B7,11(t, t + h)] = µ
2

s7(t, h) = λ2e−λ(t+h)
h2

2
µ2.

The final expression for the correlation function of process Y(t) has form (1.2), where E[Y(t)Y(t + h)] is deter-
mined by expression (1.4) and E[Y(t)] and D[Y(t)] have the form [8]:

E[Y(t)] = µ, D[Y(t)] = σ2 (2(E[Q2(t) ] − E[Q(t)]) + 1) (1.5)

where µ = EYn , σ2 = D[Yn], n = 1, 2, ...,

E[Qk(t)] = 1
k + 1 (

1 − e−λt(λt + 1) + (λt)k(1 + k + λt)Γ[1 − k; λt]), k = 1, 2, . . .

and

Γ[a, z] =
∞

∫
z

xa−1e−xdx.
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Tab. 1: Dependence of the functions s1 = s1(t, h), . . ., s7 = s7(t, h), and s = s(t, h) on h for t = 7.5, λ = 1.

h s1 s2 s3 s4 s5 s6 s7 s

0 0 0.6662 0 4.559×10−4 0 0 0 0.6667
0.0125 0 0.6539 0.0117 4.497×10−4 6.636×10−6 0 0 0.6660
0.025 0 0.6418 0.0222 4.436×10−4 1.284×10−5 0 0 0.6644
0.05 0 0.6186 0.0405 4.316×10−4 2.422×10−5 0 0 0.6595
0.075 0 0.5963 0.0561 4.199×10−4 3.443×10−5 0 0 0.6529
0.1 0 0.5751 0.0695 4.086×10−4 4.364×10−5 0 0 0.6450
0.125 0 0.5550 0.0810 3.975×10−4 5.199×10−5 0 0 0.6361
0.150 0 0.5352 0.0910 3.869×10−4 5.952×10−5 0 0 0.6266
0.175 0 0.5165 0.0996 3.763×10−4 6.636×10−5 0 0 0.6165
0.2 0 0.4985 0.1070 3.662×10−4 7.255×10−5 0 0 0.6060
0.4 0 0.3780 0.1377 2.942×10−4 1.044×10−4 0 0 0.5160
0.6 0 0.2890 0.1310 2.364×10−4 1.156×10−4 0 0 0.4294
0.8 0 0.2224 0.1304 1.901×10−4 1.155×10−4 0 0 0.3531
1 0 0.1720 0.1161 1.529×10−4 1.093×10−4 0 0 0.2884
2 0 0.0450 0.0505 5.166×10−5 5.899×10−5 0 0 0.1006
3 0 0.0153 0.0191 1.757×10−5 2.570×10−4 0 0 0.0344
4 0 0.0048 0.0069 6.012×10−6 1.035×10−5 0 0 0.0118
5 0 0.0016 0.0025 2.067×10−6 4.015×10−6 0 0 0.0040
6 0 0.0005 0.0009 7.138×10−7 1.523×10−6 0 0 0.0014
7 0 0.0002 0.0003 2.474×10−7 5.698×10−7 0 0 0.0005

For t = 0 the expression for correlation function (1.2) is

corr(Y(0), Y(h)) = e−λh − hλ Γ[0, λh]
√2(E[Q2(h) ] − E[Q(h)]) + 1

. (1.6)

Based on direct simulation of trajectories of process (1.1), we estimated functions of form (1.6) for various
values of the parameter λ. The calculations have shown that these estimates coincide with function (1.6) up
to statistical error.

2 Numerical experiments
Based on estimates of the correlation function r(t, t + h) of process (1.1) obtained frommodel samples for the
case F(x) = 1 − exp(−λx), λ = 0.25 with different values of t, it was shown in [4] that for t > 7.5 the process
becomes close to a stationary one in its correlations, a similar behaviour of the process is observed relative
to means and variances. Examples of correlation functions r(t, τ) of the process Y(t) for t = 20 were also
presented in that paper for different values of the parameter λ. The presence of an inflection point in these
correlation functions is typical for this process, which differs them essentially from correlation functions of
piecewise-constant processes on Poisson point flows and on Palm’s flows whose characteristic feature is the
convexity downwards [2].

We also studied the function E[Y(t)Y(t + h)] numerically on the base of total probability formula (1.4).
Table 1 presents the results of calculations of the dependence of the functions s1(t, h), . . . , s7(t, h) on h for
t = 7.5, λ = 1. The one-dimensional distribution of random variables Yk at Poisson points was specified
by the standard normal distribution with the mathematical expectation µ = 0 and variance σ2 = 1. As is
seen from the table, the main contribution into the covariance E[Y(t)Y(t + h)] is introduced by the functions
s2(t, h) and s3(t, h), and the second centralmoment (which coincideswith the variance in this case) ismainly
determined by the function s2(t, h) and, as is seen from the table, for t = 7.5 it is close to the asymptotic value
of the variance of the process defined by formula (1.5) and equal to 2

3σ
2 [8]. For given t = 7.5 the contribution

of all functions s1(t, h), s6(t, h), s7(t, h) is zero for all h (this is confirmed by theoretical calculations) and
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Fig. 9: Dependence of the functions s2 = s2(t, h), s3 = s3(t, h) and the covariance s(t, h) on h.

the contribution of the functions s4(t, h), s5(t, h) is rather small. The last column of the table presents the
dependence of s(t, h) = E[Y(t)Y(t + h)] on h as the sum of the functions s1(t, h), . . . , s7(t, h).

Figure 9 shows the dependence of the functions s2(t, h) and s3(t, h) and also the covariances E[Y(t)Y(t+
h)] on h for the same t, λ, µ, σ2. It is seen from Fig. 9 that the inflection of the function E[Y(t)Y(t + h)]
is determined by the function s3(t, h) which, in its turn, is determined by the character of the probabilities
P(B3,nm(t, t+h)). Similar calculationswereperformedon thebase ofmodel samples. In this casewe simulated
100000 trajectories of the process and, using these trajectories, estimated the contribution into the estimate
of the covariance E[Y(t)Y(t + h)] under fulfillment of conditions 1a–7a. In Fig. 9 these sample values s̃2(t, h),
s̃3(t, h), and s̃(t, h) of the functions s2(t, h),s3(t, h) and s(t, h) are indicated by the corresponding points. The
results of calculations with model samples are consistent with the results shown in Table 1 up to statistical
error.

3 Conclusion
In this paper we have obtained exact expressions for the covariance function of the process Y(t) (1.1). Nu-
merical experiments show that for t > 7.5 the process is close to a stationary one. Further we assume to apply
theoretical studies to asymptotic properties of correlation functions and one-dimensional distributions of the
considered process.
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