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Abstract: The paper is focused on study of non-stationary piecewise-linear processes on Poisson point flows
with independent identically distributed random variables at support points. An approach to calculate the
correlation function of the process on the base of the total probability formula is considered. A general ex-
pression for the correlation function of a non-stationary process is obtained. Particular cases are considered.
Using the method of direct simulation, it is shown numerically that the correlation function of the process
has a point of inflection.
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Some approaches to modelling the piecewise-linear non-Gaussian processes on point flows were considered
in [1] relative to simulation of price series and the study of various trading algorithms based on these models.
The corresponding models use intervals between points of flow and the distributions of process values at
support points as input characteristics. Various approaches to construction of processes were considered, in
particular, the alternation of distributions for ascending and descending sections of the polyline was used
with the help of a special Markov chain.

Special piecewise-linear processes were used in [9] for construction of models for climate prediction. The
typical peculiarity of such processes is that the segments of a piecewise-linear function form a discontinu-
ous function. These researches have shown a prospect of using simulation algorithms for piecewise-linear
processes to solve practical problems.

The issues related to the study of different types of piecewise-linear processes on point flows were con-
sidered in [3-8]. Those processes are modifications of piecewise-constant processes on point flows proposed
and studied previously in [2]. One has to specify probabilistic characteristics of point flows and distribution
of random variables at those points to apply numerical stochastic modelling of piecewise-linear processes
which, in their turn, may be used for description of some real processes, for example, for modelling solar
radiation scattering processes in stochastic cloudy media, modelling climate series, etc. The way of specifi-
cation of random values in Poisson processes essentially determines the properties of the process. Thus, for
example, specifying additive random variables [3] with successively increasing number of summands at flow
points, we get a non-stationary process, and specifying them as independent identically distributed random
variables [4, 5], we get an asymptotically stationary one. In particular, one-point characteristics were consid-
ered for such types of processes and their asymptotic properties were studied. An approach to the study of
correlation structure of piecewise-linear processes on Poisson flows was proposed in [5].

In this paper we present the results of study of a process on Poisson flows whose values are IIDRV with
finite variance at Poisson support points. Considering processes of such type, we obtained exact expressions
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for various its characteristics determining the correlation structure of the process. The properties of those
characteristics were studied numerically.

1 Statistical characteristics of a piecewise-linear process on
Poisson flows with independent identically distributed variables
at support points

In this paper we study an approach to calculation of the correlation function and characteristics of the random
process related to it [4]:

t-S
Y(t) = (Yie = Yi) e + Vi = (Yia1 — Vi) Qu(D) + Yi, Sk<t<Sky, k=0,1,... (11)
Skr1 - Sk
Here So = 0, Sy = Zf-‘:l X;i, while X; are independent positive random variables with the density f(x) =
Aexp(-Ax), A > 0. Note that k = k(t) is an integer-valued random variable,

k(t)=Min{fk>1: Sk >t} €[0,00), t>0

used to denote the number of a random interval Sy < t < Sk,1 covering the point ¢ [3]. As was indicated above,
we consider the random variables Yy as IID with an arbitrary one-dimensional probability distribution and
finite variance.
The formal representation of the correlation function of this process (1.1) has the form
E[Y(t)Y(t + h)] — E[Y(t)]E[Y(t + h)]

corr(Y(t), Y(t + h)) = r(t, h) = . (1.2)
' VDY(6)]VD[Y(t + h)]

Represent the points of process (1.1) in the form

S():O, Sn=So+X1+X2+...+Xn
Sni1 = Sn + Xns1
Sm=Sni1 +Xni2 + .o+ Xnymat
Sm+1 =Sm+Xnem+2, n=1, m>1

(1.3)

and the independent variables Yy, Y11, Y, and Yy,41 corresponding to these points are identically dis-
tributed and do not depend on Q(t) = Qn(t) = Qny(t) and Q(t + h) = Qu(t + h) = Qme+h)(t + h). The flow
points Sy, Sp+1 and Sy, S+1 and also the values Yy, Y,,1 and Yy, Y41 determine two different segments of
piecewise-linear function (1.1).

In order to calculate E[Y(t)Y(t + h)] in (1.2), we consider the following events:

la. Binm(t,t+h)={Sp<t, t <Sps1 <t+h, Spy1 <Sm<t+h, Sme1 > t+h}
n=1,2,..., m=1,2,...
The events of this group of events (see Fig. 2) consist in the fact that the points ¢t and t + h, where t, h > 0,
belong to two nonadjacent intervals and S, < t < Syy1 and Spy14m < t+ h < Spi14me1, and the beginning of
the first interval is at the point S, < t,n = 1, 2, .. ., and the beginning of the second interval is Sy+14+m > Sn+1,

m=1,2,...
2a. By am(t,t+h) ={Sn <t, Spim > t+h}

n=1,2,..., m=1.

The events from this group of events (see Fig. 3) consist in the fact that the points ¢t and ¢ + h belong to the
same interval and S,, < t < Sy41 and S, < t + h < Sy41, and its beginning is at the point S, < t,n =1, 2, ...

3a. By gm(t,t+h)={Sp<t, t<Spym <t+h, Spyme1 > t+h}

n=1,2,..., m=1.
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Fig. 4: Events B3 nm(t, t + h).

The events of this group of events (see Fig. 4) consist in the fact that the points t and ¢t + h, where t, h > 0,
belong to two adjacent intervals and S, < t < Spy1, Snt1 < t+h < Spi2, and the beginning of the first interval
isatthepointS, <t,n=1,2,...

4a. Byam(t,t+h) ={Spsm-1>t+h}, n=1, m=1.
This event (see Fig. 5) consists in the fact that the points t and ¢t + h belong to the same interval S < t < S1

5a. Bsam(t,t+h)={t<Sp<t+h, Spym>t+h}, n=1, m=1.
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This event (see Fig. 6) consists in the fact that the points t and t + h belong to two adjacent intervals and
So<t<81,51<t+h<S,

6a. Benum(t,t+h)={t<Sp<t+h, Sy <Sns1 <t+h, Sps1 < Snem+1 < t+h, Spime2 > t+ h}

n=1, m=1,2,...

The events of this group of events (see Fig. 7) consist in the fact that the points ¢ and t + h belong to two
nonadjacent intervals and So < t < S1, Sm+2 < t+h < Sy43, and the beginning of the second interval satisfies
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the inequality Sy, > S1,m=1,2,...
7a. Bypm(t,t+h)={(t <Sp<t+h, Sy <Spt1 <t+h, Spyms1 > t+h, Sme1 > Sm}
n=1, m=1.
This event (see Fig. 8) consists in the fact that the points t and t + h belong to two intervals Sp < t < Sy
and S, < t+ h < S3, and one interval (S, S,) lies between these intervals.

Taking into account events 1a—7a, the formula of total probability for calculation of the mean E[Y(¢) Y(t +
h)] takes the form

7 [ NS}
E[Y(O)Y(t+h)] = s(t,h) = Y si(t,h) = Y Y P[Bym(t, t + WE[Y(®)Y(t + h)|By,nm(t, t + h)]
k=1 n=1m=1

+ i P[By,n1(t, t + MIE[Y(O)Y(t + h)|Bo,na (¢, t + h)] + i P[B3,n1(t, t + ]E[Y(O)Y(t + h)|B3,n1(t, t + h)]

n=1 n=1

+ P[By,11(t, t + WIE[Y()Y(t + h)|Ba,11(t, t + h) + P[Bs 11(¢, t + W]E[Y()Y(t + h)|Bs 11 (¢, t + )

+ i P[Bg,im(t, t + WE[Y()Y(t + h)|Be,1im(t, t + h) + P[B7,11(¢, t + WIE[Y(O)Y(¢ + h)|B7,11(¢, ¢ + h)].
m=1

(1.4)
In order to get the probabilities of events 1a—7a, we calculate the joint distribution density of the variables
Sns Sni1s Smy and Syiq, N, m =1, 2, ... Assuming (1.3), this density has the form

4 (/1}/1)""1 /1’”‘1()/3 - YZ)m_l e

fSnSn+lsmSm+1(y1’ y2: y3’ y4) = /‘

(n-1)! (m-1)!
In this case the probabilities of events 1a—7a are determined by the relations
th hm+1
1b. P(Binm(t, t+h)) = /l"*’"“e"‘(”h)n—!m, n=1,2,..., m=1,2,...

tn
2b.  P(Bynm(t, t+h)) = A"me"““h), n=1,2,...

/\"+1t"
3b. P(B3um(t, t+h)) = e-"“*h)hT, n=1,2,..., m=1

4b. PByum(t,t+h)=e MM pn_1q
5b.  P(Bs nm(t, t + h)) = Ahe X&) n—q
Am+2hm+2

(m+ 2)!

2
7b.  P(B7um(t, t+h)) = Aze-MHh)h? n=1, m=1.

e—/l(t+h)

6b. P(Bg,nm(t, t+h)) = , n=1, m=1,2,...

It is easy to show that the sum of these probabilities equals one. Let us write down the conditional distribution
densities of the variables S,;, Sp11, Sm, Sm+1 under fulfillment of conditions 1a-7a.

A ys - y2) ™ te Venm(m + 1)
e—/l(t+h)tn hm+1

lc. f(y1,¥2,¥3, Y4 |Biam(t, t + h)) =
Any"~le2
tne—/l(t+h)

n-1,-A
Ayl e y3"e/1(t+h)
htn

2c. f(y1,y2|Ba,am(t, t+ h)) =

3c. f(y1,¥2,¥3|B3nm(t, t + h)) =

Ae=M1
4e. fly |B4,nm(t, t+h)= m

Ae*/l)’z
5¢. f(y1,¥2|Bs,am(t, t + h)) = PR

(m+2)(m+ m(y; - y,)™ !

~Ay4
hm+2 e—/l(t+h) €

6c. f()’ly)/zy)’},)’4|36,nm(t,t+h)) =A

2Ae~Ws
7c. fy1,¥2,¥3 |B7,nm(t, t+h)= W .
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Taking into account 1b—7b, 1c—7c, and the relations

t-Sy t+h-Sy
Q)= —— " Qut+h) = oM
() Sni1 = Sn m( ) Sm+1 — Sm

and also that Yy and Yy, k # 1, are IID variables with EYy = p and DYy = 02, in total probability formula (1.4)
for E[Y(t)Y(t + h)] for the conditional means we have

1d. E[Y(t)Y(t + h)| B1,nm(t, t + h)]

t- Sy t+h-Sp
=E[{(Ypy1 - Yn)———+Y, Y -Yn)—F+—+Y, B t, h
[(( n+1 n)5n+1—5n + n)(( m+1 m)sm+1—sm + m)l 1,nm( t+ )]
t-S, t+h-S, t—Sy
=FE Y1 - Y)Y -Y, + | (Yni1 - Y)Y ———rt
[([( n+1 n)( m+1 m)sn+1—sn Sm+1—sm] [( n+1 n) mSn+1—Sn]
t+h-S
[ Yamer = Ym) 2| + [Yn Y] ) | Bium(t, £ + h)] = E[Y,]E[Yn] =
Sm+1_sm

_ 3,2 v o\ n+m+1 —A(t+h)£ hm+1 2 ,—A(t+h) At
sty =p* ) Y Ammrle ———— = p?e (1 — M1 - et 1 AR)

o o n!'(m+1)!

2d. E[Y()Y(t+ h)|Bo,am(t, t + h)]

t-S t+h-S
= E[((le - Yn)—n + Yn) ((Yn+1 - Yn)—n + Yn) |Bz,nm(t, t+ h)]
Sn+1 - Sn Sn+1 - Sn

t-S, t+h-S,
Sn+1 —Sn Sn+1 —Sn

_ozE[t+h—Sn

=202E |BO(t, t+ h)

t-S
ZE[—" BY t,t+h]
Sn+1_5n | " ( )

By m(t, t+h 24 u?
Sn+1—Sn| 2,n1( " )]+U +Il

(&8 n
sa(t,h) =y A"%e’A(t*h)E[Y(t)Y(t +h)| B¢, t + h)]
n=1 °

dy2dy,

t oo 1 —/1
= 2¢? i/\"ﬂeﬂ(nh)J J t-y1 t+h-y, Anyy e ™
n! 3.3 Y2=y1 ya-n tne-Alt+h)

t+h
(oo}

t
o) n Any’t 1 —/lyz
_ o2 ZAnLe—A(t+h)JJ t—y1 Any; dy2dy
= n!
- 0

VY2 = V1 tne—/l(t+h)
t+h

t oo 1 —Ayz

_O.ZOZo:An —A(t+h)JJ t+h- ylAnyl
Y2-Y1 the —A(t+h)

dyady + (07 + p?) (e — e W)

0 t+h

t oo t oo
t— t+h-
= 20?2 J j Y1 u/\ze/\he%)’zdyzdyl — o2 J J t-yn — 7132 A,Vle—/\)/zdyzdyl
Y2=Y1 Y2—-V1 Y2-Y1
0 t+h 0 t+h
t oo
h -
2= )1
0 t+h

3d. E[Y(O)Y(t+h)|Bsnu(t, t+h)]
) t- S
- E[ (s - Y20 s

_ _OZE[ t—Sy t+h-Sp
Sn+1 - Sn Sn+2 - Sn+1

t+h—Sn+1

+Y >B t,t+h
Sn+2—Sn+1 n+1 I 3,n1( )]

Yn) <(Yn+2 - Yn+l)

|B3,n1(t, t+ h)] + O'ZE

—|B t,t+h
Sn+1—5n| 3,n1( )]



DE GRUYTER V. A. Ogorodnikov and 0. V. Sereseva, Probabilistic properties of non-Gaussian processes =—— 61

1
s3(t, h) = Z e Mt p [Y(t)Y(t +h) | B3, (t, t + )]

AT t-Sp t+h-S D
— 2 “At+h) i .
=0 e h E B t,t+h B tt+h
nz1 n! ( [Sn+1 ~S, | B3, ( )] [Sn+1 e | B3, ( )

+ HZAh(e—/\h _ e—/\(t+h))

t /t+h
:A3azj J j LV Y3t Mgy, |ay, | dys + peAne - e )
o\ 7 Y2=YV1 Y3=Y2

4d. E[Y(t)Y(t + h)qu,ll(t, t+ h)] = E[((Yl - Y())S—t1 + Yo)((Y1 - YO)% + Y()) |B4,11(t, t+ h)]

=2 2E[ { t;h|B4 1t t+h)] ZE[SL|B4,11(t,t+h)]—ozE[t—h|B4,11(t,t+h)]+02+],42
1 1

S1
su(t, h) = 202 Ate M _ 262 A2¢(¢ + R)TT0, A(t + h)] — 202ALT[0, A(t + h)] — a2ART[0, A(t + h)]
+ (0.2 + MZ)e—A(t+h)

5d. E[Y(H)Y(t+ h) | Bsq1(t, t+ h)]

=E[ (i - vorg

t+h- Sl
-51

__S.go n Y0> <(Y2 Y1) Y1> | Bs,11(t, t + h)]

= E t t+h—51|B5 11(t t+h) +O'2E |B5,11(t’t+h) +]12
S1 S-S
At o2 t t+h-5; 2
ss(t, h) = Ahe E 5 S—|B5 11(t, t+h) | +0°E| — |B5 u(t, t+h) | +p’
1 S-S

t+h oo t+h
=0 J J Lirh-n A2e™2dy,dy; +0? J ﬁe_}t(prh)d)’l + P> Ahe D)

! yi V2-V1 e

6d. E[Y()Y(t+h)|Bem(t,t+h)]

t-S t+h-S
= E[((Y1 - Yo) >+ Yo) ((Ym+1 - Ym)e——— + Ym) | Bs,im(t, t + h)] =u’
Sl_SO Sm+1_sm

se(t, h) = e MM @A _ 1 _ A — %Azhz)yz

7d. E[Y(O)Y(t+h) | B7 11(t, t + h)]

t-S t+h-S
[((Y1—Y0) ; Yo)((ys Y2)+—S2 Y2)|B7,11(t’t+h)] =
0 2

s7(t, h) = Aze*"(”h)%yz.

The final expression for the correlation function of process Y(t) has form (1.2), where E[Y(¢) Y(t + h)] is deter-
mined by expression (1.4) and E[Y(t)] and D[Y(t)] have the form [8]:

E[Y(®]=p,  DY(®)] =0 (2(E[Q*()] - E[Q(1)]) + 1) (1.5)

where u = EY,, 0> =D[Y,], n=1,2,...,

E[QX(t)] = kl (1-eMAt+ 1)+ AO*A + k+ AOITL - k; At]), k=1,2,...

+1

and

(o)
Ia, z] = Jx“‘le‘xdx.
zZ
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Tab. 1: Dependence of the functions s; = s4(t, h),...,s7 =s7(t,h),ands =s(t,h)on hfort=7.5, A =1.

h S1 Sz S3 Sy Ss S¢ S7 s

0 0 0.6662 0 4.559x107% 0 0 0 0.6667
0.0125 0  0.6539 0.0117 4.497x10™% 6.636x10® 0 0  0.6660
0.025 0 0.6418 0.0222 4.436x10™% 1.284x10> 0 0  0.6644
0.05 0 0.6186 0.0405 4.316x10™% 2.422x10™> 0 0  0.6595
0.075 0 0.5963 0.0561 4.199x10™* 3.443x10™> 0 0  0.6529
0.1 0 0.5751 0.0695 4.086x10™* 4.364x10™> 0 0  0.6450
0.125 0  0.5550 0.0810 3.975x10™% 5.199x10> 0 0  0.6361
0.150 0  0.5352 0.0910 3.869x10% 5.952x10> 0 0  0.6266
0.175 0 0.5165 0.0996 3.763x10™* 6.636x10> 0 O  0.6165
0.2 0 0.4985 0.1070 3.662x10™% 7.255x10™> 0 O  0.6060
0.4 0 03780 0.1377 2.942x10™* 1.044x10™* 0 0  0.5160
0.6 0 0.2890 0.1310 2.364x10™* 1.156x10™* 0 0  0.4294
0.8 0 0.2224 0.1304 1.901x10™% 1.155x10% 0 0  0.3531
1 0 0.1720 0.1161 1.529x10* 1.093x10™* 0 0  0.2884
2 0 0.0450 0.0505 5.166x107> 5.899x10™> 0 0  0.1006
3 0 0.0153 0.0191 1.757x10™> 2.570x10™* 0 0  0.0344
4 0 0.0048 0.0069 6.012x10°® 1.035x107> 0 0  0.0118
5 0 0.0016 0.0025 2.067x10°® 4.015x10°® 0 0  0.0040
6 0 0.0005 0.0009 7.138x107 1.523x10°® 0 0  0.0014
7 0 0.0002 0.0003 2.474x107 5.698x107 0 0  0.0005

For t = O the expression for correlation function (1.2) is

e M — hATYO, Ah]
V2EIQZ(W) T -E[QW]) + 1

corr(Y(0), Y(h)) = (1.6)

Based on direct simulation of trajectories of process (1.1), we estimated functions of form (1.6) for various
values of the parameter A. The calculations have shown that these estimates coincide with function (1.6) up
to statistical error.

2 Numerical experiments

Based on estimates of the correlation function r(t, t + h) of process (1.1) obtained from model samples for the
case F(x) = 1 - exp(-Ax), A = 0.25 with different values of t, it was shown in [4] that for t > 7.5 the process
becomes close to a stationary one in its correlations, a similar behaviour of the process is observed relative
to means and variances. Examples of correlation functions r(t, 7) of the process Y(t) for t = 20 were also
presented in that paper for different values of the parameter A. The presence of an inflection point in these
correlation functions is typical for this process, which differs them essentially from correlation functions of
piecewise-constant processes on Poisson point flows and on Palm’s flows whose characteristic feature is the
convexity downwards [2].

We also studied the function E[Y(t)Y(t + h)] numerically on the base of total probability formula (1.4).
Table 1 presents the results of calculations of the dependence of the functions si(t, h), ..., s7(t, h) on h for
t = 7.5, A = 1. The one-dimensional distribution of random variables Yj at Poisson points was specified
by the standard normal distribution with the mathematical expectation u = 0 and variance 6> = 1. As is
seen from the table, the main contribution into the covariance E[Y(¢)Y(t + h)] is introduced by the functions
s,(t, h) and s3(t, h), and the second central moment (which coincides with the variance in this case) is mainly
determined by the function s, (¢, h) and, as is seen from the table, for t = 7.5 it is close to the asymptotic value
of the variance of the process defined by formula (1.5) and equal to %02 [8]. For given t = 7.5 the contribution
of all functions s1(t, h), s¢(t, h), s7(t, h) is zero for all h (this is confirmed by theoretical calculations) and
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Fig. 9: Dependence of the functions s, = s5(¢, h), s3 = s3(¢, h) and the covariance s(t, h) on h.

the contribution of the functions s4(t, h), s5(t, h) is rather small. The last column of the table presents the
dependence of s(t, h) = E[Y(t)Y(t + h)] on h as the sum of the functions s+ (t, h), ..., s7(t, h).

Figure 9 shows the dependence of the functions s, (t, h) and s3(t, h) and also the covariances E[Y(¢) Y(t +
h)] on h for the same t, A, u, 0. It is seen from Fig. 9 that the inflection of the function E[Y(t)Y(t + h)]
is determined by the function s5(t, h) which, in its turn, is determined by the character of the probabilities
P(B3,nm(t, t+h)). Similar calculations were performed on the base of model samples. In this case we simulated
100000 trajectories of the process and, using these trajectories, estimated the contribution into the estimate
of the covariance E[Y(t) Y(t + h)] under fulfillment of conditions 1a—7a. In Fig. 9 these sample values 5, (¢, h),
S3(t, h), and (¢, h) of the functions s, (¢, h),s3(t, h) and s(t, h) are indicated by the corresponding points. The
results of calculations with model samples are consistent with the results shown in Table 1 up to statistical
error.

3 Conclusion

In this paper we have obtained exact expressions for the covariance function of the process Y(t) (1.1). Nu-
merical experiments show that for ¢t > 7.5 the process is close to a stationary one. Further we assume to apply
theoretical studies to asymptotic properties of correlation functions and one-dimensional distributions of the
considered process.
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