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Abstract: Chemical systems are often characterized by a number of peculiar properties that create serious
challenges to state estimator algorithms. They may include hard nonlinear dynamics, states subject to some
constraints arising from a physical nature of the process (for example, all chemical concentrations must be
nonnegative), and so on. The classical Extended Kalman Filter (EKF), which is considered to be themost pop-
ular state estimator in practice, is shown to be ineffective in chemical systemswith infrequentmeasurements.
In this paper, we discuss a recently designed version of the EKF method, which is grounded in a high-order
Ordinary Differential Equation (ODE) solver with automatic global error control. The implemented global er-
ror control boosts the quality of state estimation in chemical engineering and allows this newly built version
of the EKF to be an accurate and efficient state estimator in chemical systems with both short and long wait-
ing times (i.e., with frequent and infrequent measurements). So chemical systems with variable sampling
periods are algorithmically admitted and can be treated as well.

Keywords: Software sensor, reaction state estimation, continuous-discrete stochastic system, sparse mea-
surements, extended Kalman filter, MDE solver with error control.
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1 Introduction

It is commonly accepted that the state observation in chemical systems is often based on the available mea-
surements of some parameters (depending on the utilized technology) coupled with computation of remain-
ing (not measurable) variables by means of appropriate software. The latter is referred to as the Software
Sensor (SS) in [6]. The SS implies that a proper mathematical model of chemical kinetics is to be utilized in
parallel with this or that nonlinear filter implemented for estimating the state of considered chemical sys-
tem. The dynamic behaviour of chemical reactions is simulated effectively with use of conservation laws and
presented conveniently in the form of an Ordinary Differential Equation (ODE). However, the corresponding
measurement equation is assumed to be discrete due to the modern practice. The process and measurement
models are supplied with stochastic noise terms because of possible random disturbances and uncertainties
in the process andmeasurement aswell as due to existing plant-modelmismatch. Eventually, it is accepted in
chemical research and engineering that chemical phenomena are modelled adequately by continuous-time
stochastic dynamic state-space systems written in the form of Itô-type Stochastic Differential Equation (SDE)

dx(t) = F(x(t), u(t))dt + G(t)dw(t), t > 0 (1.1)

where x(t) ∈ ℝn1 is the n1-dimensional vector of system state at time t, u(t) ∈ ℝn2 is a measurable input at
time t (further explanation of function u(t) is given in [24]), F : ℝn1 ×ℝn2 → ℝn1 is a sufficiently smooth drift
function representing reaction kinetics, G(t) is a time-variant diffusion matrix of size n1 × q and {w(t), t > 0}
is a zero-mean Brownian process with square covariance matrix Q(t) > 0 of size q. The initial state x0 of
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SDE (1.1) is supposed to be a random variable. More precisely, x0 ∼ N(x̄0, Π0)with Π0 > 0, where the notation
N(x̄0, Π0) stands for the normal distribution with mean x̄0 and covariance Π0.

In addition, some measurement information arrives discretely and in equidistant time intervals of size
δ = tk − tk−1. This interval δ is called the sampling period (or waiting time) in filtering theory. The relation of
measurement yk to the system state xk is usually fixed by the formula

yk = h(xk) + υk , k ⩾ 1. (1.2)

Here, k is a discrete time index (i.e., xk means x(tk)), yk ∈ ℝm is the information available at time point tk,
h : ℝn1 → ℝm is a differentiable function, and the measurement noise {υk , k ⩾ 0} is a zero-mean Gaussian
white-noise process with covariance matrix Rk > 0. Also, all realizations of the noises w(t), υk and the initial
state x0 are taken from mutually independent Gaussian distributions.

To treat nonlinear continuous-discrete stochastic models of form (1.1), (1.2), a special technology called
the Extended Kalman Filter (EKF) has been designed [8, 9, 15, 30, 38]. Historically, the first EKF variant was
grounded in theEuler–Maruyamamethod [18] and implemented as follows. Thementionedmethod is applied
to SDE (1.1) on a time interval [tk−1, tk]. This results in the discretization

x(tk) = x(tk−1) + δF(x(tk−1), u(tk−1)) + G(tk−1)w̃(tk−1) (1.3)

where δ = tk − tk−1 and the random variable w̃(tk−1) ∼ N(0, δQ(tk−1)). It follows from the discrete-time
stochastic model (1.3) that taking the expectation yields

E{x(tk)} = E{x(tk−1)} +δ E{F(x(tk−1), u(tk−1))} (1.4)

with E{x(tk)} = x̂(tk) and E{x(tk−1)} = x̂(tk−1). The state vector in the stochastic process (1.3) is independent
of the driving noise. Therefore the associated covariance is determined by the formula

var{xk} = var{xk−1+δF(xk−1, u(tk−1))}+δG(tk−1)Q(tk−1)GT(tk−1). (1.5)

TheEKF implies that equations (1.4) and (1.5) are solvedapproximately in each sampling interval [tk−1, tk]
with use of the first-order Taylor expansion of the nonlinear drift function F(x(t), u(t)) around the filtering
estimate x̂k−1|k−1 at the time tk−1:

F(x(t), u(t)) = F(x̂k−1|k−1, u(tk−1)) + Jk−1(x(t) − x̂k−1|k−1) + HOT (1.6)

where the Jacobian Jk−1 = ∂F(x̂k−1|k−1, u(tk−1))/∂x̂(t) is evaluated at the chemical system state (x̂k−1|k−1,
u(tk−1)), and the notation HOT stands for higher-order terms of this Taylor expansion. Now substituting for-
mula (1.6) into the moment equations (1.4) and (1.5) yields the time-update step of the EKF method:

x̂k|k−1 =x̂k−1|k−1 + δF(x̂k−1|k−1, u(tk−1)) (1.7)

Pk|k−1 = [In1+δJk−1] Pk−1|k−1 [In1+δJk−1]T + δG(tk−1)Q(tk−1)GT(tk−1) (1.8)

where Pk|k−1 = E{(xk − x̂k|k−1)(xk − x̂k|k−1)T} is the predicted covariance at time tk, while Pk−1|k−1 =
E{(xk−1 − x̂k−1|k−1)(xk−1 − x̂k−1|k−1)T} is the filtering covariance at time tk−1 and In1 stands for the identity
matrix of size n1. After arrival of a new measurement yk, the measurement-update step of this EKF is:

Re,k = Rk + HkPk|k−1HT
k , Kk = Pk|k−1HT

k R
−1
e,k (1.9)

x̂k|k = x̂k|k−1 + Kkek , ek = yk − h(x̂k|k−1), Pk|k = Pk|k−1 − KkHkPk|k−1 (1.10)

where the matrix Hk = dh(x̂k|k−1)/dxk is the Jacobian of the right-hand side function in the measurement
model (1.2) evaluated at the predicted state expectation x̂k|k−1 from the time-update step (1.7), (1.8), and ek ∼
N (0, Re,k) are innovations of the KF. The described filter is the simplest but successful state estimator that
has been utilized by practitioners for decades [8, 9, 15, 30, 38]. Theoretical justifications of this method in
both deterministic and stochastic settings can be found in [4, 34].
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We stress that the notion of EKF does not imply the unique technique, as presented above, but refers to
a class of various methods with different properties. For instance, Frogerais et al. [7] consider and examine
five EKF implementations on two nonlinear test problems. They elaborate at least two approaches for con-
structing EKF schemes, which can lead to a great variety of practical filtering algorithms based on ordinary
or stochastic differential equation numerical methods. Thus, some criticism published on performance of the
EKF in chemical systems for o�inemodels and industrial applications [6, 12, 33, 35, 36, 39, 40] does notmean
that all other implementations of this method will also fail, as shown below.

It should be taken into account that many reasons, namely, poor initialization, sparse measurements,
large discretization errors, strong nonlinearities, linearization errors, poormodelling (i.e., models that do not
enforce physical constraints), poor tuning of noise covariance, and so on,may influence the EKFperformance
in practical state estimation tasks. For example, Haseltine and Rawlings [12] report that their EKF fails for a
batch reactor with poor initialization. Thus, we aim at addressing the issue of accurate state estimation in
stochastic chemical systems (1.1), (1.2) with poor initialization and sparse measurements in detail.

Certainly, the useful model correction technology elaborated by Schneider and Georgakis [37] improves
the EKF performance for the batch reactor considered in [12]. However, it can resolve the problem of poor ini-
tialization of the traditional EKF, but does not help for chemical systems with sparse measurements. This is
illustrated by numerical tests below. The reason is that the above-discussed EKF implementation poorly ap-
proximates chemical kinetics for long sampling times, and this may fail the EKF. On the other hand, adaptive
ODE solverswith automatic global error control used instead of the fixed-stepsize stochastic Euler–Maruyama
method resolve the mentioned difficulty and lead to a more advanced state estimation technology, which is
referred to as the Accurate Continuous-Discrete Extended Kalman Filter (ACD-EKF) [22, 24–26, 28]. This filter
is outlined in the next section.

The mentioned ACD-EKF is designed for treating chemical systems with short and long waiting times
(including variable sampling periods) in the same manner, i.e., without manual tuning. The latter is impor-
tant because, for instance, Soroush [39] writes: ‘In the chemical/petrochemical and biochemical industries,
there are many processes wherein the choice of sampling rate is limited by the availability of the output mea-
surements. For example, composition analyzers such as gas chromatographs have a cycle time say 5−10min
compared to a desired control interval of say 0.1−1min. If the control interval is increased tomatch the avail-
ability of measurements then control performance deteriorates significantly’. The cited inconsistency can be
attacked by the accurate extended Kalman filtering technique constructed in [22, 24–26, 28]. In the present
paper, we study its capacity for estimating states in chemical SDE models with poor initialization and infre-
quent measurements and compare it with the aforementioned traditional EKF method, which is commonly
utilized for estimation purposes in chemistry research and engineering.

2 Software sensors for stochastic systems with sparse
measurements

There exist two principal variants of the EKF implementation, namely, the continuous-discrete and discrete-
discrete EKFs [7, 22]. The continuous-discrete variant is themost suited one for treating chemical engineering
tasks due to the continuous-time matter of equation (1.1). This technology is based on replacement of the
predicted values of the state mean and covariance matrix determined in the time-update step (1.7), (1.8) of
the EKF with the values satisfying the Moment Differential Equations (MDEs)

dx̂(t)
dt = F(x̂(t), u(t)) (2.1)

dP(t)
dt = J(x̂(t), u(t))P(t) + P(t)J

T(x̂(t), u(t)) + G(t)Q(t)GT(t) (2.2)

where J(x̂(t), u(t)) denotes the Jacobian of the drift function F(x̂(t), u(t)) in SDE (1.1) (i.e., J(x̂(t), u(t)) =
∂F(x̂(t), u(t))/∂x̂(t)) evaluated at the state mean trajectory, G(t) is the diffusion matrix in the process noise
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term, Q(t) is the covariancematrix of the zero-mean Gaussian white-noise process w(t), x̂(t) is the statemean
of the random system state vector x(t) at time t (i.e., x(t) is a solution to SDE (1.1)), and u(t) is the measurable
input (i.e., a known function of time).

More formally, we use filtering values of the state mean and covariance matrix calculated in the previous
sampling time as the initial values of MDEs (2.1), (2.2) for solving them in the next sampling interval [tk−1, tk],
i.e., x̂(tk−1) = x̂k−1|k−1, P(tk−1) = Pk−1|k−1. Then, their predicted values are taken to be: x̂k|k−1 = x̂(tk) and
Pk|k−1 = P(tk). After arrival of a newmeasurement yk, themeasurement-update step of this filter is conducted
in line with the above formulas (1.9)–(1.10).

The main difficulty associated with the continuous-discrete filtering grounded in formulas (1.9)–(2.2)
is that the MDEs arisen in chemical engineering are nonlinear and, hence, should be treated numerically.
Strictly speaking, any computed predicted state mean x̂k|k−1 and covariance matrix Pk|k−1 do not further sat-
isfy their MDEs, because these values are always determined with some error, which is referred to as the
discretization error. The magnitude of the discretization error depends on the quality of implemented MDE
solver. Unfortunately, large discretization errors of inaccurate numerical solutions may fully ruin the proper
performance of the EKF method (1.9)–(2.2) and result in wrong solutions to the mathematical model (1.1),
(1.2), especially in the case of infrequent measurements [7, 22]. Such a situation often occurs when MDEs
(2.1), (2.2) are discretized by a numerical scheme for one step of the size δ. The classical EKF algorithm pre-
sented by formulas (1.7)–(1.10) is the case. Its inefficiency is clearly shown for chemical systems with sparse
measurement information, below. This is quite obvious because the theory of numerical methods for ODEs
[5, 10, 11, 14] says that small discretization errors are ensured only for sufficiently small sizes of the sampling
period δ, and this is not the case for chemical systems with long waiting times. On the other hand, Soroush
[39] explains that such an inaccurate numerical solution seriously limits the applied potential of the tradi-
tional EKFmethod because it does not succeed in chemical models (1.1), (1.2) with infrequent measurements,
and the short sampling periods may be technically (or by any other reason) impossible or too expensive in
practice.

In this paper, we focus on the issue of large discretization errors committed in continuous-discrete
stochastic systems with strong nonlinearities and sparse measurements. The above-mentioned obstacle can
be overcome by means of the variable-stepsize ODE solvers with automatic error control, i.e., for example,
by commonly used MATLAB codes [13, Section 12.2]. However, it is shown in [16, 23, 29, 32] that usually EKF
techniques grounded in general purpose ODE solvers, including MATLAB software, lose the EKF implemen-
tations based on specially created methods for solving MDEs (2.1), (2.2). This is because all MATLAB codes
and general purpose ODE integrators are not intended for retaining the positive semi-definiteness of com-
puted covariance matrix and treat the MDEs as conventional ODE systems. We recall that the matrix P(t) in
equation (2.2) has the physicalmeaning of being the variance of the state prediction error, i.e., x(t)− x̂(t), and,
theoretically, has to be positive semi-definite. Thus, they compromise the mathematical theory underlying
the EKF and, hence, may reduce its practical performance.

The second shortcoming of all MATLAB solvers outlined in [13, Section 12.2] as well as of other methods
developed and tested in [19, 32] (all these are utilized for implementation of the above-cited continuous-
discrete EKF) is that they exploit only local error control and, hence, cannot ensure a preassigned accuracy of
numerical integrationofMDEs (2.1), (2.2). This follows from the fact that the local error regulated in suchfilters
is an artificial notion, which hardly relates to the actual accuracy of numerical solution. So the committed
numerical integration error (also termed as the global/discretization error) is unpredictable and can be of
any magnitude, there. Thus, the global error control seems to be the necessary option of a robust filter. It is
also worthwhile to mention that, in contrast to the EKF with only local error control, the methods with global
error control regulate the true error of numerical integration ofMDEs (2.1), (2.2), automatically. The user needs
only to set the required accuracy of numerical integration (a single number) and the code does all remaining
work for calculating a numerical solution to MDEs (2.1), (2.2) with the error corresponding to the set accuracy
level. The latter property is the reason to name any such state estimator as the Accurate Continuous-Discrete
Extended Kalman Filter (ACD-EKF) in [22–26, 28].

Among the ACD-EKF versions developed in the cited papers, the most promising one is based on the
hybrid triple NIRK6(4)M2 and presented with all technical particulars in [24, 26]. This is because of the sixth-
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order convergence of the output numerical solution to the nonlinear state expectation equation (2.1) exploited
there instead of the fourth-order convergence enjoyed in the other hybrid triple NIRK4(2)M2 built in [23, 25,
26, 28]. The mentioned numerical scheme applied to MDE (2.1) results in the discretization

x̂2l1 = a
2
11 x̂l + a

2
12 x̂l+1 + τl[d211F(x̂l , ul) + d212F(x̂l+1, ul+1)] (2.3a)

x̂2l2 = a
2
21 x̂l + a

2
22 x̂l+1 + τl[d221F(x̂l , ul) + d222F(x̂l+1, ul+1)] (2.3b)

x̂3l1 = a
3
11 x̂l + a

3
12 x̂l+1 + τl[d311F(x̂l , ul) + d312F(x̂l+1, ul+1) + d313F(x̂2l1, u2l1) + d314F(x̂2l2, u2l2)] (2.3c)

x̂3l2 = a
3
21 x̂l + a

3
22 x̂l+1 + τl[d321F(x̂l , ul) + d322F(x̂l+1, ul+1) + d323F(x̂2l1, u2l1) + d324F(x̂2l2, u2l2)] (2.3d)

x̂3l3 = a
3
31 x̂l + a

3
32 x̂l+1 + τl[d331F(x̂l , ul) + d332F(x̂l+1, ul+1) + d333F(x̂2l1, u2l1) + d334F(x̂2l2, u2l2)] (2.3e)

x̂l+1 = x̂l + τl [b1F(x̂3l1, u3l1) + b2F(x̂3l2, u3l2) + b3F(x̂3l3, u3l3)] (2.3f)

with the fixed coefficients b1 = b3 := 5/18, b2 := 4/9, c21 := (3 − √3)/6, c22 := (3 + √3)/6, a211 = a222 :=
1/2 + 2√3/9, a212 = a221 := 1/2 − 2√3/9, d211 = −d222 := (3 + √3)/36, d212 = −d221 := (−3 + √3)/36,
c31 := (5 − √15)/10, c32 := 1/2, c33 := (5 + √15)/10, a311 = a332 := (125 + 39√15)/250, a312 = a331 :=
(125 − 39√15)/250, a321 = a

3
22 := 1/2, d311 = −d

3
32 := (7 + 2√15)/200, d312 = −d

3
31 := (−7 + 2√15)/200,

d313 = −d
3
34 := (18√15 + 15√3)/1000, d314 = −d

3
33 := (18√15 − 15√3)/1000, d321 = −d

3
22 := 1/32, d323 =

−d324 := 3√3/32, obtained at each node tl, l = 0, 1, 2, . . . , L − 1, of some mesh

{tl}Ll=0 = {t0 = tk−1, tl+1 = tl + τl , l = 0, 1, . . . , L − 1, tL = tk} (2.4)

introduced in the sampling interval [tk−1, tk]. Notice that the presented discrete-time equations are nonlinear
and should be solved for the unknown vector x̂l+1 approximating the state mean at time tl+1. The stage value
x̂ilj ofmethod (2.3) implies an approximation to the statemean x̂(tilj) evaluated at the time instant tilj = tl+c

i
jτl,

and the measurable input uilj = u(t
i
lj), j = 1, 2, i = 2, 3. We recall that the vector u(t) is a known function of

time. The function F(⋅) represents the right-hand side of MDE (2.1) or, this is the same, the drift function in
SDE (1.1).

Thehigh convergence rate is not the only advantage of the schemeunder consideration. It is alsoA-stable,
sti�y accurate, symmetric and conjugate to a symplecticmethod up to order 6 at least. So, discretization (2.3)
has sufficiently high stage and classical orders, which are 3 and 6, respectively, and some stage values cal-
culated in a step of this scheme are rather accurate and allow for a sixth-order dense output (see a further
discussion of the presented method in [21, 27]). Most importantly, the nonlinear problem (2.3) admits a suffi-
ciently cheap iteration for finding the unknown vector x̂l+1, which is presented with all necessary particulars
in [24]. Also, to generate automatically a good mesh (2.4) in each sampling interval [tk−1, tk], our ACD-EKF
exploits the local and global error control mechanisms designed formethod (2.3) in [20, Algorithm 3.2]. These
controls allow the committed numerical integration error to be made negligible in automatic mode.

Next, the covariance equation (2.2) is discretized on the above mesh (2.4) generated by the aforemen-
tioned variable-stepsize solver grounded in formulas (2.3) by means of the modified implicit mid-point rule
[32]. The cited discretization reads

Pl+1 = Ml+1/2PlMT
l+1/2 + τlKl+1/2G(tl+1/2)Q(tl+1/2)GT(tl+1/2)KT

l+1/2 (2.5)

where tl+1/2 = tl + τl/2 and Kl+1/2 and Ml+1/2 are defined as follows:
Kl+1/2 = [In1 − τl2 Jl+1/2]−1 , Ml+1/2 = Kl+1/2 [In1 + τl2 Jl+1/2] (2.6)

with the Jacobian matrix Jl+1/2 = ∂F(x̂l+1/2, u(tl+1/2))/∂x̂(t) evaluated at the point (x̂l+1/2, u(tl+1/2)). In for-
mulas (2.6), the vector x̂l+1/2 is taken to be equal to the stage value x̂3l2 from the discretization method (2.3)
(see an additional explanation in [24, Section 2.3]). The error of approximation (2.5), (2.6) is not regulated in
our filter and considered to be negligible because of the linearity of MDE (2.2).

Mazzoni’s method (2.5), (2.6) is A-stable and convergent of order 2 [32]. However, the main advantage
of using this method in practical state estimations is its symmetry and positive semi-definiteness. However,
the latter properties are preserved in exact arithmetic, only. So, round-off operations existing in reality might
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compromise the symmetry and positive semi-definiteness of the computed covariance Pl+1 and fail the ACD-
EKF. On the other hand, it is known that square-root implementations of Kalman-like filteringmethods based
on stable orthogonal rotations allow the committed round-off errors to be reduced dramatically (see, for in-
stance, [1–3, 9, 17]). That is why we utilize the square-root ACD-EKF variant published in [24, Appendix A] for
showing the superiority of the filtering technique (1.9)–(2.2) obtained in the continuous-discrete approach
in comparison to the classical EKF method (1.7)–(1.10) built within the discrete–discrete filtering, in partic-
ular for chemical stochastic SDE systems with sufficiently long sampling periods. In other words, we ad-
dress the inconsistency stated for chemical continuous-time stochastic models with sparsemeasurements by
Soroush [39].

We emphasize that the ACD-EKF presented in [24, Appendix A] does not require any manual tuning,
maybe, except for altering the value of accuracy parameter εg (its default value εg = 10−4 is accepted in the
numerical experiments below). This method is expected to work successfully for short and sufficiently long
sampling intervals δ (seemore explanation in [22, 24–26]). In the next section, our argument is demonstrated
numerically on a chemical system from [12], for which the classical EKF can fail, in order to exhibit differences
in performance of the traditional state estimation technology and the contemporary ACD-EKF.

3 Numerical simulation and discussion

Following Haseltine and Rawlings [12], we consider the gas-phase reversible reaction with three species de-
noted as A, B, and C:

A
k1󴀕󴀬
k2

B + C, 2B
k3󴀕󴀬
k4

B + C (3.1)

in which the fixed coefficients k1 = 0.5, k2 = 0.05, k3 = 0.2 and k4 = 0.01. The stoichiometric matrix ν of
reaction (3.1) and the reaction rates r are chosen to be

ν = [ −1 1 1
0 −2 1

] , r = [
k1cA − k2cBcC
k3c2B − k4cC

] (3.2)

where cA, cB, and cC denote the concentrations of the species A, B, and C in moles per liter, respectively.
Therefore, the state of this chemical system is defined by the vector

x(t) = [cA cB cC]T. (3.3)

The measurement equation is given in the following form:

yk = [RT RT RT] xk + υk . (3.4)

Here, xk means an approximation to the state vector x(tk), R is the ideal gas constant, T is the reactor tem-
perature in Kelvin, and the measurement noise is υk ∼ N (0, Rk) with Rk = 0.252 in each measurement
information yk. Following [12], we set RT = 32.84. Below, we consider the task of state estimation for a Batch
Reactor (BR) discussed in the cited paper.

The well-mixed, constant-volume, isothermal BR is modeled by the SDE

dx(t) = νT rdt + Gdw(t), t > 0 (3.5)

with the initial values
x0 = [0.5, 0.05, 0]T (3.6)

where thematrix ν and the vectors r, x(t) are defined in (3.2) and (3.3). Thematrix G is assumed to be constant
and diagonal, i.e., G = diag{1, 1, 1} in (3.5). The continuous-time process noise w(t) is the Brownian motion
with the fixed covariance matrix Q = diag{10−6/δ, 10−6/δ, 10−6/δ} because the covariance matrix of the
discrete-time zero-mean Gaussian process is Q̃ = diag{0.0012, 0.0012, 0.0012} in [12]. This process noise is
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Fig. 1: Actual (no noise), EKF and ACD-EKF estimated concentrations (with initial values [0, 0, 4]T and the initial covariance Π0)
for the batch reactor: Regimes 1 (convergence, top plots) and 2 (divergence, bottom plots).

added to simulate possible random disturbances and uncertainties in the BR and also due to existing plant-
model mismatch in reality. The sampling period δ = tk+1 − tk = 0.25 is set in the first experiment. The initial
information for the classical EKF and for the novel ACD-EKFmethod is supposed to be the same and poor, i.e.,
x̄0 = [0, 0, 4]T andΠ0 = diag{0.52, 0.52, 0.52} (compare x̄0with the exact initial state givenby formula (3.6)).
We stress that the numerical simulation results presented for the traditional EKF in [12] exhibit convergence
to a wrong steady-state and even negative concentrations. Now we repeat the same experiment, but with our
own codes. The state estimation methods and all computations are implemented in MATLAB.

To simulate a measurement history, we integrate SDE (3.5) by the stochastic Euler–Maruyama solver [18]
with the small fixed step size equal to 0.001 and apply formula (3.4) with the additive noise υk to calculate a
measurement information yk at every sampling instant tk. Then, we solve the reverse problem, i.e., we treat
SDE (3.5) bymeans of the traditional EKF and our ACD-EKFmethods with the same above-set initial data and
simulated measurements. The results of this numerical experiment (i.e., the estimated concentrations cA,
cB, and cC) are shown in Fig. 1, where plots (a) and (b) display one typical behaviour (Regime 1, i.e., Conver-
gence Regime) of the state estimators, when the convergence to the no noise solution is clearly observed, and
plots (c) and (d) exhibit the divergence and failure (Regime 2, i.e., Divergence Regime) of both EKF implemen-
tations, i.e., when the wrong steady-state and even negative concentrations are calculated after convergence.
We stress that the no noise solution has been computed by the ODE solver NIRK6(4) [20] (with the global error
control) applied to the underlying ODE (3.5), (3.6), i.e., without the noise term Gdw(t). The latter solution is
shown additionally in all figures of this paper and marked as ‘No noise’. The steady-state values of the no
noise, EKF, and ACD-EKF estimated concentrations in the convergence and divergence regimes are gathered
in Tables 1 and 2, respectively.

Having compared the derived results to those published in [12] we see a principal difference. Our simula-
tion shows that about 25% of EKF runs and 17% of ACD-EKF runs are successful. The exact numbers of fails
of these state estimators out of 1000 runs are presented for this numerical experiment in the first column of
Table 6, below. Note that Schneider and Georgakis [37] also confirm the existence of these two performance
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Tab. 1: Actual (no noise) and estimated steady-state concentrations (with initial values [0, 0, 4]T , the initial covariance Π0 and
δ = 0.25) for the batch reactor.

EKF estimated EKF estimated Actual
Concentration steady-state (Regime 1) steady-state (Regime 2) steady-state

cA 0.0117 −0.0296 0.0124
cB 0.1794 −0.2627 0.1859
cC 0.6505 1.1803 0.6635

Tab. 2: Actual (no noise) and estimated steady-state concentrations (with initial values [0, 0, 4]T , the initial covariance Π0 and
δ = 0.25) for the batch reactor.

ACD-EKF estimated ACD-EKF estimated Actual
Concentration steady-state (Regime 1) steady-state (Regime 2) steady-state

cA 0.0118 −0.0295 0.0124
cB 0.1806 −0.2623 0.1859
cC 0.6492 1.1798 0.6635

Tab. 3: Actual (no noise) and estimated steady-state concentrations (with initial values [0, 0, 4]T , the initial covariance Πmod0
and δ = 0.25) for the batch reactor.

EKF estimated ACD-EKF estimated Actual
Concentration steady-state steady-state steady-state

cA 0.0132 0.0133 0.0124
cB 0.1838 0.1846 0.1859
cC 0.6545 0.6536 0.6635

Tab. 4: Actual (no noise) and estimated steady-state concentrations (with initial values [0, 0, 4]T , the initial covariance Πmod0
and δ = 2.0) for the batch reactor.

EKF estimated ACD-EKF estimated Actual
Concentration steady-state steady-state steady-state

cA −0.0344 0.0126 0.0124
cB −0.3075 0.1863 0.1859
cC 1.2030 0.6681 0.6635

Tab. 5: Actual (no noise) and estimated steady-state concentrations (with the initial values [0.5, 0.05, 0]T , the initial covari-
ance Πexact0 and δ = 4.0) for the batch reactor.

EKF estimated ACD-EKF estimated Actual
Concentration steady-state steady-state steady-state

cA −0.0353 0.0126 0.0124
cB 0.2389 0.1877 0.1859
cC 0.6663 0.6647 0.6635

Tab. 6: Numbers of fails out 1000 runs of the EKF and ACD-EKF applied to the batch reactor for various initial data and sizes of
the sampling interval.

δ = 0.25 δ = 0.25 δ = 2.0 δ = 4.0
Filtering ̄x0 = [0, 0, 4] ̄x0 = [0, 0, 4] ̄x0 = [0; 0; 4] ̄x0 = [0.5, 0.05, 0]
method Π0 Πmod0 Πmod0 Πexact0

EKF 754 0 991 1000
ACD-EKF 831 0 0 0
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Fig. 2: Actual (no noise), EKF and ACD-EKF estimated concentrations (with initial values [0, 0, 4]T and the modified initial co-
variance Πmod0 ) for the batch reactor.

regimes for the batch reactor (3.5), (3.6) and the inexact initial state vector x̄0 = [0, 0, 4]T and the initial
covariance Π0.

In Regime 1, the EKF and ACD-EKF estimated concentrations converge to the actual steady-state in con-
trast to the results published in [12], where the convergence only to the wrong value is reported. Our Tables 1
and 2 exhibit good accuracies of the estimated steady-states in Regime 1. Moreover, the traditional EKF al-
gorithm, given by formulas (1.7)–(1.10), and the advanced ACD-EKF method from [24, Appendix A] do not
produce non-physical data (i.e., negative concentrations) in this performance regime. Certainly, negative val-
ues are possible during the convergence (transient) period (see Figs. 1a and 1b) because any filtering method
is just looking for the true solution in this stage. However, both filters converge to the true solution of the BR
(3.5), (3.6) in Regime 1 and, then, all the concentrations become positive, as predicted by theory.

It is worthwhile to recall that altering the true initial values (3.6) to the untrue ones given by the vector
x̄0 = [0, 0, 4]T and utilized by the filter obliges the latter to solve another, say, untrue mathematical model.
Besides, the EKF does not know that the model is wrong and follows its wrong state trajectory, which has no
relation to the original system (3.5), (3.6). On the other hand, at every sampling time, the filter receives some
information on the true state of the batch reactor (i.e., true measurements). Then, this information is used to
amend the calculated wrong state in the measurement-update step of the filtering procedure. In other words,
after each measurement-update, the filter moves from one state expectation trajectory of the process model
to the other, which is expected to be closer to the true solution of the considered problem. A certain amount
of truemeasurements allow the state expectation trajectory of the BR (3.5), (3.6) to be identified correctly. The
traditional EKF and ACD-EKFmethods expose good accuracies of their convergence regimes after reasonable
time, i.e., when tk ⩾ 10 in this numerical experiment. We stress that the filter convergence time (the transient
period) is not prefixed by the model and depends onmany factors including the frequency of measurements,
i.e., the sampling rate δ. Thus, the wrong states computed in the transient period of the filter (i.e., for tk < 10)
are not the concentrations of the BR under examination. Their values may be positive or negative because
they do not relate to the original mathematical model (3.5), (3.6). That is why they must be merely ignored
and excluded from consideration. The states estimated by the converged filter, when tk ⩾ 10, are only of
the interest. We stress that the states estimated in the transient period of filtering are of no sense, but the
convergence time itself is an important characteristic of any practical SS. A further discussion on convergence
issues of the Kalman filter, also known as the transient behaviour, for linear and nonlinear stochastic models
can be found, for instance, in [15, 31].

Eventually, the EKF and ACD-EKF estimated steady-states in Regime 1 are positive and correspond well
to its no noise value (see Tables 1 and 2) in contrast to the data published in [12]. On the other hand, Regime 2
is in line with the outcome reported in the cited paper. Thus, if we take now into account the numbers of fails
presented in the first column of Table 6wewill conclude that the EKF and the ACD-EKFwork poorly for the BR
model under consideration. The reason is clearly identified in [37]. This is because the continuous-discrete
stochastic system (3.5), (3.4) with the above discussed initial state x̄0 and the initial covarianceΠ0 is ill-posed.
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Fig. 3: Actual (no noise), EKF and ACD-EKF estimated concentrations (with initial values [0, 0, 4]T and the modified initial co-
variance Πmod0 ) for the batch reactor.
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Fig. 4: Actual (no noise), EKF and ACD-EKF estimated concentrations (with the initial values [0.5, 0.05, 0]T and the initial co-
variance Πexact0 ) for the batch reactor.

In other words, the matrix Π0, which has the physical meaning of being the variance of the initial state error,
i.e., x0− x̄0, is too far from the exact covariance corresponding to the initial state given by formula (3.6). Thus,
altering thismatrix to themodified initial covarianceΠmod

0 = diag{0.52, 0.052, 42} recommended in [37] fully
resolves all the problems and, then, the EKF and ACD-EKF state estimators work well and without a single
fail out of 1000 independent runs for the inexact initial state vector x̄0 = [0, 0, 4]T (see Fig. 2 and Tables 3
and 6). In addition, both filters demonstrate their swift convergence in this experiment.

Next,we show that the initialization technique elaborated in [37] is not capable of addressing the problem
of infrequentmeasurements discovered in [39] in the frame of the traditional EKF, and the advancedACD-EKF
helps a lot. For that, we assume that the BR (3.5) is to be estimated by the same EKF and ACD-EKF methods
with the initial data x̄0 = [0, 0, 4]T and Πmod

0 = diag{0.52, 0.052, 42}, but for the longer sampling period
δ = 2.0. The behaviour of estimated concentrations and their steady-states are displayed in Fig. 3 and Table 4,
respectively.

The latter numerical experiment exhibits that the ACD-EKF clearly outperforms the traditional EKF. Fig-
ure 3 and Table 4 show that despite the slightly worsened convergence to the true solution (because the ACD-
EKF needs a certain amount of measurements to converge, and these have been reduced in our experiment),
the modern method computes the true state estimates to the BR (3.5) and its steady-state with good accuracy.
In contrast, the classical state estimator is not able to capture correctly the BR dynamic behaviour because of
poor approximation of the chemical kinetics and, hence, it produces wrong trajectories of the concentrations
and their untrue steady-states in the majority of runs. We have done 1000 independent runs of our codes and
revealed no fail for the ACD-EKF, whereas the classical EKF has been successful in less than 1% of runs (see
the precise numbers of fails of these state estimators in the third column of Table 6). Here, we do not show
the convergence regime of the EKF for the BR under examination because the method working successfully
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with the probability of less than 1% is of no practical significance. In addition to the accuracy of state estima-
tion, the ACD-EKF is flexible and insensitive to the sampling rate δ. We stress that exactly the same ACD-EKF
code has been run for δ = 0.25 and for δ = 2.0. So this filter accommodates changes in the length of the sam-
pling interval, automatically [22, 24–26]. That is why it can also be efficient in chemical systemswith irregular
sampling.

Next, we show that even the exact initial data do not ensure the accurate state estimation by the tra-
ditional EKF method when the waiting time of the chemical system is sufficiently long. To simulate such
a situation, we merely solve SDE (3.5) assuming that its exact initial value (3.6) is known, i.e., the ini-
tial values for the EKF and ACD-EKF techniques are now taken to be x̄0 = [0.5, 0.05, 0]T and Πexact

0 =
diag{0.012, 0.012, 0.012}. Note that the latter correspondwell to the theoretical stability requirement of EKF
[34]. At the same time, we suppose that the measurement information arrives discretely and in the interval
δ = 4.0. The outcome of our last experiment is displayed in Fig. 4 and Table 5.

Again, we observe a great difference in the behaviour of the traditional EKF and modern ACD-EKF meth-
ods. We see that the classical state estimator has not converged yet in the interval [0,30] (see Fig. 4a). So, its
‘steady-state’ shown in Table 5 is not actually a steady-state, but only the value calculated at the last sam-
pling point in the simulation interval. At the same time, the ACD-EKF works well and reconstructs accurately
the concentration trajectories (see Fig. 4b) and the chemical system steady-state (see Table 5). Moreover, the
described picture retains for all 1000 independent runs of the codes (see the last column in Table 6). All this
confirms the superiority of the modern state estimation technique presented in [24, Appendix A] towards the
traditional EKFmethod (1.7)–(1.10). The latter experiment also explains that the method of model tuning [37]
maybeuselesswhen the state estimator is not able to reconstruct correctly the true chemical systemdynamics
due to sparse measurements. In contrast, the ACD-EKF is flexible and insensitive to the size δ of the utilized
sampling intervals. The presented computation results have been obtained by the same code, i.e., without
any manual tuning for a specific δ. This is a clear evidence that our novel filter can be useful for addressing
the contradiction between the measurement time available in reality and the optimum sampling rate of the
filter stated in [39]. In other words, the ACD-EKF works for much longer waiting periods without significant
deterioration of the accuracy and robustness of state estimation in chemical systems. The latter is important
when frequentmeasurements are technically (or by any other reason) impossible or too expensive in practice.

In conclusion, Table 6 summarizing performances of two state estimators applied to SDE (3.5) with vari-
ous initial data demonstrates thatwhen the givenmathematicalmodel is ill-posed both EKF implementations
work poorly. However, the initialization technique recommended in [37] fully resolves this difficulty and all
the methods expose the excellent performance with no fail. Besides, when the sampling rate δ is reduced
only the ACD-EKF retains accurate. The latter confirms the promising applied potential of the ACD-EKF and
creates the necessary background for its further practical testing, including in industrial environment.

4 Conclusion

This paper investigates the issue of the EKF failure reported for the batch reactor in [12]. For resolving this
problem, two different approaches have been examined above. The first one is grounded in the model cor-
rection technology recommended in [37]. It improves the EKF performance by addressing the issue of poor
initialization of the state estimator. In other words, Schneider and Georgakis suggest reformulation of the
chemical system such that the conventional EKF method works well for the batch reactor studied in [12]. The
sole shortcoming of this approach is that the technique discussed in [37] may fail at least for some chemical
systems with infrequent measurements. The reason is that the ‘textbook’ EKF given by formulas (1.7)–(1.10)
poorly approximates swiftly changing chemical kinetics for long sampling intervals, and thismay also fail the
EKF. The second approach is based on adaptive ODE solvers with automatic global error control used instead
of the stochastic Euler–Maruyamamethod. It reconstructs accurately chemical model dynamics and resolves
the problem of sparse (and even irregular) measurements. Thus, this approach underlies advanced Accurate
Continuous-Discrete Extended Kalman Filters (ACD-EKF) designed in [22–25, 28].
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Actually, our research and the technique considered in [37] deal with different aspects of the problem of
EKF failure in chemical research and engineering. We do not change the ‘model’ (i.e., the chemical system
with initial values and noises), but improve the ‘method’ (the state estimation technique) so that it works for
longwaiting times. In contrast, Schneider andGeorgakis [37] improve the ‘model’ such that even the classical
EKF treats the examples of the EKF failure published in [12], successfully. Obviously, these two approaches
are equally important and only their combination will lead to most effective state estimation techniques for
difficult o�ine chemical models and industrial applications in future.
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