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Abstract: The block inverse iteration and block Newton’s methods proposed by the authors of this paper for
computing invariant pairs of regular linear matrix pencils are generalized to the case of regular nonlinear
matrix pencils. Numerical properties of the proposed methods are demonstrated with a typical quadratic
eigenproblem.
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1 Introduction
A block Newtonmethod has been proposed in [7] for ordinary partial linear eigenvalue problems. The theory
of its convergence was constructed in terms of the integral performance criteria for dichotomy. This method
occurred to be quite efficient and has got further development by various authors (see, e.g., [3, 4, 9]). In par-
ticular, a variant of this methodwas proposed in [4] for computing the invariant pairs of regular linear matrix
pencils of general form. An efficient variant of the inverse subspace iteration with tuning was proposed for
computing the initial guess. It was proposed in [5] to use methods from [4] for computing the minimal invari-
ant pairs of regular nonlinear matrix pencils in the framework of the method of successive linear problems
supplemented with the deflation procedure from [10]. Though the proposed combination of four algorithms
to be quite efficient, the question about a direct generalization of the algorithms from [4] to the case of nonlin-
ear matrix pencils has remained open. It would allow one to decrease essentially the logical complexity and
the number of parameters comparing to the method from [5]. The aim of this paper is to propose and justify
such generalization.

Recall that nonlinear matrix pencils in the matrix analysis usually mean pencils of the form

T(λ) =
d
∑
i=1

Ti fi(λ) (1.1)

where T1, . . . , Td are square complex matrices of order n and f1, . . . , fd are scalar functions of a complex
variable analytic in some domain Ω of the complex plane (see, e.g., [10]). Pencil (1.1) is called regular if there
exists λ0 ∈ Ω such that det(T(λ0)) ̸= 0. The set of eigenvalues of a regular pencil of form (1.1), i.e., the set of
solutions to the equation det(T(λ)) = 0 is not more than countable. If λ∗ is one of those roots, then nonzero
vectors belonging to the kernel of the matrix T(λ∗) are called eigenvectors of pencil (1.1) corresponding to the
eigenvalue λ∗.

The pair (X, Λ), where X ∈ ℂn×p, Λ ∈ ℂp×p, is called the minimal invariant pair of pencil (1.1) if, first,

T(X, Λ) =
d
∑
i=1

TiXfi(Λ) = 0
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where
f(Λ) = 1

2πi ∮
γ

f(z)(zI − Λ)−1dz

and γ is a sufficiently smooth simple positively oriented closed contour in Ω enveloping all eigenvalues of the
matrix Λ; second, there exists a positive integer number l such that the matrix

[XT , (XΛ)T , . . . , (XΛl−1)T]

has full rank. The smallest l satisfying this condition is called the minimality index of the pair (X, Λ). In
particular, if l = 1, then the matrix X has full rank. If (X, Λ) is a minimal invariant pair of regular pencil (1.1),
then the spectrum of Λ is a subset of the set of finite eigenvalues of this pencil and the eigenvectors u of the
matrix Λ and the eigenvectors x of pencil (1.1) are connected in the following way: x = Xu.

In this paper we consider the problem of computation of the minimal invariant pair of index l = 1 cor-
responding to finite eigenvalues of pencil (1.1) which are the closest ones to a given point λ0. Applying the
change of variables λ → λ + λ0 and introducing new notations, we can reduce this problem to computing the
minimal invariant pair of index 1 corresponding to minimal in magnitude finite eigenvalues of the pencil

A(λ) = A0 + λA1 + λ2N(λ). (1.2)

Here

A0 = T(λ0), A1 = T󸀠(λ0), N(λ) =
d
∑
i=1

Tigi(λ) (1.3)

where gi(λ) = fi(λ + λ0) − fi(λ0) − f 󸀠i (λ0)(λ + λ0). Without loss of generality, we assume that λ0 is not an
eigenvalue of pencil (1.1) and, hence, the matrix A0 is nonsingular. Sections 2 and 3 describe the proposed
variant of the inverse subspace iteration and block Newton’s method, respectively. Section 4 presents the
combination of these two methods where the first method is used to obtain a sufficiently good initial guess
and the second one is applied to its fast refinement. Section 5 demonstrates the numerical properties of these
methods on the example of a typical square eigenvalue problem appearing in the study of spatial stability of
hydrodynamic flows.

Describing the proposed algorithms, we use an additional procedure for orthonormalization of the
columns of a given full-rank matrix W ∈ ℂn×p by computing its QR-decomposition [8], i.e., W = QR, where
Q ∈ ℂn×p is a unitary rectangular matrix, Q∗Q = I, and R ∈ ℂp×p is an upper triangular one. Hereinafter ∗
denotes the symbol of conjugate transposition and I is the identity matrix of the corresponding order. We
write down the result of this procedure as (Q, R) = ort(W), or Q = ort(W)when the matrix R is not needed. In
addition, ‖B‖2 denotes below the second norm of a vector or matrix B.

We normalize the matrix X of the required minimal invariant pair so that its columns were A∗0A0-
orthonormalized, i.e., Y∗Y = I, where Y = A0X.

2 Inverse subspace iteration
In this section we describe the proposed variant of the inverse subspace iteration method for computing the
minimal invariant pair (X, Λ) of index 1 corresponding to the p smallest in magnitude finite eigenvalues of
regular nonlinearmatrix pencil (1.2). Up to normalization, thismethod is a direct generalization of the variant
of inverse subspace iteration which is proposed in [4] for the linear matrix pencils.

Algorithm 1.
Given ε > 0, X0 ∈ ℂn×p with X0A∗0A

∗
0X0 = 1, and a square nonzero matrix Λ0 of order p.

For k = 1, 2, . . .
1. Solve for Xk the system

A0Xk = −A1Xk−1 − N(Xk−1, Λk−1)Λk−1. (2.1)
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2. Compute (Yk , Gk) = ort(A0Xk). Set Xk := XkG−1k , Ã1 = Y∗k A1Xk, T̃i = Y∗k TiXk, i = 1, . . . , d.
3. Solve for Λk the matrix equation

I + Ã1Λk + Ñ(Λk)Λ2
k = 0 (2.2)

where

Ñ(λ) =
d
∑
i=1

T̃igi(λ).

4. Compute the residual
Rk = Yk + A1XkΛk + N(Xk , Λk)Λ2

k . (2.3)

Test the convergence: if ‖Rk‖2 ⩽ ε, then set Xout = Xk, Λout = Λk, Yout = Yk, Rout = Rk and stop.

At the first step of Algorithm 1 we have to solve block system of linear equations (2.1). If the order n of the
matrix A0 is not too large, then this system may be solved on the basis of LU-decomposition [8] of the matrix
A0, i.e.,

A0 = DΠ−1L LUΠ−1U (2.4)

where ΠL and ΠU are the permutationmatrices, D is a left diagonal scalingmatrix, and L and U are the lower
andupper triangularmatrices, respectively. IfA0 is of large order, then this systemcanbe solved, for example,
by GMRES [11] using the right preconditioning based on the incomplete LU-decomposition of the matrix A0
and tuning to accelerate the convergence as it was proposed in [4].

At the third step of Algorithm 1 we have to solve for Λk matrix equation (2.2). To do that, we use the
following iterative algorithm.

Algorithm 2.
Given ε̃ > 0 and nonzero matrix Λ̃0 of order p.
For j = 0, 1, . . .
1. Compute the residual R̃j = Ã0 + Ã1Λ̃j + Ñ(Λ̃j)Λ̃2

j .
Test the convergence: if ‖R̃j‖2 ⩽ ε̃, then set Λk = Λ̃j and stop.

2. Compute Λ̃j+1 = Λ̃j − Ã−11 R̃j.

If we have no a priori information concerning the matrix X0 which has to be specified in the initialization of
Algorithm 1, then X0 can be taken as a random rectangular matrix with A∗0A0-orthonormalized columns.

It should be noted that in the case N(λ) ≡ 0 (i.e., when considered matrix pencil (1.2) is linear) Algorithm
1 coincides with the variant of inverse subspace iteration proposed in [4] up to normalization of the matrices
Xk, In this case the matrix Λk is computed exactly in one step of Algorithm 2.

3 Block Newton’s method
AblockNewtonmethodwas also proposed in [4] for computing the invariant pair corresponding to the small-
est inmagnitude finite eigenvalues of a regular linearmatrix pencil. In this sectionwe generalize this method
to nonlinear matrix pencils for computing the minimal invariant pair of index 1 corresponding to minimal in
magnitude finite eigenvalues of pencil (1.2).

Let (Xk , Λk) be an approximate minimal invariant pair and Xk ∈ ℂn×p have A∗0A0-orthonormalized
columns and thematrix X∗kA

∗
0A1Xk be nonsingular. Concerning thematrix Λk, we assume that it is a solution

to equation (2.2).
Note that the left-hand side of equation (2.2) is the projection of residual (2.3) associated with the approx-

imate minimal invariant pair (Xk , Λk) onto the span of columns of the matrix Yk.
Under these assumptions, the kth iteration of the described method consists in the following. First we

compute residual (2.3). Then we solve for Φk the generalized Sylvester equation

A0Φk + (I − YkY∗k )A1ΦkΛk = Rk (3.1)
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and apply the Newton step
Xk+1 = Xk − Φk .

After that we normalize the obtained matrix Xk+1 and calculate the corresponding matrices Yk+1, Λk+1, and
Rk+1 in a similar way to Steps 2–4 of Algorithm 1.

Since Y∗k Rk = 0, equation (3.1) implies Y∗k A0Φk = 0. Therefore, equality (3.1) can be rewritten in the form

(I − YkY∗k ) (A0Φk + A1ΦkΛk) = (I − YkY∗k )Rk , Z∗kΦk = 0 (3.2)

where Zk = ort(A∗0Yk).
In the case N(λ) ≡ 0 the algorithm described above coincides with the block Newton method proposed

in [4] for linear pencils. Moreover, the generalized Sylvester equation has the same form (3.2) in the cases
of linear or nonlinear pencil (1.2). This allows us to use the following algorithm proposed in [4] for solving
equation (3.2).

Let us compute the Schur decomposition [8]:

Λk = QkCkQ∗k (3.3)

where Qk is a unitary matrix and Ck is an upper triangular one andmake the change of variablesΦk := ΦkQk
and Rk := RkQk. By Φkj and Rkj we denote the jth columns of the matrices Φk and Rk, respectively, and by
c(k)ij we denote the ijth entry of matrix Ck. In this case system (3.2) can be rewritten in the form

(I − YkY∗k ) (A0 + c(k)jj A1)Φkj = Ωkj , Z∗kΦkj = 0, j = 1, 2, . . . , p (3.4)

where

Ωk1 = (I − YkY∗k )Rk1, Ωkj = (I − YkY∗k ) (Rkj −
j−1
∑
i=1

c(k)ij A1Φki) , j > 1.

We solve each system in (3.4) with the use of the right preconditioning, i.e.,

HkΓkj = Ωkj , Φkj = LkΓkj (3.5)

where
Hk = (I − YkY∗k ) (A0 + c(k)jj A1) Lk (3.6)

and Lk is the preconditioning matrix. Applying GMRES to preconditioned system (3.5), we obtain the approx-
imate solution Γ̂kj satisfying the inequality

󵄩󵄩󵄩󵄩󵄩Ωkj − Hk Γ̂kj
󵄩󵄩󵄩󵄩󵄩2 ⩽ δ ‖Rk‖2 (3.7)

where δ is a given tolerance. The second equalities in (3.4) and (3.5) show that the matrix Lk must satisfy the
equality Lk = (I − ZkZ∗k )Lk. On the other hand, at each step of GMRES, the approximate solution belongs to
Krylov subspace generated by the matrix Hk, which satisfies the equality Hk = (I − YkY∗k )Hk, and the initial
residual r0 = Ωkj − Hk Γ̂0kj, which satisfies the equality r0 = (I − YkY∗k )r

0. This means that the approximate
solution belongs to the subspace (I − YkY∗k )ℂ

n and, therefore, the result does not change (in the exact arith-
metic) if we use the matrix Lk(I − YkY∗k ) instead of Lk. Thus, the most general form of the preconditioning
matrix Lk is

Lk = (I − ZkZ∗k )L̃k(I − YkY
∗
k ) (3.8)

where L̃k is a square matrix of order n, and the problem of choice of the preconditioning matrix Lk is reduced
to the choice of the matrix L̃k. In numerical experiments presented in Section 5, for the matrix L̃k we take
the matrix A−10 and compute the products by this matrix on the base of exact LU-decomposition (2.4) of the
matrix A0. If the matrix A0 is extremely large and sparse, then wemay use the incomplete LU-decomposition
instead of the complete one.
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4 Resulting algorithm
Combining the algorithmsdescribed in Sections 2 and 3,we get amethod for computing theminimal invariant
pair of index 1 corresponding to the smallest in magnitude finite eigenvalues of pencil (1.2).

Starting from an arbitrary matrix X0 having A∗0A0-orthonormalized columns and from a zero matrix Λ0,
we apply several steps of Algorithm 1 and set X0 = Xout, Λ0 = Λout, Y0 = Yout, R0 = Rout. After that we
apply the block Newtonmethod described in Section 3. It can be formally written in this case as the following
algorithm.

Algorithm 3.
Given ε > 0, δ > 0, and the matrices X0, Λ0, Y0, R0, computed by Algorithm 1.
For k = 0, 1, . . .
1. Compute the Schur decomposition (3.3).
2. Set Xk := XkQk, Yk := YkQk, Rk := RkQk.
3. Compute Zk = ort(A∗0Yk).
4. Solve for Φk system (3.4) by the method described in Section 3.
5. Compute Xk+1 = Xk − Φk.
6. Given Xk+1, compute the matrices Yk+1, Λk+1 and the residual Rk+1 in a similar way to Steps 2–4 of Algo-

rithm 1.
7. Test the convergence: if ‖Rk+1‖2 ⩽ ε, then set Xout = Xk+1, Λout = Λk+1 and stop.

To minimize the number of iterations of Algorithm 3, the Schur decomposition computed at Step 1 of Algo-
rithm 3 needs to have the diagonal entries of Ck ordered in a non-increasing order of magnitude (see [3],
p. 597).

If generalized Sylvester equation (3.4) is solved according to (3.5), (3.6), (3.7), and (3.8) with the tolerance
δ in (3.7) being small enough, then Algorithm 3 demonstrates the quadratic convergence provided that the
approximate invariant pair obtained by a few iterations of Algorithm 1 is sufficiently close to the exact one.
As δ increases, the solution of the Sylvester equation becomes less accurate and Algorithm 3will exhibit only
linear convergence.

5 Numerical experiments
To illustrate the use of Algorithms 1 and 3, we took a typical quadratic eigenvalue problem appearing in the
analysis of spatial stability of hydrodynamic flows. Consider a steady flow of viscous incompressible fluid in
the three-dimensional infinite duct {−∞ < x < ∞} × Σ of a constant square cross-section

Σ = {(y, z) : −1 < y < 1, −1 < z < 1}

withnon-slippingboundary conditions on the ductwalls and the constant pressure gradient (−τ, 0, 0), where
τ is a positive constant. This flow is referred to as the Poiseuille’s flow [6] and further it will be assumed as the
main flow. The normalized velocity vector of the main flow has the form (U(y, z), 0, 0), where the component
U(y, z) of the velocity in the streamwise direction x is nonnegative and reaches its maximum value of 1 at the
midpoint of the cross-section. The normalized velocity profile U(y, z) can be obtained by solving the Poisson
equation

∂2Ũ
∂y2
+
∂2Ũ
∂z2
= −1

in the domain Σ with Dirichlet boundary conditions and taking U(y, z) = Ũ(y, z)/Ũ(0, 0).
The analysis of spatial stability of the Poiseuille flow consists in the study of its stability to infinitesimal

disturbances of the form

[
v󸀠(x, y, z, t)
p󸀠(x, y, z, t)

] = [
v(y, z)
p(y, z)
] eλx−iωt (5.1)
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where v and p do not depend on x and t, and λ, ω are some numbers. Substituting (5.1) into linearized dis-
turbance equations (see, e.g., [6]), we obtain the following equations:

λUu − Lu + ∂U
∂y

υ + ∂U
∂z

w − λ
2

Re
u + λp = 0

λUυ − Lυ − λ
2

Re
υ + ∂p

∂y
= 0 (5.2)

λUw − Lw − λ
2

Re
w + ∂p

∂z
= 0

λu + ∂υ
∂y
+
∂w
∂z
= 0

where u, υ, and w are components of the velocity vector v in the directions of x, y, and z, respectively,

L = iω + 1
Re (

∂2

∂y2
+

∂2

∂z2
)

and Re is the Reynolds number.
Studying the spatial stability, one usually fixes some real ω and considers system (5.2) as an eigenvalue

problem for the eigenvalue λ and the eigenvector (u, υ, w, p)T . For definiteness sake, letω > 0. In this case the
finite eigenvalues of problem (5.2) having physical interest satisfy the inequalities Imag λ > 0 and Real λ < 0.
In physical sense, these conditionsmean that disturbances do not reflect from the boundary x = ∞ and there
are no sources there. Usually, one needs to obtain several such eigenvalues and eigenvectors. We consider
problem (5.2) with ω = 0.1 and Re = 3000. Note that the considered Poiseuille flow is linearly stable for any
finite Reynolds number [1, 2, 12, 13].

In the theory of hydrodynamic stability the eigenvalue λ is usually represented as iα, which is more con-
venient for physical interpretation of disturbances of form (5.1). However, in this paper we do not use this
notation because our aim is only to demonstrate the use of the proposed algorithms.

Since the profile U(y, z) of the Poiseuille flow velocity is an even function of y and z, equations (5.2) admit
solutions possessing four different symmetries [1, 2, 12, 13]. Solutions of the form

(u−+, υ++, w−−, p−+)

where, for example, u−+ is an odd functionwith respect to y and an even onewith respect to z, are the smallest
stable ones. Below we consider solutions with the above symmetry.

By approximating equations (5.2) in y and z with the second order finite differences on staggered grids of
type C with m inner nodes in each direction. We obtain a quadratic matrix pencil of the form

T(λ) = T1 + λT2 + λ2T3. (5.3)

Taking into account the symmetry, we can reduce the order of pencil (5.3) in approximately four times. Thus,
the order n of the considered pencil approximately equals m2.

Using the standard approach, we can transform quadratic pencil (5.3) to the linear pencil

[
T1 0
0 I
] − λ [−T2 −T3

I 0
] (5.4)

with matrices of twice order. The eigenvalues of pencils (5.3) and (5.4) coincide, and after computing the
eigenvectors of pencil (5.4) we can construct the eigenvectors of pencil (5.3). Therefore, all eigenvalues and
eigenvectors of pencil (5.3) can be computed by the QZ-algorithm [8] applied to (5.4). However, this approach
leads to large computational cost (we have to perform about 1600n3 double precision arithmetic operations
and store about 32n2 double precision numbers) and, hence, it is applicable only to approximations on a
sufficiently coarse grid.

In Figure 1 from the left, the symbols ◻ denote all finite eigenvalues of pencil (5.3) computed by the QZ-
algorithm form = 50. These computations took about 340 seconds. From the right, the same symbols indicate
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Fig. 1: Left, all finite eigenvalues of pencil (5.3) computed by the QZ-algorithm with m = 50 (◻); right, five finite eigenvalues
closest to the point λ0 = −0.02 + 0.13i (∗) computed by a combination of Algorithms 1 and 3 for m = 100 (+), 200 (×), 400 (∘),
and 800 (⬦).

p = 5 leading eigenvalues from those of physical interest. In addition, the right-hand side of Figure 1 shows
the same five eigenvalues computed on finer grids with the use of combination of Algorithms 1 and 3. To do
that, we applied the change of variables λ → λ+ λ0 with λ0 = −0.02+0.13i and reduce pencil (5.3) to a pencil
of the form

A(λ) = A0 + λA1 + λ2A2 (5.5)

with thematrices A0 = T0 + λ0T1 + λ20T2, A1 = T1 +2λ0T2, and A2 = T2, and also computed its p = 5minimal
in magnitude finite eigenvalues with the use of Algorithms 1 and 3. After that, using the inverse change of
variables λ → λ − λ0, we obtained the required eigenvalues of pencil (5.3).

In accordance with Section 4, Algorithm 1 was used for computing a good initial guess for Algorithm 3.
First we applied 10 iterations of Algorithm 1 and computed the initial guess, then we applied 5 iterations
of Algorithm 3. At each iteration of Algorithm 1, block systems (2.1) were solved based on complete LU-
decomposition (2.4) of the matrix A0. At each iteration of Algorithm 3, generalized Sylvester equation (3.2)
was solved approximately by the algorithm described in Section 3 using GMRES with right precondition-
ing using the same LU-decomposition of the matrix A0 for L̃k. The maximal dimension of Krylov bases in
all experiments was set to 50, the parameter δ in (3.7) was equal to 10−5. In the stopping criteria we used
ε = a10−14, where a denotes the maximal absolute value of the entries of A0.

Table 1 illustrates the computational cost of the combination of Algorithms 1 and 3 in computing the
approximate invariant pair (X, Λ) corresponding to p = 5 finite eigenvalues (see Fig. 1, right) of pencil (5.5),
where ‖R‖2 is the second norm of the final residual R = A0X + A1XΛ + A2XΛ2, Ntotal is the total number
of multiplications of the matrix A−10 by a column (based on the LU-decomposition), the solution of all block
systems is reduced to such multiplications (these computations formed the main part of total computational
costs), Ttotal is the computational time in seconds. Algorithm 2 used at Step 3 of Algorithm 1 and Step 6 of
Algorithm 3 always converged in 3–4 iterations for the threshold norm of the residual ε̃ = ε.

For m = 800 the solid line in Fig. 2 presents the dependence of the second norm of the residual Rk =
A0Xk + A1XkΛk + A2XkΛ2

k for the approximate invariant pair (Xk , Λk) computed at the kth iteration of the
combination of Algorithms 1 and 3 on the number k of that iteration. In this case we have used continuous
numbering of iterations. The obtained results show high efficiency of the proposed method including only
a slight dependence of the number of particular systems that need to be solved on the order n of matrices
of the pencil. It should be noted that for m = 800 the norm of the nonlinear term of the final residual was
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Fig. 2: Convergence of the combination of Algorithms 1 and 3 applied to quadratic pencil (5.5) for m = 800.

Tab. 1: Computational cost of the combination of Algorithms 1 and 3.

m 100 200 400 800

n 104 4 × 104 1.6 × 105 6.4 × 105

‖R‖2 1.9 × 10−12 4.7 × 10−12 1.6 × 10−11 6.3 × 10−11

Ntotal 217 223 221 226
Ttotal, s 1 6 29 142

approximately 4.1×10−5. That is, the nonlinear term of pencil (5.5) played a significant role in the considered
partial eigenvalue problem.

6 Conclusion
The variant of inverse subspace iteration and block Newton’s method proposed previously in [4] for comput-
ing the invariant pairs of regular linear matrix pencils are directly generalized in this paper to the case of
regular nonlinear matrix pencils. The computation efficiency of these methods is illustrated on the example
of a typical quadratic eigenvalue problem appearing in the spatial hydrodynamic stability analysis.

Complete LU-decomposition (2.4) of thematrix A0 was used in the solution of block systems in Algorithm
1 and in construction of the preconditioner for GMRES in solution of generalized Sylvester equations in Al-
gorithm 3. However, if the order of the matrices of the pencil is sufficiently large, then one should use the
incomplete LU-decomposition. In this case, block systems in Algorithm 1 can be solved by GMRES with the
use of the right preconditioning and tuning as this was proposed in [4].

The algorithms proposed in this paper are designed to compute theminimal invariant pairs of index l = 1.
In order to compute minimal invariant pairs of index l > 1, these algorithms should be used together with
the deflation procedure proposed in [10].

Funding: The work was supported by the Russian Foundation for Basic Research (projects No. 16–01–00572,
16–31–60092) (development and justification of the proposed method) and by the Russian Science Founda-
tion (project No. 17–71–20149) (numerical experiments, analysis of the obtained results).
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