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Abstract: The block inverse iteration and block Newton’s methods proposed by the authors of this paper for
computing invariant pairs of regular linear matrix pencils are generalized to the case of regular nonlinear
matrix pencils. Numerical properties of the proposed methods are demonstrated with a typical quadratic
eigenproblem.
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1 Introduction

A block Newton method has been proposed in [7] for ordinary partial linear eigenvalue problems. The theory
of its convergence was constructed in terms of the integral performance criteria for dichotomy. This method
occurred to be quite efficient and has got further development by various authors (see, e.g., [3, 4, 9]). In par-
ticular, a variant of this method was proposed in [4] for computing the invariant pairs of regular linear matrix
pencils of general form. An efficient variant of the inverse subspace iteration with tuning was proposed for
computing the initial guess. It was proposed in [5] to use methods from [4] for computing the minimal invari-
ant pairs of regular nonlinear matrix pencils in the framework of the method of successive linear problems
supplemented with the deflation procedure from [10]. Though the proposed combination of four algorithms
to be quite efficient, the question about a direct generalization of the algorithms from [4] to the case of nonlin-
ear matrix pencils has remained open. It would allow one to decrease essentially the logical complexity and
the number of parameters comparing to the method from [5]. The aim of this paper is to propose and justify
such generalization.
Recall that nonlinear matrix pencils in the matrix analysis usually mean pencils of the form

d
TQ) = Y Tifi(A) (1.1)

i=1
where T4, ..., T4 are square complex matrices of order n and fi, ..., fz are scalar functions of a complex

variable analytic in some domain Q of the complex plane (see, e.g., [10]). Pencil (1.1) is called regular if there
exists Ag € Q such that det(T(Ag)) # 0. The set of eigenvalues of a regular pencil of form (1.1), i.e., the set of
solutions to the equation det(T(A)) = 0 is not more than countable. If A, is one of those roots, then nonzero
vectors belonging to the kernel of the matrix T(A.) are called eigenvectors of pencil (1.1) corresponding to the
eigenvalue A.,.

The pair (X, A), where X € C™P, A € CP*?, is called the minimal invariant pair of pencil (1.1) if, first,

d
T(X,A) = Y TiXfi(A) =0

i=1
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where 1
_ -1
f(/l)——zmj;f(Z)(ZI A)dz

and y is a sufficiently smooth simple positively oriented closed contour in Q enveloping all eigenvalues of the
matrix A; second, there exists a positive integer number [ such that the matrix

[XT, xA)T,..., (XAFHT]

has full rank. The smallest [ satisfying this condition is called the minimality index of the pair (X, A). In
particular, if [ = 1, then the matrix X has full rank. If (X, A) is a minimal invariant pair of regular pencil (1.1),
then the spectrum of A is a subset of the set of finite eigenvalues of this pencil and the eigenvectors u of the
matrix A and the eigenvectors x of pencil (1.1) are connected in the following way: x = Xu.

In this paper we consider the problem of computation of the minimal invariant pair of index [ = 1 cor-
responding to finite eigenvalues of pencil (1.1) which are the closest ones to a given point Ag. Applying the
change of variables A — A + Ag and introducing new notations, we can reduce this problem to computing the
minimal invariant pair of index 1 corresponding to minimal in magnitude finite eigenvalues of the pencil

AA) = Ag + AAq + A2N(A). (1.2)

Here .
Ao =T(o), A1=T'(o), NA)=) TigiA) (1.3)
i=1
where gi(A) = fi(A + Ao) — fi(Ag) — fl.' (A0)(A + Ap). Without loss of generality, we assume that Ag is not an
eigenvalue of pencil (1.1) and, hence, the matrix Ao is nonsingular. Sections 2 and 3 describe the proposed
variant of the inverse subspace iteration and block Newton’s method, respectively. Section 4 presents the
combination of these two methods where the first method is used to obtain a sufficiently good initial guess
and the second one is applied to its fast refinement. Section 5 demonstrates the numerical properties of these
methods on the example of a typical square eigenvalue problem appearing in the study of spatial stability of
hydrodynamic flows.

Describing the proposed algorithms, we use an additional procedure for orthonormalization of the
columns of a given full-rank matrix W € C™P? by computing its QR-decomposition [8], i.e., W = QR, where
Q € C™ is a unitary rectangular matrix, Q*Q = I, and R € CP*P is an upper triangular one. Hereinafter =
denotes the symbol of conjugate transposition and I is the identity matrix of the corresponding order. We
write down the result of this procedure as (Q, R) = ort(W), or Q = ort(W) when the matrix R is not needed. In
addition, ||B|; denotes below the second norm of a vector or matrix B.

We normalize the matrix X of the required minimal invariant pair so that its columns were AjAo-
orthonormalized, i.e., Y*Y = I, where Y = ApX.

2 Inverse subspace iteration

In this section we describe the proposed variant of the inverse subspace iteration method for computing the
minimal invariant pair (X, A) of index 1 corresponding to the p smallest in magnitude finite eigenvalues of
regular nonlinear matrix pencil (1.2). Up to normalization, this method is a direct generalization of the variant
of inverse subspace iteration which is proposed in [4] for the linear matrix pencils.

Algorithm 1.
Given £ > 0, Xg € C™™P with XoAjA;Xo = 1, and a square nonzero matrix /A of order p.
Fork=1,2,...
1. Solve for Xj the system
AoXy = -A1 Xk 1 — N(Xy-1, Ag-1)Ag-1. (21)
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2. Compute (Y, Gi) = ort(AoX). Set Xi := XkGi ', A1 = Yi Ar Xy, Ti = Vi TiXi, i =1, ..., d.
3. Solve for Ay the matrix equation
I+ A1Ax + N(AAZ =0 2.2)
where
—_— d —~
N =) Tigid).
i=1
4. Compute the residual
Ric = Yi + A1 XAk + N(Xi, A AR (2.3)

Test the convergence: if |Rx|2 < €, then set Xout = Xk, Aout = Ak, Yout = Yk, Rout = Rk and stop.

At the first step of Algorithm 1 we have to solve block system of linear equations (2.1). If the order n of the
matrix Ag is not too large, then this system may be solved on the basis of LU-decomposition [8] of the matrix
Ao, i.e.,

Ao = DII; ' LUIT} (2.4)

where I} and ITy are the permutation matrices, D is a left diagonal scaling matrix, and L and U are the lower
and upper triangular matrices, respectively. If A is of large order, then this system can be solved, for example,
by GMRES [11] using the right preconditioning based on the incomplete LU-decomposition of the matrix Ag
and tuning to accelerate the convergence as it was proposed in [4].

At the third step of Algorithm 1 we have to solve for Ay matrix equation (2.2). To do that, we use the
following iterative algorithm.

Algorithm 2.
Given & > 0 and nonzero matrix A, of order p.
Forj=0,1,...
1. Compute the residual R; = Ao + A1 4; + N(Z]-)ij.
Test the convergence: if ||1~€,-||z < E, thenset Ay = Zj and stop.
2. Compute Zj+1 = Z]' - Zilﬁj.

If we have no a priori information concerning the matrix X, which has to be specified in the initialization of
Algorithm 1, then X, can be taken as a random rectangular matrix with AjAq-orthonormalized columns.

It should be noted that in the case N(A) = O (i.e., when considered matrix pencil (1.2) is linear) Algorithm
1 coincides with the variant of inverse subspace iteration proposed in [4] up to normalization of the matrices
Xk, In this case the matrix Ay is computed exactly in one step of Algorithm 2.

3 Block Newton’s method

A block Newton method was also proposed in [4] for computing the invariant pair corresponding to the small-
est in magnitude finite eigenvalues of a regular linear matrix pencil. In this section we generalize this method
to nonlinear matrix pencils for computing the minimal invariant pair of index 1 corresponding to minimal in
magnitude finite eigenvalues of pencil (1.2).

Let (Xi, Ax) be an approximate minimal invariant pair and Xy € C™P? have AjAg-orthonormalized
columns and the matrix X; AjA; Xy be nonsingular. Concerning the matrix A, we assume that it is a solution
to equation (2.2).

Note that the left-hand side of equation (2.2) is the projection of residual (2.3) associated with the approx-
imate minimal invariant pair (Xx, Ax) onto the span of columns of the matrix Y.

Under these assumptions, the kth iteration of the described method consists in the following. First we
compute residual (2.3). Then we solve for @y the generalized Sylvester equation

Ao®y + (I - Y Y;)A1 DAy = Ry 3.
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and apply the Newton step
Xir1 = Xk — D

After that we normalize the obtained matrix X;,, and calculate the corresponding matrices Yj1, Ax+1, and
Ry+1 in a similar way to Steps 2—4 of Algorithm 1.
Since Y; Ry = 0, equation (3.1) implies Y;Ao@x = 0. Therefore, equality (3.1) can be rewritten in the form

(I - YiY]) (Ao@k + A1 @iAy) = (I - YiY})Ry,  Zi @y =0 3.2

where Zy = ort(AjYy).

In the case N(A) = 0 the algorithm described above coincides with the block Newton method proposed
in [4] for linear pencils. Moreover, the generalized Sylvester equation has the same form (3.2) in the cases
of linear or nonlinear pencil (1.2). This allows us to use the following algorithm proposed in [4] for solving
equation (3.2).

Let us compute the Schur decomposition [8]:

Ay = QrCrQy (3.3)

where Qg is a unitary matrix and Cy is an upper triangular one and make the change of variables @y := @ Q
and Ry := RrQx. By @y; and R;; we denote the jth columns of the matrices @y and Ry, respectively, and by

cgf) we denote the ijth entry of matrix Cy. In this case system (3.2) can be rewritten in the form

(U= YiYp) (Ao + ' A1) Dij = Quj, Zy®iy=0, j=1,2,...,p (3.4)

where
j-1
Qi1 = (- Vi¥{)Ria, Qi = (I - Yi¥y) (Rkj -y cﬁ,.k)Achki>, j> 1.
i=1

We solve each system in (3.4) with the use of the right preconditioning, i.e.,
Hy Iy = Qy, Dyj = Lilyj (3.5)

where
Hy = (I- YiY}) (AO + c}(.]I.‘)A1> Li (3.6)

and Ly is the preconditioning matrix. Applying GMRES to preconditioned system (3.5), we obtain the approx-
imate solution I’ «j satisfying the inequality

|2k - Hiwg, < 8 IRl 37)

where § is a given tolerance. The second equalities in (3.4) and (3.5) show that the matrix Ly must satisfy the
equality Ly = (I - ZxZ;)Ly. On the other hand, at each step of GMRES, the approximate solution belongs to
Krylov subspace generated by the matrix Hy, which satisfies the equality Hy = (I - YiY;)Hy, and the initial
residual r° = Qi - Hi I ,%., which satisfies the equality 1 = (I - Y Y,f)ro. This means that the approximate
solution belongs to the subspace (I - Y Y;)C" and, therefore, the result does not change (in the exact arith-
metic) if we use the matrix Ly (I — Y Y,’(‘ ) instead of L. Thus, the most general form of the preconditioning
matrix Ly is

L = (I - ZiZP) Ll - Yy Yy) (3.8)

where Ly is a square matrix of order n, and the problem of choice of the preconditioning matrix Ly is reduced
to the choice of the matrix L. In numerical experiments presented in Section 5, for the matrix Ly we take
the matrix A(‘)1 and compute the products by this matrix on the base of exact LU-decomposition (2.4) of the
matrix Ag. If the matrix Ay is extremely large and sparse, then we may use the incomplete LU-decomposition
instead of the complete one.
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4 Resulting algorithm

Combining the algorithms described in Sections 2 and 3, we get a method for computing the minimal invariant
pair of index 1 corresponding to the smallest in magnitude finite eigenvalues of pencil (1.2).

Starting from an arbitrary matrix Xo having AjAo-orthonormalized columns and from a zero matrix Ao,
we apply several steps of Algorithm 1 and set Xg = Xout, Ao = Aouts Yo = Youts Ro = Rout. After that we
apply the block Newton method described in Section 3. It can be formally written in this case as the following
algorithm.

Algorithm 3.

Given € > 0, § > 0, and the matrices Xo, Ao, Yo, Ro, computed by Algorithm 1.

Fork=0,1,...

1. Compute the Schur decomposition (3.3).

2. Set Xy := XiQk, Yi := YiQx, Ri := Ry Q.

3. Compute Zy = ort(A;Yy).

4. Solve for @y system (3.4) by the method described in Section 3.

5. Compute X1 = Xx — Dk.

6. Given Xj,1, compute the matrices Yi,1, Ax+1 and the residual Ry, 1 in a similar way to Steps 2—4 of Algo-

rithm 1.
7. Test the convergence: if |Ry.1]> < €, then set Xout = Xxi1, Aout = Axs1 and stop.

To minimize the number of iterations of Algorithm 3, the Schur decomposition computed at Step 1 of Algo-
rithm 3 needs to have the diagonal entries of C ordered in a non-increasing order of magnitude (see [3],
p. 597).

If generalized Sylvester equation (3.4) is solved according to (3.5), (3.6), (3.7), and (3.8) with the tolerance
6 in (3.7) being small enough, then Algorithm 3 demonstrates the quadratic convergence provided that the
approximate invariant pair obtained by a few iterations of Algorithm 1 is sufficiently close to the exact one.
As § increases, the solution of the Sylvester equation becomes less accurate and Algorithm 3 will exhibit only
linear convergence.

5 Numerical experiments

To illustrate the use of Algorithms 1 and 3, we took a typical quadratic eigenvalue problem appearing in the
analysis of spatial stability of hydrodynamic flows. Consider a steady flow of viscous incompressible fluid in
the three-dimensional infinite duct {—oco < x < 0o} x X of a constant square cross-section

2={r,2): -1<y<1, -1<z<1}

with non-slipping boundary conditions on the duct walls and the constant pressure gradient (-7, 0, 0), where
T is a positive constant. This flow is referred to as the Poiseuille’s flow [6] and further it will be assumed as the
main flow. The normalized velocity vector of the main flow has the form (U(y, z), 0, 0), where the component
U(y, z) of the velocity in the streamwise direction x is nonnegative and reaches its maximum value of 1 at the
midpoint of the cross-section. The normalized velocity profile U(y, z) can be obtained by solving the Poisson
equation
220 20U
o7 Tz T
in the domain X with Dirichlet boundary conditions and taking U(y, z) = U(y, z)/U(0, 0).
The analysis of spatial stability of the Poiseuille flow consists in the study of its stability to infinitesimal
disturbances of the form ’
[V’(X, Vs 2, t):| _ [v(y,z)] e/lx—iwt (5.1)
rx,yzt)| |p02)



20 = K.V.Demyanko and Yu. M. Nechepurenko, Computing invariant pairs of nonlinear matrix pencils DE GRUYTER

where v and p do not depend on x and ¢, and A, w are some numbers. Substituting (5.1) into linearized dis-
turbance equations (see, e.g., [6]), we obtain the following equations:

2

ou oU
}lUu—Lu+a—yv+§w—%u+/\p—0

A2 op
AUU—LU—R—eU‘f'a—y—O (5.2)
2 ap
AUW—LW—EW-FE:O
oV ow
Au+a—y+$—0

where u, v, and w are components of the velocity vector v in the directions of x, y, and z, respectively,

L=iw+ L o + 0
B Re \ 0y2  0z2

and Re is the Reynolds number.

Studying the spatial stability, one usually fixes some real w and considers system (5.2) as an eigenvalue
problem for the eigenvalue A and the eigenvector (u, v, w, p) T For definiteness sake, let w > 0. In this case the
finite eigenvalues of problem (5.2) having physical interest satisfy the inequalities Imag A > 0 and Real A < 0.
In physical sense, these conditions mean that disturbances do not reflect from the boundary x = co and there
are no sources there. Usually, one needs to obtain several such eigenvalues and eigenvectors. We consider
problem (5.2) with w = 0.1 and Re = 3000. Note that the considered Poiseuille flow is linearly stable for any
finite Reynolds number [1, 2, 12, 13].

In the theory of hydrodynamic stability the eigenvalue A is usually represented as ia, which is more con-
venient for physical interpretation of disturbances of form (5.1). However, in this paper we do not use this
notation because our aim is only to demonstrate the use of the proposed algorithms.

Since the profile U(y, z) of the Poiseuille flow velocity is an even function of y and z, equations (5.2) admit
solutions possessing four different symmetries [1, 2, 12, 13]. Solutions of the form

Uy Vg, W, py)

where, for example, u_, is an odd function with respect to y and an even one with respect to z, are the smallest
stable ones. Below we consider solutions with the above symmetry.

By approximating equations (5.2) in y and z with the second order finite differences on staggered grids of
type C with m inner nodes in each direction. We obtain a quadratic matrix pencil of the form

TA) = T1 + ATy + A*T;5. (5.3)

Taking into account the symmetry, we can reduce the order of pencil (5.3) in approximately four times. Thus,
the order n of the considered pencil approximately equals m?.
Using the standard approach, we can transform quadratic pencil (5.3) to the linear pencil

T, 0 T, -Ts
[o 1]'A[ I o] (5.4)

with matrices of twice order. The eigenvalues of pencils (5.3) and (5.4) coincide, and after computing the
eigenvectors of pencil (5.4) we can construct the eigenvectors of pencil (5.3). Therefore, all eigenvalues and
eigenvectors of pencil (5.3) can be computed by the QZ-algorithm [8] applied to (5.4). However, this approach
leads to large computational cost (we have to perform about 1600n> double precision arithmetic operations
and store about 32n? double precision numbers) and, hence, it is applicable only to approximations on a
sufficiently coarse grid.

In Figure 1 from the left, the symbols o denote all finite eigenvalues of pencil (5.3) computed by the QZ-
algorithm for m = 50. These computations took about 340 seconds. From the right, the same symbols indicate
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Fig. 1: Left, all finite eigenvalues of pencil (5.3) computed by the QZ-algorithm with m = 50 (0); right, five finite eigenvalues
closest to the point Ag = —0.02 + 0.13i () computed by a combination of Algorithms 1and 3 for m = 100 (+), 200 (x), 400 (c),
and 800 ().

p = 5 leading eigenvalues from those of physical interest. In addition, the right-hand side of Figure 1 shows
the same five eigenvalues computed on finer grids with the use of combination of Algorithms 1 and 3. To do
that, we applied the change of variables A — A+Aq with Ag = —0.02 +0.13i and reduce pencil (5.3) to a pencil
of the form

A\) = Ag + AAq + A, (5.5)

with the matrices Ag = To +Ao Ty +)l(2) Ty, A1 = T1+2A0T>,and A, = T;, and also computed its p = 5 minimal
in magnitude finite eigenvalues with the use of Algorithms 1 and 3. After that, using the inverse change of
variables A — A — Ao, we obtained the required eigenvalues of pencil (5.3).

In accordance with Section 4, Algorithm 1 was used for computing a good initial guess for Algorithm 3.
First we applied 10 iterations of Algorithm 1 and computed the initial guess, then we applied 5 iterations
of Algorithm 3. At each iteration of Algorithm 1, block systems (2.1) were solved based on complete LU-
decomposition (2.4) of the matrix Ag. At each iteration of Algorithm 3, generalized Sylvester equation (3.2)
was solved approximately by the algorithm described in Section 3 using GMRES with right precondition-
ing using the same LU-decomposition of the matrix Ao for L. The maximal dimension of Krylov bases in
all experiments was set to 50, the parameter § in (3.7) was equal to 107°. In the stopping criteria we used
€ = al071%, where a denotes the maximal absolute value of the entries of Ag.

Table 1 illustrates the computational cost of the combination of Algorithms 1 and 3 in computing the
approximate invariant pair (X, A) corresponding to p = 5 finite eigenvalues (see Fig. 1, right) of pencil (5.5),
where ||R| is the second norm of the final residual R = ApX + A1 XA + A»XA2, Niotal is the total number
of multiplications of the matrix A51 by a column (based on the LU-decomposition), the solution of all block
systems is reduced to such multiplications (these computations formed the main part of total computational
costs), Tiotal is the computational time in seconds. Algorithm 2 used at Step 3 of Algorithm 1 and Step 6 of
Algorithm 3 always converged in 3-4 iterations for the threshold norm of the residual € = €.

For m = 800 the solid line in Fig. 2 presents the dependence of the second norm of the residual Ry =
AoXy + A1 Xj Ay + Ay X kAIZ( for the approximate invariant pair (Xi, Ax) computed at the kth iteration of the
combination of Algorithms 1 and 3 on the number k of that iteration. In this case we have used continuous
numbering of iterations. The obtained results show high efficiency of the proposed method including only
a slight dependence of the number of particular systems that need to be solved on the order n of matrices
of the pencil. It should be noted that for m = 800 the norm of the nonlinear term of the final residual was
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Fig. 2: Convergence of the combination of Algorithms 1 and 3 applied to quadratic pencil (5.5) for m = 800.

Tab. 1: Computational cost of the combination of Algorithms 1 and 3.

m 100 200 400 800
n 104 4 x 10 1.6 x 10° 6.4x10°
IRl 1.9x10712  4.7x10712 1.6x1071! 6.3x10711

Ntotal 217 223 221 226

Ttotals S 1 6 29 142

approximately 4.1x107°. That is, the nonlinear term of pencil (5.5) played a significant role in the considered
partial eigenvalue problem.

6 Conclusion

The variant of inverse subspace iteration and block Newton’s method proposed previously in [4] for comput-
ing the invariant pairs of regular linear matrix pencils are directly generalized in this paper to the case of
regular nonlinear matrix pencils. The computation efficiency of these methods is illustrated on the example
of a typical quadratic eigenvalue problem appearing in the spatial hydrodynamic stability analysis.

Complete LU-decomposition (2.4) of the matrix Ag was used in the solution of block systems in Algorithm
1 and in construction of the preconditioner for GMRES in solution of generalized Sylvester equations in Al-
gorithm 3. However, if the order of the matrices of the pencil is sufficiently large, then one should use the
incomplete LU-decomposition. In this case, block systems in Algorithm 1 can be solved by GMRES with the
use of the right preconditioning and tuning as this was proposed in [4].

The algorithms proposed in this paper are designed to compute the minimal invariant pairs ofindex [ = 1.
In order to compute minimal invariant pairs of index [ > 1, these algorithms should be used together with
the deflation procedure proposed in [10].

Funding: The work was supported by the Russian Foundation for Basic Research (projects No. 16-01-00572,
16-31-60092) (development and justification of the proposed method) and by the Russian Science Founda-
tion (project No. 17-71-20149) (numerical experiments, analysis of the obtained results).
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