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Preconditioners with projectors for mixed
hybrid �nite element methods
Abstract: We propose and investigate numerically two new preconditioners for the matrices, which arise in
the mixed-hybrid �nite element methods for di�usion equation in strongly heterogeneous media. Both pre-
conditioners include special projectors on the vector spaces orthogonal to the vectors with constant compo-
nents. We give general description of the preconditioners and discuss numerical results which demonstrate
their e�ciency compared to the classical diagonal preconditioner.
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In the present paper, we propose and investigate numerically two new preconditioners for the condensed
matrices, arising in mixed-hybrid �nite element approximations of the di�usion equation in strongly hetero-
geneous media. The construction of preconditioners is based on the ideas originally proposed and investi-
gated in [4]. The preconditioners contain special projectors on the vector spaces orthogonal to vectors with
constant components.

The paper is organized as follows. In Section 1, we describe the di�erential mixedmacro-hybrid formula-
tion of the di�usion equation. To simplify the exposition, we consider only the case of polygonal/polyhedral
domains and subdomains, and the case of homogeneous Neumann conditions. For the condensed matrix
arising in mixed hybrid or mixed macro-hybrid �nite element methods we describe the general idea for con-
struction of preconditioners with special projectors [4].

In Section 2, we consider themodel di�usion problem in the square domain partitioned in square subdo-
mains with constant di�usion and reaction coe�cients in subdomains. Based on the results of Section 1 we
propose a variant of a preconditioner with projector which we refer to as a ‘coarse mesh preconditioner’. We
brie�y describe the algorithm of the preconditioner implementation and the respective numerical results.

In Section 3 we consider the domain from Section 2 and assume the checkerboard ordering of square
subdomains with large values of the di�usion coe�cient. For this particular case we propose a simple block-
diagonal preconditioner with projectors. The computational arithmetical cost of this preconditioner is pro-
portional to its dimension.We compare the e�ciency of this preconditioner with the classical diagonal (point
Jacobi) preconditioner in context of the Preconditioned Conjugate Gradient (PCG) method.

1 Problem formulation
We consider the di�usion problem

−∇ (K∇ p) + c p = f in Ω
− (K∇ p) ⋅ n = 0 on ∂Ω

(1.1)
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whereΩ is a simply connectedpolygon/polyhedron inℝ2/ℝ3with boundary ∂Ω,n is the outwardunit normal
to ∂Ω, K = K (x) is the di�usion tensor, c is a nonnegative coe�cient, and f = f (x) is a given source function.
We partition Ω into m > 1 nonoverlapping polygons/polyhedrons Es, s = 1, . . . ,m, and denote by Γs,t the
interfaces between Es and Et, i.e., Γs,t = ∂Es ∩ ∂Et, s < t, s, t = 1, . . . ,m. For the sake of simplicity we
assume that subdomains Es are convex, K ≡ Ks = ks Is are constant scalar tensors in Es, where Is is the
identity matrix, and c ≡ cs are nonnegative constants, s = 1, . . . ,m.

The di�erential mixed macro-hybrid formulation of (1.1) based on the partitioning of Ω into subdomains
Es, s = 1, . . . ,m, reads as follows:

K−1s us + ∇ps = 0 in Es
∇us + cs ps = f in Es

ps = pt on Γs,t , s < t
us ⋅ ns + ut ⋅ nt = 0 on Γs,t , s < t

us ⋅ n = 0 on ∂Ω ∩ ∂Es

(1.2)

where ns are the outward normals to ∂Es and ∂Et, s, t = 1, . . . ,m. The variational mixed hybrid formulation
of (1.2) is well known [1].

LetΩh be a triangular/tetrahedralmesh inΩ, conformingwith ∂Es, i.e., ∂Es is the unionof the sides/faces
of mesh cells in Ωh, s = 1, . . . ,m. We approximate (1.2) by the lowest order mixed hybrid Raviart–Thomas
�nite element method (RT0 method) on themesh Ωh. Themethod results in the linear algebraic system [1, 2]:

A(
u
p
λ
) = (

0
−F
0
) (1.3)

with the saddle point matrix

A = (
M BT CT

B −Σ 0
C 0 0

) . (1.4)

Under the appropriate ordering of the �ux variables (DOFs) thematrixM is block diagonal with 3×3/4×4
blocks. Eliminating the vector u in (1.3) we get the system:

S [p
λ
] ≡ [

Spp Spλ
Sλp Sλλ

][
p
λ
] = [

F
0
] (1.5)

with the symmetric positive de�nite matrix S (semide�nite, if cs = 0, s = 1, . . . ,m):

S = [
B
C
]M−1 [BT CT] + [

Σ 0
0 0

] . (1.6)

The matrix S in (1.5) can be de�ned by subassembling matrices

St = At + [
Σ 0
0 0

] (1.7)

associated with subdomains Et, t = 1, . . . ,m, i.e.,

S =
m
∑
t=1
NtStNTt

where Nt are the subassemblingmatrices, At are condensedmatrices for subdomains Et, and Σt are the diag-
onal matrices, t = 1, . . . ,m. It is obvious that thematrices At are singular, and ker(A) consists of vectors with
constant components, i.e., consists of the vectors, which are proportional to the vector ewith all components
equal to one.
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LetMt be diagonal mt ×mt matrices with positive diagonal entries, where mt is the dimension of At. Let
us consider the eigenvalue problem

Atw = λMtw. (1.8)

We denote by 0 = λt,1 < λt,2 ⩽ . . . ⩽ λt,mt the eigenvalues in (1.8) and by wt,1, . . . , wt,mt the set of Mt-
orthogonal eigenvectors in (1.8), t = 1, . . . ,m. Then we get the spectral decompositions

At = MtWtΛtWT
t Mt (1.9)

where Λt = diag{λt,1, λt,2, . . . , λt,mt } and

Wt = [wt,1, . . . , wt,mt ] . (1.10)

It is obvious that
WT
t MtWt = MtWtWT

t = WtWT
t Mt = It (1.11)

with the mt × mt identity matrix It, t = 1, . . . ,m. We also remind that

wt,1 =
1

‖et‖Mt

et (1.12)

where et is mt × mt vector with the components equal to one and ‖et‖Mt is the Mt-norm of et, t = 1, . . . ,m.
Following [4], we replace the matrices At in (1.9) with matrices

Bt = αtMtWt (It − ̂It)WtMt = α (Mt −Mtwt,1wTt,1Mt) (1.13)

where αt are some positive numbers and ̂It aremt ×mt matrix with the only nonzero entry in the position (1,1)
equals to one, t = 1, . . . ,m. It is obvious that Bt = BTt ⩾ 0, ker (Bt) = ker (At) and

λt,2
αt
Bt ⩽ At ⩽

λt,mt

αt
Bt , t = 1, . . . ,m. (1.14)

We de�ne the matrices

B =
m
∑
t=1
Nt [Bt + [

Σt 0
0 0

]]NTt . (1.15)

Then from [4] we get the inequalities
β1B ⩽ S ⩽ β2B (1.16)

with
β1 = min{ min

t=1,...,m

λt,2
αt

; 1} (1.17)

and
β2 = max{ max

t=1,...,m

λt,mt

αt
; 1} (1.18)

Remark 1.1. In this section triangular/tetrahedral meshes and RT0 approximations were chosen to illustrate
the algebraic operations (1.9)–(1.15) and estimates (1.16)–(1.18). In fact, we can repeat the same transforma-
tions and estimates for many other meshes and approximations. In particular, for numerical results in Sec-
tions 2 and 3 we shall use square meshes and macro-hybrid mixed discretizations with piece-wise constant
�uxes [5] which practically coincide with the macro-hybridized �nite-volume method.

2 Coarse mesh preconditioner
In this section, we consider the di�usion equation in the unit square partitioned into m = √m × √m
subsquares as shown in Fig. 1. We assume that the di�usion coe�cients c are constant in each subdo-
main/subsquare Et, i.e., kt = const > 0 and c ≡ ct = const ⩾ 0 in Et, t = 1, . . . ,m. In Ω = [0; 1] × [0; 1] we
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Figure 1. Domain Ω partitioned in subsquares Es, s = 1, . . . ,m, m = 16.

de�ne the square mesh Ωh with the step-size h = 1/n, n ⩾ 2. We assume that n is a multiple of√m. Thus, we
de�ned the macro-mesh (coarse mesh) with the step-size H = 1/√m, and the mini-mesh Ωh.

We approximate the di�usion problem (1.2) by themixedmacro-hybrid �nite elementmethodwith piece-
wise constant �uxes [5]. It can be easily shown that the proposed discretization is equivalent to the �nite
volume discretization of (1.1) on Ωh hybridized on the interfaces Γs,t between macrocells Es and Et, and on
the boundary of Ω. This approximation results in system (1.3)–(1.4) with a diagonal matrix M. We observe,
in this method DOFs (degrees of freedom) for λ represent the mean values of the solution function p on the
boundaries of mesh cells in Ωh belonging to the boundaries of Et, t = 1, . . . ,m.

To de�ne the matrices Bt, t = 1, . . . ,m, in (1.13) we choose Mt to be a diagonal matrix with the diagonal
entries equal to h2 for the components of subvector p, and equal to h for the components of subvector λ,
t = 1, . . . ,m. Thus each Mt has (H/h)2 diagonal entries equal to h2, and 4H (H/h) diagonal entries equal to
h, t = 1, . . . ,m.

For numerical experiments we choose

αt = ‖M−1t At‖ ≡ α =
8kt
h2

, t = 1, . . . ,m. (2.1)

Then, in inequalities (1.16) we get

β1 = min
t=1,...,m

λt,2
αt

, β2 = 1. (2.2)

We observe, that the value of β1 does not depend on the values kt and ct, t = 1, . . . ,m.
The numerical results are given in Tables 1–4. Abbreviation PCG stays for the preconditioned conjugate

gradient method with preconditioner equal to the diagonal of S, and abbreviation CMP (Coarse Mesh Precon-
ditioner) stays for the Preconditioned Conjugate Gradient method with the above preconditioner B in (1.15).
The algorithm for solving a system with the matrix B is described in [4].

In Tables 1 and 2 we give the numbers of iterations of PCG and CMP methods su�cient for minimization
of S-norm of the initial error in 1

ε = 106 times in the case when the reaction coe�cient c ≡ 1 in Ω. In Tables
3 and 4 we give the number of iterations of the same methods with the same tolerance when the values of cs
are chosen randomly in the interval [0.01; 100].

We can clearly observe that the number of iterations in the PCG method essentially depends on the val-
ues of the di�usion coe�cients. The number of iterations in CMP method does not depend on the values of
coe�cients kt and ct, t = 1, . . . ,m. We can also observe that the number of iterations is proportional to H/h.
This statement correlates with theoretical estimates in [4].
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Table 1. H = 1/8, m = 8 × 8 = 64 subsquares.

n × n kmax = 1 kmax = 102 kmax = 104 kmax = 106
PCG CMP PCG CMP PCG CMP PCG CMP

128 × 128 502 310 927 310 1220 309 1227 307
256 × 256 910 652 1617 676 2317 657 3741 651
512 × 512 1705 1373 3419 1398 4767 1377 5615 1381

Table 2. H = 1/16, m = 16 × 16 = 256 subsquares.

n × n kmax = 1 kmax = 102 kmax = 104 kmax = 106
PCG CMP PCG CMP PCG CMP PCG CMP

128 × 128 600 144 1267 145 2499 144 5309 142
256 × 256 944 330 1958 331 4536 330 9139 326
512 × 512 1678 744 3219 744 8591 741 18044 733

Table 3. H = 1/8, m = 8 × 8 = 64 subsquares.

n × n kmax = 1 kmax = 102 kmax = 104 kmax = 106
PCG CMP PCG CMP PCG CMP PCG CMP

128 × 128 276 377 701 317 1278 307 1520 306
256 × 256 543 736 1324 691 2145 655 2655 650
512 × 512 970 1497 2217 1421 4508 1392 6680 1303

Table 4. H = 1/16, m = 16 × 16 = 256 subsquares.

n × n kmax = 1 kmax = 102 kmax = 104 kmax = 106
PCG CMP PCG CMP PCG CMP PCG CMP

128 × 128 278 199 798 158 2009 147 4726 143
256 × 256 527 388 1323 339 3524 331 8938 323
512 × 512 907 794 2277 755 7502 736 15326 733

3 Block diagonal preconditioner
In this section, we partition the macrocells into two groups and assume that any two macrocells Es and Et in
the �rst group do not have interfaces, i.e., |Γs,t| = 0, 1 ⩽ s < t ⩽ m0, m0 < m.

We assume that the di�usion coe�cients ks for the �rst group of macrocells are much larger than one
(ks ≫ 1), s = 1, . . . ,m0, and ks ≈ 1 for the second group of macrocells, s = m0 + 1, . . . ,m. We represent the
matrix S as the sum of two matrices S1 and S2, where the matrix S1 is de�ned by

S1 =
m0

∑
t=1
Nt [(kt − 1) At + [

Σt 0
0 0

]]NTt . (3.1)

Then, the block diagonal preconditioner B for the matrix S is de�ned by

B = D +
m0

∑
t=1
Nt [(kt − 1) Bt + [

Σt 0
0 0

]]NTt (3.2)

where thematrixD is a diagonalmatrixwith positive diagonal entries. Thematrix B is a block diagonalmatrix

B =
m
∑
t=1
NtBttNTt (3.3)

where the blocks
Btt = Dtt + (kt − 1)Mtwt,1wTt,1Mt (3.4)
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Figure 2. Example of ‘checkerboard distribution’.

Table 5. H = 1/8, m = 8 × 8 = 64 subsquares.

n × n kmax = 102 kmax = 104 kmax = 106
PCG CMP BDP PCG CMP BDP PCG CMP BDP

128 × 128 1141 306 809 2101 265 747 4804 245 625
256 × 256 2222 642 1517 4206 558 1347 8337 542 1155
512 × 512 4455 1375 2826 9111 1219 2487 13796 1151 2188

Table 6. H = 1/16, m = 16 × 16 = 256 subsquares.

n × n kmax = 102 kmax = 104 kmax = 106
PCG CMP BDP PCG CMP BDP PCG CMP BDP

128 × 128 1508 143 692 6588 128 625 23093 112 541
256 × 256 2479 325 1300 11095 276 1153 32797 267 987
512 × 512 4662 733 2357 16405 639 2080 58545 598 1711

are rank one perturbations of diagonal matrices Dtt and the blocks Btt, t = m0 + 1, . . . ,m, are diagonal
matrices. Let us assume that

ν1D ⩽ S2 ⩽ ν2D (3.5)

with some positive ν1 < ν2. Then
β1B ⩽ S ⩽ β2B (3.6)

where
β1 = min{ min

t=1,...,m

λt,2
αt

; ν1; 1} (3.7)

and
β2 = max{ max

t=1,...,m

λt,mt

αt
; ν2; 1}. (3.8)

It is obvious that the computational cost of solving a system with matrix B in (3.3)–(3.4) is lower then the
computational cost for a residual with the matrix S.

For numerical experiments we choose the domain and partitioning from Section 2 shown in Fig. 1. We
partition macrocells into two subgroups based on checkerboard ordering shown in Fig. 2.

The di�usion coe�cient for macrocells in the �rst group is chosen randomly on the segment [10; kmax]
and the di�usion coe�cient equals to one for the macrocells in the second group. We choose c ≡ 1 in Ω and
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de�ne the preconditioner B by

B = 8I +
m
∑

t=m0+1
Nt [

Σt 0
0 0

]NTt (3.9)

where I is the identity matrix of the same size as B in (3.9).
The numerical results are given in Tables 5–6. Abbreviation BDP is used for the Preconditioned Conju-

gate Gradient method with preconditioner (3.9). An algorithm for inverting a diagonal matrix with rank one
perturbation can be found in [3].

The numerical results clearly show that the number of iterations of BDP is 2 ÷ 2.5 times larger than the
number of iterations for the PCGmethod in Tables 1–2 for kmax = 1, and does not depend on the values of ks,
s = 1, . . . ,m0.
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