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The continuous–discrete extended Kalman
�lter revisited
Abstract: This paper elaborates a new approach to nonlinear �ltering grounded in an accurate implementa-
tion of the continuous–discrete extended Kalman �lter for estimating stochastic dynamic systems. It implies
that the moment di�erential equations for calculation of the predicted state mean and error covariance of
propagated Gaussian density are solved accurately, i.e., with negligible errors. The latter allows the total er-
ror of the extendedKalman�lter to be reduced signi�cantly and results in anewaccurate continuous–discrete
extended Kalman �ltering method. In addition, this �lter exploits the scaled local and global error controls
to avoid any comparison of di�erent physical units. The designed state estimator is compared numerically
with continuous–discrete unscented and cubature Kalman �lters to expose its practical e�ciency. The prob-
lem of long waiting times (i.e., infrequent measurements) arisen in chemical and other engineering is also
addressed.
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1 Introduction
Mathematical models in many areas of study as diverse as target tracking, navigation, stochastic control,
chemistry and �nance (see, for example, [3, 4, 7–9, 11, 12, 25–27, 29, 32]) are written in the form of Itô-type
stochastic di�erential equation (SDE)

dx(t) = F(x(t), u(t))dt + G(t)dw(t), t > 0 (1.1)

where x(t) ∈ ℝn1 is the n1-dimensional vector of system state at time t, u(t) ∈ ℝn2 is an optional measurable
input (this also includes possible control inputs) at time t, F : ℝn1 × ℝn2 → ℝn1 is a nonlinear su�ciently
smooth function representing the dynamic behaviour of themodel, G(t) is a time-variant matrix of size n1 ×q
and {w(t), t > 0} is a Brownian process with square di�usion matrix Q(t) > 0 of size q. The initial state x0 of
stochastic process (1.1) is a random variable. More precisely, x0 ∼ N(x̄0, Π0)with Π0 > 0, where the notation
N(x̄0, Π0) stands for the normal distribution with mean x̄0 and covariance Π0.

The task of least-square state estimation in model (1.1) always compounds real measurements of some
model variables or their function (depending on the utilized technology) with computation of remaining (not
measurable) parameters by a nonlinear �lter. It is usually assumed that the observation information arrives
discretely and in equidistant intervals of size δ = tk − tk−1. This time interval δ is called the sampling period
(or waiting time) in �ltering theory. The relation of the observation zk to the state vector xk of SDE (1.1) obeys
the measurement equation

zk = h(xk) + vk , k ⩾ 1 (1.2)
where k stands for a discrete time index (i.e., xk means x(tk)), zk ∈ ℝm is the information available at time
instant tk, h : ℝn1 → ℝm is a di�erentiable function and the measurement noise vk ∼ N(0, Rk) with Rk > 0.
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All realizations of the process noise w(t), the measurement noise vk and the initial state x0 are assumed to
be taken from mutually independent Gaussian distributions.

Historically, the �rst state estimator for the continuous–discrete stochastic state-space system (1.1)–(1.2)
was built in the extended Kalman �ltering (EKF) framework and grounded in the stochastic Euler discretiza-
tion method, as presented, for instance, in [11]. More formally, the Euler–Maruyama scheme is applied to the
SDE (1.1) on a time interval [tk−1, tk] to derive the discrete-time system

xk = xk−1 + δF(xk−1, u(tk−1)) + G(tk−1)w̃k−1 (1.3)

where δ = tk − tk−1 and w̃k−1 ∼ N(0, δQ(tk−1)). Then, it follows from (1.3) that taking the expectation yields

E{xk} = E{xk−1} +δ E{F(xk−1, u(tk−1))} (1.4)

with E{x(tk)} := x̂(tk) and E{x(tk−1)} := x̂(tk−1). The state vector xk−1 is independent of the noise w̃k−1. There-
fore the associated covariance is determined by the formula

var{xk} = var{xk−1 + δF(xk−1, u(tk−1))}+δG(tk−1)Q(tk−1)GT(tk−1). (1.5)

Further, the EKF method implies that the moment equations (1.4) and (1.5) are solved approximately on
each sampling interval [tk−1, tk] by means of the �rst-order Taylor expansion of the nonlinear drift function
F(x(t), u(t)) around the �ltering state estimate x̂k−1|k−1 at the time tk−1. Substituting the mentioned expan-
sion into formulas (1.4) and (1.5) yields the time-update step of the classical EKF method:

x̂k|k−1 = x̂k−1|k−1 + δF(x̂k−1|k−1, u(tk−1)) (1.6)
Pk|k−1 = [In1 + δ∂xF(x̂k−1|k−1, u(tk−1))] Pk−1|k−1

× [In1 + δ∂xF(x̂k−1|k−1, u(tk−1))]
T + δG(tk−1)Q(tk−1)GT(tk−1) (1.7)

where In1 stands for the identity matrix of size n1, and

∂xF(x̂k−1|k−1, u(tk−1)) := ∂F(x̂k−1|k−1, u(tk−1))/∂x(t) (1.8)

means the partial derivative (Jacobian) of the nonlinear function F(x(t), u(t)) with respect to x(t) evaluated
at (x̂k−1|k−1, u(tk−1)).

The measurement-update step of this EKF is performed in its usual form, i.e. after arrival of a new mea-
surement information zk, one calculates the following:

Re,k = Rk + HkPk|k−1HTk , Kk = Pk|k−1HTk R
−1
e,k (1.9)

x̂k|k = x̂k|k−1 + Kkek , ek = zk − h(x̂k|k−1), Pk|k = Pk|k−1 − KkHkPk|k−1 (1.10)

where the Jacobian Hk := dh(x̂k|k−1)/dxk is evaluated at the predicted state mean x̂k|k−1 from formula (1.6)
and ek ∼ N (0, Re,k) are innovations of the Kalman �lter. Eventually, the linear least-square estimate x̂k|k of
the system state x(tk) based on measurements {z1, . . . , zk} is determined. The EKF variant (1.6)–(1.10) is the
simplest but successful state estimator that has been utilized by practitioners for decades (see further details
in [6, 7, 11, 23, 28]).

Despite EKF popularity, this method has been criticized on its performance for radar tracking [1, 2] and
for state estimation in chemical engineering [9, 12, 26, 27, 29, 32]. More precisely, Arasaratnam et al. [2] exhibit
that the EKF does not work properly in the air tra�c control scenario considered in the cited paper and loses
the recently designed cubature Kalman �lter (CKF) [1] and unscentedKalman �lter (UKF) [13, 14]. Haseltine and
Rawlings [9] report that their EKF fails for two types of chemical reactors meaning that wrong steady-states
are calculated and negative concentrations are observed after convergence, which are of no physical sense.
Jørgensen [12] claims that his EKF is not able to reconstruct o�set free concentrations in the Van der Vusse
reaction scenario on the basis of temperature measurements, only. It is also found out that the EKF may fail
for nonlinear systems with infrequent observations [29].
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All this may be true, but only partially. The notion of EKF does not imply the unique technique, as pre-
sented above, and refers to a class of various methods with di�erent properties. For instance, Frogerais et
al. [5] consider and examine �ve EKF implementations on two nonlinear test problems. They elaborate at
least two approaches for constructing EKF algorithms, which can lead to a great variety of state estimators
grounded in ordinary or stochastic di�erential equation numerical schemes. Therefore the above-cited crit-
icism might not mean that the EKF technology fails itself, and says only that an unfortunate version of this
method has been used. Further, we discuss a state estimator which resolves many problems associated with
EKF in literature. It is also shown that our EKF can even outperform the recently designed CKF and UKF
methods in chemical engineering models.

Following Frogerais et al. [5], we identify two principal ways of EKF implementation, namely, the
continuous–discrete and discrete–discrete EKFs. The �rst approach implies that the discretization opera-
tion is performed in a deterministic setting, whereas the second one does it in a stochastic setting. This
di�erence is crucial because it is explained in [17] that the deterministic discretization error can be easily
regulated in automatic mode and made negligible in contrast to the stochastic discretization error arising in
the discrete-discrete approach. That is why we consider that the continuous–discrete EKF (CD-EKF) is more
accurate and, hence, preferable for practical use. In addition, it works for stochasticmodels with sparsemea-
surements [17] and resolves the inconsistency of the demanded sampling frequency and practically available
measurements mentioned in [29].

The CD-EKF designed in [17] is �exible and accurate, but time-consuming. It is based on the embedded
Runge–Kutta pair NIRK4(2) with global error control from [16], which is applied for a simultaneous solution
of the predicted state mean and error covariance di�erential equations. That solver controls the absolute
local and global errors, which, in turn, imply that di�erent physical units are compared. The latter is not
supported by practitioners and must be amended to undimensional (scaled) local and global error controls.
Additionally, the cited CD-EKF does not ensure the positive semi-de�niteness of the error covariance matrix,
but this may be crucial for a proper performance of the EKF technique.

The listed drawbacks of the published CD-EKF are resolved by a separate treatment of themoment di�er-
ential equations. More precisely, the predicted state expectation equation (which is the sole nonlinear equa-
tion in this system) is treated accurately by means of the NIRK4(2) (or NIRK6(4)) method designed in [16].
However, the absolute local and global error controls implemented there are replaced with the scaled local
and global error controls developed in [21, 31]. The predicted covariance di�erential equation is integrated nu-
merically by the corresponding part of Mazzoni’s scheme [24], which ensures the positive semi-de�niteness
of computed covariance in exact arithmetic. In other words, we build the hybrid triples (denoted further as
NIRK4(2)M2 and NIRK6(4)M2) with the scaled local and global error control mechanisms to solve accurately
the moment di�erential equations arising in the framework of the CD-EKF and, then, design e�cient state
estimators for practical use. Our new methods resolve many problems associated with EKF and, hence, can
bewidely applied in practice. They can even outperformmodern state estimators based on the CKF [1] and on
the UKF [13, 14]. Below, we present the new CD-EKF methods grounded in the NIRK4(2)M2 and NIRK6(4)M2
MDE solvers at large and outline brie�y other state estimators also examined in this paper.

2 Accurate continuous–discrete extended Kalman �lter
The CD-EKF is based on replacement of values of the state mean and error covariance matrix predicted by
formulas (1.6), (1.7) with values satisfying themoment di�erential equations (MDEs)

x̂�(t) = F(x̂(t), u(t)) (2.1)
P�(t) = ∂xF(x̂(t), u(t))P(t)+P(t)∂xFT(x̂(t), u(t))+G(t)Q(t)GT(t) (2.2)

at sampling times [11, 23]. Here, ∂xF(x̂(t), u(t)) stands for the Jacobian of the function F(x̂(t), u(t)) de�ned
by (1.8), G(t) is the matrix from the stochastic noise term of SDE (1.1), Q(t) is the covariance matrix of the
zero-mean Gaussian white-noise process w(t), x̂(t)means the state expectation of the system state vector x(t)
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at time t (i.e., x(t) is a solution to SDE (1.1)), and u(t) is the known input (i.e., a known function of t). The
matrix P(t) in formula (2.2) has the physical meaning of being the variance of the state prediction error, i.e.,
x(t) − x̂(t), and, then, has to be positive semi-de�nite.

One utilizes values of the �ltering state mean and error covariance matrix at the sampling time tk−1 as
initial values of MDEs (2.1)–(2.2) set in the time interval [tk−1, tk], i.e., x̂(tk−1) = x̂k−1|k−1, P(tk−1) = Pk−1|k−1.
Having solved the derived initial value problem in this sampling interval one yields predicted values of the
state mean and error covariance matrix at the next sampling time tk as follows: x̂k|k−1 = x̂(tk), Pk|k−1 = P(tk).
Then, after arrival of a new measurement zk, the standard measurement-update formulas (1.9)–(1.10) are
applied to determine the linear least-square estimate x̂k|k of the system state x(tk) at the time tk.

The CD-EKF is rather e�cient, but still has some drawback. The predicted state mean and error covari-
ance matrix of this �lter are the exact solutions to the MDEs (2.1)–(2.2) formulated in each sampling interval.
Unfortunately, these exact solutions are hardly available in practice because of nonlinearity of equation (2.1).
So one has to apply a numerical (discretization) method for calculating approximations to the requested val-
ues. Certainly, some discretization error is always introduced in this step of the algorithm.

When one solves the initial value problem (2.1)–(2.2) on a pre�xedmesh (for one step or for several steps)
the method will compute the numerical solution with unpredictable error. It may be small or large. This de-
pends on the MDEs (2.1)–(2.2), on the prede�ned mesh and on the size δ of the interval [tk−1, tk]. The main
di�culty is that it is not possible to pre�x a mesh which is optimal for all initial value problems arising in
practical state estimation tasks. A better solution is to request the method itself to generate an optimal mesh
so that a pre�xed level of accuracy is achieved automatically. In other words, the user limits only the mag-
nitude of tolerated errors and the solver (i.e., the discretization scheme and the error evaluation and control
algorithm) generates a mesh corresponding to the set accuracy condition in automatic mode. Thus, one does
not know a priori how many steps will be ful�lled, but the error of numerical integration will correspond to
the preassigned level. This is a more complicated solution method. However, it increases the accuracy and
reliability of state estimation, signi�cantly. It leads to the new concept of accurate continuous–discrete ex-
tended Kalman �ltering (ACD-EKF) [17, 19, 20, 22]. Now we improve the ACD-EKF by implementing the more
advanced MDE solvers NIRK4(2)M2 and NIRK6(4)M2 with scaled local and global error controls.

It is further assumed that we have completed the state estimation at the time instant tk−1 and calculated
the �ltering state expectation x̂k−1|k−1 and the�ltering error covariancematrix Pk−1|k−1. Our task is to compute
a numerical solution to the MDEs (2.1)–(2.2) with the initial values x̂(tk−1) = x̂k−1|k−1, P(tk−1) = Pk−1|k−1 at
the next sampling time instant tk. For that, we suppose �rst that a subdivision (mesh) {tl}Ll=0 has already been
�xed in the integration interval [tk−1, tk]. We point out that this mesh may be variable. Later in Section 2, we
explain how to generate it in automatic mode.

The application of the �rst hybrid triple NIRK4(2)M2 to the state expectation equation (2.1) results in its
following discretization:

x̂2l1 = a211 x̂l + a
2
12 x̂l+1 + τl[d

2
11F(x̂l , ul) + d212F(x̂l+1, ul+1)]

x̂2l2 = a221 x̂l + a
2
22 x̂l+1 + τl[d

2
21F(x̂l , ul) + d222F(x̂l+1, ul+1)]

x̂l+1 = x̂l +
τl
2 [F(x̂2l1, u

2
l1) + F(x̂

2
l2, u

2
l2)]

(2.3)

on themesh {tl}Ll=0. Here, τl := tl+1−tl denotes the variable step size of thismesh, and the constant coe�cients
of the Gauss-type nested implicit Runge–Kutta (NIRK) formula (2.3) of order 4 are:

c21 := (3 − √3)/6, c22 := (3 + √3)/6, a211 := 1/2 + 2√3/9

a212 := 1/2 − 2√3/9, a221 := 1/2 − 2√3/9, a222 := 1/2 + 2√3/9

d211 := (3 + √3)/36, d212 := (√3 − 3)/36, d221 := (3 − √3)/36

d222 := −(3 + √3)/36.

The stage values x̂2lj of method (2.3) imply approximations to the state expectations x̂(t2lj) at the time points
t2lj := tl + c

2
j τl, and themeasurable input u2lj := u(t

2
lj), j = 1, 2. We recall that u(t) is a known function of time.
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As customary, the function F(⋅) represents the right-hand side of MDE (2.1) or, which is the same, the drift
function in SDE (1.1). Eventually, the nonlinear problem (2.3) is to be iterated for an approximate expectation
x̂l+1 at every node of the mesh {tl}Ll=0. We do not discuss further its e�cient solution method because it is
presented in [22, Sec. IIIA] in detail.

The hybrid triple NIRK6(4)M2 is grounded in the Gauss-type NIRK formula of order 6, which, for equa-
tion (2.1), reads

x̂2l1 = a211 x̂l + a
2
12 x̂l+1 + τl[d

2
11F(x̂l , ul) + d212F(x̂l+1, ul+1)]

x̂2l2 = a221 x̂l + a
2
22 x̂l+1 + τl[d

2
21F(x̂l , ul) + d222F(x̂l+1, ul+1)]

x̂3l1 = a311 x̂l + a
3
12 x̂l+1 + τl[d

3
11F(x̂l , ul) + d

3
12F(x̂l+1, ul+1)

+ d313F(x̂
2
l1, u

2
l1) + d

3
14F(x̂

2
l2, u

2
l2)]

x̂3l2 = a321 x̂l + a
3
22 x̂l+1 + τl[d

3
21F(x̂l , ul) + d

3
22F(x̂l+1, ul+1)

+ d323F(x̂
2
l1, u

2
l1) + d

3
24F(x̂

2
l2, u

2
l2)]

x̂3l3 = a331 x̂l + a
3
32 x̂l+1 + τl[d

3
31F(x̂l , ul) + d

3
32F(x̂l+1, ul+1)

+ d333F(x̂
2
l1, u

2
l1) + d

3
34F(x̂

2
l2, u

2
l2)]

x̂l+1 = x̂l + τl[b1F(x̂3l1, u
3
l1) + b2F(x̂

3
l2, u

3
l2) + b3F(x̂

3
l3, u

3
l3)] (2.4)

with l = 0, 1, . . . , L−1, where τl := tl+1− tl is again the variable step size of themesh {tl}Ll=0, and the constant
coe�cients of method (2.4) are:

b1 = b3 := 5/18, b2 := 4/9, c21 := (3 − √3)/6, c22 := (3 + √3)/6

a211 = a222 := 1/2 + 2√3/9, a212 = a221 := 1/2 − 2√3/9, d211 = −d222 := (3 + √3)/36

d212 = −d221 := (−3 + √3)/36

c31 := (5 − √15)/10, c32 := 1/2, c33 := (5 + √15)/10, a311 = a332 := (125 + 39√15)/250

a312 = a331 := (125 − 39√15)/250, a321 = a322 := 1/2, d311 = −d332 := (7 + 2√15)/200

d312 = −d331 := (−7 + 2√15)/200, d313 = −d334 := (18√15 + 15√3)/1000

d314 = −d333 := (18√15 − 15√3)/1000, d321 = −d322 := 1/32, d323 = −d324 := 3√3/32.

The nonlinear problem (2.4) is iterated for an approximate state mean x̂l+1 by using the simpli�ed Newton
scheme presented in [20, Sec. 2.3] at large.

Both NIRK4(2)M2 and NIRK6(4)M2 methods solve equation (2.2) by means of the modi�ed implicit mid-
point rule [24], which reads

Pl+1 = Ml+1/2PlMT
l+1/2 + τlKl+1/2G(tl+1/2)Q(tl+1/2)G

T(tl+1/2)KTl+1/2 (2.5)

where tl+1/2 := tl + τl/2, and the variable matrices Kl+1/2 and Ml+1/2 evaluated at the mid-point tl+1/2 are:

Kl+1/2 := [In1 −
τl
2 ∂xF(x̂l+1/2, ul+1/2)]

−1

Ml+1/2 := Kl+1/2 [In1 +
τl
2 ∂xF(x̂l+1/2, ul+1/2)] . (2.6)

However, there is some di�erence in using formulas (2.5), (2.6) in NIRK4(2)M2 and NIRK6(4)M2. The reason
is that the mid-point state mean x̂l+1/2 is not available in the NIRK method (2.3) and, hence, one has to apply
Mazzoni’s interpolation [24]:

x̂l+1/2 =
1
2 [x̂4l + x̂

4
l+1 −

τ2l
4 ∂xF(x̂

4
l , ul)F(x̂

4
l , ul)] . (2.7)

Note that formula (2.7) is not expensive because x̂4l , x̂
4
l+1, F(x̂

4
l , ul), and ∂xF(x̂

4
l , ul) have already been com-

puted when solving the nonlinear problem (2.3) (see [22, Sec. IIIA]). Alternatively, NIRK6(4)M2 needs no in-
terpolation for �nding themid-point state expectation since x̂l+1/2 = x̂3,4l2 , where x̂3,4l2 is the stage value iterate
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explained in [20, Sec. 2.3]. We stress that formula (2.5) ensures the positive semi-de�niteness of derived error
covariance Pl+1 in exact arithmetic.

Next, we consider an automatic algorithm for generating the mesh {tl}Ll=0. This mesh is generated so that
the scaled global error does not exceed the user-supplied tolerance εg at all mesh nodes. Therefore we have
to evaluate �rst scaled values of the local and global errors in our MDE solvers NIRK4(2)M2 and NIRK6(4)M2.

The local error lel+1 is calculated in the �rst triple by the formula

lel+1 =
τl
2 [F(x̂2,4l1 , u2l1) + F(x̂

2,4
l2 , u2l2) − F(x̂

4
l , ul) − F(x̂

4
l+1, ul+1)] (2.8)

where x̂4l , x̂
4
l+1 mean approximations to the solution from the NIRK formula (2.3) and x̂2,4l1 , x̂2,4l2 are its stage

values computed as explained in [22, Sec. IIIA]. Then, the local error (2.8) is measured as follows:

|lel+1|sc := max
i=1,2,...,n1

{|(lel+1)i|/(|(x̂4l+1)i| + 1)} (2.9)

where the subscript i stands for the i-th entry in the corresponding vector and n1 is the size of MDE (2.1). The
error de�ned by formula (2.9) is referred to as the scaled local error at the mesh node tl+1. The global error
∆x̂l+1 at tl+1 is evaluated by the formula

∆x̂l+1 = ∆x̂l + lel+1 (2.10)

where the initial integration error ∆x̂0 is set to be zero [16, 17]. Again, the global error (2.10) is scaled as follows:

|∆x̂l+1|sc := max
i=1,2,...,n1

{|(∆x̂l+1)i|/(|(x̂4l+1)i| + 1)} (2.11)

where the subscript i means the i-th entry in the corresponding vector. Thus, the magnitude |∆x̂l+1|sc is re-
ferred to as the scaled global error at the mesh node tl+1.

Similarly, within NIRK6(4)M2, the local error is calculated by

lel+1 =
τl
3 [

5
6F(x̂

3,4
l1 , u3l1) −

1
2F(x̂

4
l , ul) −

2
3F(x̂

3,4
l2 , u3l2) −

1
2F(x̂

4
l+1, ul+1) +

5
6F(x̂

3,4
l3 , u3l3)]

in which the predicted state means x̂4l , x̂
4
l+1 and the stage values x̂3,4l1 , x̂3,4l2 , x̂3,4l3 come from the iteration dis-

cussed in [20, Sec. 2.3]. Formulas (2.9)–(2.11) are further applied for computing scaled values of the local and
global errors in NIRK6(4)M2.

Having evaluated the mentioned errors we utilize Algorithm 3.2 in [16], but with some changes and im-
plemented for the scaled error estimates (2.9) and (2.11), to generate the mesh {tl}Ll=0 in the interval [tk−1, tk]
in automatic mode. Now we suppose that the �ltering state mean x̂k−1|k−1 and the �ltering error covariance
matrix Pk−1|k−1 have been computed at the time instant tk−1. Then, their estimation is ful�lled within the
ACD-EKF method at the next sampling instant tk as follows.

Time Update: Set εloc := ε(s−1)/(s−2)g , τ0 := min{0.01, δ}, τmax := 0.1, M := 1, and perform

1. While M = 1 do;
2. l := 0, M := 0, t0 := tk−1, x̂40 := x̂k−1|k−1, ∆x̂0 := 0, P0 := Pk−1|k−1;
3. While (tl < tk) & (|∆x̂l|sc ⩽ 10εg) do;
4. tl+1 := tl + τl, compute x̂4l+1 and |lel+1|sc;
5. τ∗l := min {1.5, 0.8(εloc/|lel+1|sc)1/(s−1)} τl;
6. If |lel+1|sc > εloc,

then τl := τ∗l ;
else do;

7. Evaluate |∆x̂l+1|sc;
8. If |∆x̂l+1|sc > εg,

then M := 1;
9. If M = 0,
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then compute the matrix Pl+1;
10. τl+1 := min{τ∗l , tk − tl+1, τmax};
11. l := l + 1;

end else;
end while;

12. If M = 1,

then εloc := (0.8εg/max
l

|∆x̂l|sc)
(s−1)/(s−2)

εloc;

end while;
13. Stop.

The numerical solutions x̂4L and PL, where the subscript L marks the last node in the generated mesh {tl}Ll=0
(i.e., tL ≡ tk), are taken as the output of the triple NIRK4(2)M2 (or NIRK6(4)M2) applied to MDEs (2.1)–(2.2) for
calculating the predicted state expectation x̂k|k−1 := x̂4L and the predicted covariancematrix Pk|k−1 := PL with
the scaled global error not exceeding the user-supplied tolerated error bound εg. This is the sole parameter
that has to be set by the user, and which is chosen to be 10−4 in the numerical experiments, below. One can
alter the global error tolerance εg depending on the requested accuracy of state estimation.

Measurement Update: Having computed the predicted state mean x̂k|k−1 and error covariance ma-
trix Pk|k−1, one determines the �ltering state mean x̂k|k and error covariance matrix Pk|k by means of the
measurement-update formulas (1.9)–(1.10).

It should be noted that the presented ACD-EKF algorithm covers both NIRK4(2)M2- and NIRK6(4)M2-
based state estimators. Thus, for NIRK4(2)M2, one sets s = 4 and uses proper formulas for computing the cor-
respondingnumerical solution toMDEs (2.1)–(2.2) and its errors, as explainedabove. Theother state estimator
is obtained by setting s = 6 in the above algorithm and utilizing formulas related to the triple NIRK6(4)M2 for
calculating the numerical solution and its scaled local and global errors (2.9)–(2.12). The notationmaxl |∆x̂l|sc
stands for the maximum scaled global error evaluated in the current numerical integration run.

3 Continuous–discrete cubature and unscented Kalman �lters
In contrast to the presented ACD-EKF, which uses variable meshes, the continuous–discrete cubature Kalman
�lter (CD-CKF) [2] is grounded in the Itô-Taylor expansion of order 1.5 (IT-1.5) applied to SDEs for converting
them to stochastic di�erence equations on equidistant meshes. Then, having completed this transformation
and assumed that all the conditional densities are Gaussian-distributed, the �ltering solution to the obtained
discrete-time stochasticmodel further reduces to approximation of the arisenGaussian-weighted integrals by
cubature rules. The cited paper recommends an implementation of the third-degree spherical-radial cubature
rule (with all necessary details and explanation) in this setting.

The continuous–discrete unscented Kalman �lter (CD-UKF) designed in [18] is also a �xed-stepsize state
estimator based on the same IT-1.5. To introduce both CD-CKF and CD-UKF, we remark at �rst that the cited
papers deal with a particular case of SDE (1.1) where the di�usion matrix of the stochastic noise term is con-
stant, i.e., G(t) ≡ G and Q(t) ≡ Q. So, to simplify the presentation, we impose the mentioned condition and
discuss these two state estimators for SDEs of the form

dx(t) = F(x(t), u(t))dt + Gdw(t), t > 0 (3.1)

because the chemical model examined in Section 4 is covered by SDE (3.1). In general, the considered dis-
cretization scheme does not work for the stochastic model (1.1) and must be replaced with the more compli-
cated formula in [15, Sec. 10.4].

Thus, having divided the sampling interval [tk−1, tk] in m equal subintervals and applied the IT-1.5 [2,
Formula (18)] to SDE (3.1), we arrive at a discrete-time stochastic model, which is estimated then either by the
CKF [1] or by the additive (zero-mean) noise case UKF [30, Table 7.3] with α = 1, β = 0, and λ = 3 − n1. In
addition, taking into account existence of numerically sensitive operations involved in the CD-CKF, we utilize
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its square-root version [2, Appendix B]. The CD-UKF is implemented in the original (non-square-root) form.
Further details of these CD-CKF and CD-UKF methods can be found in [18, Sec. IIIB, IIIC].

Finally, we point out that the quality of any continuous–discrete nonlinear state estimator depends
mainly on errors of two sorts, namely, on the error in capturing the nonlinear dynamics (i.e., the discretiza-
tion error) and on the error in approximating the moments of Gaussian density (i.e., the moment approxima-
tion error). Both errors in�uence the accuracy and reliability of implemented continuous–discrete nonlinear
Kalman �lter, considerably.

Our ACD-EKF clearly outperforms the �xed-stepsize CD-CKF and CD-UKF algorithms in terms of commit-
ted discretization errors. The latter state estimation techniques calculate the predicted state mean and error
covariance on a pre�xed equidistant mesh, which depends on the number m of utilized extra mesh nodes,
and, hence, with unpredictable errors. In other words, the CD-CKF and/or CD-UKF with a �xed m can work
successfully for onemodel and fail for others, and this may hardly be predicted a priori. To address the stated
problem, we have developed the ACD-EKF methods, which generate variable meshes in each sampling in-
terval [tk−1, tk] such that a preassigned level εg of accuracy is achieved, automatically. More precisely, the
user limits the maximum magnitude εg of the scaled global errors tolerated in the numerical solution of the
MDEs and the ACD-EKF solver yields the predicted state mean vector and covariance matrix calculated for
the set accuracy condition in automatic mode. Certainly, this is a more sophisticated �ltering technique, but
it increases the accuracy and reliability of state estimation, essentially [17, 18, 20, 22]. On the other hand, the
moment approximation errors of the CD-CKF and CD-UKF are smaller than that of the ACD-EKF [13, 14, 30].
Thus,when the discretization errors of the �xed-stepsize �lters are negligible theywill be expected to produce
more accurate results than our new ACD-EKF methods will do.

4 Numerical example
The elaborated �lters are examined on one SDE model in chemical engineering. We recall that the CD-CKF
and CD-UKF are m-step methods. Therefore they are marked, for instance, as CD-CKF128 or CD-UKF256 in
Fig. 1 and below. The �rst abbreviation stands for the CD-CKF with m = 128 subdivisions of each sampling
interval, and the second onemeans the CD-UKFwithm = 256. The traditional EKFmethod (1.6)–(1.10) is also
coded and run, but it is implemented within the m-step fashion, as the other �xed-stepsize �lters. The latter
estimator is abbreviated to EKF256. We remark that this EKF is tested only for m = 256 since it is grounded
in the Euler-Maruyama scheme of order 0.5. That is why the traditional EKF is not competitive to the CD-CKF
and CD-UKF for the same number m of steps on the chemical system under consideration. The ACD-EKF is
a variable-stepsize �lter. Thus, we abbreviate the NIRK4(2)M2-based ACD-EKF to ACD-EKF4. Similarly, ACD-
EKF6 implies the NIRK6(4)M2-based ACD-EKF. For comparison, we also examine the earlier version of the
ACD-EKF from [17]. It is abbreviated to ACD-EKF. All our ACD-EKF methods are implemented with the same
accuracy condition εg := 10−4. The �lters under examination are coded and run in MATLAB.

The chosen test problem is the Van der Vusse benchmark example [12]. It models the reaction of four
species denoted as A, B, C, and D. The desired product is B, while C and D are unwanted by-products. This
reaction is conducted in a continuously stirred tank reactor (CSTR) with a cooling jacket and presented by the
SDE (3.1) where the state vector is (cA(t), cB(t), T(t), TJ(t))T ∈ ℝ4 with cA(t) and cB(t) denoting concentra-
tions of the species A and B at time t and with T(t) and TJ(t) standing for temperatures of the CSTR and the
cooling jacket, respectively. The full mathematical description of this Van der Vusse example and the used
measurement equation can be found in [18, 20]. The given chemical model is corrupted by a disturbance in
the feed concentration of A. More precisely, we assume that the constant parameter cA0 is increased by 100%
at time t = 50 hr, as in the cited papers. The entire simulation time is 120 hr.

For testing, we generate �rst a reference solution and true measurements for each size δ of the sampling
period �xed in this experiment by solving the Van der Vusse model with the Euler–Maruyama method and
the �xed step size equal to 0.0001. Then, we conduct 100 Monte Carlo runs to evaluate the accumulated root
mean square error (ARMSE) in the �rst two entries of the state vector (i.e., in the estimated concentrations
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Figure 1. A comparison of the m-step EKF, CD-CKF, CD-UKF methods and the variable-stepsize ACD-EKFs in the stochastic Van
der Vusse reaction scenario.

of the species A and B), for the waiting times δ = 2, 4, 6, 8, 10, 12 hr. For instance, the ARMSEcA , i.e., the
ARMSE in the estimated concentration cA, is evaluated by

ARMSEcA := [
1

100K

100
∑
l=1

K
∑
k=1

(cref,lA (tk) − ĉk|k,lA )2]
1/2

where the superscript ‘ref’ stands for the computed reference stochastic solution, lmarks the corresponding
Monte Carlo simulation, k denotes a particular sampling time tk and K := [120/δ] (with [⋅] standing for the
integer part of the number) implies the total number of sampling instants for the �xed value of δ. These errors
are exposed in Fig. 1ab. They show the estimation accuracy of all the �lters under examination. In addition,
Fig. 1cd exhibits the average �ltering time of 100 Monte Carlo runs and the average subdivision number (m) of
the sampling interval, respectively. We stress thatm is prede�ned in the �xed-stepsize �lters, only. The latter
diagrams allow the e�ciency of the utilized �lters to be assessed.

Figure 1 displays that all the �xed-stepsize �lters (CD-UKF128, CD-CKF128, EKF256, CD-CKF256, CD-
UKF256) succeed for small sizes of the sampling period, i.e., for δ = 2, 4 hr, only. When the waiting time
δ ⩾ 6 hr they fail to return a numerical answer. That is why no data are exhibited for these �lters in Fig. 1
when δ ⩾ 6 hr. Among these �xed-stepsize �lters, the most accurate one is CD-UKF256, followed by CD-
CKF256 and, then, by EKF256. The remaining two �lters work for the single δ = 2 hr, and again CD-UKF128
is slightly more accurate than CD-CKF128 (see Fig. 1ab). On the other hand, Fig. 1c shows that the cheapest
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method is EKF256, followed by CD-CKF128 and CD-UKF128 and, then, by CD-CKF256 and CD-UKF256. In
other words, we conclude that the �xed-stepsize �lters may be used in the Van der Vusse reaction scenario
when the waiting time δ is reasonably short. Additionally, EKF256 provides the comparable (to CD-CKF256
and CD-UKF256) accuracy of the state estimation, but much cheaper.

Our variable-stepsize �lters (ACD-EKF, ACD-EKF4, ACD-EKF6) succeed for all δ. Their ARMSEs are undis-
tinguishable and vary slightly in Fig. 1ab. This says that the ACD-EKFmethods are insensitive to the size of the
sampling interval and, hence, they can work for su�ciently long waiting times as well. So they are a proper
means for attacking the problemof infrequentmeasurements stated in chemical engineering by Soroush [29].
In addition, our simulation shows that all the �lters perform well for su�cient short waiting times, as that
considered in [12], and reconstruct the o�set free concentrations on the basis of the temperature measure-
ments, only. Thus, this result resolves also the criticism reported in the cited paper.

The e�ciency plot Fig. 1c exposes that the average �ltering time of ACD-EKF4 and ACD-EKF6 ismuch less
than that ofACD-EKF. This is because the earlier designed�lter usesmuchmore steps to integrate numerically
on each sampling interval in comparison to the other variable-stepsize �lters considered in this paper (see
Fig. 1d). In addition, our six-order method ACD-EKF6 outperforms slightly the fourth-order one ACD-EKF4
because it is equally accurate but less time-consuming, especially for δ = 2hr (see Fig. 1c). It is also interesting
to note that ACD-EKF6, which is the most e�cient one among the adaptive �lters, is almost as e�cient as
EKF256, but the latter state estimator is much less accurate. Thus, ACD-EKF6 can be a method of choice in
practical state estimation tasks.

5 Concluding remarks
The present paper elaborates such a simple but still e�cient state estimation technique as the EKF. It has
been used successfully in many areas of study for decades. However, despite its e�ciency the EKF has been
criticized recently on its performance for a number of mathematical models in literature. On the other hand,
we have shown that the better implementation of this method allows some cited criticism to be resolved. The
latter creates the necessary background of using the EKF for estimation of complicated continuous–discrete
stochastic state-space systems.

We have observed that our version of the EKF, i.e., the ACD-EKF, is even competitive to the contempo-
rary �xed-stepsize CD-CKF and CD-UKF methods. As we mentioned above, the discretization and moment
approximation errors determine the total accuracy of practical nonlinear state estimators, and the �rst one
dominates evidently in majority of continuous–discrete stochastic models with strong nonlinearity. That is
why the variable-stepsize ACD-EKF can be more e�cient for such sort of state-space systems than the above-
discussed m-step CD-CKF and CD-UKF methods, where the discretization error is unpredictable and may be
of any size, depending on the value of m. Besides, our new technique is more convenient for practical uti-
lization because it does not require any manual tuning in contrast to the �xed-stepsize �lters where a proper
number m of the sampling period subdivisions must be a priori identi�ed and set by the user. The latter is a
nontrivial and time-consuming task even for experienced users.

We stress that the power of our �lters is grounded in adaptivity of the implemented MDE solvers with
the scaled local and global error controls designed in this paper. It is su�cient to �x the requested accuracy
by setting the corresponding value of the parameter εg in the ACD-EKF method and the code will compute
the predicted moments of propagated Gaussian density with the scaled global error corresponding to the
user-supplied bound εg in automatic mode. In other words, our ACD-EKFs are self-turned algorithms, which
generate automatically optimal sampling interval subdivisions depending on the imposed accuracy condi-
tion. In addition, it is worthwhile to point out that the positive semi-de�niteness of the predicted covariance
is ensured in ourmethods in exact arithmetic. We emphasize that these two important properties are not pro-
vided by conventional general purpose codes as, for instance, built-inMATLABODE solvers [10, Section 12.2],
which can be applied for treating the mentioned MDEs [19]. The earlier version of the ACD-EKF method pre-
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sented in [17] is also not capable for preserving the positive semi-de�niteness of the predicted covariance.
That is why the newly designed ACD-EKFs are superior for practical use.

Finally, we have to remark on complexity of the �xed-stepsize CD-CKF and CD-UKF methods discussed
in the paper. We recall that the CKF and UKF are considered to be derivative free methods in contrast to the
EKF. However, this conclusion does not hold for continuous-time stochastic systems because the application
of the IT-1.5 discretization formula demands the di�erential operators L0 and Lj to be evaluated at each step
of the CD-CKF and CD-UKF (see further details in [2, 18]). Such calculations are more complicated and time-
consuming than the evaluation of the standard Jacobian requested in our ACD-EKF methods. Note that the
latter can even be ful�lled numerically (and in automatic mode) in contrast to the evaluation of the operators
L0 and Lj made by hand. It should also be remarked that the formulas presented for calculation of these op-
erators in [2, 18] work for SDEswith the constant di�usionmatrix G (i.e., for mathematical models of the form
(3.1)), only. Thus, the need for estimating the more general SDE (1.1) complicates essentially the evaluation
of L0 and Lj, as explained in [15, Sec. 10.4], and makes it hardly applicable in practice. In contrast, our ACD-
EKFs treat both SDE models (1.1) and (3.1) in the same way, i.e., without an extra e�ort from the user. Thus,
ACD-EKF4 and ACD-EKF6 possess an obvious applied potential and seem to be a good practical alternative to
the �xed-stepsize EKF, CD-CKF and CD-UKF, especially in the situation when a quick sampling is technically
impossible (or too expensive) or the sampling is irregular.
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