Home Mechanisms and parameters of photobiomodulation for neurological and neuropsychiatric disorders: whether and how to apply?
Article
Licensed
Unlicensed Requires Authentication

Mechanisms and parameters of photobiomodulation for neurological and neuropsychiatric disorders: whether and how to apply?

  • Qi Cao ORCID logo , Zhongqi Liu , Hongxiang Kang EMAIL logo and Lifeng Wang EMAIL logo
Published/Copyright: September 24, 2025
Become an author with De Gruyter Brill

Abstract

Neurological and neuropsychiatric disorders are among the leading causes of mortality and disability worldwide, with current treatment modalities including traditional therapies, psychological and supportive interventions, and emerging therapeutic approaches. Photobiomodulation (PBM), a neuromodulatory technique using lasers and light-emitting diodes (LEDs), has emerged as a promising intervention for enhancing brain function by stimulating neural activity, thereby protecting brain tissue and restoring function. Despite its widespread application, the precise mechanisms underlying the selection of critical parameters and their associated therapeutic effects remain incompletely understood. This systematic review synthesizes data from multiples studies over the past decade, investigating the effects of PBM on neurological and neuropsychiatric disorders, including traumatic brain injury (TBI), spinal cord injury (SCI), Alzheimer’s disease (AD), Parkinson’s disease (PD), generalized anxiety disorder (GAD), major depressive disorder (MDD), and healthy subjects. Emerging evidence suggests that the therapeutic mechanisms of PBM may involve enhanced energy metabolism, increased cerebral blood flow (CBF), modulation of oxidative stress, anti-inflammatory effects, neuroprotection and regeneration, enhanced synaptic plasticity, and regulation of resting-state brain networks. Regarding parameter selection, wavelength has emerged as a critical factor influencing penetration depth and the specific chromophore responsible for photon absorption and therapeutic efficacy. This review focuses on the characteristics of diverse wavelengths, as well as the roles of multiple chromophores and associated signaling pathways. Different irradiation modalities, including both non-invasive and invasive approaches, are examined, alongside optimal treatment windows for power and fluence. Additionally, less frequently addressed aspects, such as spot area and power density patterns, are considered.


Corresponding authors: Hongxiang Kang and Lifeng Wang, Beijing Institute of Radiation Medicine, No. 27 Taiping Road, Beijing, 100850, China, E-mail: (H. Kang), (L. Wang)

  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Author contributions: Conceptualization, Q.C.; literature search, Q.C. and Z.L.; software, Q.C. and Z.L.; writing – original draft preparation, Q.C.; writing – review and editing, L.W. and H.K.; visualization, Q.C. and Z.L.; supervision, L.W. and H.K.; project administration, L.W. and H.K.; funding acquisition, L.W. All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  4. Use of Large Language Models, AI and Machine Learning Tools: During the preparation of this work the authors employed ChatGPT and Kimi to refine language including grammar and sentence structure. Following the use of these tools, the authors thoroughly reviewed and edited the content as necessary and take full responsibility for the content of the publication.

  5. Conflict of interest: The authors state no conflict of interest.

  6. Research funding: None declared.

  7. Data availability: Not applicable.

References

Amar, D., Gay, N.R., Jimenez-Morales, D., Jean Beltran, P.M., Ramaker, M.E., Raja, A.N., Zhao, B., Sun, Y., Marwaha, S., Gaul, D.A., et al.. (2024). The mitochondrial multi-omic response to exercise training across rat tissues. Cell Metab. 36: 1411–1429.e1410, https://doi.org/10.1016/j.cmet.2023.12.021.Search in Google Scholar PubMed PubMed Central

Baik, J.S., Lee, T.Y., Kim, N.G., Pak, K., Ko, S.H., Min, J.H., and Shin, Y.I. (2021). Effects of photobiomodulation on changes in cognitive function and regional cerebral blood flow in patients with mild cognitive impairment: a pilot uncontrolled trial. J. Alzheimers Dis. 83: 1513–1519, https://doi.org/10.3233/jad-210386.Search in Google Scholar

Barbora, A., Bohar, O., Sivan, A.A., Magory, E., Nause, A., and Minnes, R. (2021). Higher pulse frequency of near-infrared laser irradiation increases penetration depth for novel biomedical applications. PLoS One 16: e0245350, https://doi.org/10.1371/journal.pone.0245350.Search in Google Scholar PubMed PubMed Central

Basualdo Allende, J., Caviedes, R., von Marttens, A., Ramírez, F.G., Piña, I.V., Kuga, M., and Fernández, E. (2024). Effectiveness of Low-Level Laser Therapy in reducing postoperative pain after dental implant surgery: a randomized clinical trial. Photodiagnosis Photodyn. Ther. 49: 104293, https://doi.org/10.1016/j.pdpdt.2024.104293.Search in Google Scholar PubMed

Benaroya, H. (2020). Brain energetics, mitochondria, and traumatic brain injury. Rev. Neurosci. 31: 363–390, https://doi.org/10.1515/revneuro-2019-0086.Search in Google Scholar PubMed

Berman, M.H. and Nichols, T.W. (2019). Treatment of neurodegeneration: integrating photobiomodulation and neurofeedback in Alzheimer’s dementia and Parkinson’s: a review. Photobiomodul. Photomed. Laser Surg. 37: 623–634, https://doi.org/10.1089/photob.2019.4685.Search in Google Scholar PubMed

Bicknell, B., Liebert, A., and Herkes, G. (2024). Parkinson’s disease and photobiomodulation: potential for treatment. J. Pers. Med. 14, https://doi.org/10.3390/jpm14010112.Search in Google Scholar PubMed PubMed Central

Biswal, B., Yetkin, F.Z., Haughton, V.M., and Hyde, J.S. (1995). Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn. Reson. Med. 34: 537–541, https://doi.org/10.1002/mrm.1910340409.Search in Google Scholar PubMed

Brown, A.R. and Martinez, M. (2019). From cortex to cord: motor circuit plasticity after spinal cord injury. Neural Regen. Res. 14: 2054–2062, https://doi.org/10.4103/1673-5374.262572.Search in Google Scholar PubMed PubMed Central

Campos Paiva, A.L., Vitorino Araujo, J.L., Lovato, R.M., and Esteves Veiga, J.C. (2021). Safety and efficacy of 980nm diode laser for brain tumor microsurgery-A pioneer case series. World Neurosurg. 146: e461–e466, https://doi.org/10.1016/j.wneu.2020.10.113.Search in Google Scholar PubMed

Cardoso, F.D.S., Barrett, D.W., Wade, Z., Gomes da Silva, S., and Gonzalez-Lima, F. (2022). Photobiomodulation of cytochrome c oxidase by chronic transcranial laser in young and aged brains. Front. Neurosci. 16: 818005, https://doi.org/10.3389/fnins.2022.818005.Search in Google Scholar PubMed PubMed Central

Cassano, P., Petrie, S.R., Mischoulon, D., Cusin, C., Katnani, H., Yeung, A., De Taboada, L., Archibald, A., Bui, E., Baer, L., et al.. (2018). Transcranial photobiomodulation for the treatment of major depressive disorder. The ELATED-2 pilot trial. Photomed. Laser Surg. 36: 634–646, https://doi.org/10.1089/pho.2018.4490.Search in Google Scholar PubMed PubMed Central

Castellano-Pellicena, I., Uzunbajakava, N.E., Mignon, C., Raafs, B., Botchkarev, V.A., and Thornton, M.J. (2019). Does blue light restore human epidermal barrier function via activation of Opsin during cutaneous wound healing? Laser Surg. Med. 51: 370–382, https://doi.org/10.1002/lsm.23015.Search in Google Scholar PubMed

Chan, S.T., Mercaldo, N., Figueiro Longo, M.G., Welt, J., Avesta, A., Lee, J., Lev, M.H., Ratai, E.M., Wenke, M.R., Parry, B.A., et al.. (2024). Effects of low-level light therapy on resting-state connectivity following moderate traumatic brain injury: secondary analyses of a double-blinded placebo-controlled study. Radiology 311: e230999, https://doi.org/10.1148/radiol.230999.Search in Google Scholar PubMed PubMed Central

Chang, S.Y. and Lee, M.Y. (2023). Photobiomodulation of neurogenesis through the enhancement of stem cell and neural progenitor differentiation in the central and peripheral nervous systems. Int. J. Mol. Sci. 24, https://doi.org/10.3390/ijms242015427.Search in Google Scholar PubMed PubMed Central

Chao, L.L., Barlow, C., Karimpoor, M., and Lim, L. (2020). Changes in brain function and structure after self-administered home photobiomodulation treatment in a concussion case. Front. Neurol. 11: 952, https://doi.org/10.3389/fneur.2020.00952.Search in Google Scholar PubMed PubMed Central

Chao, L.L. (2019). Effects of home photobiomodulation treatments on cognitive and behavioral function, cerebral perfusion, and resting-state functional connectivity in patients with dementia: a pilot trial. Photobiomodul. Photomed. Laser Surg. 37: 133–141, https://doi.org/10.1089/photob.2018.4555.Search in Google Scholar PubMed

Chen, A., Du, L., Xu, Y., Chen, L., and Wu, Y. (2005). The effect of blue light exposure on the expression of circadian genes: bmal1 and cryptochrome 1 in peripheral blood mononuclear cells of jaundiced neonates. Pediatr. Res. 58: 1180–1184, https://doi.org/10.1203/01.pdr.0000183663.98446.05.Search in Google Scholar PubMed

Chen, H., Tu, M., Shi, J., Wang, Y., Hou, Z., and Wang, J. (2021). Effect of photobiomodulation on CCC-ESF reactive oxygen species steady-state in high glucose mediums. Laser Med. Sci. 36: 555–562, https://doi.org/10.1007/s10103-020-03057-4.Search in Google Scholar PubMed

Chen, C., Bao, Y., Xing, L., Jiang, C., Guo, Y., Tong, S., Zhang, J., Chen, L., and Mao, Y. (2023). Exosomes derived from M2 microglial cells modulated by 1070-nm light improve cognition in an Alzheimer’s disease mouse model. Adv. Sci. (Weinh.) 10: e2304025, https://doi.org/10.1002/advs.202304025.Search in Google Scholar PubMed PubMed Central

Chen, H., Shi, X., Liu, N., Jiang, Z., Ma, C., Luo, G., Liu, S., Wei, X., Liu, Y., and Ming, D. (2024a). Photobiomodulation therapy mitigates depressive-like behaviors by remodeling synaptic links and mitochondrial function. J. Photochem. Photobiol., B 258: 112998, https://doi.org/10.1016/j.jphotobiol.2024.112998.Search in Google Scholar PubMed

Chen, Z., Li, M., Wu, C., Su, Y., Feng, S., Deng, Q., Zou, P., Liu, T.C., Duan, R., and Yang, L. (2024b). Photobiomodulation therapy alleviates repeated closed head injury-induced anxiety-like behaviors. J. Biophot. 17: e202300343, https://doi.org/10.1002/jbio.202300343.Search in Google Scholar PubMed

Colombo, E., Signore, A., Aicardi, S., Zekiy, A., Utyuzh, A., Benedicenti, S., and Amaroli, A. (2021). Experimental and clinical applications of red and near-infrared photobiomodulation on endothelial dysfunction: a review. Biomedicines 9, https://doi.org/10.3390/biomedicines9030274.Search in Google Scholar PubMed PubMed Central

de Lima, F.M., Albertini, R., Dantas, Y., Maia-Filho, A.L., Santana Cde, L., Castro-Faria-Neto, H.C., França, C., Villaverde, A.B., and Aimbire, F. (2013). Low-level laser therapy restores the oxidative stress balance in acute lung injury induced by gut ischemia and reperfusion. Photochem. Photobiol. 89: 179–188, https://doi.org/10.1111/j.1751-1097.2012.01214.x.Search in Google Scholar PubMed

de Oliveira, B.H., Lins, E.F., Kunde, N.F., Salgado, A.S.I., Martins, L.M., Bobinski, F., Vieira, W.F., Cassano, P., Quialheiro, A., and Martins, D.F. (2024). Transcranial photobiomodulation increases cognition and serum BDNF levels in adults over 50 years: a randomized, double-blind, placebo-controlled trial. J. Photochem. Photobiol., B 260: 113041, https://doi.org/10.1016/j.jphotobiol.2024.113041.Search in Google Scholar PubMed

de Oliveira, R.M.W. (2020). Neuroplasticity. J. Chem. Neuroanat. 108: 101822, https://doi.org/10.1016/j.jchemneu.2020.101822.Search in Google Scholar PubMed

Duan, X., Yao, G., Liu, Z., Cui, R., and Yang, W. (2018). Mechanisms of transcranial magnetic stimulation treating on post-stroke depression. Front. Hum. Neurosci. 12: 215, https://doi.org/10.3389/fnhum.2018.00215.Search in Google Scholar PubMed PubMed Central

El Khoury, H., Mitrofanis, J., and Henderson, L.A. (2019). Exploring the effects of near infrared light on resting and evoked brain activity in humans using magnetic resonance imaging. Neuroscience 422: 161–171, https://doi.org/10.1016/j.neuroscience.2019.10.037.Search in Google Scholar PubMed

Fantini, E. and Facella, P. (2020). Cryptochromes in the field: how blue light influences crop development. Physiol. Plant. 169: 336–346, https://doi.org/10.1111/ppl.13088.Search in Google Scholar PubMed

Fear, E.J., Torkelsen, F.H., Zamboni, E., Chen, K.J., Scott, M., Jeffery, G., Baseler, H., and Kennerley, A.J. (2023). Use of (31) P magnetisation transfer magnetic resonance spectroscopy to measure ATP changes after 670 nm transcranial photobiomodulation in older adults. Aging Cell 22: e14005, https://doi.org/10.1111/acel.14005.Search in Google Scholar PubMed PubMed Central

Fels, B. and Kusche-Vihrog, K. (2020). It takes more than two to tango: mechanosignaling of the endothelial surface. Pfluegers Arch. 472: 419–433, https://doi.org/10.1007/s00424-020-02369-2.Search in Google Scholar PubMed PubMed Central

Feng, Y., Yang, L., Ma, X., Huang, Z., Zong, X., Citadin, C.T., Lin, H.W., and Zhang, Q. (2023). Photobiomodulation treatment inhibits neurotoxic astrocytic polarization and protects neurons in in vitro and in vivo stroke models. Neurochem. Int. 162: 105464, https://doi.org/10.1016/j.neuint.2022.105464.Search in Google Scholar PubMed

Flyktman, A., Jernfors, T., Manttari, S., Nissila, J., Timonen, M., and Saarela, S. (2017). Transcranial light alters melanopsin and monoamine production in mouse (Mus Musculus) brain. J. Neurol. Res. 7: 39–45.10.14740/jnr427wSearch in Google Scholar

Ganeshan, V., Skladnev, N.V., Kim, J.Y., Mitrofanis, J., Stone, J., and Johnstone, D.M. (2019). Pre-conditioning with remote photobiomodulation modulates the brain transcriptome and protects against MPTP insult in mice. Neuroscience 400: 85–97, https://doi.org/10.1016/j.neuroscience.2018.12.050.Search in Google Scholar PubMed

Ghaderi, A.H., Jahan, A., Akrami, F., and Moghadam Salimi, M. (2021). Transcranial photobiomodulation changes topology, synchronizability, and complexity of resting state brain networks. J Neural Eng. 18, https://doi.org/10.1088/1741-2552/abf97c.Search in Google Scholar PubMed

Gholami, L., Afshar, S., Arkian, A., Saeidijam, M., Hendi, S.S., Mahmoudi, R., Khorsandi, K., Hashemzehi, H., and Fekrazad, R. (2022). NIR irradiation of human buccal fat pad adipose stem cells and its effect on TRP ion channels. Laser Med. Sci. 37: 3681–3692, https://doi.org/10.1007/s10103-022-03652-7.Search in Google Scholar PubMed

Golovynska, I., Golovynskyi, S., Stepanov, Y.V., Garmanchuk, L.V., Stepanova, L.I., Qu, J., and Ohulchanskyy, T.Y. (2019). Red and near-infrared light induces intracellular Ca(2+) flux via the activation of glutamate N-methyl-D-aspartate receptors. J. Cell. Physiol. 234: 15989–16002, https://doi.org/10.1002/jcp.28257.Search in Google Scholar PubMed

Gowda, P., Reddy, P.H., and Kumar, S. (2022). Deregulated mitochondrial microRNAs in Alzheimer’s disease: focus on synapse and mitochondria. Ageing Res. Rev. 73: 101529, https://doi.org/10.1016/j.arr.2021.101529.Search in Google Scholar PubMed PubMed Central

Guan, R., Zou, W., Dai, X., Yu, X., Liu, H., Chen, Q., and Teng, W. (2018). Mitophagy, a potential therapeutic target for stroke. J. Biomed. Sci. 25: 87, https://doi.org/10.1186/s12929-018-0487-4.Search in Google Scholar PubMed PubMed Central

Gulyaeva, N.V. (2017a). Interplay between brain BDNF and glutamatergic systems: a brief state of the evidence and association with the pathogenesis of depression. Biochemistry (Mosc.) 82: 301–307, https://doi.org/10.1134/s0006297917030087.Search in Google Scholar

Gulyaeva, N.V. (2017b). Molecular mechanisms of neuroplasticity: an expanding universe. Biochemistry (Mosc.) 82: 237–242, https://doi.org/10.1134/s0006297917030014.Search in Google Scholar

Hadadgar, S., Peimani, J., Hassani-Abharian, P., Mashayekh, M., Peivandi, P., and Fekrazad, R. (2024). Comparative effects of cognitive rehabilitation and photobiomodulation on drug craving in treatment-seeking opioid addicts. Photobiomodul. Photomed. Laser Surg. 42: 54–65, https://doi.org/10.1089/photob.2023.0064.Search in Google Scholar PubMed

Hajesmaelzade, E., Mohammadi, M., Kakooei, S., Solimei, L., Benedicenti, S., and Chiniforush, N. (2024). Efficacy of photobiomodulation therapy utilizing 808 nm and 660 nm alone and in combination for treatment of paresthesia in rats. Biomedicines 13, https://doi.org/10.3390/biomedicines13010065.Search in Google Scholar PubMed PubMed Central

Hamblin, M.R. and Liebert, A. (2022). Photobiomodulation therapy mechanisms beyond cytochrome c oxidase. Photobiomodul. Photomed. Laser Surg. 40: 75–77, https://doi.org/10.1089/photob.2021.0119.Search in Google Scholar PubMed

Hamblin, M.R. (2017). Mechanisms and applications of the anti-inflammatory effects of photobiomodulation. AIMS Biophys. 4: 337–361, https://doi.org/10.3934/biophy.2017.3.337.Search in Google Scholar PubMed PubMed Central

Hamblin, M.R. (2018a). Mechanisms and mitochondrial redox signaling in photobiomodulation. Photochem. Photobiol. 94: 199–212, https://doi.org/10.1111/php.12864.Search in Google Scholar PubMed PubMed Central

Hamblin, M.R. (2018b). Photobiomodulation for traumatic brain injury and stroke. J. Neurosci. Res. 96: 731–743, https://doi.org/10.1002/jnr.24190.Search in Google Scholar PubMed PubMed Central

Hamblin, M.R. (2019). Photobiomodulation for Alzheimer’s disease: has the light dawned? Photonics 6, https://doi.org/10.3390/photonics6030077.Search in Google Scholar PubMed PubMed Central

Hao, W., Dai, X., Wei, M., Li, S., Peng, M., Xue, Q., Lin, H., Wang, H., Song, P., and Wang, Y. (2024). Efficacy of transcranial photobiomodulation in the treatment for major depressive disorder: a TMS-EEG and pilot study. Photodermatol. Photoimmunol. Photomed. 40: e12957, https://doi.org/10.1111/phpp.12957.Search in Google Scholar PubMed

Hearne, L.J., Cocchi, L., Zalesky, A., and Mattingley, J.B. (2017). Reconfiguration of brain network architectures between resting-state and complexity-dependent cognitive reasoning. J. Neurosci. 37: 8399–8411, https://doi.org/10.1523/jneurosci.0485-17.2017.Search in Google Scholar

Heiskanen, V. and Hamblin, M.R. (2018). Photobiomodulation: lasers vs. light emitting diodes? Photochem. Photobiol. Sci. 17: 1003–1017, https://doi.org/10.1039/c8pp00176f.Search in Google Scholar

Henderson, T.A. (2024). Can infrared light really be doing what we claim it is doing? Infrared light penetration principles, practices, and limitations. Front. Neurol. 15: 1398894, https://doi.org/10.3389/fneur.2024.1398894.Search in Google Scholar PubMed PubMed Central

Heo, J.C., Park, J.A., Kim, D.K., and Lee, J.H. (2019). Photobiomodulation (660 nm) therapy reduces oxidative stress and induces BDNF expression in the hippocampus. Sci. Rep. 9: 10114, https://doi.org/10.1038/s41598-019-46490-4.Search in Google Scholar PubMed PubMed Central

Hipskind, S.G., Grover, F.L.Jr., Fort, T.R., Helffenstein, D., Burke, T.J., Quint, S.A., Bussiere, G., Stone, M., and Hurtado, T. (2019). Pulsed transcranial red/near-infrared light therapy using light-emitting diodes improves cerebral blood flow and cognitive function in veterans with chronic traumatic brain injury: a case series. Photobiomodulation Photomed. Laser Surg. 37: 77–84, https://doi.org/10.1089/pho.2018.4489.Search in Google Scholar PubMed

Hoang, N., Schleicher, E., Kacprzak, S., Bouly, J.P., Picot, M., Wu, W., Berndt, A., Wolf, E., Bittl, R., and Ahmad, M. (2008). Human and Drosophila cryptochromes are light activated by flavin photoreduction in living cells. PLoS Biol. 6: e160, https://doi.org/10.1371/journal.pbio.0060160.Search in Google Scholar PubMed PubMed Central

Hong, N., Kang, G.W., Park, J.O., Chung, P.S., Lee, M.Y., and Ahn, J.C. (2022). Photobiomodulation regulates adult neurogenesis in the hippocampus in a status epilepticus animal model. Sci. Rep. 12: 15246, https://doi.org/10.1038/s41598-022-19607-5.Search in Google Scholar PubMed PubMed Central

Huang, X., Huang, P., Huang, L., Hu, Z., Liu, X., Shen, J., Xi, Y., Yang, Y., Fu, Y., Tao, Q., et al.. (2021). A visual circuit related to the nucleus reuniens for the spatial-memory-promoting effects of light treatment. Neuron 109: 347–362.e347, https://doi.org/10.1016/j.neuron.2020.10.023.Search in Google Scholar PubMed

Hwang, M.H., Lee, J.W., Son, H.G., Kim, J., and Choi, H. (2020). Effects of photobiomodulation on annulus fibrosus cells derived from degenerative disc disease patients exposed to microvascular endothelial cells conditioned medium. Sci. Rep. 10: 9655, https://doi.org/10.1038/s41598-020-66689-0.Search in Google Scholar PubMed PubMed Central

Ju, C., Ma, Y.G., Zuo, X.S., Wang, X.K., Song, Z.W., Zhang, Z.H., Zhu, Z.J., Li, X., Liang, Z.W., Ding, T., et al.. (2023). Potential targets and mechanisms of photobiomodulation for spinal cord injury. Neural Regen. Res. 18: 1782–1788, https://doi.org/10.4103/1673-5374.361534.Search in Google Scholar PubMed PubMed Central

Jung, T.M., Lee, J.H., Heo, J.C., and Kim, C.H. (2024). Photobiomodulation therapy at 660 nm inhibits hippocampal neuroinflammation in a lipopolysaccharide-challenged rat model. Biomedicines 12, https://doi.org/10.3390/biomedicines12112514.Search in Google Scholar PubMed PubMed Central

Karu, T. (1999). Primary and secondary mechanisms of action of visible to near-IR radiation on cells. J. Photochem. Photobiol., B 49: 1–17, https://doi.org/10.1016/s1011-1344(98)00219-x.Search in Google Scholar

Katz, B. and Minke, B. (2018). The Drosophila light-activated TRP and TRPL channels - targets of the phosphoinositide signaling cascade. Prog. Retin. Eye Res. 66: 200–219, https://doi.org/10.1016/j.preteyeres.2018.05.001.Search in Google Scholar PubMed

Kazmi, S., Farajdokht, F., Meynaghizadeh-Zargar, R., Sadigh-Eteghad, S., Pasokh, A., Farzipour, M., Farazi, N., Hamblin, M.R., and Mahmoudi, J. (2023). Transcranial photobiomodulation mitigates learning and memory impairments induced by hindlimb unloading in a mouse model of microgravity exposure by suppression of oxidative stress and neuroinflammation signaling pathways. Brain Res. 1821: 148583, https://doi.org/10.1016/j.brainres.2023.148583.Search in Google Scholar PubMed

Kempuraj, D., Ahmed, M.E., Selvakumar, G.P., Thangavel, R., Raikwar, S.P., Zaheer, S.A., Iyer, S.S., Govindarajan, R., Nattanmai Chandrasekaran, P., Burton, C., et al.. (2021). Acute traumatic brain injury-induced neuroinflammatory response and neurovascular disorders in the brain. Neurotox. Res. 39: 359–368, https://doi.org/10.1007/s12640-020-00288-9.Search in Google Scholar PubMed PubMed Central

Khoury, H.E., Mitrofanis, J., and Henderson, L.A. (2021). Does photobiomodulation influence the resting-state brain networks in young human subjects? Exp. Brain Res. 239: 435–449, https://doi.org/10.1007/s00221-020-05981-x.Search in Google Scholar PubMed

Ksendzovsky, A., Pomeraniec, I.J., Zaghloul, K.A., Provencio, J.J., and Provencio, I. (2017). Clinical implications of the melanopsin-based non-image-forming visual system. Neurology 88: 1282–1290, https://doi.org/10.1212/wnl.0000000000003761.Search in Google Scholar PubMed PubMed Central

Lapchak, P.A., Boitano, P.D., Butte, P.V., Fisher, D.J., Hölscher, T., Ley, E.J., Nuño, M., Voie, A.H., and Rajput, P.S. (2015). Transcranial near-infrared laser transmission (NILT) profiles (800 nm): systematic comparison in four common research species. PLoS One 10: e0127580, https://doi.org/10.1371/journal.pone.0127580.Search in Google Scholar PubMed PubMed Central

Lee, H.I., Lee, S.W., Kim, S.Y., Kim, N.G., Park, K.J., Choi, B.T., Shin, Y.I., and Shin, H.K. (2017). Pretreatment with light-emitting diode therapy reduces ischemic brain injury in mice through endothelial nitric oxide synthase-dependent mechanisms. Biochem. Biophys. Res. Commun. 486: 945–950, https://doi.org/10.1016/j.bbrc.2017.03.131.Search in Google Scholar PubMed

Li, B., Golovynska, I., Stepanov, Y.V., Golovynskyi, S., Golovynskyi, A., Kolesnik, D., Stepanova, L.I., Lai, P., Lin, F., and Qu, J. (2025). Transcranial photobiomodulation therapy with 808 nm light changes expression of genes and proteins associated with neuroprotection, neuroinflammation, oxidative stress, and Alzheimer’s disease: whole RNA sequencing of mouse cortex and hippocampus. PLoS One 20: e0326881, https://doi.org/10.1371/journal.pone.0326881.Search in Google Scholar PubMed PubMed Central

Lima, P.L.V., Pereira, C.V., Nissanka, N., Arguello, T., Gavini, G., Maranduba, C., Diaz, F., and Moraes, C.T. (2019). Photobiomodulation enhancement of cell proliferation at 660 nm does not require cytochrome c oxidase. J. Photochem. Photobiol., B 194: 71–75, https://doi.org/10.1016/j.jphotobiol.2019.03.015.Search in Google Scholar PubMed

Lipko, N.B. (2022). Photobiomodulation: evolution and adaptation. Photobiomodul. Photomed. Laser Surg. 40: 213–233, https://doi.org/10.1089/photob.2021.0145.Search in Google Scholar PubMed

López-Doménech, G. and Kittler, J.T. (2023). Mitochondrial regulation of local supply of energy in neurons. Curr. Opin. Neurobiol. 81: 102747, https://doi.org/10.1016/j.conb.2023.102747.Search in Google Scholar PubMed PubMed Central

Luck, M., Mathes, T., Bruun, S., Fudim, R., Hagedorn, R., Tran Nguyen, T.M., Kateriya, S., Kennis, J.T., Hildebrandt, P., and Hegemann, P. (2012). A photochromic histidine kinase rhodopsin (HKR1) that is bimodally switched by ultraviolet and blue light. J. Biol. Chem. 287: 40083–40090, https://doi.org/10.1074/jbc.m112.401604.Search in Google Scholar

Lutfy, R.H., Essawy, A.E., Mohammed, H.S., Shakweer, M.M., and Salam, S.A. (2024). Transcranial irradiation mitigates paradoxical sleep deprivation effect in an age-dependent manner: role of BDNF and GLP-1. Neurochem. Res. 49: 919–934, https://doi.org/10.1007/s11064-023-04071-y.Search in Google Scholar PubMed PubMed Central

Ma, X. and Liu, W. (2019). Calcium signaling in brain microvascular endothelial cells and its roles in the function of the blood-brain barrier. Neuroreport 30: 1271–1277, https://doi.org/10.1097/wnr.0000000000001357.Search in Google Scholar

Ma, J.X., Yang, Q.M., Xia, Y.C., Zhang, W.G., and Nie, F.F. (2018). Effect of 810 nm near-infrared laser on revascularization of ischemic flaps in rats. Photomed. Laser Surg. 36: 290–297, https://doi.org/10.1089/pho.2017.4360.Search in Google Scholar PubMed

Maiello, M., Losiewicz, O.M., Bui, E., Spera, V., Hamblin, M.R., Marques, L., and Cassano, P. (2019). Transcranial photobiomodulation with near-infrared light for generalized anxiety disorder: a pilot study. Photobiomodul. Photomed. Laser Surg. 37: 644–650, https://doi.org/10.1089/photob.2019.4677.Search in Google Scholar PubMed PubMed Central

Maksimovich, I.V. (2019). Intracerebral transcatheter laser photobiomodulation therapy in the treatment of binswanger’s disease and vascular parkinsonism: research and clinical experience. Photobiomodul. Photomed. Laser Surg. 37: 606–614, https://doi.org/10.1089/photob.2019.4649.Search in Google Scholar PubMed

Martins, D.O., Marques, D.P., and Chacur, M. (2024). Enhancing nerve regeneration in infraorbital nerve injury rat model: effects of vitamin B complex and photobiomodulation. Laser Med. Sci. 39: 119, https://doi.org/10.1007/s10103-024-04067-2.Search in Google Scholar PubMed

Mohammed, H.S., Hosny, E.N., Sawie, H.G., and Khadrawy, Y.A. (2023). Transcranial photobiomodulation ameliorates midbrain and striatum neurochemical impairments and behavioral deficits in reserpine-induced parkinsonism in rats. Photochem. Photobiol. Sci. 22: 2891–2904, https://doi.org/10.1007/s43630-023-00497-z.Search in Google Scholar PubMed

Mosca, R.C., Ong, A.A., Albasha, O., Bass, K., and Arany, P. (2019). Photobiomodulation therapy for wound care: a potent, noninvasive, photoceutical approach. Adv. Skin Wound Care 32: 157–167, https://doi.org/10.1097/01.asw.0000553600.97572.d2.Search in Google Scholar PubMed

Nadezhdin, K.D., Talyzina, I.A., Parthasarathy, A., Neuberger, A., Zhang, D.X., and Sobolevsky, A.I. (2023). Structure of human TRPV4 in complex with GTPase RhoA. Nat. Commun. 14: 3733, https://doi.org/10.1016/j.bpj.2023.11.312.Search in Google Scholar

Naeser, M.A., Ho, M.D., Martin, P.I., Hamblin, M.R., and Koo, B.B. (2020). Increased functional connectivity within intrinsic neural networks in chronic stroke following treatment with red/near-infrared transcranial photobiomodulation: case series with improved naming in aphasia. Photobiomodul. Photomed. Laser Surg. 38: 115–131, https://doi.org/10.1089/photob.2019.4630.Search in Google Scholar PubMed

Naeser, M.A., Martin, P.I., Ho, M.D., Krengel, M.H., Bogdanova, Y., Knight, J.A., Hamblin, M.R., Fedoruk, A.E., Poole, L.G., Cheng, C., et al.. (2023). Transcranial photobiomodulation treatment: significant improvements in four ex-football players with possible chronic traumatic encephalopathy. J. Alzheimers Dis. Rep. 7: 77–105, https://doi.org/10.3233/adr-220022.Search in Google Scholar

Navarro, G., Gómez-Autet, M., Morales, P., Rebassa, J.B., Llinas Del Torrent, C., Jagerovic, N., Pardo, L., and Franco, R. (2024). Homodimerization of CB(2) cannabinoid receptor triggered by a bivalent ligand enhances cellular signaling. Pharmacol. Res. 208: 107363, https://doi.org/10.1016/j.phrs.2024.107363.Search in Google Scholar PubMed

Nawashiro, H., Sato, S., Kawauchi, S., Takeuchi, S., Nagatani, K., Yoshihara, N., and Shinmoto, H. (2017). Blood-oxygen-level-dependent (BOLD) functional magnetic resonance imaging (fMRI) during transcranial near-infrared laser irradiation. Brain Stimul. 10: 1136–1138, https://doi.org/10.1016/j.brs.2017.08.010.Search in Google Scholar PubMed

Nie, F., Hao, S., Ji, Y., Zhang, Y., Sun, H., Will, M., Han, W., and Ding, Y. (2023). Biphasic dose response in the anti-inflammation experiment of PBM. Laser Med. Sci. 38: 66, https://doi.org/10.1007/s10103-022-03664-3.Search in Google Scholar PubMed

Nogueira, A.B., Nogueira, A.B., Veiga, J.C.E., and Teixeira, M.J. (2017). Hypothesis on the role of cryptochromes in inflammation and subarachnoid hemorrhage outcome. Front. Neurol. 8: 637, https://doi.org/10.3389/fneur.2017.00637.Search in Google Scholar PubMed PubMed Central

Okada, E. and Delpy, D.T. (2003). Near-infrared light propagation in an adult head model. II. Effect of superficial tissue thickness on the sensitivity of the near-infrared spectroscopy signal. Appl. Opt. 42: 2915–2922, https://doi.org/10.1364/ao.42.002915.Search in Google Scholar PubMed

Ozturk, N., Selby, C.P., Annayev, Y., Zhong, D., and Sancar, A. (2011). Reaction mechanism of Drosophila cryptochrome. Proc. Natl. Acad. Sci. U. S. A. 108: 516–521, https://doi.org/10.1073/pnas.1017093108.Search in Google Scholar PubMed PubMed Central

Park, J.O., Hong, N., Lee, M.Y., and Ahn, J.C. (2024). Photobiomodulation regulates astrocyte activity and ameliorates scopolamine-induced cognitive behavioral decline. Front. Cell. Neurosci. 18: 1448005, https://doi.org/10.3389/fncel.2024.1448005.Search in Google Scholar PubMed PubMed Central

Pluimer, B.R., Colt, M., and Zhao, Z. (2020). G protein-coupled receptors in the mammalian blood-brain barrier. Front. Cell. Neurosci. 14: 139, https://doi.org/10.3389/fncel.2020.00139.Search in Google Scholar PubMed PubMed Central

Pokorny, R., Klar, T., Hennecke, U., Carell, T., Batschauer, A., and Essen, L.O. (2008). Recognition and repair of UV lesions in loop structures of duplex DNA by DASH-type cryptochrome. Proc. Natl. Acad. Sci. U. S. A. 105: 21023–21027, https://doi.org/10.1073/pnas.0805830106.Search in Google Scholar PubMed PubMed Central

Popova, N.K., Ilchibaeva, T.V., and Naumenko, V.S. (2017). Neurotrophic factors (BDNF and GDNF) and the serotonergic system of the brain. Biochemistry (Mosc.) 82: 308–317, https://doi.org/10.1134/s0006297917030099.Search in Google Scholar

Pourmemar, E., Majdi, A., Haramshahi, M., Talebi, M., Karimi, P., and Sadigh-Eteghad, S. (2017). Intranasal cerebrolysin attenuates learning and memory impairments in D-galactose-induced senescence in mice. Exp. Gerontol. 87: 16–22, https://doi.org/10.1016/j.exger.2016.11.011.Search in Google Scholar PubMed

Prado, T.P., Zanchetta, F.C., Barbieri, B., Aparecido, C., Melo Lima, M.H., and Araujo, E.P. (2023). Photobiomodulation with blue light on wound healing: a scoping review. Life (Basel) 13, https://doi.org/10.3390/life13020575.Search in Google Scholar PubMed PubMed Central

Pruitt, T., Davenport, E.M., Proskovec, A.L., Maldjian, J.A., and Liu, H. (2024). Simultaneous MEG and EEG source imaging of electrophysiological activity in response to acute transcranial photobiomodulation. Front. Neurosci. 18: 1368172, https://doi.org/10.3389/fnins.2024.1368172.Search in Google Scholar PubMed PubMed Central

Rohringer, S., Holnthoner, W., Chaudary, S., Slezak, P., Priglinger, E., Strassl, M., Pill, K., Mühleder, S., Redl, H., and Dungel, P. (2017). The impact of wavelengths of LED light-therapy on endothelial cells. Sci. Rep. 7: 10700, https://doi.org/10.1038/s41598-017-11061-y.Search in Google Scholar PubMed PubMed Central

Rosenbaum, T. and Islas, L.D. (2023). Molecular physiology of TRPV channels: controversies and future challenges. Annu. Rev. Physiol. 85: 293–316, https://doi.org/10.1146/annurev-physiol-030222-012349.Search in Google Scholar PubMed

Rosenkranz, S.C., Shaposhnykov, A., Schnapauff, O., Epping, L., Vieira, V., Heidermann, K., Schattling, B., Tsvilovskyy, V., Liedtke, W., Meuth, S.G., et al.. (2020). TRPV4-Mediated regulation of the blood brain barrier is abolished during inflammation. Front. Cell Dev. Biol. 8: 849, https://doi.org/10.3389/fcell.2020.00849.Search in Google Scholar PubMed PubMed Central

Salehpour, F., Rasta, S.H., Mohaddes, G., Sadigh-Eteghad, S., and Salarirad, S. (2016). Therapeutic effects of 10-HzPulsed wave lasers in rat depression model: a comparison between near-infrared and red wavelengths. Laser Surg. Med. 48: 695–705, https://doi.org/10.1002/lsm.22542.Search in Google Scholar PubMed

Salehpour, F., Ahmadian, N., Rasta, S.H., Farhoudi, M., Karimi, P., and Sadigh-Eteghad, S. (2017). Transcranial low-level laser therapy improves brain mitochondrial function and cognitive impairment in D-galactose-induced aging mice. Neurobiol. Aging 58: 140–150, https://doi.org/10.1016/j.neurobiolaging.2017.06.025.Search in Google Scholar PubMed

Salehpour, F., Farajdokht, F., Erfani, M., Sadigh-Eteghad, S., Shotorbani, S.S., Hamblin, M.R., Karimi, P., Rasta, S.H., and Mahmoudi, J. (2018a). Transcranial near-infrared photobiomodulation attenuates memory impairment and hippocampal oxidative stress in sleep-deprived mice. Brain Res. 1682: 36–43, https://doi.org/10.1016/j.brainres.2017.12.040.Search in Google Scholar PubMed PubMed Central

Salehpour, F., Mahmoudi, J., Kamari, F., Sadigh-Eteghad, S., Rasta, S.H., and Hamblin, M.R. (2018b). Brain photobiomodulation therapy: a narrative review. Mol. Neurobiol. 55: 6601–6636, https://doi.org/10.1007/s12035-017-0852-4.Search in Google Scholar PubMed PubMed Central

Salim, S. (2017). Oxidative stress and the central nervous system. J. Pharmacol. Exp. Ther. 360: 201–205, https://doi.org/10.1124/jpet.116.237503.Search in Google Scholar PubMed PubMed Central

Saltmarche, A.E., Naeser, M.A., Ho, K.F., Hamblin, M.R., and Lim, L. (2017). Significant improvement in cognition in mild to moderately severe dementia cases treated with transcranial plus intranasal photobiomodulation: case series report. Photomed. Laser Surg. 35: 432–441, https://doi.org/10.1089/pho.2016.4227.Search in Google Scholar PubMed PubMed Central

San Miguel, M., Martin, K.L., Stone, J., and Johnstone, D.M. (2019). Photobiomodulation mitigates cerebrovascular leakage induced by the parkinsonian neurotoxin MPTP. Biomolecules 9, https://doi.org/10.3390/biom9100564.Search in Google Scholar PubMed PubMed Central

Sancho-Balsells, A., Borràs-Pernas, S., Flotta, F., Chen, W., Del Toro, D., Rodríguez, M.J., Alberch, J., Blivet, G., Touchon, J., Xifró, X., et al.. (2024). Brain-gut photobiomodulation restores cognitive alterations in chronically stressed mice through the regulation of Sirt1 and neuroinflammation. J. Affect. Disord. 354: 574–588, https://doi.org/10.1016/j.jad.2024.03.075.Search in Google Scholar PubMed

Saucedo, C.L., Courtois, E.C., Wade, Z.S., Kelley, M.N., Kheradbin, N., Barrett, D.W., and Gonzalez-Lima, F. (2021). Transcranial laser stimulation: mitochondrial and cerebrovascular effects in younger and older healthy adults. Brain Stimul. 14: 440–449, https://doi.org/10.1016/j.brs.2021.02.011.Search in Google Scholar PubMed

Schwarz, T.L. (2013). Mitochondrial trafficking in neurons. Cold Spring Harb. Perspect. Biol. 5, https://doi.org/10.1101/cshperspect.a011304.Search in Google Scholar PubMed PubMed Central

Shabab, T., Khanabdali, R., Moghadamtousi, S.Z., Kadir, H.A., and Mohan, G. (2017). Neuroinflammation pathways: a general review. Int. J. Neurosci. 127: 624–633, https://doi.org/10.1080/00207454.2016.1212854.Search in Google Scholar PubMed

Shan, Y.C., Fang, W., Chang, Y.C., Chang, W.D., and Wu, J.H. (2021). Effect of near-infrared pulsed light on the human brain using Electroencephalography. Evid Based Complement Alternat. Med. 2021: 6693916, https://doi.org/10.1155/2021/6693916.Search in Google Scholar PubMed PubMed Central

Sharma, S.K., Kharkwal, G.B., Sajo, M., Huang, Y.Y., De Taboada, L., McCarthy, T., and Hamblin, M.R. (2011). Dose response effects of 810 nm laser light on mouse primary cortical neurons. Laser Surg. Med. 43: 851–859, https://doi.org/10.1002/lsm.21100.Search in Google Scholar PubMed PubMed Central

Sommer, A.P., Haddad, M., and Fecht, H.J. (2015). Light effect on water viscosity: implication for ATP biosynthesis. Sci. Rep. 5: 12029, https://doi.org/10.1038/srep12029.Search in Google Scholar PubMed PubMed Central

Sommer, A.P., Schemmer, P., Pavláth, A.E., Försterling, H.D., Mester Á, R., and Trelles, M.A. (2020). Quantum biology in low level light therapy: death of a dogma. Ann. Transl. Med. 8: 440, https://doi.org/10.21037/atm.2020.03.159.Search in Google Scholar PubMed PubMed Central

Song, J.W., Li, K., Liang, Z.W., Dai, C., Shen, X.F., Gong, Y.Z., Wang, S., Hu, X.Y., and Wang, Z. (2017). Low-level laser facilitates alternatively activated macrophage/microglia polarization and promotes functional recovery after crush spinal cord injury in rats. Sci. Rep. 7: 620, https://doi.org/10.1038/s41598-017-00553-6.Search in Google Scholar PubMed PubMed Central

Spera, V., Sitnikova, T., Ward, M.J., Farzam, P., Hughes, J., Gazecki, S., Bui, E., Maiello, M., De Taboada, L., Hamblin, M.R., et al.. (2021). Pilot study on dose-dependent effects of transcranial photobiomodulation on brain electrical oscillations: a potential therapeutic target in Alzheimer’s disease. J. Alzheimers Dis. 83: 1481–1498, https://doi.org/10.3233/jad-210058.Search in Google Scholar PubMed

Starnawska, A., Tan, Q., Soerensen, M., McGue, M., Mors, O., Børglum, A.D., Christensen, K., Nyegaard, M., and Christiansen, L. (2019). Epigenome-wide association study of depression symptomatology in elderly monozygotic twins. Ann. Transl. Med. 9: 214, https://doi.org/10.1038/s41398-019-0548-9.Search in Google Scholar PubMed PubMed Central

Startek, J.B., Boonen, B., López-Requena, A., Talavera, A., Alpizar, Y.A., Ghosh, D., Van Ranst, N., Nilius, B., Voets, T., and Talavera, K. (2019a). Mouse TRPA1 function and membrane localization are modulated by direct interactions with cholesterol. Elife 8, https://doi.org/10.7554/elife.46084.Search in Google Scholar

Startek, J.B., Boonen, B., Talavera, K., and Meseguer, V. (2019b). TRP channels as sensors of chemically-induced changes in cell membrane mechanical properties. Int. J. Mol. Sci. 20, https://doi.org/10.3390/ijms20020371.Search in Google Scholar PubMed PubMed Central

Statha, D., Sfiniadakis, I., Rallis, M., Anastassopoulou, J., and Alexandratou, E. (2025). Investigating the wound healing potential of low-power 661 nm laser light in a pigmented hairless murine model. Photochem. Photobiol. Sci. 24: 779–790, https://doi.org/10.1007/s43630-025-00725-8.Search in Google Scholar PubMed

Stevens, A.R., Hadis, M., Alldrit, H., Milward, M.R., Di Pietro, V., Gendoo, D.M.A., Belli, A., Palin, W., Davies, D.J., and Ahmed, Z. (2025). Evaluation of transcriptomic changes after photobiomodulation in spinal cord injury. Sci. Rep. 15: 3193, https://doi.org/10.1038/s41598-025-87300-4.Search in Google Scholar PubMed PubMed Central

Sun, Q., Kim, H.E., Cho, H., Shi, S., Kim, B., and Kim, O. (2018a). Red light-emitting diode irradiation regulates oxidative stress and inflammation through SPHK1/NF-κB activation in human keratinocytes. J. Photochem. Photobiol., B 186: 31–40, https://doi.org/10.1016/j.jphotobiol.2018.05.015.Search in Google Scholar PubMed

Sun, S.K., Wang, H.F., and Yan, X.P. (2018b). Engineering persistent luminescence nanoparticles for biological applications: from biosensing/bioimaging to theranostics. Acc. Chem. Res. 51: 1131–1143, https://doi.org/10.1021/acs.accounts.7b00619.Search in Google Scholar PubMed

Sun, J., Zhang, J., Li, K., Zheng, Q., Song, J., Liang, Z., Ding, T., Qiao, L., Zhang, J., Hu, X., et al.. (2020). Photobiomodulation therapy inhibit the activation and secretory of astrocytes by altering macrophage polarization. Cell. Mol. Neurobiol. 40: 141–152, https://doi.org/10.1007/s10571-019-00728-x.Search in Google Scholar PubMed PubMed Central

Sunemi, S.M., Teixeira, I.L.A., Mansano, B., de Oliveira, H.A., Antonio, E.L., de Souza Oliveira, C., Leal-Junior, E.C.P., Tucci, P.J.F., and Serra, A.J. (2021). Post-resistance exercise photobiomodulation therapy has a more effective antioxidant effect than pre-application on muscle oxidative stress. Photochem. Photobiol. Sci. 20: 585–595, https://doi.org/10.1007/s43630-021-00042-w.Search in Google Scholar PubMed

Takeuchi, M., Nishisho, T., Toki, S., Kawaguchi, S., Tamaki, S., Oya, T., Uto, Y., Katagiri, T., and Sairyo, K. (2023). Blue light induces apoptosis and autophagy by promoting ROS-mediated mitochondrial dysfunction in synovial sarcoma. Cancer Med. 12: 9668–9683, https://doi.org/10.1002/cam4.5664.Search in Google Scholar PubMed PubMed Central

Tao, L., Liu, Q., Zhang, F., Fu, Y., Zhu, X., Weng, X., Han, H., Huang, Y., Suo, Y., Chen, L., et al.. (2021). Microglia modulation with 1070-nm light attenuates Aβ burden and cognitive impairment in Alzheimer’s disease mouse model. Light Sci. Appl. 10: 179, https://doi.org/10.1038/s41377-021-00617-3.Search in Google Scholar PubMed PubMed Central

Tardy, A.L., Pouteau, E., Marquez, D., Yilmaz, C., and Scholey, A. (2020). Vitamins and minerals for energy, fatigue and cognition: a narrative review of the biochemical and clinical evidence. Nutrients 12, https://doi.org/10.3390/nu12010228.Search in Google Scholar PubMed PubMed Central

Tedford, C.E., DeLapp, S., Jacques, S., and Anders, J. (2015). Quantitative analysis of transcranial and intraparenchymal light penetration in human cadaver brain tissue. Laser Surg. Med. 47: 312–322, https://doi.org/10.1002/lsm.22343.Search in Google Scholar PubMed

Thunshelle, C. and Hamblin, M.R. (2016). Transcranial low-level laser (light) therapy for brain injury. Photomed. Laser Surg. 34: 587–598, https://doi.org/10.1089/pho.2015.4051.Search in Google Scholar PubMed PubMed Central

Truong, N.C.D., Wang, X., and Liu, H. (2023). Temporal and spectral analyses of EEG microstate reveals neural effects of transcranial photobiomodulation on the resting brain. Front. Neurosci. 17: 1247290, https://doi.org/10.3389/fnins.2023.1247290.Search in Google Scholar PubMed PubMed Central

Urquhart, E.L., Wanniarachchi, H., Wang, X., Gonzalez-Lima, F., Alexandrakis, G., and Liu, H. (2020). Transcranial photobiomodulation-induced changes in human brain functional connectivity and network metrics mapped by whole-head functional near-infrared spectroscopy in vivo. Biomed. Opt. Express 11: 5783–5799, https://doi.org/10.1364/boe.402047.Search in Google Scholar

Vargas, E., Barrett, D.W., Saucedo, C.L., Huang, L.D., Abraham, J.A., Tanaka, H., Haley, A.P., and Gonzalez-Lima, F. (2017). Beneficial neurocognitive effects of transcranial laser in older adults. Laser Med. Sci. 32: 1153–1162, https://doi.org/10.1007/s10103-017-2221-y.Search in Google Scholar PubMed PubMed Central

Vasilenko, T., Slezák, M., Kovác, I., Bottková, Z., Jakubco, J., Kostelníková, M., Tomori, Z., and Gál, P. (2010). The effect of equal daily dose achieved by different power densities of low-level laser therapy at 635 and 670 nm on wound tensile strength in rats: a short report. Photomed. Laser Surg. 28: 281–283, https://doi.org/10.1089/pho.2009.2489.Search in Google Scholar PubMed

Wade, Z.S., Barrett, D.W., Davis, R.E., Nguyen, A., Venkat, S., and Gonzalez-Lima, F. (2023). Histochemical mapping of the duration of action of photobiomodulation on cytochrome c oxidase in the rat brain. Front. Neurosci. 17: 1243527, https://doi.org/10.3389/fnins.2023.1243527.Search in Google Scholar PubMed PubMed Central

Wang, Y., Huang, Y.Y., Wang, Y., Lyu, P., and Hamblin, M.R. (2017). Photobiomodulation of human adipose-derived stem cells using 810nm and 980nm lasers operates via different mechanisms of action. Biochim. Biophys. Acta Gen. Subj. 1861: 441–449, https://doi.org/10.1016/j.bbagen.2016.10.008.Search in Google Scholar PubMed PubMed Central

Wang, R., Dong, Y., Lu, Y., Zhang, W., Brann, D.W., and Zhang, Q. (2019a). Photobiomodulation for global cerebral ischemia: targeting mitochondrial dynamics and functions. Mol. Neurobiol. 56: 1852–1869, https://doi.org/10.1007/s12035-018-1191-9.Search in Google Scholar PubMed PubMed Central

Wang, X., Dmochowski, J.P., Zeng, L., Kallioniemi, E., Husain, M., Gonzalez-Lima, F., and Liu, H. (2019b). Transcranial photobiomodulation with 1064-nm laser modulates brain electroencephalogram rhythms. Neurophotonics 6: 025013, https://doi.org/10.1117/1.nph.6.2.025013.Search in Google Scholar

Wang, X., Wanniarachchi, H., Wu, A., Gonzalez-Lima, F., and Liu, H. (2021a). Transcranial photobiomodulation and thermal stimulation induce distinct topographies of EEG alpha and beta power changes in healthy humans. Sci. Rep. 11: 18917, https://doi.org/10.1038/s41598-021-97987-w.Search in Google Scholar PubMed PubMed Central

Wang, X., Zhang, Z., Zhu, Z., Liang, Z., Zuo, X., Ju, C., Song, Z., Li, X., Hu, X., and Wang, Z. (2021b). Photobiomodulation promotes repair following spinal cord injury by regulating the transformation of A1/A2 reactive astrocytes. Front. Neurosci. 15: 768262, https://doi.org/10.3389/fnins.2021.768262.Search in Google Scholar PubMed PubMed Central

Wang, H., Song, P., Hou, Y., Liu, J., Hao, W., Hu, S., Dai, X., Zhan, S., Li, N., Peng, M., et al.. (2023). 820-nm Transcranial near-infrared stimulation on the left DLPFC relieved anxiety: a randomized, double-blind, sham-controlled study. Brain Res. Bull. 200: 110682, https://doi.org/10.1016/j.brainresbull.2023.110682.Search in Google Scholar PubMed

Wang, M., Yan, C., Li, X., Yang, T., Wu, S., Liu, Q., Luo, Q., and Zhou, F. (2024a). Non-invasive modulation of meningeal lymphatics ameliorates ageing and Alzheimer’s disease-associated pathology and cognition in mice. Nat. Commun. 15: 1453, https://doi.org/10.1038/s41467-024-45656-7.Search in Google Scholar PubMed PubMed Central

Wang, X., Zhang, W., Hou, L., Geng, W., Wang, J., Kong, Y., Liu, C., Zeng, X., and Kong, D. (2024b). A biomimetic upconversion nanobait-based near infrared light guided photodynamic therapy alleviates Alzheimer’s disease by inhibiting β-amyloid aggregation. Adv. Healthc. Mater. 13: e2303278, https://doi.org/10.1002/adhm.202303278.Search in Google Scholar PubMed

Wolpe, A.G., Ruddiman, C.A., Hall, P.J., and Isakson, B.E. (2021). Polarized proteins in endothelium and their contribution to function. J. Vasc. Res. 58: 65–91, https://doi.org/10.1159/000512618.Search in Google Scholar PubMed PubMed Central

Wu, X., Shen, Q., Zhang, Z., Zhang, D., Gu, Y., and Xing, D. (2021). Photoactivation of TGFβ/SMAD signaling pathway ameliorates adult hippocampal neurogenesis in Alzheimer’s disease model. Stem Cell Res. Ther. 12: 345, https://doi.org/10.1186/s13287-021-02399-2.Search in Google Scholar PubMed PubMed Central

Wu, X., Shen, Q., Chang, H., Li, J., and Xing, D. (2022). Promoted CD4(+) T cell-derived IFN-γ/IL-10 by photobiomodulation therapy modulates neurogenesis to ameliorate cognitive deficits in APP/PS1 and 3xTg-AD mice. J. Neuroinflammation 19: 253, https://doi.org/10.1186/s12974-022-02617-5.Search in Google Scholar PubMed PubMed Central

Xu, Z., Guo, X., Yang, Y., Tucker, D., Lu, Y., Xin, N., Zhang, G., Yang, L., Li, J., Du, X., et al.. (2017). Low-level laser irradiation improves depression-like behaviors in mice. Mol. Neurobiol. 54: 4551–4559, https://doi.org/10.1007/s12035-016-9983-2.Search in Google Scholar PubMed PubMed Central

Yan, X., Liu, J., Zhang, Z., Li, W., Sun, S., Zhao, J., Dong, X., Qian, J., and Sun, H. (2017). Low-level laser irradiation modulates brain-derived neurotrophic factor mRNA transcription through calcium-dependent activation of the ERK/CREB pathway. Laser Med. Sci. 32: 169–180, https://doi.org/10.1007/s10103-016-2099-0.Search in Google Scholar PubMed

Yang, L., Tucker, D., Dong, Y., Wu, C., Lu, Y., Li, Y., Zhang, J., Liu, T.C., and Zhang, Q. (2018). Photobiomodulation therapy promotes neurogenesis by improving post-stroke local microenvironment and stimulating neuroprogenitor cells. Exp. Neurol. 299: 86–96, https://doi.org/10.1016/j.expneurol.2017.10.013.Search in Google Scholar PubMed PubMed Central

Yang, L., Dong, Y., Wu, C., Li, Y., Guo, Y., Yang, B., Zong, X., Hamblin, M.R., Liu, T.C., and Zhang, Q. (2019). Photobiomodulation preconditioning prevents cognitive impairment in a neonatal rat model of hypoxia-ischemia. J. Biophot. 12: e201800359, https://doi.org/10.1002/jbio.201800359.Search in Google Scholar PubMed PubMed Central

Zhang, H., Liu, S., Qin, Q., Xu, Z., Qu, Y., Wang, Y., Wang, J., Du, Z., Yuan, S., Hong, S., et al.. (2022). Genetic and pharmacological inhibition of astrocytic Mysm1 alleviates depressive-like disorders by promoting ATP production. Adv. Sci. (Weinh.) 10: e2204463, https://doi.org/10.1002/advs.202204463.Search in Google Scholar PubMed PubMed Central

Zhang, M., Ma, Y., Ye, X., Zhang, N., Pan, L., and Wang, B. (2023). TRP (transient receptor potential) ion channel family: structures, biological functions and therapeutic interventions for diseases. Signal Transduct. Targeted Ther. 8: 261, https://doi.org/10.1038/s41392-023-01464-x.Search in Google Scholar PubMed PubMed Central

Zhang, S., Wang, X., and Jiao, H. (2024). Near-infrared light stimulation regulates neural oscillation and memory behavior of mice with Alzheimer’s disease. Front. Neurosci. 18: 1417178, https://doi.org/10.3389/fnins.2024.1417178.Search in Google Scholar PubMed PubMed Central

Zhao, H., Zhang, K., Tang, R., Meng, H., Zou, Y., Wu, P., Hu, R., Liu, X., Feng, H., and Chen, Y. (2018). TRPV4 blockade preserves the blood-brain barrier by inhibiting stress fiber formation in a rat model of intracerebral hemorrhage. Front. Mol. Neurosci. 11: 97, https://doi.org/10.3389/fnmol.2018.00097.Search in Google Scholar PubMed PubMed Central

Zhou, X.E., He, Y., de Waal, P.W., Gao, X., Kang, Y., Van Eps, N., Yin, Y., Pal, K., Goswami, D., White, T.A., et al.. (2017). Identification of phosphorylation codes for arrestin recruitment by G protein-coupled receptors. Cell 170: 457–469.e413, https://doi.org/10.1016/j.cell.2017.07.002.Search in Google Scholar PubMed PubMed Central

Zomorrodi, R., Loheswaran, G., Pushparaj, A., and Lim, L. (2019). Pulsed near infrared transcranial and intranasal photobiomodulation significantly modulates neural oscillations: a pilot exploratory study. Sci. Rep. 9: 6309, https://doi.org/10.1038/s41598-019-42693-x.Search in Google Scholar PubMed PubMed Central

Zong, S., Wu, M., Gu, J., Liu, T., Guo, R., and Yang, M. (2018). Structure of the intact 14-subunit human cytochrome c oxidase. Cell Res. 28: 1026–1034, https://doi.org/10.1038/s41422-018-0071-1.Search in Google Scholar PubMed PubMed Central

Zorzo, C., Rodríguez-Fernández, L., Martínez, J.A., and Arias, J.L. (2024). Photobiomodulation increases brain metabolic activity through a combination of 810 and 660 wavelengths: a comparative study in male and female rats. Laser Med. Sci. 39: 26, https://doi.org/10.1007/s10103-023-03966-0.Search in Google Scholar PubMed PubMed Central

Received: 2025-05-21
Accepted: 2025-09-10
Published Online: 2025-09-24

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 29.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/revneuro-2025-0073/html?lang=en
Scroll to top button