Abstract
Neurological and neuropsychiatric disorders are among the leading causes of mortality and disability worldwide, with current treatment modalities including traditional therapies, psychological and supportive interventions, and emerging therapeutic approaches. Photobiomodulation (PBM), a neuromodulatory technique using lasers and light-emitting diodes (LEDs), has emerged as a promising intervention for enhancing brain function by stimulating neural activity, thereby protecting brain tissue and restoring function. Despite its widespread application, the precise mechanisms underlying the selection of critical parameters and their associated therapeutic effects remain incompletely understood. This systematic review synthesizes data from multiples studies over the past decade, investigating the effects of PBM on neurological and neuropsychiatric disorders, including traumatic brain injury (TBI), spinal cord injury (SCI), Alzheimer’s disease (AD), Parkinson’s disease (PD), generalized anxiety disorder (GAD), major depressive disorder (MDD), and healthy subjects. Emerging evidence suggests that the therapeutic mechanisms of PBM may involve enhanced energy metabolism, increased cerebral blood flow (CBF), modulation of oxidative stress, anti-inflammatory effects, neuroprotection and regeneration, enhanced synaptic plasticity, and regulation of resting-state brain networks. Regarding parameter selection, wavelength has emerged as a critical factor influencing penetration depth and the specific chromophore responsible for photon absorption and therapeutic efficacy. This review focuses on the characteristics of diverse wavelengths, as well as the roles of multiple chromophores and associated signaling pathways. Different irradiation modalities, including both non-invasive and invasive approaches, are examined, alongside optimal treatment windows for power and fluence. Additionally, less frequently addressed aspects, such as spot area and power density patterns, are considered.
-
Research ethics: Not applicable.
-
Informed consent: Not applicable.
-
Author contributions: Conceptualization, Q.C.; literature search, Q.C. and Z.L.; software, Q.C. and Z.L.; writing – original draft preparation, Q.C.; writing – review and editing, L.W. and H.K.; visualization, Q.C. and Z.L.; supervision, L.W. and H.K.; project administration, L.W. and H.K.; funding acquisition, L.W. All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Use of Large Language Models, AI and Machine Learning Tools: During the preparation of this work the authors employed ChatGPT and Kimi to refine language including grammar and sentence structure. Following the use of these tools, the authors thoroughly reviewed and edited the content as necessary and take full responsibility for the content of the publication.
-
Conflict of interest: The authors state no conflict of interest.
-
Research funding: None declared.
-
Data availability: Not applicable.
References
Amar, D., Gay, N.R., Jimenez-Morales, D., Jean Beltran, P.M., Ramaker, M.E., Raja, A.N., Zhao, B., Sun, Y., Marwaha, S., Gaul, D.A., et al.. (2024). The mitochondrial multi-omic response to exercise training across rat tissues. Cell Metab. 36: 1411–1429.e1410, https://doi.org/10.1016/j.cmet.2023.12.021.Suche in Google Scholar PubMed PubMed Central
Baik, J.S., Lee, T.Y., Kim, N.G., Pak, K., Ko, S.H., Min, J.H., and Shin, Y.I. (2021). Effects of photobiomodulation on changes in cognitive function and regional cerebral blood flow in patients with mild cognitive impairment: a pilot uncontrolled trial. J. Alzheimers Dis. 83: 1513–1519, https://doi.org/10.3233/jad-210386.Suche in Google Scholar
Barbora, A., Bohar, O., Sivan, A.A., Magory, E., Nause, A., and Minnes, R. (2021). Higher pulse frequency of near-infrared laser irradiation increases penetration depth for novel biomedical applications. PLoS One 16: e0245350, https://doi.org/10.1371/journal.pone.0245350.Suche in Google Scholar PubMed PubMed Central
Basualdo Allende, J., Caviedes, R., von Marttens, A., Ramírez, F.G., Piña, I.V., Kuga, M., and Fernández, E. (2024). Effectiveness of Low-Level Laser Therapy in reducing postoperative pain after dental implant surgery: a randomized clinical trial. Photodiagnosis Photodyn. Ther. 49: 104293, https://doi.org/10.1016/j.pdpdt.2024.104293.Suche in Google Scholar PubMed
Benaroya, H. (2020). Brain energetics, mitochondria, and traumatic brain injury. Rev. Neurosci. 31: 363–390, https://doi.org/10.1515/revneuro-2019-0086.Suche in Google Scholar PubMed
Berman, M.H. and Nichols, T.W. (2019). Treatment of neurodegeneration: integrating photobiomodulation and neurofeedback in Alzheimer’s dementia and Parkinson’s: a review. Photobiomodul. Photomed. Laser Surg. 37: 623–634, https://doi.org/10.1089/photob.2019.4685.Suche in Google Scholar PubMed
Bicknell, B., Liebert, A., and Herkes, G. (2024). Parkinson’s disease and photobiomodulation: potential for treatment. J. Pers. Med. 14, https://doi.org/10.3390/jpm14010112.Suche in Google Scholar PubMed PubMed Central
Biswal, B., Yetkin, F.Z., Haughton, V.M., and Hyde, J.S. (1995). Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn. Reson. Med. 34: 537–541, https://doi.org/10.1002/mrm.1910340409.Suche in Google Scholar PubMed
Brown, A.R. and Martinez, M. (2019). From cortex to cord: motor circuit plasticity after spinal cord injury. Neural Regen. Res. 14: 2054–2062, https://doi.org/10.4103/1673-5374.262572.Suche in Google Scholar PubMed PubMed Central
Campos Paiva, A.L., Vitorino Araujo, J.L., Lovato, R.M., and Esteves Veiga, J.C. (2021). Safety and efficacy of 980nm diode laser for brain tumor microsurgery-A pioneer case series. World Neurosurg. 146: e461–e466, https://doi.org/10.1016/j.wneu.2020.10.113.Suche in Google Scholar PubMed
Cardoso, F.D.S., Barrett, D.W., Wade, Z., Gomes da Silva, S., and Gonzalez-Lima, F. (2022). Photobiomodulation of cytochrome c oxidase by chronic transcranial laser in young and aged brains. Front. Neurosci. 16: 818005, https://doi.org/10.3389/fnins.2022.818005.Suche in Google Scholar PubMed PubMed Central
Cassano, P., Petrie, S.R., Mischoulon, D., Cusin, C., Katnani, H., Yeung, A., De Taboada, L., Archibald, A., Bui, E., Baer, L., et al.. (2018). Transcranial photobiomodulation for the treatment of major depressive disorder. The ELATED-2 pilot trial. Photomed. Laser Surg. 36: 634–646, https://doi.org/10.1089/pho.2018.4490.Suche in Google Scholar PubMed PubMed Central
Castellano-Pellicena, I., Uzunbajakava, N.E., Mignon, C., Raafs, B., Botchkarev, V.A., and Thornton, M.J. (2019). Does blue light restore human epidermal barrier function via activation of Opsin during cutaneous wound healing? Laser Surg. Med. 51: 370–382, https://doi.org/10.1002/lsm.23015.Suche in Google Scholar PubMed
Chan, S.T., Mercaldo, N., Figueiro Longo, M.G., Welt, J., Avesta, A., Lee, J., Lev, M.H., Ratai, E.M., Wenke, M.R., Parry, B.A., et al.. (2024). Effects of low-level light therapy on resting-state connectivity following moderate traumatic brain injury: secondary analyses of a double-blinded placebo-controlled study. Radiology 311: e230999, https://doi.org/10.1148/radiol.230999.Suche in Google Scholar PubMed PubMed Central
Chang, S.Y. and Lee, M.Y. (2023). Photobiomodulation of neurogenesis through the enhancement of stem cell and neural progenitor differentiation in the central and peripheral nervous systems. Int. J. Mol. Sci. 24, https://doi.org/10.3390/ijms242015427.Suche in Google Scholar PubMed PubMed Central
Chao, L.L., Barlow, C., Karimpoor, M., and Lim, L. (2020). Changes in brain function and structure after self-administered home photobiomodulation treatment in a concussion case. Front. Neurol. 11: 952, https://doi.org/10.3389/fneur.2020.00952.Suche in Google Scholar PubMed PubMed Central
Chao, L.L. (2019). Effects of home photobiomodulation treatments on cognitive and behavioral function, cerebral perfusion, and resting-state functional connectivity in patients with dementia: a pilot trial. Photobiomodul. Photomed. Laser Surg. 37: 133–141, https://doi.org/10.1089/photob.2018.4555.Suche in Google Scholar PubMed
Chen, A., Du, L., Xu, Y., Chen, L., and Wu, Y. (2005). The effect of blue light exposure on the expression of circadian genes: bmal1 and cryptochrome 1 in peripheral blood mononuclear cells of jaundiced neonates. Pediatr. Res. 58: 1180–1184, https://doi.org/10.1203/01.pdr.0000183663.98446.05.Suche in Google Scholar PubMed
Chen, H., Tu, M., Shi, J., Wang, Y., Hou, Z., and Wang, J. (2021). Effect of photobiomodulation on CCC-ESF reactive oxygen species steady-state in high glucose mediums. Laser Med. Sci. 36: 555–562, https://doi.org/10.1007/s10103-020-03057-4.Suche in Google Scholar PubMed
Chen, C., Bao, Y., Xing, L., Jiang, C., Guo, Y., Tong, S., Zhang, J., Chen, L., and Mao, Y. (2023). Exosomes derived from M2 microglial cells modulated by 1070-nm light improve cognition in an Alzheimer’s disease mouse model. Adv. Sci. (Weinh.) 10: e2304025, https://doi.org/10.1002/advs.202304025.Suche in Google Scholar PubMed PubMed Central
Chen, H., Shi, X., Liu, N., Jiang, Z., Ma, C., Luo, G., Liu, S., Wei, X., Liu, Y., and Ming, D. (2024a). Photobiomodulation therapy mitigates depressive-like behaviors by remodeling synaptic links and mitochondrial function. J. Photochem. Photobiol., B 258: 112998, https://doi.org/10.1016/j.jphotobiol.2024.112998.Suche in Google Scholar PubMed
Chen, Z., Li, M., Wu, C., Su, Y., Feng, S., Deng, Q., Zou, P., Liu, T.C., Duan, R., and Yang, L. (2024b). Photobiomodulation therapy alleviates repeated closed head injury-induced anxiety-like behaviors. J. Biophot. 17: e202300343, https://doi.org/10.1002/jbio.202300343.Suche in Google Scholar PubMed
Colombo, E., Signore, A., Aicardi, S., Zekiy, A., Utyuzh, A., Benedicenti, S., and Amaroli, A. (2021). Experimental and clinical applications of red and near-infrared photobiomodulation on endothelial dysfunction: a review. Biomedicines 9, https://doi.org/10.3390/biomedicines9030274.Suche in Google Scholar PubMed PubMed Central
de Lima, F.M., Albertini, R., Dantas, Y., Maia-Filho, A.L., Santana Cde, L., Castro-Faria-Neto, H.C., França, C., Villaverde, A.B., and Aimbire, F. (2013). Low-level laser therapy restores the oxidative stress balance in acute lung injury induced by gut ischemia and reperfusion. Photochem. Photobiol. 89: 179–188, https://doi.org/10.1111/j.1751-1097.2012.01214.x.Suche in Google Scholar PubMed
de Oliveira, B.H., Lins, E.F., Kunde, N.F., Salgado, A.S.I., Martins, L.M., Bobinski, F., Vieira, W.F., Cassano, P., Quialheiro, A., and Martins, D.F. (2024). Transcranial photobiomodulation increases cognition and serum BDNF levels in adults over 50 years: a randomized, double-blind, placebo-controlled trial. J. Photochem. Photobiol., B 260: 113041, https://doi.org/10.1016/j.jphotobiol.2024.113041.Suche in Google Scholar PubMed
de Oliveira, R.M.W. (2020). Neuroplasticity. J. Chem. Neuroanat. 108: 101822, https://doi.org/10.1016/j.jchemneu.2020.101822.Suche in Google Scholar PubMed
Duan, X., Yao, G., Liu, Z., Cui, R., and Yang, W. (2018). Mechanisms of transcranial magnetic stimulation treating on post-stroke depression. Front. Hum. Neurosci. 12: 215, https://doi.org/10.3389/fnhum.2018.00215.Suche in Google Scholar PubMed PubMed Central
El Khoury, H., Mitrofanis, J., and Henderson, L.A. (2019). Exploring the effects of near infrared light on resting and evoked brain activity in humans using magnetic resonance imaging. Neuroscience 422: 161–171, https://doi.org/10.1016/j.neuroscience.2019.10.037.Suche in Google Scholar PubMed
Fantini, E. and Facella, P. (2020). Cryptochromes in the field: how blue light influences crop development. Physiol. Plant. 169: 336–346, https://doi.org/10.1111/ppl.13088.Suche in Google Scholar PubMed
Fear, E.J., Torkelsen, F.H., Zamboni, E., Chen, K.J., Scott, M., Jeffery, G., Baseler, H., and Kennerley, A.J. (2023). Use of (31) P magnetisation transfer magnetic resonance spectroscopy to measure ATP changes after 670 nm transcranial photobiomodulation in older adults. Aging Cell 22: e14005, https://doi.org/10.1111/acel.14005.Suche in Google Scholar PubMed PubMed Central
Fels, B. and Kusche-Vihrog, K. (2020). It takes more than two to tango: mechanosignaling of the endothelial surface. Pfluegers Arch. 472: 419–433, https://doi.org/10.1007/s00424-020-02369-2.Suche in Google Scholar PubMed PubMed Central
Feng, Y., Yang, L., Ma, X., Huang, Z., Zong, X., Citadin, C.T., Lin, H.W., and Zhang, Q. (2023). Photobiomodulation treatment inhibits neurotoxic astrocytic polarization and protects neurons in in vitro and in vivo stroke models. Neurochem. Int. 162: 105464, https://doi.org/10.1016/j.neuint.2022.105464.Suche in Google Scholar PubMed
Flyktman, A., Jernfors, T., Manttari, S., Nissila, J., Timonen, M., and Saarela, S. (2017). Transcranial light alters melanopsin and monoamine production in mouse (Mus Musculus) brain. J. Neurol. Res. 7: 39–45.10.14740/jnr427wSuche in Google Scholar
Ganeshan, V., Skladnev, N.V., Kim, J.Y., Mitrofanis, J., Stone, J., and Johnstone, D.M. (2019). Pre-conditioning with remote photobiomodulation modulates the brain transcriptome and protects against MPTP insult in mice. Neuroscience 400: 85–97, https://doi.org/10.1016/j.neuroscience.2018.12.050.Suche in Google Scholar PubMed
Ghaderi, A.H., Jahan, A., Akrami, F., and Moghadam Salimi, M. (2021). Transcranial photobiomodulation changes topology, synchronizability, and complexity of resting state brain networks. J Neural Eng. 18, https://doi.org/10.1088/1741-2552/abf97c.Suche in Google Scholar PubMed
Gholami, L., Afshar, S., Arkian, A., Saeidijam, M., Hendi, S.S., Mahmoudi, R., Khorsandi, K., Hashemzehi, H., and Fekrazad, R. (2022). NIR irradiation of human buccal fat pad adipose stem cells and its effect on TRP ion channels. Laser Med. Sci. 37: 3681–3692, https://doi.org/10.1007/s10103-022-03652-7.Suche in Google Scholar PubMed
Golovynska, I., Golovynskyi, S., Stepanov, Y.V., Garmanchuk, L.V., Stepanova, L.I., Qu, J., and Ohulchanskyy, T.Y. (2019). Red and near-infrared light induces intracellular Ca(2+) flux via the activation of glutamate N-methyl-D-aspartate receptors. J. Cell. Physiol. 234: 15989–16002, https://doi.org/10.1002/jcp.28257.Suche in Google Scholar PubMed
Gowda, P., Reddy, P.H., and Kumar, S. (2022). Deregulated mitochondrial microRNAs in Alzheimer’s disease: focus on synapse and mitochondria. Ageing Res. Rev. 73: 101529, https://doi.org/10.1016/j.arr.2021.101529.Suche in Google Scholar PubMed PubMed Central
Guan, R., Zou, W., Dai, X., Yu, X., Liu, H., Chen, Q., and Teng, W. (2018). Mitophagy, a potential therapeutic target for stroke. J. Biomed. Sci. 25: 87, https://doi.org/10.1186/s12929-018-0487-4.Suche in Google Scholar PubMed PubMed Central
Gulyaeva, N.V. (2017a). Interplay between brain BDNF and glutamatergic systems: a brief state of the evidence and association with the pathogenesis of depression. Biochemistry (Mosc.) 82: 301–307, https://doi.org/10.1134/s0006297917030087.Suche in Google Scholar
Gulyaeva, N.V. (2017b). Molecular mechanisms of neuroplasticity: an expanding universe. Biochemistry (Mosc.) 82: 237–242, https://doi.org/10.1134/s0006297917030014.Suche in Google Scholar
Hadadgar, S., Peimani, J., Hassani-Abharian, P., Mashayekh, M., Peivandi, P., and Fekrazad, R. (2024). Comparative effects of cognitive rehabilitation and photobiomodulation on drug craving in treatment-seeking opioid addicts. Photobiomodul. Photomed. Laser Surg. 42: 54–65, https://doi.org/10.1089/photob.2023.0064.Suche in Google Scholar PubMed
Hajesmaelzade, E., Mohammadi, M., Kakooei, S., Solimei, L., Benedicenti, S., and Chiniforush, N. (2024). Efficacy of photobiomodulation therapy utilizing 808 nm and 660 nm alone and in combination for treatment of paresthesia in rats. Biomedicines 13, https://doi.org/10.3390/biomedicines13010065.Suche in Google Scholar PubMed PubMed Central
Hamblin, M.R. and Liebert, A. (2022). Photobiomodulation therapy mechanisms beyond cytochrome c oxidase. Photobiomodul. Photomed. Laser Surg. 40: 75–77, https://doi.org/10.1089/photob.2021.0119.Suche in Google Scholar PubMed
Hamblin, M.R. (2017). Mechanisms and applications of the anti-inflammatory effects of photobiomodulation. AIMS Biophys. 4: 337–361, https://doi.org/10.3934/biophy.2017.3.337.Suche in Google Scholar PubMed PubMed Central
Hamblin, M.R. (2018a). Mechanisms and mitochondrial redox signaling in photobiomodulation. Photochem. Photobiol. 94: 199–212, https://doi.org/10.1111/php.12864.Suche in Google Scholar PubMed PubMed Central
Hamblin, M.R. (2018b). Photobiomodulation for traumatic brain injury and stroke. J. Neurosci. Res. 96: 731–743, https://doi.org/10.1002/jnr.24190.Suche in Google Scholar PubMed PubMed Central
Hamblin, M.R. (2019). Photobiomodulation for Alzheimer’s disease: has the light dawned? Photonics 6, https://doi.org/10.3390/photonics6030077.Suche in Google Scholar PubMed PubMed Central
Hao, W., Dai, X., Wei, M., Li, S., Peng, M., Xue, Q., Lin, H., Wang, H., Song, P., and Wang, Y. (2024). Efficacy of transcranial photobiomodulation in the treatment for major depressive disorder: a TMS-EEG and pilot study. Photodermatol. Photoimmunol. Photomed. 40: e12957, https://doi.org/10.1111/phpp.12957.Suche in Google Scholar PubMed
Hearne, L.J., Cocchi, L., Zalesky, A., and Mattingley, J.B. (2017). Reconfiguration of brain network architectures between resting-state and complexity-dependent cognitive reasoning. J. Neurosci. 37: 8399–8411, https://doi.org/10.1523/jneurosci.0485-17.2017.Suche in Google Scholar
Heiskanen, V. and Hamblin, M.R. (2018). Photobiomodulation: lasers vs. light emitting diodes? Photochem. Photobiol. Sci. 17: 1003–1017, https://doi.org/10.1039/c8pp00176f.Suche in Google Scholar
Henderson, T.A. (2024). Can infrared light really be doing what we claim it is doing? Infrared light penetration principles, practices, and limitations. Front. Neurol. 15: 1398894, https://doi.org/10.3389/fneur.2024.1398894.Suche in Google Scholar PubMed PubMed Central
Heo, J.C., Park, J.A., Kim, D.K., and Lee, J.H. (2019). Photobiomodulation (660 nm) therapy reduces oxidative stress and induces BDNF expression in the hippocampus. Sci. Rep. 9: 10114, https://doi.org/10.1038/s41598-019-46490-4.Suche in Google Scholar PubMed PubMed Central
Hipskind, S.G., Grover, F.L.Jr., Fort, T.R., Helffenstein, D., Burke, T.J., Quint, S.A., Bussiere, G., Stone, M., and Hurtado, T. (2019). Pulsed transcranial red/near-infrared light therapy using light-emitting diodes improves cerebral blood flow and cognitive function in veterans with chronic traumatic brain injury: a case series. Photobiomodulation Photomed. Laser Surg. 37: 77–84, https://doi.org/10.1089/pho.2018.4489.Suche in Google Scholar PubMed
Hoang, N., Schleicher, E., Kacprzak, S., Bouly, J.P., Picot, M., Wu, W., Berndt, A., Wolf, E., Bittl, R., and Ahmad, M. (2008). Human and Drosophila cryptochromes are light activated by flavin photoreduction in living cells. PLoS Biol. 6: e160, https://doi.org/10.1371/journal.pbio.0060160.Suche in Google Scholar PubMed PubMed Central
Hong, N., Kang, G.W., Park, J.O., Chung, P.S., Lee, M.Y., and Ahn, J.C. (2022). Photobiomodulation regulates adult neurogenesis in the hippocampus in a status epilepticus animal model. Sci. Rep. 12: 15246, https://doi.org/10.1038/s41598-022-19607-5.Suche in Google Scholar PubMed PubMed Central
Huang, X., Huang, P., Huang, L., Hu, Z., Liu, X., Shen, J., Xi, Y., Yang, Y., Fu, Y., Tao, Q., et al.. (2021). A visual circuit related to the nucleus reuniens for the spatial-memory-promoting effects of light treatment. Neuron 109: 347–362.e347, https://doi.org/10.1016/j.neuron.2020.10.023.Suche in Google Scholar PubMed
Hwang, M.H., Lee, J.W., Son, H.G., Kim, J., and Choi, H. (2020). Effects of photobiomodulation on annulus fibrosus cells derived from degenerative disc disease patients exposed to microvascular endothelial cells conditioned medium. Sci. Rep. 10: 9655, https://doi.org/10.1038/s41598-020-66689-0.Suche in Google Scholar PubMed PubMed Central
Ju, C., Ma, Y.G., Zuo, X.S., Wang, X.K., Song, Z.W., Zhang, Z.H., Zhu, Z.J., Li, X., Liang, Z.W., Ding, T., et al.. (2023). Potential targets and mechanisms of photobiomodulation for spinal cord injury. Neural Regen. Res. 18: 1782–1788, https://doi.org/10.4103/1673-5374.361534.Suche in Google Scholar PubMed PubMed Central
Jung, T.M., Lee, J.H., Heo, J.C., and Kim, C.H. (2024). Photobiomodulation therapy at 660 nm inhibits hippocampal neuroinflammation in a lipopolysaccharide-challenged rat model. Biomedicines 12, https://doi.org/10.3390/biomedicines12112514.Suche in Google Scholar PubMed PubMed Central
Karu, T. (1999). Primary and secondary mechanisms of action of visible to near-IR radiation on cells. J. Photochem. Photobiol., B 49: 1–17, https://doi.org/10.1016/s1011-1344(98)00219-x.Suche in Google Scholar
Katz, B. and Minke, B. (2018). The Drosophila light-activated TRP and TRPL channels - targets of the phosphoinositide signaling cascade. Prog. Retin. Eye Res. 66: 200–219, https://doi.org/10.1016/j.preteyeres.2018.05.001.Suche in Google Scholar PubMed
Kazmi, S., Farajdokht, F., Meynaghizadeh-Zargar, R., Sadigh-Eteghad, S., Pasokh, A., Farzipour, M., Farazi, N., Hamblin, M.R., and Mahmoudi, J. (2023). Transcranial photobiomodulation mitigates learning and memory impairments induced by hindlimb unloading in a mouse model of microgravity exposure by suppression of oxidative stress and neuroinflammation signaling pathways. Brain Res. 1821: 148583, https://doi.org/10.1016/j.brainres.2023.148583.Suche in Google Scholar PubMed
Kempuraj, D., Ahmed, M.E., Selvakumar, G.P., Thangavel, R., Raikwar, S.P., Zaheer, S.A., Iyer, S.S., Govindarajan, R., Nattanmai Chandrasekaran, P., Burton, C., et al.. (2021). Acute traumatic brain injury-induced neuroinflammatory response and neurovascular disorders in the brain. Neurotox. Res. 39: 359–368, https://doi.org/10.1007/s12640-020-00288-9.Suche in Google Scholar PubMed PubMed Central
Khoury, H.E., Mitrofanis, J., and Henderson, L.A. (2021). Does photobiomodulation influence the resting-state brain networks in young human subjects? Exp. Brain Res. 239: 435–449, https://doi.org/10.1007/s00221-020-05981-x.Suche in Google Scholar PubMed
Ksendzovsky, A., Pomeraniec, I.J., Zaghloul, K.A., Provencio, J.J., and Provencio, I. (2017). Clinical implications of the melanopsin-based non-image-forming visual system. Neurology 88: 1282–1290, https://doi.org/10.1212/wnl.0000000000003761.Suche in Google Scholar PubMed PubMed Central
Lapchak, P.A., Boitano, P.D., Butte, P.V., Fisher, D.J., Hölscher, T., Ley, E.J., Nuño, M., Voie, A.H., and Rajput, P.S. (2015). Transcranial near-infrared laser transmission (NILT) profiles (800 nm): systematic comparison in four common research species. PLoS One 10: e0127580, https://doi.org/10.1371/journal.pone.0127580.Suche in Google Scholar PubMed PubMed Central
Lee, H.I., Lee, S.W., Kim, S.Y., Kim, N.G., Park, K.J., Choi, B.T., Shin, Y.I., and Shin, H.K. (2017). Pretreatment with light-emitting diode therapy reduces ischemic brain injury in mice through endothelial nitric oxide synthase-dependent mechanisms. Biochem. Biophys. Res. Commun. 486: 945–950, https://doi.org/10.1016/j.bbrc.2017.03.131.Suche in Google Scholar PubMed
Li, B., Golovynska, I., Stepanov, Y.V., Golovynskyi, S., Golovynskyi, A., Kolesnik, D., Stepanova, L.I., Lai, P., Lin, F., and Qu, J. (2025). Transcranial photobiomodulation therapy with 808 nm light changes expression of genes and proteins associated with neuroprotection, neuroinflammation, oxidative stress, and Alzheimer’s disease: whole RNA sequencing of mouse cortex and hippocampus. PLoS One 20: e0326881, https://doi.org/10.1371/journal.pone.0326881.Suche in Google Scholar PubMed PubMed Central
Lima, P.L.V., Pereira, C.V., Nissanka, N., Arguello, T., Gavini, G., Maranduba, C., Diaz, F., and Moraes, C.T. (2019). Photobiomodulation enhancement of cell proliferation at 660 nm does not require cytochrome c oxidase. J. Photochem. Photobiol., B 194: 71–75, https://doi.org/10.1016/j.jphotobiol.2019.03.015.Suche in Google Scholar PubMed
Lipko, N.B. (2022). Photobiomodulation: evolution and adaptation. Photobiomodul. Photomed. Laser Surg. 40: 213–233, https://doi.org/10.1089/photob.2021.0145.Suche in Google Scholar PubMed
López-Doménech, G. and Kittler, J.T. (2023). Mitochondrial regulation of local supply of energy in neurons. Curr. Opin. Neurobiol. 81: 102747, https://doi.org/10.1016/j.conb.2023.102747.Suche in Google Scholar PubMed PubMed Central
Luck, M., Mathes, T., Bruun, S., Fudim, R., Hagedorn, R., Tran Nguyen, T.M., Kateriya, S., Kennis, J.T., Hildebrandt, P., and Hegemann, P. (2012). A photochromic histidine kinase rhodopsin (HKR1) that is bimodally switched by ultraviolet and blue light. J. Biol. Chem. 287: 40083–40090, https://doi.org/10.1074/jbc.m112.401604.Suche in Google Scholar
Lutfy, R.H., Essawy, A.E., Mohammed, H.S., Shakweer, M.M., and Salam, S.A. (2024). Transcranial irradiation mitigates paradoxical sleep deprivation effect in an age-dependent manner: role of BDNF and GLP-1. Neurochem. Res. 49: 919–934, https://doi.org/10.1007/s11064-023-04071-y.Suche in Google Scholar PubMed PubMed Central
Ma, X. and Liu, W. (2019). Calcium signaling in brain microvascular endothelial cells and its roles in the function of the blood-brain barrier. Neuroreport 30: 1271–1277, https://doi.org/10.1097/wnr.0000000000001357.Suche in Google Scholar
Ma, J.X., Yang, Q.M., Xia, Y.C., Zhang, W.G., and Nie, F.F. (2018). Effect of 810 nm near-infrared laser on revascularization of ischemic flaps in rats. Photomed. Laser Surg. 36: 290–297, https://doi.org/10.1089/pho.2017.4360.Suche in Google Scholar PubMed
Maiello, M., Losiewicz, O.M., Bui, E., Spera, V., Hamblin, M.R., Marques, L., and Cassano, P. (2019). Transcranial photobiomodulation with near-infrared light for generalized anxiety disorder: a pilot study. Photobiomodul. Photomed. Laser Surg. 37: 644–650, https://doi.org/10.1089/photob.2019.4677.Suche in Google Scholar PubMed PubMed Central
Maksimovich, I.V. (2019). Intracerebral transcatheter laser photobiomodulation therapy in the treatment of binswanger’s disease and vascular parkinsonism: research and clinical experience. Photobiomodul. Photomed. Laser Surg. 37: 606–614, https://doi.org/10.1089/photob.2019.4649.Suche in Google Scholar PubMed
Martins, D.O., Marques, D.P., and Chacur, M. (2024). Enhancing nerve regeneration in infraorbital nerve injury rat model: effects of vitamin B complex and photobiomodulation. Laser Med. Sci. 39: 119, https://doi.org/10.1007/s10103-024-04067-2.Suche in Google Scholar PubMed
Mohammed, H.S., Hosny, E.N., Sawie, H.G., and Khadrawy, Y.A. (2023). Transcranial photobiomodulation ameliorates midbrain and striatum neurochemical impairments and behavioral deficits in reserpine-induced parkinsonism in rats. Photochem. Photobiol. Sci. 22: 2891–2904, https://doi.org/10.1007/s43630-023-00497-z.Suche in Google Scholar PubMed
Mosca, R.C., Ong, A.A., Albasha, O., Bass, K., and Arany, P. (2019). Photobiomodulation therapy for wound care: a potent, noninvasive, photoceutical approach. Adv. Skin Wound Care 32: 157–167, https://doi.org/10.1097/01.asw.0000553600.97572.d2.Suche in Google Scholar PubMed
Nadezhdin, K.D., Talyzina, I.A., Parthasarathy, A., Neuberger, A., Zhang, D.X., and Sobolevsky, A.I. (2023). Structure of human TRPV4 in complex with GTPase RhoA. Nat. Commun. 14: 3733, https://doi.org/10.1016/j.bpj.2023.11.312.Suche in Google Scholar
Naeser, M.A., Ho, M.D., Martin, P.I., Hamblin, M.R., and Koo, B.B. (2020). Increased functional connectivity within intrinsic neural networks in chronic stroke following treatment with red/near-infrared transcranial photobiomodulation: case series with improved naming in aphasia. Photobiomodul. Photomed. Laser Surg. 38: 115–131, https://doi.org/10.1089/photob.2019.4630.Suche in Google Scholar PubMed
Naeser, M.A., Martin, P.I., Ho, M.D., Krengel, M.H., Bogdanova, Y., Knight, J.A., Hamblin, M.R., Fedoruk, A.E., Poole, L.G., Cheng, C., et al.. (2023). Transcranial photobiomodulation treatment: significant improvements in four ex-football players with possible chronic traumatic encephalopathy. J. Alzheimers Dis. Rep. 7: 77–105, https://doi.org/10.3233/adr-220022.Suche in Google Scholar
Navarro, G., Gómez-Autet, M., Morales, P., Rebassa, J.B., Llinas Del Torrent, C., Jagerovic, N., Pardo, L., and Franco, R. (2024). Homodimerization of CB(2) cannabinoid receptor triggered by a bivalent ligand enhances cellular signaling. Pharmacol. Res. 208: 107363, https://doi.org/10.1016/j.phrs.2024.107363.Suche in Google Scholar PubMed
Nawashiro, H., Sato, S., Kawauchi, S., Takeuchi, S., Nagatani, K., Yoshihara, N., and Shinmoto, H. (2017). Blood-oxygen-level-dependent (BOLD) functional magnetic resonance imaging (fMRI) during transcranial near-infrared laser irradiation. Brain Stimul. 10: 1136–1138, https://doi.org/10.1016/j.brs.2017.08.010.Suche in Google Scholar PubMed
Nie, F., Hao, S., Ji, Y., Zhang, Y., Sun, H., Will, M., Han, W., and Ding, Y. (2023). Biphasic dose response in the anti-inflammation experiment of PBM. Laser Med. Sci. 38: 66, https://doi.org/10.1007/s10103-022-03664-3.Suche in Google Scholar PubMed
Nogueira, A.B., Nogueira, A.B., Veiga, J.C.E., and Teixeira, M.J. (2017). Hypothesis on the role of cryptochromes in inflammation and subarachnoid hemorrhage outcome. Front. Neurol. 8: 637, https://doi.org/10.3389/fneur.2017.00637.Suche in Google Scholar PubMed PubMed Central
Okada, E. and Delpy, D.T. (2003). Near-infrared light propagation in an adult head model. II. Effect of superficial tissue thickness on the sensitivity of the near-infrared spectroscopy signal. Appl. Opt. 42: 2915–2922, https://doi.org/10.1364/ao.42.002915.Suche in Google Scholar PubMed
Ozturk, N., Selby, C.P., Annayev, Y., Zhong, D., and Sancar, A. (2011). Reaction mechanism of Drosophila cryptochrome. Proc. Natl. Acad. Sci. U. S. A. 108: 516–521, https://doi.org/10.1073/pnas.1017093108.Suche in Google Scholar PubMed PubMed Central
Park, J.O., Hong, N., Lee, M.Y., and Ahn, J.C. (2024). Photobiomodulation regulates astrocyte activity and ameliorates scopolamine-induced cognitive behavioral decline. Front. Cell. Neurosci. 18: 1448005, https://doi.org/10.3389/fncel.2024.1448005.Suche in Google Scholar PubMed PubMed Central
Pluimer, B.R., Colt, M., and Zhao, Z. (2020). G protein-coupled receptors in the mammalian blood-brain barrier. Front. Cell. Neurosci. 14: 139, https://doi.org/10.3389/fncel.2020.00139.Suche in Google Scholar PubMed PubMed Central
Pokorny, R., Klar, T., Hennecke, U., Carell, T., Batschauer, A., and Essen, L.O. (2008). Recognition and repair of UV lesions in loop structures of duplex DNA by DASH-type cryptochrome. Proc. Natl. Acad. Sci. U. S. A. 105: 21023–21027, https://doi.org/10.1073/pnas.0805830106.Suche in Google Scholar PubMed PubMed Central
Popova, N.K., Ilchibaeva, T.V., and Naumenko, V.S. (2017). Neurotrophic factors (BDNF and GDNF) and the serotonergic system of the brain. Biochemistry (Mosc.) 82: 308–317, https://doi.org/10.1134/s0006297917030099.Suche in Google Scholar
Pourmemar, E., Majdi, A., Haramshahi, M., Talebi, M., Karimi, P., and Sadigh-Eteghad, S. (2017). Intranasal cerebrolysin attenuates learning and memory impairments in D-galactose-induced senescence in mice. Exp. Gerontol. 87: 16–22, https://doi.org/10.1016/j.exger.2016.11.011.Suche in Google Scholar PubMed
Prado, T.P., Zanchetta, F.C., Barbieri, B., Aparecido, C., Melo Lima, M.H., and Araujo, E.P. (2023). Photobiomodulation with blue light on wound healing: a scoping review. Life (Basel) 13, https://doi.org/10.3390/life13020575.Suche in Google Scholar PubMed PubMed Central
Pruitt, T., Davenport, E.M., Proskovec, A.L., Maldjian, J.A., and Liu, H. (2024). Simultaneous MEG and EEG source imaging of electrophysiological activity in response to acute transcranial photobiomodulation. Front. Neurosci. 18: 1368172, https://doi.org/10.3389/fnins.2024.1368172.Suche in Google Scholar PubMed PubMed Central
Rohringer, S., Holnthoner, W., Chaudary, S., Slezak, P., Priglinger, E., Strassl, M., Pill, K., Mühleder, S., Redl, H., and Dungel, P. (2017). The impact of wavelengths of LED light-therapy on endothelial cells. Sci. Rep. 7: 10700, https://doi.org/10.1038/s41598-017-11061-y.Suche in Google Scholar PubMed PubMed Central
Rosenbaum, T. and Islas, L.D. (2023). Molecular physiology of TRPV channels: controversies and future challenges. Annu. Rev. Physiol. 85: 293–316, https://doi.org/10.1146/annurev-physiol-030222-012349.Suche in Google Scholar PubMed
Rosenkranz, S.C., Shaposhnykov, A., Schnapauff, O., Epping, L., Vieira, V., Heidermann, K., Schattling, B., Tsvilovskyy, V., Liedtke, W., Meuth, S.G., et al.. (2020). TRPV4-Mediated regulation of the blood brain barrier is abolished during inflammation. Front. Cell Dev. Biol. 8: 849, https://doi.org/10.3389/fcell.2020.00849.Suche in Google Scholar PubMed PubMed Central
Salehpour, F., Rasta, S.H., Mohaddes, G., Sadigh-Eteghad, S., and Salarirad, S. (2016). Therapeutic effects of 10-HzPulsed wave lasers in rat depression model: a comparison between near-infrared and red wavelengths. Laser Surg. Med. 48: 695–705, https://doi.org/10.1002/lsm.22542.Suche in Google Scholar PubMed
Salehpour, F., Ahmadian, N., Rasta, S.H., Farhoudi, M., Karimi, P., and Sadigh-Eteghad, S. (2017). Transcranial low-level laser therapy improves brain mitochondrial function and cognitive impairment in D-galactose-induced aging mice. Neurobiol. Aging 58: 140–150, https://doi.org/10.1016/j.neurobiolaging.2017.06.025.Suche in Google Scholar PubMed
Salehpour, F., Farajdokht, F., Erfani, M., Sadigh-Eteghad, S., Shotorbani, S.S., Hamblin, M.R., Karimi, P., Rasta, S.H., and Mahmoudi, J. (2018a). Transcranial near-infrared photobiomodulation attenuates memory impairment and hippocampal oxidative stress in sleep-deprived mice. Brain Res. 1682: 36–43, https://doi.org/10.1016/j.brainres.2017.12.040.Suche in Google Scholar PubMed PubMed Central
Salehpour, F., Mahmoudi, J., Kamari, F., Sadigh-Eteghad, S., Rasta, S.H., and Hamblin, M.R. (2018b). Brain photobiomodulation therapy: a narrative review. Mol. Neurobiol. 55: 6601–6636, https://doi.org/10.1007/s12035-017-0852-4.Suche in Google Scholar PubMed PubMed Central
Salim, S. (2017). Oxidative stress and the central nervous system. J. Pharmacol. Exp. Ther. 360: 201–205, https://doi.org/10.1124/jpet.116.237503.Suche in Google Scholar PubMed PubMed Central
Saltmarche, A.E., Naeser, M.A., Ho, K.F., Hamblin, M.R., and Lim, L. (2017). Significant improvement in cognition in mild to moderately severe dementia cases treated with transcranial plus intranasal photobiomodulation: case series report. Photomed. Laser Surg. 35: 432–441, https://doi.org/10.1089/pho.2016.4227.Suche in Google Scholar PubMed PubMed Central
San Miguel, M., Martin, K.L., Stone, J., and Johnstone, D.M. (2019). Photobiomodulation mitigates cerebrovascular leakage induced by the parkinsonian neurotoxin MPTP. Biomolecules 9, https://doi.org/10.3390/biom9100564.Suche in Google Scholar PubMed PubMed Central
Sancho-Balsells, A., Borràs-Pernas, S., Flotta, F., Chen, W., Del Toro, D., Rodríguez, M.J., Alberch, J., Blivet, G., Touchon, J., Xifró, X., et al.. (2024). Brain-gut photobiomodulation restores cognitive alterations in chronically stressed mice through the regulation of Sirt1 and neuroinflammation. J. Affect. Disord. 354: 574–588, https://doi.org/10.1016/j.jad.2024.03.075.Suche in Google Scholar PubMed
Saucedo, C.L., Courtois, E.C., Wade, Z.S., Kelley, M.N., Kheradbin, N., Barrett, D.W., and Gonzalez-Lima, F. (2021). Transcranial laser stimulation: mitochondrial and cerebrovascular effects in younger and older healthy adults. Brain Stimul. 14: 440–449, https://doi.org/10.1016/j.brs.2021.02.011.Suche in Google Scholar PubMed
Schwarz, T.L. (2013). Mitochondrial trafficking in neurons. Cold Spring Harb. Perspect. Biol. 5, https://doi.org/10.1101/cshperspect.a011304.Suche in Google Scholar PubMed PubMed Central
Shabab, T., Khanabdali, R., Moghadamtousi, S.Z., Kadir, H.A., and Mohan, G. (2017). Neuroinflammation pathways: a general review. Int. J. Neurosci. 127: 624–633, https://doi.org/10.1080/00207454.2016.1212854.Suche in Google Scholar PubMed
Shan, Y.C., Fang, W., Chang, Y.C., Chang, W.D., and Wu, J.H. (2021). Effect of near-infrared pulsed light on the human brain using Electroencephalography. Evid Based Complement Alternat. Med. 2021: 6693916, https://doi.org/10.1155/2021/6693916.Suche in Google Scholar PubMed PubMed Central
Sharma, S.K., Kharkwal, G.B., Sajo, M., Huang, Y.Y., De Taboada, L., McCarthy, T., and Hamblin, M.R. (2011). Dose response effects of 810 nm laser light on mouse primary cortical neurons. Laser Surg. Med. 43: 851–859, https://doi.org/10.1002/lsm.21100.Suche in Google Scholar PubMed PubMed Central
Sommer, A.P., Haddad, M., and Fecht, H.J. (2015). Light effect on water viscosity: implication for ATP biosynthesis. Sci. Rep. 5: 12029, https://doi.org/10.1038/srep12029.Suche in Google Scholar PubMed PubMed Central
Sommer, A.P., Schemmer, P., Pavláth, A.E., Försterling, H.D., Mester Á, R., and Trelles, M.A. (2020). Quantum biology in low level light therapy: death of a dogma. Ann. Transl. Med. 8: 440, https://doi.org/10.21037/atm.2020.03.159.Suche in Google Scholar PubMed PubMed Central
Song, J.W., Li, K., Liang, Z.W., Dai, C., Shen, X.F., Gong, Y.Z., Wang, S., Hu, X.Y., and Wang, Z. (2017). Low-level laser facilitates alternatively activated macrophage/microglia polarization and promotes functional recovery after crush spinal cord injury in rats. Sci. Rep. 7: 620, https://doi.org/10.1038/s41598-017-00553-6.Suche in Google Scholar PubMed PubMed Central
Spera, V., Sitnikova, T., Ward, M.J., Farzam, P., Hughes, J., Gazecki, S., Bui, E., Maiello, M., De Taboada, L., Hamblin, M.R., et al.. (2021). Pilot study on dose-dependent effects of transcranial photobiomodulation on brain electrical oscillations: a potential therapeutic target in Alzheimer’s disease. J. Alzheimers Dis. 83: 1481–1498, https://doi.org/10.3233/jad-210058.Suche in Google Scholar PubMed
Starnawska, A., Tan, Q., Soerensen, M., McGue, M., Mors, O., Børglum, A.D., Christensen, K., Nyegaard, M., and Christiansen, L. (2019). Epigenome-wide association study of depression symptomatology in elderly monozygotic twins. Ann. Transl. Med. 9: 214, https://doi.org/10.1038/s41398-019-0548-9.Suche in Google Scholar PubMed PubMed Central
Startek, J.B., Boonen, B., López-Requena, A., Talavera, A., Alpizar, Y.A., Ghosh, D., Van Ranst, N., Nilius, B., Voets, T., and Talavera, K. (2019a). Mouse TRPA1 function and membrane localization are modulated by direct interactions with cholesterol. Elife 8, https://doi.org/10.7554/elife.46084.Suche in Google Scholar
Startek, J.B., Boonen, B., Talavera, K., and Meseguer, V. (2019b). TRP channels as sensors of chemically-induced changes in cell membrane mechanical properties. Int. J. Mol. Sci. 20, https://doi.org/10.3390/ijms20020371.Suche in Google Scholar PubMed PubMed Central
Statha, D., Sfiniadakis, I., Rallis, M., Anastassopoulou, J., and Alexandratou, E. (2025). Investigating the wound healing potential of low-power 661 nm laser light in a pigmented hairless murine model. Photochem. Photobiol. Sci. 24: 779–790, https://doi.org/10.1007/s43630-025-00725-8.Suche in Google Scholar PubMed
Stevens, A.R., Hadis, M., Alldrit, H., Milward, M.R., Di Pietro, V., Gendoo, D.M.A., Belli, A., Palin, W., Davies, D.J., and Ahmed, Z. (2025). Evaluation of transcriptomic changes after photobiomodulation in spinal cord injury. Sci. Rep. 15: 3193, https://doi.org/10.1038/s41598-025-87300-4.Suche in Google Scholar PubMed PubMed Central
Sun, Q., Kim, H.E., Cho, H., Shi, S., Kim, B., and Kim, O. (2018a). Red light-emitting diode irradiation regulates oxidative stress and inflammation through SPHK1/NF-κB activation in human keratinocytes. J. Photochem. Photobiol., B 186: 31–40, https://doi.org/10.1016/j.jphotobiol.2018.05.015.Suche in Google Scholar PubMed
Sun, S.K., Wang, H.F., and Yan, X.P. (2018b). Engineering persistent luminescence nanoparticles for biological applications: from biosensing/bioimaging to theranostics. Acc. Chem. Res. 51: 1131–1143, https://doi.org/10.1021/acs.accounts.7b00619.Suche in Google Scholar PubMed
Sun, J., Zhang, J., Li, K., Zheng, Q., Song, J., Liang, Z., Ding, T., Qiao, L., Zhang, J., Hu, X., et al.. (2020). Photobiomodulation therapy inhibit the activation and secretory of astrocytes by altering macrophage polarization. Cell. Mol. Neurobiol. 40: 141–152, https://doi.org/10.1007/s10571-019-00728-x.Suche in Google Scholar PubMed PubMed Central
Sunemi, S.M., Teixeira, I.L.A., Mansano, B., de Oliveira, H.A., Antonio, E.L., de Souza Oliveira, C., Leal-Junior, E.C.P., Tucci, P.J.F., and Serra, A.J. (2021). Post-resistance exercise photobiomodulation therapy has a more effective antioxidant effect than pre-application on muscle oxidative stress. Photochem. Photobiol. Sci. 20: 585–595, https://doi.org/10.1007/s43630-021-00042-w.Suche in Google Scholar PubMed
Takeuchi, M., Nishisho, T., Toki, S., Kawaguchi, S., Tamaki, S., Oya, T., Uto, Y., Katagiri, T., and Sairyo, K. (2023). Blue light induces apoptosis and autophagy by promoting ROS-mediated mitochondrial dysfunction in synovial sarcoma. Cancer Med. 12: 9668–9683, https://doi.org/10.1002/cam4.5664.Suche in Google Scholar PubMed PubMed Central
Tao, L., Liu, Q., Zhang, F., Fu, Y., Zhu, X., Weng, X., Han, H., Huang, Y., Suo, Y., Chen, L., et al.. (2021). Microglia modulation with 1070-nm light attenuates Aβ burden and cognitive impairment in Alzheimer’s disease mouse model. Light Sci. Appl. 10: 179, https://doi.org/10.1038/s41377-021-00617-3.Suche in Google Scholar PubMed PubMed Central
Tardy, A.L., Pouteau, E., Marquez, D., Yilmaz, C., and Scholey, A. (2020). Vitamins and minerals for energy, fatigue and cognition: a narrative review of the biochemical and clinical evidence. Nutrients 12, https://doi.org/10.3390/nu12010228.Suche in Google Scholar PubMed PubMed Central
Tedford, C.E., DeLapp, S., Jacques, S., and Anders, J. (2015). Quantitative analysis of transcranial and intraparenchymal light penetration in human cadaver brain tissue. Laser Surg. Med. 47: 312–322, https://doi.org/10.1002/lsm.22343.Suche in Google Scholar PubMed
Thunshelle, C. and Hamblin, M.R. (2016). Transcranial low-level laser (light) therapy for brain injury. Photomed. Laser Surg. 34: 587–598, https://doi.org/10.1089/pho.2015.4051.Suche in Google Scholar PubMed PubMed Central
Truong, N.C.D., Wang, X., and Liu, H. (2023). Temporal and spectral analyses of EEG microstate reveals neural effects of transcranial photobiomodulation on the resting brain. Front. Neurosci. 17: 1247290, https://doi.org/10.3389/fnins.2023.1247290.Suche in Google Scholar PubMed PubMed Central
Urquhart, E.L., Wanniarachchi, H., Wang, X., Gonzalez-Lima, F., Alexandrakis, G., and Liu, H. (2020). Transcranial photobiomodulation-induced changes in human brain functional connectivity and network metrics mapped by whole-head functional near-infrared spectroscopy in vivo. Biomed. Opt. Express 11: 5783–5799, https://doi.org/10.1364/boe.402047.Suche in Google Scholar
Vargas, E., Barrett, D.W., Saucedo, C.L., Huang, L.D., Abraham, J.A., Tanaka, H., Haley, A.P., and Gonzalez-Lima, F. (2017). Beneficial neurocognitive effects of transcranial laser in older adults. Laser Med. Sci. 32: 1153–1162, https://doi.org/10.1007/s10103-017-2221-y.Suche in Google Scholar PubMed PubMed Central
Vasilenko, T., Slezák, M., Kovác, I., Bottková, Z., Jakubco, J., Kostelníková, M., Tomori, Z., and Gál, P. (2010). The effect of equal daily dose achieved by different power densities of low-level laser therapy at 635 and 670 nm on wound tensile strength in rats: a short report. Photomed. Laser Surg. 28: 281–283, https://doi.org/10.1089/pho.2009.2489.Suche in Google Scholar PubMed
Wade, Z.S., Barrett, D.W., Davis, R.E., Nguyen, A., Venkat, S., and Gonzalez-Lima, F. (2023). Histochemical mapping of the duration of action of photobiomodulation on cytochrome c oxidase in the rat brain. Front. Neurosci. 17: 1243527, https://doi.org/10.3389/fnins.2023.1243527.Suche in Google Scholar PubMed PubMed Central
Wang, Y., Huang, Y.Y., Wang, Y., Lyu, P., and Hamblin, M.R. (2017). Photobiomodulation of human adipose-derived stem cells using 810nm and 980nm lasers operates via different mechanisms of action. Biochim. Biophys. Acta Gen. Subj. 1861: 441–449, https://doi.org/10.1016/j.bbagen.2016.10.008.Suche in Google Scholar PubMed PubMed Central
Wang, R., Dong, Y., Lu, Y., Zhang, W., Brann, D.W., and Zhang, Q. (2019a). Photobiomodulation for global cerebral ischemia: targeting mitochondrial dynamics and functions. Mol. Neurobiol. 56: 1852–1869, https://doi.org/10.1007/s12035-018-1191-9.Suche in Google Scholar PubMed PubMed Central
Wang, X., Dmochowski, J.P., Zeng, L., Kallioniemi, E., Husain, M., Gonzalez-Lima, F., and Liu, H. (2019b). Transcranial photobiomodulation with 1064-nm laser modulates brain electroencephalogram rhythms. Neurophotonics 6: 025013, https://doi.org/10.1117/1.nph.6.2.025013.Suche in Google Scholar
Wang, X., Wanniarachchi, H., Wu, A., Gonzalez-Lima, F., and Liu, H. (2021a). Transcranial photobiomodulation and thermal stimulation induce distinct topographies of EEG alpha and beta power changes in healthy humans. Sci. Rep. 11: 18917, https://doi.org/10.1038/s41598-021-97987-w.Suche in Google Scholar PubMed PubMed Central
Wang, X., Zhang, Z., Zhu, Z., Liang, Z., Zuo, X., Ju, C., Song, Z., Li, X., Hu, X., and Wang, Z. (2021b). Photobiomodulation promotes repair following spinal cord injury by regulating the transformation of A1/A2 reactive astrocytes. Front. Neurosci. 15: 768262, https://doi.org/10.3389/fnins.2021.768262.Suche in Google Scholar PubMed PubMed Central
Wang, H., Song, P., Hou, Y., Liu, J., Hao, W., Hu, S., Dai, X., Zhan, S., Li, N., Peng, M., et al.. (2023). 820-nm Transcranial near-infrared stimulation on the left DLPFC relieved anxiety: a randomized, double-blind, sham-controlled study. Brain Res. Bull. 200: 110682, https://doi.org/10.1016/j.brainresbull.2023.110682.Suche in Google Scholar PubMed
Wang, M., Yan, C., Li, X., Yang, T., Wu, S., Liu, Q., Luo, Q., and Zhou, F. (2024a). Non-invasive modulation of meningeal lymphatics ameliorates ageing and Alzheimer’s disease-associated pathology and cognition in mice. Nat. Commun. 15: 1453, https://doi.org/10.1038/s41467-024-45656-7.Suche in Google Scholar PubMed PubMed Central
Wang, X., Zhang, W., Hou, L., Geng, W., Wang, J., Kong, Y., Liu, C., Zeng, X., and Kong, D. (2024b). A biomimetic upconversion nanobait-based near infrared light guided photodynamic therapy alleviates Alzheimer’s disease by inhibiting β-amyloid aggregation. Adv. Healthc. Mater. 13: e2303278, https://doi.org/10.1002/adhm.202303278.Suche in Google Scholar PubMed
Wolpe, A.G., Ruddiman, C.A., Hall, P.J., and Isakson, B.E. (2021). Polarized proteins in endothelium and their contribution to function. J. Vasc. Res. 58: 65–91, https://doi.org/10.1159/000512618.Suche in Google Scholar PubMed PubMed Central
Wu, X., Shen, Q., Zhang, Z., Zhang, D., Gu, Y., and Xing, D. (2021). Photoactivation of TGFβ/SMAD signaling pathway ameliorates adult hippocampal neurogenesis in Alzheimer’s disease model. Stem Cell Res. Ther. 12: 345, https://doi.org/10.1186/s13287-021-02399-2.Suche in Google Scholar PubMed PubMed Central
Wu, X., Shen, Q., Chang, H., Li, J., and Xing, D. (2022). Promoted CD4(+) T cell-derived IFN-γ/IL-10 by photobiomodulation therapy modulates neurogenesis to ameliorate cognitive deficits in APP/PS1 and 3xTg-AD mice. J. Neuroinflammation 19: 253, https://doi.org/10.1186/s12974-022-02617-5.Suche in Google Scholar PubMed PubMed Central
Xu, Z., Guo, X., Yang, Y., Tucker, D., Lu, Y., Xin, N., Zhang, G., Yang, L., Li, J., Du, X., et al.. (2017). Low-level laser irradiation improves depression-like behaviors in mice. Mol. Neurobiol. 54: 4551–4559, https://doi.org/10.1007/s12035-016-9983-2.Suche in Google Scholar PubMed PubMed Central
Yan, X., Liu, J., Zhang, Z., Li, W., Sun, S., Zhao, J., Dong, X., Qian, J., and Sun, H. (2017). Low-level laser irradiation modulates brain-derived neurotrophic factor mRNA transcription through calcium-dependent activation of the ERK/CREB pathway. Laser Med. Sci. 32: 169–180, https://doi.org/10.1007/s10103-016-2099-0.Suche in Google Scholar PubMed
Yang, L., Tucker, D., Dong, Y., Wu, C., Lu, Y., Li, Y., Zhang, J., Liu, T.C., and Zhang, Q. (2018). Photobiomodulation therapy promotes neurogenesis by improving post-stroke local microenvironment and stimulating neuroprogenitor cells. Exp. Neurol. 299: 86–96, https://doi.org/10.1016/j.expneurol.2017.10.013.Suche in Google Scholar PubMed PubMed Central
Yang, L., Dong, Y., Wu, C., Li, Y., Guo, Y., Yang, B., Zong, X., Hamblin, M.R., Liu, T.C., and Zhang, Q. (2019). Photobiomodulation preconditioning prevents cognitive impairment in a neonatal rat model of hypoxia-ischemia. J. Biophot. 12: e201800359, https://doi.org/10.1002/jbio.201800359.Suche in Google Scholar PubMed PubMed Central
Zhang, H., Liu, S., Qin, Q., Xu, Z., Qu, Y., Wang, Y., Wang, J., Du, Z., Yuan, S., Hong, S., et al.. (2022). Genetic and pharmacological inhibition of astrocytic Mysm1 alleviates depressive-like disorders by promoting ATP production. Adv. Sci. (Weinh.) 10: e2204463, https://doi.org/10.1002/advs.202204463.Suche in Google Scholar PubMed PubMed Central
Zhang, M., Ma, Y., Ye, X., Zhang, N., Pan, L., and Wang, B. (2023). TRP (transient receptor potential) ion channel family: structures, biological functions and therapeutic interventions for diseases. Signal Transduct. Targeted Ther. 8: 261, https://doi.org/10.1038/s41392-023-01464-x.Suche in Google Scholar PubMed PubMed Central
Zhang, S., Wang, X., and Jiao, H. (2024). Near-infrared light stimulation regulates neural oscillation and memory behavior of mice with Alzheimer’s disease. Front. Neurosci. 18: 1417178, https://doi.org/10.3389/fnins.2024.1417178.Suche in Google Scholar PubMed PubMed Central
Zhao, H., Zhang, K., Tang, R., Meng, H., Zou, Y., Wu, P., Hu, R., Liu, X., Feng, H., and Chen, Y. (2018). TRPV4 blockade preserves the blood-brain barrier by inhibiting stress fiber formation in a rat model of intracerebral hemorrhage. Front. Mol. Neurosci. 11: 97, https://doi.org/10.3389/fnmol.2018.00097.Suche in Google Scholar PubMed PubMed Central
Zhou, X.E., He, Y., de Waal, P.W., Gao, X., Kang, Y., Van Eps, N., Yin, Y., Pal, K., Goswami, D., White, T.A., et al.. (2017). Identification of phosphorylation codes for arrestin recruitment by G protein-coupled receptors. Cell 170: 457–469.e413, https://doi.org/10.1016/j.cell.2017.07.002.Suche in Google Scholar PubMed PubMed Central
Zomorrodi, R., Loheswaran, G., Pushparaj, A., and Lim, L. (2019). Pulsed near infrared transcranial and intranasal photobiomodulation significantly modulates neural oscillations: a pilot exploratory study. Sci. Rep. 9: 6309, https://doi.org/10.1038/s41598-019-42693-x.Suche in Google Scholar PubMed PubMed Central
Zong, S., Wu, M., Gu, J., Liu, T., Guo, R., and Yang, M. (2018). Structure of the intact 14-subunit human cytochrome c oxidase. Cell Res. 28: 1026–1034, https://doi.org/10.1038/s41422-018-0071-1.Suche in Google Scholar PubMed PubMed Central
Zorzo, C., Rodríguez-Fernández, L., Martínez, J.A., and Arias, J.L. (2024). Photobiomodulation increases brain metabolic activity through a combination of 810 and 660 wavelengths: a comparative study in male and female rats. Laser Med. Sci. 39: 26, https://doi.org/10.1007/s10103-023-03966-0.Suche in Google Scholar PubMed PubMed Central
© 2025 Walter de Gruyter GmbH, Berlin/Boston