Abstract
We constructed a computational thalamocortical network model for study of the neocortical slow oscillation. It incorporated a number of neuronal types, both excitatory and inhibitory, each model neuron simulated as a multicompartment entity with numerous membrane conductances. As in previous experimental and modeling studies, simulated slow oscillations primarily depended on recurrently connected deep intrinsic bursting (IB) pyramidal cells, with NMDA receptors being critical as well as intrinsic membrane conductances (e.g. persistent Na+); and with repolarization to the Down state dependent on intrinsic (slow Ca2+-dependent K+) and synaptic (GABAB receptor mediated) conductances. Furthermore, however, we now can account for additional features of the slow oscillation: the frequent occurrence of spikelets, the presence of very fast ripple-like oscillations, and the transition to so-called fast runs (10 to ∼20 Hz bursty oscillations). These latter phenomena depended in our model on electrical coupling via gap junctions between pyramidal neurons. The importance of gap junctions is supported by previous experimental data on the ripple-blocking effect of halothane, as well as by data from the in vitro hippocampus.
Funding source: Science Foundation Ireland
Award Identifier / Grant number: 20/FEP-P/8613
Funding source: Deutsche Forschungsgemeinschaft
Award Identifier / Grant number: DR 326/15-1 project 661624
Funding source: National Science Foundation
Award Identifier / Grant number: NSF IIS-2207707
Funding source: IBM Exploratory Research Council
Award Identifier / Grant number: N.A.
Acknowledgments
We thank Shu-Ping Chang and Robert Walkup for critical help with computing issues.
-
Research ethics: Not applicable.
-
Informed consent: Not applicable.
-
Author contributions: Author contributions: RDT performed simulations. RDT, DC, AD and MOC analyzed data and wrote the paper. All authors accept responsibility for the entire work and approve its submission.
-
Use of Large Language Models, AI and Machine Learning Tools: Not applicable.
-
Conflict of interest: The authors declare no conflicts of interest regarding this article.
-
Research funding: RDT was funded by the IBM Exploratory Research Council. MOC was funded by Science Foundation Ireland (Frontier for the Future project award 20/FEP-P/8613). AD was funded by DFG (Deutsche Forschungsgemeinschaft), DR 326/15-1, project number 661624). DC was funded by the National Science Foundation, NSF IIS-2207707.
-
Data availability: Source code will be made available in ModelDB upon acceptance.
References
Astman, N., Gutnick, M.J., and Fleidervish, I.A. (2006). Persistent sodium current in layer 5 neocortical neurons is primarily generated in the proximal axon. J. Neurosci. 26: 3465–3473, https://doi.org/10.1523/jneurosci.4907-05.2006.Search in Google Scholar
Bähner, F., Weiss, E.K., Birke, G., Maier, N., Schmitz, D., Rudolph, U., Frotscher, M., Traub, R.D., Both, M., and Draguhn, A. (2011). Cellular correlate of assembly formation in oscillating hippocampal networks in vitro. Proc. Natl. Acad. Sci. U. S. A. 108: E607–E616, https://doi.org/10.1073/pnas.1103546108.Search in Google Scholar PubMed PubMed Central
Bazhenov, M., Timofeev, I., Steriade, M., and Sejnowski, T.J. (2002). Model of thalamocortical slow-wave sleep oscillations and transitions to activated states. J. Neurosci. 22: 8691–8704, https://doi.org/10.1523/jneurosci.22-19-08691.2002.Search in Google Scholar
Beltramo, R., D’Urso, G., Dal Maschio, M., Farisello, P., Bovetti, S., Clovis, Y., Lassi, G., Tucci, V., De Pietri Tonelli, D., and Fellin, T. (2013). Layer-specific excitatory circuits differentially control recurrent network dynamics in the neocortex. Nat. Neurosci. 16: 227–234, https://doi.org/10.1038/nn.3306.Search in Google Scholar PubMed
Benveniste, M., Clements, J., Vyklicky, L., and Mayer, M.L. (1990). A kinetic analysis of the modulation of N-methyl-D-aspartic acid receptors by glycine in mouse cultured hippocampal neurons. J. Physiol. 428: 333–357, https://doi.org/10.1113/jphysiol.1990.sp018215.Search in Google Scholar PubMed PubMed Central
Born, J. (2010). Slow-wave sleep and the consolidation of long-term memory. World J. Biol. Psychiatry 11: 16–21, https://doi.org/10.3109/15622971003637637.Search in Google Scholar PubMed
Bukalo, O., Campanac, E., Hoffman, D.A., and Fields, R.D. (2013). Synaptic plasticity by antidromic firing during hippocampal network oscillations. Proc. Natl. Acad. Sci. U. S. A. 110: 5175–5180, https://doi.org/10.1073/pnas.1210735110.Search in Google Scholar PubMed PubMed Central
Bukalo, O., Lee, P.R., and Fields, R.D. (2016). BDNF mRNA abundance regulated by antidromic action potentials and AP-LTD in hippocampus. Neurosci. Lett. 635: 97–102, https://doi.org/10.1016/j.neulet.2016.10.023.Search in Google Scholar PubMed PubMed Central
Buzsáki, G., Horváth, Z., Urioste, R., Hetke, J., and Wise, K. (1992). High-frequency network oscillation in the hippocampus. Science 256: 1025–1027, https://doi.org/10.1126/science.1589772.Search in Google Scholar PubMed
Camfield, P.R. (2011). Definition and natural history of Lennox-Gastaut syndrome. Epilepsia 52: 3–9, https://doi.org/10.1111/j.1528-1167.2011.03177.x.Search in Google Scholar PubMed
Carracedo, L.M., Kjeldsen, H., Cunnington, L., Jenkins, A., Schofield, I., Cunningham, M.O., Traub, R.D., and Whittington, M.A. (2013). A neocortical delta rhythm facilitates reciprocal interlaminar interactions via nested theta rhythms. J. Neurosci. 33: 10750–10761, https://doi.org/10.1523/jneurosci.0735-13.2013.Search in Google Scholar
Castro-Alamancos, M.A. (2009). Cortical up and activated states: implications for sensory information processing. Neuroscientist 15: 625–634, https://doi.org/10.1177/1073858409333074.Search in Google Scholar PubMed PubMed Central
Castro-Alamancos, M.A. and Favero, M. (2015). NMDA receptors are the basis for persistent network activity in neocortex slices. J. Neurophysiol. 113: 3816–3826, https://doi.org/10.1152/jn.00090.2015.Search in Google Scholar PubMed PubMed Central
Chauvette, S., Crochet, S., Volgushev, M., and Timofeev, I. (2011). Properties of slow oscillation during slow-wave sleep and anesthesia in cats. J. Neurosci. 31: 14998–15008, https://doi.org/10.1523/jneurosci.2339-11.2011.Search in Google Scholar
Cleary, D.R., Tchoe, Y., Bourhis, A., Dickey, C.W., Stedelin, B., Ganji, M., Lee, S.H., Lee, J., Siler, D.A., Brown, E.C., et al.. (2024). Syllable processing is organized in discrete subregions of the human superior temporal gyrus. PLoS Biol. 22: e3002774, https://doi.org/10.1371/journal.pbio.3002774.Search in Google Scholar PubMed PubMed Central
Compte, A., Sanchez-Vives, M.V., McCormick, D.A., and Wang, X.-J. (2003). Cellular and network mechanisms of slow oscillatory activity (<1 Hz) and wave propagations in a cortical network model. J. Neurophysiol. 89: 2707–2725, https://doi.org/10.1152/jn.00845.2002.Search in Google Scholar PubMed
Compte, A., Reig, R., Descalzo, V.F., Harvey, M.A., Puccini, G.D., and Sanchez-Vives, M.V. (2008). Spontaneous high-frequency (10–80 Hz) oscillations during up states in the cerebral cortex in vitro. J. Neurosci. 28: 13828–13844, https://doi.org/10.1523/jneurosci.2684-08.2008.Search in Google Scholar PubMed PubMed Central
Contreras, D., Dürmüller, N., and Steriade, M. (1997). Plateau potentials in cat neocortical association cells in vivo: synaptic control of dendritic excitability. Eur. J. Neurosci. 9: 2588–2595, https://doi.org/10.1111/j.1460-9568.1997.tb01688.x.Search in Google Scholar PubMed
Crunelli, V., Lörincz, M.L., Errington, A.C., and Hughes, S.W. (2012). Activity of cortical and thalamic neurons during the slow (<1 Hz) rhythm in the mouse in vivo. Pflugers Arch. 463: 73–88, https://doi.org/10.1007/s00424-011-1011-9.Search in Google Scholar PubMed PubMed Central
Csercsa, R., Dombovári, B., Fabó, D., Wittner, L., Eross, L., Entz, L., Sólyom, A., Rásonyi, G., Szucs, A., Kelemen, A., et al.. (2010). Laminar analysis of slow wave activity in humans. Brain 133: 2814–2829, https://doi.org/10.1093/brain/awq169.Search in Google Scholar PubMed PubMed Central
Cunningham, M.O., Halliday, D.M., Davies, C.H., Traub, R.D., Buhl, E.H., and Whittington, M.A. (2004a). Coexistence of gamma and high-frequency oscillations in the medial entorhinal cortex in vitro. J. Physiol. 559: 347–353, https://doi.org/10.1113/jphysiol.2004.068973.Search in Google Scholar PubMed PubMed Central
Cunningham, M.O., Whittington, M.A., Bibbig, A., Roopun, A., LeBeau, F.E.N., Vogt, A., Monyer, H., Buhl, E.H., and Traub, R.D. (2004b). A role for fast rhythmic bursting neurons in cortical gamma oscillations in vitro. Proc. Natl. Acad. Sci. U. S. A. 101: 7152–7157, https://doi.org/10.1073/pnas.0402060101.Search in Google Scholar PubMed PubMed Central
Cunningham, M.O., Pervouchine, D.D., Racca, C., Kopell, N.J., Davies, C.H., Jones, R.S.G., Traub, R.D., and Whittington, M.A. (2006). Neuronal metabolism governs cortical network response state. Proc. Natl. Acad. Sci. U. S. A. 103: 5597–5601, https://doi.org/10.1073/pnas.0600604103.Search in Google Scholar PubMed PubMed Central
Dervinis, M. and Crunelli, V. (2024). Sleep waves in a large-scale corticothalamic model constrained by activities intrinsic to neocortical networks and single thalamic neurons. CNS Neurosci. Ther. 30: e14206, https://doi.org/10.1111/cns.14206.Search in Google Scholar PubMed PubMed Central
Dickey, C.W., Verzhbinsky, I.A., Jiang, X., Rosen, B.Q., Kajfez, S., Stedelin, B., Shih, J.J., Ben-Haim, S., Raslan, A.M., Eskandar, E.N., et al.. (2022). Widespread ripples synchronize human cortical activity during sleep, waking, and memory recall. Proc. Natl. Acad. Sci. U. S. A. 119: e2107797119, https://doi.org/10.1073/pnas.2107797119.Search in Google Scholar PubMed PubMed Central
Dinner, D.S. (2002). Effect of sleep on epilepsy. J. Clin. Neurophysiol. 19: 504–513, https://doi.org/10.1097/00004691-200212000-00003.Search in Google Scholar PubMed
Draguhn, A., Traub, R.D., Schmitz, D., and Jefferys, J.G.R. (1998). Electrical coupling underlies high-frequency oscillations in the hippocampus in vitro. Nature 394: 189–192, https://doi.org/10.1038/28184.Search in Google Scholar PubMed
Dugladze, T., Schmitz, D., Whittington, M.A., Vida, I., and Gloveli, T. (2012). Segregation of axonal and somatic activity during fast network oscillations. Science 336: 1458–1461, https://doi.org/10.1126/science.1222017.Search in Google Scholar PubMed
Favero, M. and Castro-Alamancos, M.A. (2013). Synaptic cooperativity regulates persistent network activity in neocortex. J. Neurosci. 33: 3151–3163, https://doi.org/10.1523/jneurosci.4424-12.2013.Search in Google Scholar
Ferrara, M., De Gennaro, L., Casagrande, M., and Bertini, M. (2000). Selective slow-wave sleep deprivation and time-of-night effects on cognitive performance upon awakening. Psychophysiology 37: 440–446, https://doi.org/10.1111/1469-8986.3740440.Search in Google Scholar
Franco-Pérez, J. and Paz, C. (2009). Quinine, a selective gap junction blocker, decreases REM sleep in rats. Pharmacol. Biochem. Behav. 94: 250–254, https://doi.org/10.1016/j.pbb.2009.09.003.Search in Google Scholar PubMed
Fuchs, E.C., Doheny, H., Faulkner, H., Caputi, A., Traub, R.D., Bibbig, A., Kopell, N., Whittington, M.A., and Monyer, H. (2001). Genetically altered AMPA-type glutamate receptor kinetics in interneurons disrupt long-range synchrony of gamma oscillation. Proc. Natl. Acad. Sci. U. S. A. 98: 3571–3576, https://doi.org/10.1073/pnas.051631898.Search in Google Scholar PubMed PubMed Central
Gambino, F., Pagès, S., Kehayas, V., Baptista, D., Tatti, R., Carleton, A., and Holtmaat, A. (2014). Sensory-evoked LTP driven by dendritic plateau potentials in vivo. Nature 515: 116–119, https://doi.org/10.1038/nature13664.Search in Google Scholar PubMed
Garrett, J.C., Verzhbinsky, I.A., Kaestner, E., Carlson, C., Doyle, W.K., Devinsky, O., Thesen, T., and Halgren, E. (2024). Binding of cortical functional modules by synchronous high-frequency oscillations. Nat. Hum. Behav. 8: 1988–2002, https://doi.org/10.1038/s41562-024-01952-2.Search in Google Scholar PubMed
González-Nieto, D., Gómez-Hernández, J.M., Larrosa, B., Gutiérrez, C., Muñoz, M.D., Fasciani, I., O’Brien, J., Zappalà, A., Cicirata, F., and Barrio, L.C. (2008). Regulation of neuronal connexin-36 channels by pH. Proc. Natl. Acad. Sci. U. S. A. 105: 17169–17174, https://doi.org/10.1073/pnas.0804189105.Search in Google Scholar PubMed PubMed Central
Gottfried, J.A. and Chesler, M. (1994). Endogenous H+ modulation of NMDA receptor-mediated EPSCs revealed by carbonic anhydrase inhibition in rat hippocampus. J. Physiol. 478: 373–378, https://doi.org/10.1113/jphysiol.1994.sp020258.Search in Google Scholar PubMed PubMed Central
Grenier, F., Timofeev, I., and Steriade, M. (2001). Focal synchronization of ripples (80–200 Hz) in neocortex and their neuronal correlates. J. Neurophysiol. 86: 1884–1898, https://doi.org/10.1152/jn.2001.86.4.1884.Search in Google Scholar PubMed
Grenier, F., Timofeev, I., and Steriade, M. (2003). Neocortical very fast oscillations (ripples, 80–200 Hz) during seizures: intracellular correlates. J. Neurophysiol. 89: 841–852, https://doi.org/10.1152/jn.00420.2002.Search in Google Scholar PubMed
Gutnick, T., Neef, A., Cherninskyi, A., Ziadi-Künzli, F., Di Cosmo, A., Lipp, H.-P., and Kuba, M.J. (2023). Recording electrical activity from the brain of behaving octopus. Curr. Biol. 33: 1171–1178.e4, https://doi.org/10.1016/j.cub.2023.02.006.Search in Google Scholar PubMed
Haider, B., Duque, A., Hasenstaub, A.R., and McCormick, D.A. (2006). Neocortical network activity in vivo is generated through a dynamic balance of excitation and inhibition. J. Neurosci. 26: 4535–4545, https://doi.org/10.1523/jneurosci.5297-05.2006.Search in Google Scholar
Hall, S., Hunt, M., Simon, A., Cunnington, L.G., Schofield, I.S., Traub, R.D., Whittington, M.A., and Whittington, M.A. (2015). Unbalanced peptidergic inhibition in superficial neocortex generates sleep-associated seizure activity. J. Neurosci. 35: 9302–9314, https://doi.org/10.1523/jneurosci.4245-14.2015.Search in Google Scholar
Hill, S. and Tononi, G. (2005). Modeling sleep and wakefulness in the thalamocortical system. J. Neurophysiol. 93: 1671–1698, https://doi.org/10.1152/jn.00915.2004.Search in Google Scholar PubMed
Inoue, T. and Imoto, K. (2006). Feedforward inhibitory connections from multiple thalamic cells to multiple regular-spiking cells in layer 4 of the somatosensory cortex. J. Neurophysiol. 96: 1746–1754, https://doi.org/10.1152/jn.00301.2006.Search in Google Scholar PubMed
Irfan, M. (2024). Sleep terrors. Sleep Med. Clin. 19: 63–70, https://doi.org/10.1016/j.jsmc.2023.12.004.Search in Google Scholar PubMed
Jahr, C.E. and Stevens, C.F. (1990). Voltage dependence of NMDA-activated macroscopic conductances predicted by single-channel kinetics. J. Neurosci. 10: 3178–3182, https://doi.org/10.1523/jneurosci.10-09-03178.1990.Search in Google Scholar PubMed PubMed Central
Kékesi, K.A., Dobolyi, A., Salfay, O., Nyitrai, G., and Juhász, G. (1997). Slow wave sleep is accompanied by release of certain amino acids in the thalamus of cats. Neuroreport 8: 1183–1186, https://doi.org/10.1097/00001756-199703240-00025.Search in Google Scholar PubMed
Krause, B.M., Raz, A., Uhlrich, D.J., Smith, P.H., and Banks, M.I. (2014). Spiking in auditory cortex following thalamic stimulation is dominated by cortical network activity. Front. Syst. Neurosci. 8: 170, https://doi.org/10.3389/fnsys.2014.00170.Search in Google Scholar PubMed PubMed Central
Le Van Quyen, M., Staba, R., Bragin, A., Dickson, C., Valderrama, M., Fried, I., and Engel, J. (2010). Large-scale microelectrode recordings of high-frequency gamma oscillations in human cortex during sleep. J. Neurosci. 30: 7770–7782, https://doi.org/10.1523/jneurosci.5049-09.2010.Search in Google Scholar PubMed PubMed Central
Legros, B. and Bazil, C.W. (2003). Effects of antiepileptic drugs on sleep architecture: a pilot study. Sleep Med. 4: 51–55, https://doi.org/10.1016/s1389-9457(02)00217-4.Search in Google Scholar PubMed
Lemieux, M., Chen, J.-Y., Lonjers, P., Bazhenov, M., and Timofeev, I. (2014). The impact of cortical deafferentation on the neocortical slow oscillation. J. Neurosci. 34: 5689–5703, https://doi.org/10.1523/jneurosci.1156-13.2014.Search in Google Scholar
Link, W., Konietzko, U., Kauselmann, G., Krug, M., Schwanke, B., Frey, U., and Kuhl, D. (1995). Somatodendritic expression of an immediate early gene is regulated by synaptic activity. Proc. Natl. Acad. Sci. U. S. A. 92: 5734–5738, https://doi.org/10.1073/pnas.92.12.5734.Search in Google Scholar PubMed PubMed Central
Lörincz, M.L., Gunner, D., Bao, Y., Connelly, W.M., Isaac, J.T.R., Hughes, S.W., and Crunelli, V. (2015). A distinct class of slow (∼0.2–2 Hz) intrinsically bursting layer 5 pyramidal neurons determines UP/DOWN state dynamics in the neocortex. J. Neurosci. 35: 5442–5458, https://doi.org/10.1523/jneurosci.3603-14.2015.Search in Google Scholar
Maingret, N., Girardeau, G., Todorova, R., Goutierre, M., and Zugaro, M. (2016). Hippocampo-cortical coupling mediates memory consolidation during sleep. Nat. Neurosci. 19: 959–964, https://doi.org/10.1038/nn.4304.Search in Google Scholar PubMed
Mann, E.O., Kohl, M.M., and Paulsen, O. (2009). Distinct roles of GABAA and GABAB receptors in balancing and terminating persistent cortical activity. J. Neurosci. 29: 7513–7518, https://doi.org/10.1523/jneurosci.6162-08.2009.Search in Google Scholar
Markram, H., Lübke, J., Frotscher, M., Roth, A., and Sakmann, B. (1997). Physiology and anatomy of synaptic connections between thick tufted pyramidal neurones in the developing rat neocortex. J. Physiol. 500: 409–440, https://doi.org/10.1113/jphysiol.1997.sp022031.Search in Google Scholar PubMed PubMed Central
McCormick, D.A. and Prince, D.A. (1985). Two types of muscarinic response to acetylcholine in mammalian cortical neurons. Proc. Natl. Acad. Sci. U. S. A. 82: 6344–6348, https://doi.org/10.1073/pnas.82.18.6344.Search in Google Scholar PubMed PubMed Central
McCormick, D.A. and Prince, D.A. (1986). Mechanisms of action of acetylcholine in the Guinea-pig cerebral cortex in vitro. J. Physiol. 375: 169–194, https://doi.org/10.1113/jphysiol.1986.sp016112.Search in Google Scholar PubMed PubMed Central
Mercer, A., Bannister, A.P., and Thomson, A.M. (2006). Electrical coupling between pyramidal cells in adult cortical regions. Brain Cell. Biol. 35: 13–27, https://doi.org/10.1007/s11068-006-9005-9.Search in Google Scholar PubMed
Mody, I., Lambert, J.D., and Heinemann, U. (1987). Low extracellular magnesium induces epileptiform activity and spreading depression in rat hippocampal slices. J. Neurophysiol. 57: 869–888.10.1152/jn.1987.57.3.869Search in Google Scholar PubMed
Neckelmann, D., Amzica, F. and Steriade, M. (1998). Spike-wave complexes and fast components of cortically generated seizures. III. Synchronizing mechanisms. J. Neurophysiol. 80: 1480–1494.10.1152/jn.1998.80.3.1480Search in Google Scholar PubMed
Neske, G.T. (2016). The slow oscillation in cortical and thalamic networks: mechanisms and functions. Front. Neural Circuits 9: 88, https://doi.org/10.3389/fncir.2015.00088.Search in Google Scholar PubMed PubMed Central
Neske, G.T. and Connors, B.W. (2016). Distinct roles of SOM and VIP interneurons during cortical up states. Front. Neural Circuits 10: 52, https://doi.org/10.3389/fncir.2016.00052.Search in Google Scholar PubMed PubMed Central
Palacios-Prado, N., Briggs, S.W., Skeberdis, V.A., Pranevicius, M., Bennett, M.V.L., and Bukauskas, F.F. (2010). pH-dependent modulation of voltage gating in connexin45 homotypic and connexin45/connexin43 heterotypic gap junctions. Proc. Natl. Acad. Sci. U. S. A. 107: 9897–9902, https://doi.org/10.1073/pnas.1004552107.Search in Google Scholar PubMed PubMed Central
Pedrosa, R., Nazari, M., Kergoat, L., Bernard, C., Mohajerani, M., Stella, F., and Battaglia, F. (2024). Hippocampal ripples coincide with “up-state” and spindles in retrosplenial cortex. Cereb. Cortex 34: bhae083, https://doi.org/10.1093/cercor/bhae083.Search in Google Scholar PubMed
Perez-Zabalza, M., Reig, R., Manrique, J., Jercog, D., Winograd, M., Parga, N., and Sanchez-Vives, M.V. (2020). Modulation of cortical slow oscillatory rhythm by GABAB receptors: an in vitro experimental and computational study. J. Physiol. 598: 3439–3457, https://doi.org/10.1113/jp279476.Search in Google Scholar PubMed PubMed Central
Petersen, C.C.H., Hahn, T.T.G., Mehta, M., Grinvald, A., and Sakmann, B. (2003). Interaction of sensory responses with spontaneous depolarization in layer 2/3 barrel cortex. Proc. Natl. Acad. Sci. U. S. A. 100: 13638–13643, https://doi.org/10.1073/pnas.2235811100.Search in Google Scholar PubMed PubMed Central
Plazzi, G., Vetrugno, R., Provini, F., and Montagna, P. (2005). Sleepwalking and other ambulatory behaviours during sleep. Neurol. Sci. 26: s193–s198, https://doi.org/10.1007/s10072-005-0486-6.Search in Google Scholar PubMed
Pophale, A., Shimizu, K., Mano, T., Iglesias, T.L., Martin, K., Hiroi, M., Asada, K., Andaluz, P.G., Van Dinh, T.T., Meshulam, L., et al.. (2023). Wake-like skin patterning and neural activity during octopus sleep. Nature 619: 129–134, https://doi.org/10.1038/s41586-023-06203-4.Search in Google Scholar PubMed PubMed Central
Raccuglia, D., Huang, S., Ender, A., Heim, M.-M., Laber, D., Suárez-Grimalt, R., Liotta, A., Sigrist, S.J., Geiger, J.R.P., and Owald, D. (2019). Network-specific synchronization of electrical slow-wave oscillations regulates sleep drive in Drosophila. Curr. Biol. 29: 3611–3621.e3, https://doi.org/10.1016/j.cub.2019.08.070.Search in Google Scholar PubMed
Ratnavadivel, R., Chau, N., Stadler, D., Yeo, A., McEvoy, R.D., and Catcheside, P.G. (2009). Marked reduction in obstructive sleep apnea severity in slow wave sleep. J. Clin. Sleep Med. 5: 519–524, https://doi.org/10.5664/jcsm.27651.Search in Google Scholar
Rattenborg, N.C., Martinez-Gonzalez, D., and Lesku, J.A. (2009). Avian sleep homeostasis: convergent evolution of complex brains, cognition and sleep functions in mammals and birds. Neurosci. Biobehav. Rev. 33: 253–270, https://doi.org/10.1016/j.neubiorev.2008.08.010.Search in Google Scholar PubMed
Rattenborg, N.C., Martinez-Gonzalez, D., Roth 2nd, T.C., and Pravosudov, V.V. (2011). Hippocampal memory consolidation during sleep: a comparison of mammals and birds. Biol. Rev. Camb. Philos. Soc. 86: 658–691, https://doi.org/10.1111/j.1469-185X.2010.00165.x.Search in Google Scholar PubMed PubMed Central
Reyes-Resina, I., Samer, S., Kreutz, M.R., and Oelschlegel, A.M. (2021). Molecular mechanisms of memory consolidation that operate during sleep. Front. Mol. Neurosci. 14: 767384, https://doi.org/10.3389/fnmol.2021.767384.Search in Google Scholar PubMed PubMed Central
Rigas, P. and Castro-Alamancos, M.A. (2009). Impact of persistent cortical activity (Up states) on intracortical and thalamocortical synaptic inputs. J. Neurophysiol. 102: 119–131, https://doi.org/10.1152/jn.00126.2009.Search in Google Scholar PubMed PubMed Central
Roopun, A.K., Middleton, S.J., Cunningham, M.O., LeBeau, F.E.N., Bibbig, A., Whittington, M.A., and Traub, R.D. (2006). A beta2-frequency (20–30 Hz) oscillation in nonsynaptic networks of somatosensory cortex. Proc. Natl. Acad. Sci. U. S. A. 103: 15646–15650, https://doi.org/10.1073/pnas.0607443103.Search in Google Scholar PubMed PubMed Central
Ruiz-Mejias, M., Ciria-Suarez, L., Mattia, M., and Sanchez-Vives, M.V. (2011). Slow and fast rhythms generated in the cerebral cortex of the anesthetized mouse. J. Neurophysiol. 106: 2910–2921, https://doi.org/10.1152/jn.00440.2011.Search in Google Scholar PubMed
Sanchez-Vives, M.V. and McCormick, D.A. (2000). Cellular and network mechanisms of rhythmic recurrent activity in neocortex. Nat. Neurosci. 3: 1027–1034, https://doi.org/10.1038/79848.Search in Google Scholar PubMed
Sanda, P., Malerba, P., Jiang, X., Krishnan, G.P., Gonzalez-Martinez, J., Halgren, E., and Bazhenov, M. (2021). Bidirectional interaction of hippocampal ripples and cortical slow waves leads to coordinated spiking activity during NREM sleep. Cereb. Cortex 31: 324–340, https://doi.org/10.1093/cercor/bhaa228.Search in Google Scholar PubMed PubMed Central
Schmitz, D., Schuchmann, S., Fisahn, A., Draguhn, A., Buhl, E.H., Petrasch-Parwez, R.E., Dermietzel, R., Heinemann, U., and Traub, R.D. (2001). Axo-axonal coupling: a novel mechanism for ultrafast neuronal communication. Neuron 31: 831–840, https://doi.org/10.1016/s0896-6273(01)00410-x.Search in Google Scholar PubMed
Schütt, A., Ito, I., Rosso, O.A., and Figliola, A. (2003). Wavelet analysis can sensitively describe dynamics of ethanol evoked local field potentials of the slug (Limax marginatus) brain. J. Neurosci. Methods 129: 135–150, https://doi.org/10.1016/s0165-0270(03)00200-0.Search in Google Scholar PubMed
Shein-Idelson, M., Ondracek, J.M., Liaw, H.-P., Reiter, S., and Laurent, G. (2016). Slow waves, sharp waves, ripples, and REM in sleeping dragons. Science 352: 590–595, https://doi.org/10.1126/science.aaf3621.Search in Google Scholar PubMed
Steriade, M., Nuñez, A., and Amzica, F. (1993a). Intracellular analysis of relations between the slow (<1 Hz) neocortical oscillation and other sleep rhythms of the electroencephalogram. J. Neurosci. 13: 3266–3283, https://doi.org/10.1523/jneurosci.13-08-03266.1993.Search in Google Scholar
Steriade, M., Nuñez, A., and Amzica, F. (1993b). A novel slow (<1 Hz) oscillation of neocortical neurons in vivo: depolarizing and hyperpolarizing components. J. Neurosci. 13: 3252–3265, https://doi.org/10.1523/jneurosci.13-08-03252.1993.Search in Google Scholar
Steriade, M., Amzica, F., and Nuñez, A. (1993c). Cholinergic and noradrenergic modulation of the slow (approximately 0.3 Hz) oscillation in neocortical cells. J. Neurophysiol. 70: 1385–1400, https://doi.org/10.1152/jn.1993.70.4.1385.Search in Google Scholar PubMed
Steriade, M., Contreras, D., Amzica, F., and Timofeev, I. (1996). Synchronization of fast (30–40 Hz) spontaneous oscillations in intrathalamic and thalamocortical networks. J. Neurosci. 16: 2788–2808, https://doi.org/10.1523/jneurosci.16-08-02788.1996.Search in Google Scholar
Steriade, M., Amzica, F., Neckelmann, D., and Timofeev, I. (1998). Spike-wave complexes and fast components of cortically generated seizures. II. Extra- and intracellular patterns. J. Neurophysiol. 80: 1456–1479, https://doi.org/10.1152/jn.1998.80.3.1456.Search in Google Scholar PubMed
Steriade, M., Timofeev, I., and Grenier, F. (2001). Natural waking and sleep states: a view from inside neocortical neurons. J. Neurophysiol. 85: 1969–1985, https://doi.org/10.1152/jn.2001.85.5.1969.Search in Google Scholar PubMed
Takahashi, H. and Magee, J.C. (2009). Pathway interactions and synaptic plasticity in the dendritic tuft regions of CA1 pyramidal neurons. Neuron 62: 102–111, https://doi.org/10.1016/j.neuron.2009.03.007.Search in Google Scholar PubMed
Thomson, A.M. and Bannister, A.P. (2003). Interlaminar connections in the neocortex. Cereb. Cortex 13: 5–14, https://doi.org/10.1093/cercor/13.1.5.Search in Google Scholar PubMed
Timofeev, I., Grenier, F., and Steriade, M. (2000). Impact of intrinsic properties and synaptic factors on the activity of neocortical networks in vivo. J. Physiol. Paris 94: 343–355, https://doi.org/10.1016/s0928-4257(00)01097-4.Search in Google Scholar PubMed
Tong, C.K. and Chesler, M. (1999). Endogenous pH shifts facilitate spreading depression by effect on NMDA receptors. J. Neurophysiol. 81: 1988–1991, https://doi.org/10.1152/jn.1999.81.4.1988.Search in Google Scholar PubMed
Traub, R.D. and Bibbig, A. (2000). A model of high-frequency ripples in the hippocampus, based on synaptic coupling plus axon-axon gap junctions between pyramidal neurons. J. Neurosci. 20: 2086–2093, https://doi.org/10.1523/jneurosci.20-06-02086.2000.Search in Google Scholar
Traub, R.D. and Cunningham, M.O. (in prep.) Cellular mechanisms of entorhinal cortex spontaneous and navigation-related grid cell oscillations.Search in Google Scholar
Traub, R.D. and Draguhn, A. (2024). Brain leitmotifs. Springer, Cham.10.1007/978-3-031-54537-5Search in Google Scholar
Traub, R.D. and Wong, R.K.S. (1982). Cellular mechanism of neuronal synchronization in epilepsy. Science 216: 745–747, https://doi.org/10.1126/science.7079735.Search in Google Scholar PubMed
Traub, R.D., Miles, R., and Jefferys, J.G.R. (1993). Synaptic and intrinsic conductances shape picrotoxin-induced synchronized after-discharges in the Guinea-pig hippocampal slice. J. Physiol. 461: 525–547, https://doi.org/10.1113/jphysiol.1993.sp019527.Search in Google Scholar PubMed PubMed Central
Traub, R.D., Jefferys, J.G.R., and Whittington, M.A. (1994). Enhanced NMDA conductance can account for epileptiform activity induced by low Mg2+ in the rat hippocampal slice. J. Physiol. 478: 379–393, https://doi.org/10.1113/jphysiol.1994.sp020259.Search in Google Scholar PubMed PubMed Central
Traub, R.D., Borck, C., Colling, S.B., and Jefferys, J.G.R. (1996a). On the structure of ictal events in vitro. Epilepsia 37: 879–891, https://doi.org/10.1111/j.1528-1157.1996.tb00042.x.Search in Google Scholar PubMed
Traub, R.D., Whittington, M.A., Colling, S.B., Buzsáki, G., and Jefferys, J.G.R. (1996b). Analysis of gamma rhythms in the rat hippocampus in vitro and in vivo. J. Physiol. 493: 471–484, https://doi.org/10.1113/jphysiol.1996.sp021397.Search in Google Scholar PubMed PubMed Central
Traub, R.D., Schmitz, D., Jefferys, J.G.R., and Draguhn, A. (1999). High-frequency population oscillations are predicted to occur in hippocampal pyramidal neuronal networks interconnected by axoaxonal gap junctions. Neuroscience 92: 407–426, https://doi.org/10.1016/s0306-4522(98)00755-6.Search in Google Scholar PubMed
Traub, R.D., Bibbig, A., Fisahn, A., LeBeau, F.E.N., Whittington, M.A., and Buhl, E.H. (2000). A model of gamma-frequency network oscillations induced in the rat CA3 region by carbachol in vitro. Eur. J. Neurosci. 12: 4093–4106, https://doi.org/10.1046/j.1460-9568.2000.00300.x.Search in Google Scholar PubMed
Traub, R.D., Whittington, M.A., Buhl, E.H., LeBeau, F.E.N., Bibbig, A., Boyd, S., Cross, H., and Baldeweg, T. (2001). A possible role for gap junctions in generation of very fast EEG oscillations preceding the onset of, and perhaps initiating, seizures. Epilepsia 42: 153–170, https://doi.org/10.1046/j.1528-1157.2001.26900.x.Search in Google Scholar PubMed
Traub, R.D., Buhl, E.H., Gloveli, T., and Whittington, M.A. (2003a). Fast rhythmic bursting can be induced in layer 2/3 cortical neurons by enhancing persistent Na+ conductance or by blocking BK channels. J. Neurophysiol. 89: 909–921, https://doi.org/10.1152/jn.00573.2002.Search in Google Scholar PubMed
Traub, R.D., Cunningham, M.O., Gloveli, T., LeBeau, F.E.N., Bibbig, A., Buhl, E.H., and Whittington, M.A. (2003b). GABA-enhanced collective behavior in neuronal axons underlies persistent gamma-frequency oscillations. Proc. Natl. Acad. Sci. U. S. A. 100: 11047–11052, https://doi.org/10.1073/pnas.1934854100.Search in Google Scholar PubMed PubMed Central
Traub, R.D., Contreras, D., Cunningham, M.O., Murray, H., LeBeau, F.E.N., Roopun, A., Bibbig, A., Wilent, W.B., Higley, M.J., and Whittington, M.A. (2005). Single-column thalamocortical network model exhibiting gamma oscillations, sleep spindles and epileptogenic bursts. J. Neurophysiol. 93: 2194–2232, https://doi.org/10.1152/jn.00983.2004.Search in Google Scholar PubMed
Traub, R.D., Duncan, R., Russell, A.J.C., Baldeweg, T., Tu, Y., Cunningham, M.O., and Whittington, M.A. (2010). Spatiotemporal patterns of electrocorticographic very fast oscillations (>80 Hz) consistent with a network model based on electrical coupling between principal neurons. Epilepsia 51: 1587–1597, https://doi.org/10.1111/j.1528-1167.2009.02420.x.Search in Google Scholar PubMed PubMed Central
Traub, R.D., Moeller, F., Rosch, R., Baldeweg, T., Whittington, M.A., and Hall, S.P. (2020a). Seizure initiation in infantile spasms vs. focal seizures: proposed common cellular mechanisms. Rev. Neurosci. 31: 181–200, https://doi.org/10.1515/revneuro-2019-0030.Search in Google Scholar PubMed
Traub, R.D., Whittington, M.A., Maier, N., Schmitz, D., and Nagy, J.I. (2020b). Could electrical coupling contribute to the formation of cell assemblies? Rev. Neurosci. 31: 121–141, https://doi.org/10.1515/revneuro-2019-0059.Search in Google Scholar PubMed
Traub, R.D., Whittington, M.A., and Cunningham, M.O. (2022). Simulation of oscillatory dynamics induced by an approximation of grid cell output. Rev. Neurosci. 34: 517–532, https://doi.org/10.1515/revneuro-2022-0107.Search in Google Scholar PubMed PubMed Central
Valero, M., Viney, T.J., Machold, R., Mederos, S., Zutshi, I., Schuman, B., Senzai, Y., Rudy, B., and Buzsáki, G. (2021). Sleep down state-active ID2/Nkx2.1 interneurons in the neocortex. Nat. Neurosci. 24: 401–411, https://doi.org/10.1038/s41593-021-00797-6.Search in Google Scholar PubMed PubMed Central
Wakai, R.T. and Lutter, W.J. (2016). Slow rhythms and sleep spindles in early infancy. Neurosci. Lett. 630: 164–168, https://doi.org/10.1016/j.neulet.2016.07.051.Search in Google Scholar PubMed PubMed Central
Walther, H., Lambert, J.D., Jones, R.S., Heinemann, U., and Hamon, B. (1986). Epileptiform activity in combined slices of the hippocampus, subiculum and entorhinal cortex during perfusion with low magnesium medium. Neurosci. Lett. 69: 156–161, https://doi.org/10.1016/0304-3940(86)90595-1.Search in Google Scholar PubMed
Wang, Y., Barakat, A., and Zhou, H. (2010). Electrotonic coupling between pyramidal neurons in the neocortex. PLoS One 5: e10253, https://doi.org/10.1371/journal.pone.0010253.Search in Google Scholar PubMed PubMed Central
Wester, J.C. and Contreras, D. (2012). Columnar interactions determine horizontal propagation of recurrent network activity in neocortex. J. Neurosci. 32: 5454–5471, https://doi.org/10.1523/jneurosci.5006-11.2012.Search in Google Scholar PubMed PubMed Central
Whittington, M.A., Traub, R.D., and Jefferys, J.G.R. (1995). Erosion of inhibition contributes to the progression of low magnesium bursts in rat hippocampal slices. J. Physiol. 486: 723–734, https://doi.org/10.1113/jphysiol.1995.sp020848.Search in Google Scholar PubMed PubMed Central
Whittington, M.A., Traub, R.D., Kopell, N., Ermentrout, B., and Buhl, E.H. (2000). Inhibition-based rhythms: experimental and mathematical observations on network dynamics. Int. J. Psychophysiol. 38: 315–336, https://doi.org/10.1016/s0167-8760(00)00173-2.Search in Google Scholar PubMed
Wilson, C.J. and Kawaguchi, Y. (1996). The origins of two-state spontaneous membrane potential fluctuations of neostriatal spiny neurons. J. Neurosci. 16: 2397–2410, https://doi.org/10.1523/jneurosci.16-07-02397.1996.Search in Google Scholar PubMed PubMed Central
Züst, M.A., Mikutta, C., Omlin, X., DeStefani, T., Wunderlin, M., Zeller, C.J., Fehér, K.D., Hertenstein, E., Schneider, C.L., Teunissen, C.E., et al.. (2023). The hierarchy of coupled sleep oscillations reverses with aging in humans. J. Neurosci. 43: 6268=6279, https://doi.org/10.1523/JNEUROSCI.0586-23.2023.Search in Google Scholar PubMed PubMed Central
© 2025 Walter de Gruyter GmbH, Berlin/Boston