Home Nanocarriers in glioblastoma treatment: a neuroimmunological perspective
Article
Licensed
Unlicensed Requires Authentication

Nanocarriers in glioblastoma treatment: a neuroimmunological perspective

  • Faezeh Firuzpour , Kiarash Saleki ORCID logo , Cena Aram and Nima Rezaei EMAIL logo
Published/Copyright: December 30, 2024
Become an author with De Gruyter Brill

Abstract

Glioblastoma multiforme (GBM) is the most fatal brain tumor with a poor prognosis with current treatments, mainly because of intrinsic resistance processes. GBM is also referred to as grade 4 astrocytoma, that makes up about 15.4 % of brain cancers globally as well as 60–75 % of astrocytoma. The most prevalent therapeutic choices for GBM comprise surgery in combination with radiotherapy and chemotherapy, providing patients with an average survival of 6–14 months. Nanocarriers provide various benefits such as enhanced drug solubility, biocompatibility, targeted activity, as well as minimized side effects. In addition, GBM treatment comes with several challenges such as the presence of the blood–brain barrier (BBB), blood–brain tumor barrier (BBTB), overexpressed efflux pumps, infiltration, invasion, drug resistance, as well as immune escape due to tumor microenvironment (TME) and cancer stem cells (CSC). Recent research has focused on nanocarriers due to their ability to self-assemble, improve bioavailability, provide controlled release, and penetrate the BBB. These nano-based components could potentially enhance drug accumulation in brain tumor tissues and reduce systemic toxicity, making them a compelling solution for GBM therapy. This review captures the complexities associated with multi-functional nano drug delivery systems (NDDS) in crossing the blood–brain barrier (BBB) and targeting cancer cells. In addition, it presents a succinct overview of various types of targeted multi-functional nano drug delivery system (NDDS) which has exhibited promising value for improving drug delivery to the brain.


Corresponding author: Nima Rezaei, Tehran University of Medical Sciences, Children’s Medical Center Hospital, Dr. Qarib St, Keshavarz Blvd, Tehran 14194, Iran; Research Center for Immunodeficiencies, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, 1416634793, Iran; Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, 1416634793, Iran; and Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, 1416634793, Iran, Email:
Faezeh Firuzpour and Kiarash Saleki co-first authorship and contributed equally to the present work.

Acknowledgments

We thank USERN Babol for supporting.

  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Author contributions: F.F., K.S., C.A., and NR. drafted the manuscript and conceptualized the study. K.S., F.F., and C.A. illustrated the figures. N.R. and K.S. critically appraised the manuscript and supervised the study.

  4. Use of Large Language Models, AI and Machine Learning Tools: None to declare.

  5. Conflict of interest: The authors report there are no competing interests to declare.

  6. Research funding: None.

  7. Data availability: Data are available from the corresponding author only on reasonable request.

References

Adura, C., Smith, J.A., Johnson, P.R., Nguyen, T.H., Lee, W., Thompson, L.J., Arbiol, J., Albericio, F., Giralt, E., and Kogan, M.J. (2013). Stable conjugates of peptides with gold nanorods for biomedical applications with reduced effects on cell viability. ACS Appl. Mater. Interfaces 5: 4076–4085, https://doi.org/10.1021/am3028537.Search in Google Scholar PubMed

Agarwal, S. and Maekawa, T. (2020). Nano delivery of natural substances as prospective autophagy modulators in glioblastoma. Nanomedicine 29: 102270, https://doi.org/10.1016/j.nano.2020.102270.Search in Google Scholar PubMed

Alcantara Llaguno, S. and Parada, L.F. (2021). Cancer stem cells in gliomas: evolving concepts and therapeutic implications. Curr. Opin. Neurol. 34: 868–874, https://doi.org/10.1097/wco.0000000000000994.Search in Google Scholar

Alexander, J.J. (2018). Blood-brain barrier (BBB) and the complement landscape. Mol. Immunol. 102: 26–31, https://doi.org/10.1016/j.molimm.2018.06.267.Search in Google Scholar PubMed

Alizadeh, D., White, E.E., Sanchez, T.C., Liu, S., Zhang, L., Badie, B., and Berlin, J.M. (2018). Immunostimulatory CpG on carbon nanotubes selectively inhibits migration of brain tumor cells. Bioconjug. Chem.29: 1659–1668, https://doi.org/10.1021/acs.bioconjchem.8b00146.Search in Google Scholar PubMed PubMed Central

Alizadehmoghaddam, S., Pourabdolhossein, F., Najafzadehvarzi, H., Sarbishegi, M., Saleki, K., and Nouri, H.R. (2024). Crocin attenuates the lipopolysaccharide-induced neuroinflammation via expression of AIM2 and NLRP1 inflammasome in an experimental model of Parkinson’s disease. Heliyon 10: e25523, https://doi.org/10.1016/j.heliyon.2024.e25523.Search in Google Scholar PubMed PubMed Central

Altuntaş, E., Özkan, B., Güngör, S., and Özsoy, Y. (2023). Biopolymer-based nanogel approach in drug delivery: basic concept and current developments. Pharmaceutics 15: 1644, https://doi.org/10.3390/pharmaceutics15061644.Search in Google Scholar PubMed PubMed Central

Almeida, B., Nag, O.K., Rogers, K.E., and Delehanty, J.B. (2020). Recent progress in bioconjugation strategies for liposome-mediated drug delivery. Molecules 25: 5672, https://doi.org/10.3390/molecules25235672.Search in Google Scholar PubMed PubMed Central

Amina, S.J., Khalid, M., Qureshi, A., and Ahmed, Z. (2024). A review on the use of extracellular vesicles for the delivery of drugs and biological therapeutics. Expert Opin. Drug Deliv. 21: 45–70, https://doi.org/10.1080/17425247.2024.2305115.Search in Google Scholar PubMed

An, H., Deng, X., Wang, F., Xu, P., and Wang, N. (2023). Dendrimers as nanocarriers for the delivery of drugs obtained from natural products. Polymers 15: 2292, https://doi.org/10.3390/polym15102292.Search in Google Scholar PubMed PubMed Central

Anand, R., Manoli, F., Manet, I., Agostoni, V., Reschiglian, P., Gref, R., and Monti, S. (2014). Host-guest interactions in Fe(III)-Trimesate MOF nanoparticles loaded with doxorubicin. J. Phys. Chem. B 118: 8532–8539, https://doi.org/10.1021/jp503809w.Search in Google Scholar PubMed

Aoki, T., Matsutani, M., and Nakamura, H. (2007). Management of glioblastoma. Expert Opin. Pharmacother. 8: 3133–3146, https://doi.org/10.1517/14656566.8.18.3133.Search in Google Scholar PubMed

Aparicio-Blanco, J. and Torres-Suarez, A.-I. (2015). Glioblastoma multiforme and lipid nanocapsules: a review. J. Biomed. Nanotechnol. 11: 1283–1311, https://doi.org/10.1166/jbn.2015.2084.Search in Google Scholar PubMed

Aram, C., Alijanizadeh, P., Saleki, K., and Karami, L. (2024). Development of an ancestral DC and TLR4-inducing multi-epitope peptide vaccine against the spike protein of SARS-CoV and SARS-CoV-2 using advanced immunoinformatics approaches. Biochem. Biophys. Rep. 39: 101745, https://doi.org/10.1016/j.bbrep.2024.101745.Search in Google Scholar PubMed PubMed Central

Azarmi, M., Maleki, H., Nikkam, N., and Malekinejad, H. (2020). Transcellular brain drug delivery: a review on recent advancements. Int. J. Pharm. 586: 119582, https://doi.org/10.1016/j.ijpharm.2020.119582.Search in Google Scholar PubMed

Baker, S.N. and Baker, G.A. (2010). Luminescent carbon nanodots: emergent nanolights. Angew. Chem., Int. Ed. 49: 6726–6744, https://doi.org/10.1002/anie.200906623.Search in Google Scholar PubMed

Banazadeh, M., Mohajeri, M., Saleki, K., Behnam, B., Teng, Y., Kesharwani, P., and Sahebkar, A. (2023). Aptamer-functionalized silicon nanoparticles for targeted cancer therapy. Aptamers Eng. Nanocarriers Cancer Therap.: 237–253, https://doi.org/10.1016/b978-0-323-85881-6.00009-9.Search in Google Scholar

Bartkowski, M., Zhou, Y., Mustafa, M.N.A., Eustace, A.J., and Giordani, S. (2024). Carbon dots: bioimaging and anticancer drug delivery. Chem. Eur. J. 30: e202303982, https://doi.org/10.1002/chem.202303982.Search in Google Scholar PubMed

Basso, J., Miranda, A., Nunes, S., Cova, T., Sousa, J., Vitorino, C., and Pais, A. (2018). Hydrogel-based drug delivery nanosystems for the treatment of brain tumors. Gels 4: 62, https://doi.org/10.3390/gels4030062.Search in Google Scholar PubMed PubMed Central

Bielecki, P.A., Lorkowski, M.E., Becicka, W.M., Atukorale, P.U., Moon, T.J., Zhang, Y., Wiese, M., Covarrubias, G., Ravichandran, S., and Karathanasis, E. (2021). Immunostimulatory silica nanoparticle boosts innate immunity in brain tumors. Nanoscale Horiz. 6: 156–167, https://doi.org/10.1039/d0nh00446d.Search in Google Scholar PubMed PubMed Central

Calabrese, G., De Luca, G., Nocito, G., Rizzo, M.G., Lombardo, S.P., Chisari, G., Forte, S., Sciuto, E.L., and Conoci, S. (2021). Carbon dots: an innovative tool for drug delivery in brain tumors. Int. J. Mol. Sci. 22: 11783, https://doi.org/10.3390/ijms222111783.Search in Google Scholar PubMed PubMed Central

Carlsson, S.K., Brothers, S.P., and Wahlestedt, C. (2014). Emerging treatment strategies for glioblastoma multiforme. EMBO Mol. Med. 6: 1359–1370, https://doi.org/10.15252/emmm.201302627.Search in Google Scholar PubMed PubMed Central

Casey, S.C., Amedei, A., Aquilano, K., Azmi, A.S., Benencia, F., Bhakta, D., Bilsland, A.E., Boosani, C.S., Chen, S., Ciriolo, M.R., et al.. (2015). Cancer prevention and therapy through the modulation of the tumor microenvironment. Semin. Cancer Biol. 35: S199–S223, https://doi.org/10.1016/j.semcancer.2015.02.007.Search in Google Scholar PubMed PubMed Central

Castillo, R.R., Lozano, D., González, B., Manzano, M., Izquierdo-Barba, I., and Vallet-Regí, M. (2019). Advances in mesoporous silica nanoparticles for targeted stimuli-responsive drug delivery: an update. Expert Opin. Drug Deliv. 16: 415–439, https://doi.org/10.1080/17425247.2019.1598375.Search in Google Scholar PubMed PubMed Central

Castriconi, R., Dondero, A., Bellora, F., Moretta, L., Castellano, A., Locatelli, F., Corrias, M.V., Moretta, A., and Bottino, C. (2013). Neuroblastoma-derived TGF-β1 modulates the chemokine receptor repertoire of human resting NK cells. J. Immunol. 190: 5321–5328, https://doi.org/10.4049/jimmunol.1202693.Search in Google Scholar PubMed

Castro, M.G., Candolfi, M., Wilson, T.J., Calinescu, A., Paran, C., Kamran, N., Koschmann, C., Moreno-Ayala, M.A., Assi, H., and Lowenstein, P.R. (2014). Adenoviral vector-mediated gene therapy for gliomas: coming of age. Expert Opin. Biol. Ther. 14: 1241–1257, https://doi.org/10.1517/14712598.2014.915307.Search in Google Scholar PubMed PubMed Central

Chamberlain, M.C. (2010). Temozolomide: therapeutic limitations in the treatment of adult high-grade gliomas. Expert Rev. Neurother. 10: 1537–1544, https://doi.org/10.1586/ern.10.32.Search in Google Scholar PubMed

Chang, Y., Cai, X., Syahirah, R., Yao, Y., Xu, Y., Jin, G., Bhute, V.J., Torregrosa-Allen, S., Elzey, B.D., Won, Y.Y., et al.. (2023). CAR-neutrophil mediated delivery of tumor-microenvironment responsive nanodrugs for glioblastoma chemo-immunotherapy. Nat. Commun. 14: 2266, https://doi.org/10.1038/s41467-023-37872-4.Search in Google Scholar PubMed PubMed Central

Chen, D.S., Wu, Y.Q., Zhang, W., Jiang, S.J., and Chen, S.Z. (2016). Horizontal gene transfer events reshape the global landscape of arm race between viruses and Homo sapiens. Sci. Rep. 6: 26934, https://doi.org/10.1038/srep26934.Search in Google Scholar PubMed PubMed Central

Chen, D.S. and Mellman, I. (2013). Oncology meets immunology: the cancer-immunity cycle. Immunity 39: 1–10, https://doi.org/10.1016/j.immuni.2013.07.012.Search in Google Scholar PubMed

Chen, L., Zhou, L., Wang, C., Han, Y., Li, L., Zhang, Y., Liu, K., Zhang, J., Zhao, Y., Nie, X., et al.. (2019). Tumor‐targeted drug and CpG delivery system for phototherapy and docetaxel‐enhanced immunotherapy with polarization toward M1‐type macrophages on triple negative breast cancers. Adv. Mater. 31: 1904997, https://doi.org/10.1002/adma.201904997.Search in Google Scholar PubMed

Cheng, Y., Meyers, J.D., Agnes, R.S., Doane, T.L., Kenney, M.E., Broome, A.-M., Burda, C., and Basilion, J.P. (2011). Addressing brain tumors with targeted gold nanoparticles: a new gold standard for hydrophobic drug delivery? Small 7: 2301–2306, https://doi.org/10.1002/smll.201100628.Search in Google Scholar PubMed PubMed Central

Cross, D. and Burmester, J.K. (2006). Gene therapy for cancer treatment: past, present and future. Clin. Med. Res. 4: 218–227, https://doi.org/10.3121/cmr.4.3.218.Search in Google Scholar PubMed PubMed Central

Crowe, T.P. and Hsu, W.H. (2022). Evaluation of recent intranasal drug delivery systems to the central nervous system. Pharmaceutics 14: 629, https://doi.org/10.3390/pharmaceutics14030629.Search in Google Scholar PubMed PubMed Central

Cuggino, J.C., Blanco, E.R.O., Gugliotta, L.M., Alvarez Igarzabal, C.I., and Calderón, M. (2019). Crossing biological barriers with nanogels to improve drug delivery performance. J. Contr. Release 307: 221–246, https://doi.org/10.1016/j.jconrel.2019.06.005.Search in Google Scholar PubMed

D’Agostino, P.M., Gebhardt, T., Anandasabapathy, N., and Bulloch, K. (2012). Brain dendritic cells: biology and pathology. Acta Neuropathol. 124: 599–614, https://doi.org/10.1007/s00401-012-1018-0.Search in Google Scholar PubMed PubMed Central

D’Aloia, M.M., Zizzari, I.G., Sacchetti, B., Pierelli, L., and Alimandi, M. (2018). CAR-T cells: the long and winding road to solid tumors. Cell Death Dis. 9: 282, https://doi.org/10.1038/s41419-018-0278-6.Search in Google Scholar PubMed PubMed Central

Davis, M.E. (2016). Glioblastoma: overview of disease and treatment. Clin. J. Oncol. Nurs. 20: S2, https://doi.org/10.1188/16.cjon.s1.2-8.Search in Google Scholar

Davis, M.E. (2018). Epidemiology and overview of gliomas. Semin. Oncol. Nurs. 34: 420–429, https://doi.org/10.1016/j.soncn.2018.10.001.Search in Google Scholar PubMed

Desai, V. and Bhushan, A. (2017). Natural bioactive compounds: alternative approach to the treatment of glioblastoma multiforme. Biomed. Res. Int. 2017: 9363040, https://doi.org/10.1155/2017/9363040.Search in Google Scholar PubMed PubMed Central

Dhull, A., Yu, C., Wilmoth, A.H., Chen, M., Sharma, A., and Yiu, S. (2023). Dendrimers in corneal drug delivery: recent developments and translational opportunities. Pharmaceutics 15: 1591, https://doi.org/10.3390/pharmaceutics15061591.Search in Google Scholar PubMed PubMed Central

Di Filippo, L.D., Duarte, J.L., Luiz, M.T., de Araújo, J.T.C., and Chorilli, M. (2021). Drug delivery nanosystems in glioblastoma multiforme treatment: current state of the art. Curr. Neuropharmacol. 19: 787–812, https://doi.org/10.2174/1570159x18666200831160627.Search in Google Scholar PubMed PubMed Central

Dixit, K. and Kumthekar, P. (2017). Gene delivery in neuro-oncology. Curr. Oncol. Rep. 19: 1–11, https://doi.org/10.1007/s11912-017-0628-z.Search in Google Scholar PubMed

Dong, H., Dong, C., Ren, T., Li, Y., and Shi, D. (2014). Surface-engineered graphene-based nanomaterials for drug delivery. J. Biomed. Nanotechnol. 10: 2086–2106, https://doi.org/10.1166/jbn.2014.1989.Search in Google Scholar PubMed

Dong, X. (2018). Current strategies for brain drug delivery. Theranostics 8: 1481, https://doi.org/10.7150/thno.21254.Search in Google Scholar PubMed PubMed Central

Dougan, M. and Dougan, S.K. (2017). Targeting immunotherapy to the tumor microenvironment. J. Cell. Biochem. 118: 3049–3054, https://doi.org/10.1002/jcb.26005.Search in Google Scholar PubMed

Du, H., Yi, Z., Wang, L., Li, Z., Niu, B., and Ren, G. (2020). The co-expression characteristics of LAG3 and PD-1 on the T cells of patients with breast cancer reveal a new therapeutic strategy. Int. Immunopharmacol. 78: 106113, https://doi.org/10.1016/j.intimp.2019.106113.Search in Google Scholar PubMed

Dubois, L.G., Campanati, L., Righy, C., D’Andrea-Meira, I., Leite de Sampaio e Spohr, T.C., Porto-Carreiro, I., Pereira, C.M., Balça-Silva, J., Assad Kahn, S., Dos Santos, M.F., et al.. (2014). Gliomas and the vascular fragility of the blood-brain barrier. Front. Cell. Neurosci. 8: 418, https://doi.org/10.3389/fncel.2014.00418.Search in Google Scholar PubMed PubMed Central

Dumitru, A.C., Herranz, H., Rausell, E., Ceña, V., and Garcia, R. (2015). Unbinding forces and energies between a siRNA molecule and a dendrimer measured by force spectroscopy. Nanoscale 7: 20267–20276, https://doi.org/10.1039/c5nr04906g.Search in Google Scholar PubMed

Dutta, T., Garg, M., Dubey, V., Mishra, D., Singh, K., Pandita, D., Singh, A.K., Ravi, A.K., Velpandian, T., and Jain, N.K. (2008). Toxicological investigation of surface-engineered fifth-generation poly(propyleneimine) dendrimers in vivo. Nanotoxicology 2: 62–70, https://doi.org/10.1080/17435390802105167.Search in Google Scholar

Eckmann, D.M., J.C.R., Tsourkas, A., and Muzykantov, V.R. (2014). Nanogel carrier design for targeted drug delivery. J. Mater. Sci. Eng. C 2: 8085–8097.10.1039/C4TB01141DSearch in Google Scholar PubMed PubMed Central

Elsori, D., Rashid, G., Khan, N.A., Sachdeva, P., Jindal, R., Kayenat, F., Sachdeva, B., Kamal, M.A., Babker, A.M., and Fahmy, S.A. (2023). Nanotube breakthroughs: unveiling the potential of carbon nanotubes as a dual therapeutic arsenal for Alzheimer’s disease and brain tumors. Front. Oncol. 13: 1265347, https://doi.org/10.3389/fonc.2023.1265347.Search in Google Scholar PubMed PubMed Central

Fan, Z., Liu, H., Xue, Y., Lin, J., Fu, Y., Xia, Z., Pan, D., Zhang, J., Qiao, K., Zhang, Z., et al.. (2020). Reversing cold tumors to hot: an immunoadjuvant-functionalized metal-organic framework for multimodal imaging-guided synergistic photo-immunotherapy. Bioact. Mater. 6: 312–325, https://doi.org/10.1016/j.bioactmat.2020.08.005.Search in Google Scholar PubMed PubMed Central

Foo, C.Y. and Fu, R.Z. (2021). Unravelling the potential of graphene in glioblastoma therapy. Mater. Sci. Eng. C Mater. Biol. Appl. 128: 112330, https://doi.org/10.1016/j.msec.2021.112330.Search in Google Scholar PubMed

Fukumura, D., Kloepper, J., Amoozgar, Z., Duda, D.G., and Jain, R.K. (2018). Enhancing cancer immunotherapy using antiangiogenics: opportunities and challenges. Nat. Rev. Clin. Oncol. 15: 325–340, https://doi.org/10.1038/nrclinonc.2018.29.Search in Google Scholar PubMed PubMed Central

Galassi, T.V., Antman-Passig, M., Yaari, Z., Jessurun, J., Schwartz, R.E., and Heller, D.A. (2020). Long-term in vivo biocompatibility of single-walled carbon nanotubes. PLoS One 15: e0226791, https://doi.org/10.1371/journal.pone.0226791.Search in Google Scholar PubMed PubMed Central

Gallego, J.M., Barcia-Mariño, C., and Barcia-Mariño, C. (2007). Fatal outcome related to carmustine implants in glioblastoma multiforme. Acta Neurochir. 149: 261–265, https://doi.org/10.1007/s00701-006-1097-6.Search in Google Scholar PubMed

Gao, W., Zhang, Z.Y., Zhang, Q., and Zhang, L. (2016). Nanoparticle-hydrogel: a hybrid biomaterial system for localized drug delivery. Ann. Biomed. Eng. 44: 2049–2061, https://doi.org/10.1007/s10439-016-1583-9.Search in Google Scholar PubMed PubMed Central

Ghaferi, M., Koohi, M., Zahra, W., Akbarzadeh, A., Ebrahimi Shahmabadi, H., and Alavi, S.E. (2022). Impact of PEGylated liposomal doxorubicin and carboplatin combination on glioblastoma. Pharmaceutics 14: 2183, https://doi.org/10.3390/pharmaceutics14102183.Search in Google Scholar PubMed PubMed Central

Ghezzi, M., Padula, S., Santi, P., Del Favero, E., Cantù, L., and Nicoli, S. (2021). Polymeric micelles in drug delivery: an insight of the techniques for their characterization and assessment in biorelevant conditions. J. Contr. Release 332: 312–336, https://doi.org/10.1016/j.jconrel.2021.02.031.Search in Google Scholar PubMed

Ghouzlani, A., Kandoussi, S., Tall, M., Reddy, K.P., Rafii, S., and Badou, A. (2021). Immune checkpoint inhibitors in human glioma microenvironment. Front. Immunol. 12: 679425, https://doi.org/10.3389/fimmu.2021.679425.Search in Google Scholar PubMed PubMed Central

Giménez-Marqués, M., Serre, C., and Horcajada, P. (2016). Nanostructured metal-organic frameworks and their bio-related applications. Coord. Chem. Rev. 307: 342–360.10.1016/j.ccr.2015.08.008Search in Google Scholar

Goenka, S., Sant, V., and Sant, S. (2014). Graphene-based nanomaterials for drug delivery and tissue engineering. J. Contr. Release 173: 75–88, https://doi.org/10.1016/j.jconrel.2013.10.017.Search in Google Scholar PubMed

Gratas, C., Tohma, Y., Meir, E.G.V., Klein, M., Tenan, M., Ishii, N., Tachibana, O., Kleihues, P., and Ohgaki, H. (1997). Fas ligand expression in glioblastoma cell lines and primary astrocytic brain tumors. Brain Pathol. 7: 863–869, https://doi.org/10.1111/j.1750-3639.1997.tb00889.x.Search in Google Scholar PubMed PubMed Central

Guan, X., Wang, Y., Sun, Y., Zhang, C., Ma, S., Zhang, D., Li, D., and Jia, W. (2021). CTLA4-Mediated immunosuppression in glioblastoma is associated with the infiltration of macrophages in the tumor microenvironment. J. Inflamm. Res. 14: 7315–7329, https://doi.org/10.2147/jir.s341981.Search in Google Scholar

Henna, T.K., Sankar, R., Ameena Shirin, V.K., Gangadharappa, H.V., and Pramod, K. (2020). Carbon nanostructures: the drug and the delivery system for brain disorders. Int. J. Pharm. 587: 119701, https://doi.org/10.1016/j.ijpharm.2020.119701.Search in Google Scholar PubMed

Hettiarachchi, S.D., Graham, R.M., Mintz, K.J., Zhou, Y., Vanni, S., Peng, Z., and Leblanc, R.M. (2019). Triple conjugated carbon dots as a nano-drug delivery model for glioblastoma brain tumors. Nanoscale 11: 6192–6205, https://doi.org/10.1039/c8nr08970a.Search in Google Scholar PubMed PubMed Central

Huang, B., Li, X., Zhang, J., Zong, Z., and Zhang, H. (2021). Current immunotherapies for glioblastoma multiforme. Front. Immunol. 11: 603911, https://doi.org/10.3389/fimmu.2020.603911.Search in Google Scholar PubMed PubMed Central

Hung, A.L., Maxwell, R., Theodros, D., Belcaid, Z., Mathios, D., Luksik, A.S., Kim, E., Wu, A., Xia, Y., Garzon-Muvdi, T., et al.. (2018). TIGIT and PD-1 dual checkpoint blockade enhances antitumor immunity and survival in GBM. Oncoimmunology 7: e1466769, https://doi.org/10.1080/2162402x.2018.1466769.Search in Google Scholar PubMed PubMed Central

Hwang, D., Ramsey, J.D., and Kabanov, A.V. (2020). Polymeric micelles for the delivery of poorly soluble drugs: from nanoformulation to clinical approval. Adv. Drug Deliv. Rev. 156: 80–118, https://doi.org/10.1016/j.addr.2020.09.009.Search in Google Scholar PubMed PubMed Central

Iqubal, A., Syed, M.A., Najmi, A.K., Azam, F., Barreto, G.E., Iqubal, M.K., Ali, J., and Haque, S.E. (2020). Nano-engineered nerolidol loaded lipid carrier delivery system attenuates cyclophosphamide neurotoxicity-Probable role of NLRP3 inflammasome and caspase-1. Exp. Neurol. 334: 113464, https://doi.org/10.1016/j.expneurol.2020.113464.Search in Google Scholar PubMed

Ishii, H., M.Y., Zahra, M.H., Kuroda, M., Noguchi, S., Seki, T., Nakayama, M., Takahashi, T., Tanaka, K., Yamamoto, T., Ueda, K., et al.. (2021). Isolation and characterization of cancer stem cells derived from human glioblastoma. Am. J. Cancer Res. 11: 441–457.Search in Google Scholar

Jafari, S., Derakhshankhah, H., Alaei, L., Fattahi, A., Varnamkhasti, B.S., and Saboury, A.A. (2019). Mesoporous silica nanoparticles for therapeutic/diagnostic applications. Biomed. Pharmacother. 109: 1100–1111, https://doi.org/10.1016/j.biopha.2018.10.167.Search in Google Scholar PubMed

Jain, K.K. (2007). Use of nanoparticles for drug delivery in glioblastoma multiforme. Expert Rev. Neurother. 7: 363–372, https://doi.org/10.1586/14737175.7.4.363.Search in Google Scholar PubMed

Jamal, A., Yuan, T., Galvan, S., Castellano, A., Riva, M., Secoli, R., Falini, A., Bello, L., Rodriguez, Y., Baena, F., et al.. (2022). Insights into infusion-based targeted drug delivery in the brain: perspectives, challenges, and opportunities. Int. J. Mol. Sci. 23: 3139, https://doi.org/10.3390/ijms23063139.Search in Google Scholar PubMed PubMed Central

Jeong, W.Y., Choi, H.E., and Kim, K.S. (2022). Graphene-based nanomaterials as drug delivery carriers. Adv. Exp. Med. Biol. 1351: 109–124, https://doi.org/10.1007/978-981-16-4923-3_6.Search in Google Scholar PubMed

Jhaveri, A., Pattni, B., and Torchilin, V. (2018). Transferrin-targeted, resveratrol-loaded liposomes for the treatment of glioblastoma. J. Contr. Release 277: 89–101, https://doi.org/10.1016/j.jconrel.2018.03.006.Search in Google Scholar PubMed PubMed Central

Juhairiyah, F. and de Lange, E.C.M. (2021). Understanding drug delivery to the brain using liposome-based strategies: studies that provide mechanistic insights are essential. AAPS J. 23: 114, https://doi.org/10.1208/s12248-021-00648-z.Search in Google Scholar PubMed PubMed Central

Kahraman, E., Güngör, S., and Özsoy, Y. (2017). Potential enhancement and targeting strategies of polymeric and lipid-based nanocarriers in dermal drug delivery. Ther. Deliv. 8: 967–985, https://doi.org/10.1016/j.canlet.2021.04.011.Search in Google Scholar PubMed PubMed Central

Kandel, S., Adhikary, P., Li, G., and Cheng, K. (2021). The TIM3/Gal9 signaling pathway: an emerging target for cancer immunotherapy. Cancer Lett. 510: 67–78, https://doi.org/10.1016/j.canlet.2021.04.011.Search in Google Scholar

Kane, J.R., Miska, J., Young, J.S., Kanojia, D., Kim, J.W., and Lesniak, M.S. (2015). Sui generis: gene therapy and delivery systems for the treatment of glioblastoma. Neuro-Oncology 17: ii24–iii36, https://doi.org/10.1093/neuonc/nou355.Search in Google Scholar PubMed PubMed Central

Kang, M., Lee, S.H., Kwon, M., Byun, J., Kim, D., Kim, C., Koo, S., Kwon, S.P., Moon, S., Jung, M., et al.. (2021). Nanocomplex-mediated in vivo programming to chimeric antigen receptor-M1 macrophages for cancer therapy. Adv. Mater. 33: 2103258, https://doi.org/10.1002/adma.202103258.Search in Google Scholar PubMed

Kapoor, M., Lee, S.L., and Tyner, K.M. (2017). Liposomal drug product development and quality: current US experience and perspective. AAPS J. 19: 632–641, https://doi.org/10.1208/s12248-017-0049-9.Search in Google Scholar PubMed

Karim, R., P.C., Evrard, B., and Piel, G. (2016). Nanocarriers for the treatment of glioblastoma multiforme: current state-of-the-art. J. Contr. Release 227: 23–37, https://doi.org/10.1016/j.jconrel.2016.02.026.Search in Google Scholar PubMed

Kawak, P., Sawaftah, N.M.A., Pitt, W.G., and Husseini, G.A. (2023). Transferrin-targeted liposomes in glioblastoma therapy: a review. Int. J. Mol. Sci. 24: 13262, https://doi.org/10.3390/ijms241713262.Search in Google Scholar PubMed PubMed Central

Keller, L.A., Merkel, O., and Popp, A. (2022). Intranasal drug delivery: opportunities and toxicologic challenges during drug development. Drug Deliv. Transl. Res. 12: 735–757, https://doi.org/10.1007/s13346-020-00891-5.Search in Google Scholar PubMed PubMed Central

Kim, G.B., Aragon-Sanabria, V., Randolph, L., Jiang, H., Reynolds, J.A., Webb, B.S., Madhankumar, A., Lian, X., Connor, J.R., Yang, J., et al.. (2020). High-affinity mutant Interleukin-13 targeted CAR T cells enhance delivery of clickable biodegradable fluorescent nanoparticles to glioblastoma. Bioact. Mater. 5: 624–635, https://doi.org/10.1016/j.bioactmat.2020.04.011.Search in Google Scholar PubMed PubMed Central

Kotta, S., Aldawsari, H.M., Badr-Eldin, S.M., Nair, A.B., and Yt, K. (2022). Progress in polymeric micelles for drug delivery applications. Pharmaceutics 14: 1636, https://doi.org/10.3390/pharmaceutics14081636.Search in Google Scholar PubMed PubMed Central

Kutwin, M., Sosnowska, M.E., Strojny-Cieślak, B., Jaworski, S., Trzaskowski, M., Wierzbicki, M., Chwalibog, A., and Sawosz, E. (2021). MicroRNA delivery by graphene-based complexes into glioblastoma cells. Molecules 26: 5804, https://doi.org/10.3390/molecules26195804.Search in Google Scholar PubMed PubMed Central

Lakshmi, B.A. and Kim, S. (2019). Current and emerging applications of nanostructured metal-organic frameworks in cancer-targeted theranostics. Mater. Sci. Eng. C 105: 110091, https://doi.org/10.1016/j.msec.2019.110091.Search in Google Scholar PubMed

Lam, F.C., Wyckoff, M.S.W., Vu Han, T.L., Hwang, M.K., Maffa, A., Balkanska-Sinclair, E., Yaffe, M.B., Floyd, S.R., and Hammond, P.T. (2018). Enhanced efficacy of combined temozolomide and bromodomain inhibitor therapy for gliomas using targeted nanoparticles. Nat. Commun. 9: 1991, https://doi.org/10.1038/s41467-018-04315-4.Search in Google Scholar PubMed PubMed Central

Latifi, R., Azadmehr, A., Mosalla, S., Saleki, K., and Hajiaghaee, R. (2022). Scolicidal effects of Nicotiana tabacum L. extract at various concentrations and exposure times. J. Med. Plants 21: 111–118, https://doi.org/10.52547/jmp.21.82.111.Search in Google Scholar

Lee, H.M., Kim, K.S., and Kim, J. (2014). A comparative study of the effects of inhibitory cytokines on human natural killer cells and the mechanistic features of transforming growth factor-beta. Cell. Immunol. 290: 52–61, https://doi.org/10.1016/j.cellimm.2014.05.001.Search in Google Scholar PubMed

Lesniak, W.G., Jyoti, A., Balakrishnan, B., Zhang, F., Nance, E., Romero, R., Kannan, S., and Kannan, R.M. (2013). Biodistribution of fluorescently labeled PAMAM dendrimers in neonatal rabbits: effect of neuroinflammation. Mol. Pharm. 10: 4560–4571, https://doi.org/10.1021/mp400371r.Search in Google Scholar PubMed PubMed Central

Li, S., Peng, Z., Dallman, J., Baker, J., Othman, A.M., Blackwelder, P.L., and Leblanc, R.M. (2016). Crossing the blood-brain-barrier with transferrin conjugated carbon dots: a zebrafish model study. Colloids Surf., B Biointerfaces 145: 251–256, https://doi.org/10.1016/j.colsurfb.2016.05.007.Search in Google Scholar PubMed

Li, X., Huang, J.M., Wang, J.N., Xiong, X.K., Yang, X.F., and Zou, F. (2020). Combination of chrysin and cisplatin promotes the apoptosis of Hep G2 cells by up-regulating p53. Cell Biol. Toxicol. 36: 471–485.Search in Google Scholar

Liang, R., Li, X.J., Li, J., Wang, K., Liu, L., Gao, Y., Tao, J., Shen, G., and Zhu, J. (2017). Liposomes-coated gold nanocages with antigens and adjuvants targeted delivery to dendritic cells for enhancing antitumor immune response. Biomaterials 149: 41–50, https://doi.org/10.1016/j.biomaterials.2017.09.029.Search in Google Scholar PubMed

Liaw, K., Zhang, F., Mangraviti, A., Kannan, S., Tyler, B., and Kannan, R.M. (2020). Dendrimer size effects on the selective brain tumor targeting in orthotopic tumor models upon systemic administration. Bioeng. Transl. Med. 5: e10160, https://doi.org/10.1002/btm2.10160.Search in Google Scholar PubMed PubMed Central

Liberman, A., Mendez, N., Trogler, W.C., and Kummel, A.C. (2014). Surface science of hybrid organic-inorganic interfaces: role of defects. Surf. Sci. Rep. 69: 132–158, https://doi.org/10.1016/j.surfrep.2014.07.001.Search in Google Scholar PubMed PubMed Central

Lim, W.A. and June, C.H. (2017). The principles of engineering immune cells to treat cancer. Cell 168: 724–740, https://doi.org/10.1016/j.cell.2017.01.016.Search in Google Scholar PubMed PubMed Central

Liu, B., Chen, W., Qiao, G., Yao, S., Pan, S., Wang, L., Cui, D., and Liu, Y. (2019). Effects of gold nanoprism-assisted human PD-L1 siRNA on both gene down-regulation and photothermal therapy on lung cancer. Acta Biomater. 99: 307–319, https://doi.org/10.1016/j.actbio.2019.08.046.Search in Google Scholar PubMed

Liu, Z., Han, H., He, X., Li, S., Wu, C., Yu, C., and Wang, S. (2016). Expression of the galectin-9-Tim-3 pathway in glioma tissues is associated with the clinical manifestations of glioma. Oncol. Lett. 11: 1829–1834, https://doi.org/10.3892/ol.2016.4142.Search in Google Scholar PubMed PubMed Central

Liu, Z., Ji, X., He, D., Zhang, R., Liu, Q., and Xin, T. (2022). Nanoscale drug delivery systems in glioblastoma. Nanoscale Res. Lett. 17: 27, https://doi.org/10.1186/s11671-022-03668-6.Search in Google Scholar PubMed PubMed Central

Lu, N., Wang, L., Lv, M., Tang, Z., and Fan, C. (2019). Graphene-based nanomaterials in biosystems. Nano Res. 12: 247–264, https://doi.org/10.1007/s12274-018-2209-3.Search in Google Scholar PubMed PubMed Central

Madaan, K., Kumar, S., Poonia, N., Lather, V., and Pandita, D. (2014). Dendrimers in drug delivery and targeting: drug-dendrimer interactions and toxicity issues. J. Pharm. Bioallied Sci. 6: 139–150, https://doi.org/10.4103/0975-7406.130965.Search in Google Scholar PubMed PubMed Central

Madani, F., Esnaashari, S.S., Webster, T.J., Khosravani, M., and Adabi, M. (2022). Polymeric nanoparticles for drug delivery in glioblastoma: state of the art and future perspectives. J. Contr. Release 349: 649–661, https://doi.org/10.1016/j.jconrel.2022.07.023.Search in Google Scholar PubMed

Maja, L., Željko, K., and Mateja, P. (2020). Sustainable technologies for liposome preparation. J. Supercrit. Fluids 165: 104984, https://doi.org/10.1016/j.supflu.2020.104984.Search in Google Scholar

Manikandan, C., Kaushik, A., and Sen, D. (2020). Viral vector: potential therapeutic for glioblastoma multiforme. Cancer Gene Ther. 27: 270–279, https://doi.org/10.1038/s41417-019-0124-8.Search in Google Scholar PubMed

Manimaran, V., Nivetha, R., Tamilanban, T., Narayanan, J., Vetriselvan, S., Fuloria, N.K., Chinni, S.V., Sekar, M., Fuloria, S., Wong, L.S., et al.. (2023). Nanogels as novel drug nanocarriers for CNS drug delivery. Front. Mol. Biosci. 10: 1232109, https://doi.org/10.3389/fmolb.2023.1232109.Search in Google Scholar PubMed PubMed Central

Maysinger, D., Zhang, Q., and Kakkar, A. (2020). Dendrimers as modulators of brain cells. Molecules 25: 4489, https://doi.org/10.3390/molecules25194489.Search in Google Scholar PubMed PubMed Central

Mei, Y., Wang, X., Zhang, J., Liu, D., He, J., Huang, C., Liao, J., Wang, Y., Feng, Y., Li, H., et al.. (2023). Siglec-9 acts as an immune-checkpoint molecule on macrophages in glioblastoma, restricting T-cell priming and immunotherapy response. Nat. Cancer 4: 1273–1291, https://doi.org/10.1038/s43018-023-00598-9.Search in Google Scholar PubMed

Miller, K.D., Ostrom, Q.T., Kruchko, C., Patil, N., Tihan, T., Cioffi, G., Fuchs, H.E., Waite, K.A., Jemal, A., Siegel, R.L., et al.. (2021). Brain and other central nervous system tumor statistics, 2021. CA Cancer J. Clin. 71: 381–406, https://doi.org/10.3322/caac.21693.Search in Google Scholar PubMed

Mohamed Isa, E.D., Ahmad, H., and Abdul Rahman, M.B. (2019). Optimization of synthesis parameters of mesoporous silica nanoparticles based on ionic liquid by experimental design and its application as a drug delivery agent. J. Nanomater. 2019: 4982054, https://doi.org/10.1155/2019/4982054.Search in Google Scholar

Mohamed Isa, E.D., Ahmad, H., Abdul Rahman, M.B., and Gill, M.R. (2021). Progress in mesoporous silica nanoparticles as drug delivery agents for cancer treatment. Pharmaceutics 13: 152, https://doi.org/10.3390/pharmaceutics13020152.Search in Google Scholar PubMed PubMed Central

Nam, J., Son, S., Park, K.S., Zou, W., Shea, L.D., and Moon, J.J. (2019). Cancer nanomedicine for combination cancer immunotherapy. Nat. Rev. Mater. 4: 398–414, https://doi.org/10.1038/s41578-019-0108-1.Search in Google Scholar

Nam, L., Coll, C., Erthal, L.C.S., de la Torre, C., Serrano, D., Martínez-Máñez, R., Santos-Martínez, M.J., and Ruiz-Hernández, E. (2018). Drug delivery nanosystems for the localized treatment of glioblastoma multiforme. Materials 11: 779, https://doi.org/10.3390/ma11050779.Search in Google Scholar PubMed PubMed Central

Mehra, N.K. and Palakurthi, S. (2016). Interactions between carbon nanotubes and bioactives: a drug delivery perspective. Drug Discov. Today. 21: 585–597, https://doi.org/10.1016/j.drudis.2015.11.011.Search in Google Scholar PubMed

Ni, K., Luo, T., Culbert, A., Kaufmann, M., Jiang, X., and Lin, W. (2020). Nanoscale metal-organic framework co-delivers TLR-7 agonists and anti-CD47 antibodies to modulate macrophages and orchestrate cancer immunotherapy. J. Am. Chem. Soc. 142: 8817–8825, https://doi.org/10.1021/jacs.0c05039.Search in Google Scholar PubMed

Niu, M., Lu, Y., Hovgaard, L., Guan, P., Tan, Y., Lian, R., Qi, J., and Wu, W. (2012). Hypoglycemic activity and oral bioavailability of insulin-loaded liposomes containing bile salts in rats: the effect of cholate type, particle size and administered dose. Eur. J. Pharm. Biopharm. 81: 265–272, https://doi.org/10.1016/j.ejpb.2012.02.009.Search in Google Scholar PubMed

Oishi, T., Koizumi, S., and Kurozumi, K. (2022). Molecular mechanisms and clinical challenges of glioma invasion. Brain Sci. 12: 291, https://doi.org/10.3390/brainsci12020291.Search in Google Scholar PubMed PubMed Central

Omuro, A. and DeAngelis, L.M. (2013). Glioblastoma and other malignant gliomas: a clinical review. JAMA 310: 1842–1850, https://doi.org/10.1001/jama.2013.280319.Search in Google Scholar PubMed

Ortiz-Islas, E., Manríquez-Ramírez, M.E., Sosa-Muñoz, A., Almaguer, P., Arias, C., Guevara, P., Hernández-Cortez, G., and Aguirre-Cruz, M.L. (2020). Preparation and characterisation of silica-based nanoparticles for cisplatin release on cancer brain cells. IET Nanobiotechnol. 14: 191–197, https://doi.org/10.1049/iet-nbt.2019.0239.Search in Google Scholar PubMed PubMed Central

Ostrom, Q.T., Gittleman, H., Fulop, J., Liu, M., Blanda, R., Kromer, C., Wolinsky, Y., Kruchko, C., and Barnholtz-Sloan, J.S. (2015). CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2008-2012. Neuro. Oncol. 17: iv1–iv62, https://doi.org/10.1093/neuonc/nov189.Search in Google Scholar PubMed PubMed Central

Ostrom, Q.T., Kruchko, C., and Barnholtz-Sloan, J.S. (2020). Pilocytic astrocytomas: where do they belong in cancer reporting? Neuro. Oncol. 22: 298–300, https://doi.org/10.1093/neuonc/noz202.Search in Google Scholar PubMed PubMed Central

Pardoll, D.M. (2012). The blockade of immune checkpoints in cancer immunotherapy. Nat. Rev. Cancer 12: 252–264, https://doi.org/10.1038/nrc3239.Search in Google Scholar PubMed PubMed Central

Pashazadeh-Panahi, P., Belali, S., Sohrabi, H., Oroojalian, F., Hashemzaei, M., Mokhtarzadeh, A., and de la Guardia, M. (2021). Metal-organic frameworks conjugated with biomolecules as efficient platforms for development of biosensors. TrAC Trend Anal. Chem. 141: 116285, https://doi.org/10.1016/j.trac.2021.116285.Search in Google Scholar

Peng, Z., Li, S., Han, X., Al-Youbi, A.O., Bashammakh, A.S., El-Shahawi, M.S., and Leblanc, R.M. (2016). Determination of the composition, encapsulation efficiency and loading capacity in protein drug delivery systems using circular dichroism spectroscopy. Anal. Chim. Acta 937: 113–118, https://doi.org/10.1016/j.aca.2016.08.014.Search in Google Scholar PubMed

Perini, G., Palmieri, V., Ciasca, G., D’Ascenzo, M., Gervasoni, J., Primiano, A., Rinaldi, M., Fioretti, D., Prampolini, C., Tiberio, F., et al.. (2020). Graphene quantum dots’ surface chemistry modulates the sensitivity of glioblastoma cells to chemotherapeutics. Int. J. Mol. Sci. 21: 6301, https://doi.org/10.3390/ijms21176301.Search in Google Scholar PubMed PubMed Central

Petrova, V., A.-P.M., Melino, G., and Amelio, I. (2018). The hypoxic tumour microenvironment. Oncogenesis 7: 10, https://doi.org/10.1038/s41389-017-0011-9.Search in Google Scholar PubMed PubMed Central

Phi, L.T.H., Sari, I.N., Yang, Y.G., Lee, S.H., Jun, N., Kim, K.S., Lee, Y.K., and Kwon, H.Y. (2018). Cancer stem cells (CSCs) in drug resistance and their therapeutic implications in cancer treatment. Stem Cells Int. 2018: 5416923, https://doi.org/10.1155/2018/5416923.Search in Google Scholar PubMed PubMed Central

Podar, K., Zimmerhackl, A., Fulciniti, M., Tonon, G., Hainz, U., Tai, Y.T., Vallet, S., Halama, N., Jäger, D., Olson, D.L., et al.. (2011). The selective adhesion molecule inhibitor Natalizumab decreases multiple myeloma cell growth in the bone marrow microenvironment: therapeutic implications. Br. J. Haematol. 155: 438–448, https://doi.org/10.1111/j.1365-2141.2011.08864.x.Search in Google Scholar PubMed

Pu, Z., Wei, Y., Sun, Y., Wang, Y., and Zhu, S. (2022). Carbon nanotubes as carriers in drug delivery for non-small cell lung cancer, mechanistic analysis of their carcinogenic potential, safety profiling and identification of biomarkers. Int. J. Nanomed. 17: 6157–6180, https://doi.org/10.2147/ijn.s384592.Search in Google Scholar

Pulvirenti, L., Monforte, F., Lo Presti, F., Li Volti, G., Carota, G., Sinatra, F., Bongiorno, C., Mannino, G., Cambria, M.T., and Condorelli, G.G. (2022). Synthesis of MIL-modified Fe3O4 magnetic nanoparticles for enhancing uptake and efficiency of temozolomide in glioblastoma treatment. Int. J. Mol. Sci. 23: 2874, https://doi.org/10.3390/ijms23052874.Search in Google Scholar PubMed PubMed Central

Ramasamy, E. and Ramamurthy, V. (2018). Supramolecular-surface photochemistry: assembly and photochemistry of host-guest capsules on silica surface. Org. Lett. 20: 4187–4190, https://doi.org/10.1021/acs.orglett.8b01497.Search in Google Scholar PubMed

Rani, R., Malik, P., Dhania, S., and Mukherjee, T.K. (2023). Recent advances in mesoporous silica nanoparticle-mediated drug delivery for breast cancer treatment. Pharmaceutics 15: 227, https://doi.org/10.3390/pharmaceutics15010227.Search in Google Scholar PubMed PubMed Central

Ren, W., Chen, S., Liao, Y., Li, S., Ge, J., Tao, F., Huo, Q., Zhang, Y., and Zhao, Z. (2019). Near-infrared fluorescent carbon dots encapsulated liposomes as multifunctional nano-carrier and tracer of the anticancer agent cinobufagin in vivo and in vitro. Colloids Surf., B Biointerfaces 174: 384–392, https://doi.org/10.1016/j.colsurfb.2018.11.041.Search in Google Scholar PubMed

Ribovski, L., de Jongh, E., Mergel, O., Zu, G., Keskin, D., van Rijn, P., and Zuhorn, I.S. (2021). Low nanogel stiffness favors nanogel transcytosis across an in vitro blood-brain barrier. Nanomedicine 34: 102377, https://doi.org/10.1016/j.nano.2021.102377.Search in Google Scholar PubMed

Robert, M. and Wastie, M. (2008). Glioblastoma multiforme: a rare manifestation of extensive liver and bone metastases. Biomed. Imag. Interv. J. 4: e3, https://doi.org/10.2349/biij.4.1.e3.Search in Google Scholar PubMed PubMed Central

Rustenhoven, J. and Kipnis, J. (2019). Bypassing the blood-brain barrier. Science 366: 1448–1449, https://doi.org/10.1126/science.aay0479.Search in Google Scholar PubMed PubMed Central

Saidijam, M., Karimi Dermani, F., Sohrabi, S., and Patching, S.G. (2018). Efflux proteins at the blood-brain barrier: review and bioinformatics analysis. Xenobiotica 48: 506–532, https://doi.org/10.1080/00498254.2017.1328148.Search in Google Scholar PubMed

Sajid, M.I., Jamshaid, T., Zafar, N., Fessi, H., and Elaissari, A. (2016). Carbon nanotubes from synthesis to in vivo biomedical applications. Int. J. Pharm. 501: 278–299, https://doi.org/10.1016/j.ijpharm.2016.01.064.Search in Google Scholar PubMed

Salazar, A., Pérez-de la Cruz, V., Muñoz-Sandoval, E., Chavarria, V., García Morales, M.L., Espinosa-Bonilla, A., Sotelo, J., Jiménez-Anguiano, A., and Pineda, B. (2021). Potential use of nitrogen-doped carbon nanotube sponges as payload carriers against malignant glioma. Nanomaterials 11: 1244, https://doi.org/10.3390/nano11051244.Search in Google Scholar PubMed PubMed Central

Saleki, K., Alijanizadeh, P., Javanmehr, N., and Rezaei, N. (2024a). The role of Toll-like receptors in neuropsychiatric disorders: immunopathology, treatment, and management. Med. Res. Rev. 44: 1267–1325, https://doi.org/10.1002/med.22012.Search in Google Scholar PubMed

Saleki, K., Aram, C., Alijanizadeh, P., Khanmirzaei, M.H., Vaziri, Z., Ramzankhah, M., and Azadmehr, A. (2024b). Matrix metalloproteinase/Fas ligand interaction dynamics in COVID-19: an in silico study and neuroimmune perspective. Heliyon 10: e30898, https://doi.org/10.1016/j.heliyon.2024.e30898.Search in Google Scholar PubMed PubMed Central

Saleki, K., Banazadeh, M., Miri, N.S., and Azadmehr, A. (2022a). Triangle of cytokine storm, central nervous system involvement, and viral infection in COVID-19: the role of sFasL and neuropilin-1. Rev. Neurosci. 33: 147–160, https://doi.org/10.1515/revneuro-2021-0047.Search in Google Scholar PubMed

Saleki, K., Mohamadi, M., Alijanizadeh, P., and Rezaei, N. (2023a). Inflammasome elements in epilepsy and seizures. Transl. Neuroimmunol. Book 7: 449–474, https://doi.org/10.1016/b978-0-323-85841-0.00005-5.Search in Google Scholar

Saleki, K., Mohamadi, M.H., Alijanizadeh, P., and Rezaei, N. (2023b). Neurological adverse effects of chimeric antigen receptor T-cell therapy. Expert Rev. Clin. Immunol. 19: 1361–1383, https://doi.org/10.1080/1744666x.2023.2248390.Search in Google Scholar

Saleki, K., Banazadeh, M., Saghazadeh, A., and Rezaei, N. (2023c). Aging, testosterone, and neuroplasticity: friend or foe? Rev. Neuro. 34: 247–273, https://doi.org/10.1515/revneuro-2022-0033.Search in Google Scholar PubMed

Saleki, K., Mohamadi, M.H., Banazadeh, M., Alijanizadeh, P., Javanmehr, N., Pourahmad, R., and Nouri, H.R. (2022b). In silico design of a TLR4-mediating multiepitope chimeric vaccine against amyotrophic lateral sclerosis. J. Leukoc. Biol. 112: 1191–1207, https://doi.org/10.1002/jlb.6ma0721-376rr.Search in Google Scholar

Saleki, K., Payandeh, P., Shakeri, M., Pourahmad, R., Banazadeh, M., Alijanizadeh, P., Mohamadi, M.H., and Akhlaghdoust, M. (2022c). Utilizing immunoinformatics to target brain tumors; an aid to current neurosurgical practice. Interv. Pain Med. Neuromodulation 2: e131144, https://doi.org/10.5812/ipmn-131144.Search in Google Scholar

Saleki, K., Shirzad, M., Javanian, M., Mohammadkhani, S., Alijani, M.H., Miri, N., Oladnabi, M., and Azadmehr, A. (2022d). Serum soluble Fas ligand is a severity and mortality prognostic marker for COVID-19 patients. Front. Immunol. 13: 947401, https://doi.org/10.3389/fimmu.2022.947401.Search in Google Scholar PubMed PubMed Central

Sameer, A.S. and Nissar, S. (2021). Toll-like receptors: structure, functions, signaling, and role of their polymorphisms in colorectal cancer susceptibility. Biomed. Res. Int. 2021: 1157023, https://doi.org/10.1155/2021/1157023.Search in Google Scholar PubMed PubMed Central

Sandberg, C.J., Altschuler, G., Jeong, J., Strømme, K.K., Stangeland, B., Murrell, W., Grasmo-Wendler, U.H., Myklebost, O., Helseth, E., Vik-Mo, E.O., et al.. (2013). Comparison of glioma stem cells to neural stem cells from the adult human brain identifies dysregulated Wnt-signaling and a fingerprint associated with clinical outcome. Exp. Cell Res. 319: 2230–2243, https://doi.org/10.1016/j.yexcr.2013.06.004.Search in Google Scholar PubMed

Sasaki, Y. and Akiyoshi, K. (2010). Nanogel engineering for new nanobiomaterials: from chaperoning engineering to biomedical applications. Chemic Rec. 10: 366–376, https://doi.org/10.1002/tcr.201000008.Search in Google Scholar PubMed

Selvakannan, P.R., Madhavan, S., Phadtare, S., Gole, A., Pasricha, R., Adyanthaya, S.D., and Sastry, M. (2004). Water-dispersible tryptophan-protected gold nanoparticles prepared by the spontaneous reduction of aqueous chloroaurate ions by the amino acid. J. Colloid Interface Sci. 12: 97–102.10.1016/S0021-9797(03)00616-7Search in Google Scholar

Semyachkina-Glushkovskaya, O., Shirokov, A., Blokhina, I., Telnova, V., Vodovozova, E., Alekseeva, A., Boldyrev, I., Fedosov, I., Dubrovsky, A., Khorovodov, A., et al.. (2022). Intranasal delivery of liposomes to glioblastoma by photostimulation of the lymphatic system. Pharmaceutics 15: 36, https://doi.org/10.3390/pharmaceutics15010036.Search in Google Scholar PubMed PubMed Central

Semyachkina-Glushkovskaya, O., Fedosov, I., Shirokov, A., Vodovozov, E., Alekseev, A., Khorovodov, A., Blokhina, I., Terskov, A., Mamedova, A., Klimova, M., et al.. (2021). Photomodulation of lymphatic delivery of liposomes to the brain bypassing the blood-brain barrier: new perspectives for glioma therapy. Nanophotonics 10: 3215–3227, https://doi.org/10.1515/nanoph-2021-0212.Search in Google Scholar

Seven, E.S., Seven, Y.B., Zhou, Y., Poudel-Sharma, S., Diaz-Rucco, J.J., Kirbas Cilingir, E., Mitchell, G.S., Van Dyken, J.D., and Leblanc, R.M. (2021). Crossing the blood-brain barrier with carbon dots: uptake mechanism and in vivo cargo delivery. Nanoscale Adv. 3: 3942–3953, https://doi.org/10.1039/d1na00145k.Search in Google Scholar PubMed PubMed Central

Shah, N.N. and Fry, T.J. (2019). Mechanisms of resistance to CAR T cell therapy. Nat. Rev. Clin. Oncol. 16: 372–385, https://doi.org/10.1038/s41571-019-0184-6.Search in Google Scholar PubMed PubMed Central

Shan, Y., Xiao, C., Zhang, H., Chen, H., Bilal, M., Niu, S., and Huang, Q. (2020). Polydopamine-modified metal-organic frameworks, NH2-Fe-MIL-101, as pH-sensitive nanocarriers for controlled pesticide release. Nanomaterials 10: 2000, https://doi.org/10.3390/nano10102000.Search in Google Scholar PubMed PubMed Central

Sharma, A., Garg, T., Aman, A., Panchal, K., Sharma, R., Kumar, S., and Markandeywar, T. (2016). Nanogel—an advanced drug delivery tool: current and future. Artif. Cells, Nanomed. Biotechnol. 44: 165–177, https://doi.org/10.3109/21691401.2014.930745.Search in Google Scholar PubMed

Sharma, H. and Mondal, S. (2020). Functionalized graphene oxide for chemotherapeutic drug delivery and cancer treatment: a promising material in nanomedicine. Int. J. Mol. Sci. 21: 6280, https://doi.org/10.3390/ijms21176280.Search in Google Scholar PubMed PubMed Central

Sharma, R., Lo, K., Sharma, A., Jimenez, A., Chang, M., Salazar, S., Amlani, I., Kannan, S., and Kannan, R.M. (2021). Glycosylation of PAMAM dendrimers significantly improves tumor macrophage targeting and specificity in glioblastoma. J. Contr. Release 337: 179–192, https://doi.org/10.1016/j.jconrel.2021.07.018.Search in Google Scholar PubMed PubMed Central

Shi, A.P., Tang, X.Y., Xiong, Y.L., Zheng, K.F., Liu, Y.J., Shi, X.G., Lv, Y., Jiang, T., Ma, N., and Zhao, J.B. (2021). Immune checkpoint LAG3 and its ligand FGL1 in cancer. Front. Immunol. 12: 785091, https://doi.org/10.3389/fimmu.2021.785091.Search in Google Scholar PubMed PubMed Central

Shu, C. and Li, Q. (2020). Current advances in PD-1/PD-L1 axis-related tumour-infiltrating immune cells and therapeutic regimens in glioblastoma. Crit. Rev. Oncol. Hematol. 151: 102965, https://doi.org/10.1016/j.critrevonc.2020.102965.Search in Google Scholar PubMed

Silveira Corrêa, T.C., Massaro, R.R., Brohem, C.A., Taboga, S.R., Lamers, M.L., Santos, M.F., and Maria-Engler, S.S. (2010). RECK-mediated inhibition of glioma migration and invasion. J. Cell. Biochem. 110: 52–61, https://doi.org/10.1002/jcb.22472.Search in Google Scholar PubMed

Singh, S.K., Hawkins, C., Clarke, I.D., Squire, J.A., Bayani, J., Hide, T., Henkelman, R.M., Cusimano, M.D., and Dirks, P.B. (2004). Identification of human brain tumour initiating cells. Nature 432: 396–401, https://doi.org/10.1038/nature03128.Search in Google Scholar PubMed

Smiley, S.B., Yun, Y., Ayyagari, P., Shannon, H.E., Pollok, K.E., Vannier, M.W., Das, S.K., and Veronesi, M.C. (2021). Development of CD133 targeting multi-drug polymer micellar nanoparticles for glioblastoma—in vitro evaluation in glioblastoma stem cells. Pharm. Res. 38: 1067–1079, https://doi.org/10.1007/s11095-021-03050-8.Search in Google Scholar PubMed

Sogut, O., Sezer, U.A., and Sezer, S. (2021). Liposomal delivery systems for herbal extracts. J. Drug Deliv. Sci. Technol. 61: 102147.10.1016/j.jddst.2020.102147Search in Google Scholar

Somani, S. and Dufès, C. (2014). Applications of dendrimers for brain delivery and cancer therapy. Nanomed. Lond. 9: 2403–2414, https://doi.org/10.2217/nnm.14.130.Search in Google Scholar PubMed

Song, L., Smith, M.A., Doshi, P., Sasser, K., Fulp, W., Altiok, S., and Haura, E.B. (2014). Antitumor efficacy of the anti-interleukin-6 (IL-6) antibody siltuximab in mouse xenograft models of lung cancer. J. Thorac. Oncol. 9: 974–982, https://doi.org/10.1097/jto.0000000000000193.Search in Google Scholar

Song, W., Deng, M., and Chen, X. (2020). Nanotherapeutics for immuno-oncology: a crossroad for new paradigms. Trend. Cancer 6: 288–298, https://doi.org/10.1016/j.trecan.2020.01.011.Search in Google Scholar PubMed PubMed Central

Stawicki, B., Schacher, T., and Cho, H. (2021). Nanogels as a versatile drug delivery system for brain cancer. Gels Basel 7: 63, https://doi.org/10.3390/gels7020063.Search in Google Scholar PubMed PubMed Central

Sterner, R.C. and Sterner, R.M. (2021). CAR-T cell therapy: current limitations and potential strategies. Blood Cancer J. 11: 69, https://doi.org/10.1038/s41408-021-00459-7.Search in Google Scholar PubMed PubMed Central

Strege, R.J., Godt, C., Stark, A.M., Hugo, H.H., and Mehdorn, H.M. (2004). Protein expression of Fas, Fas ligand, Bcl-2, and TGFβ2 and correlation with survival in initial and recurrent human gliomas. J. Neurooncol. 67: 29–39, https://doi.org/10.1023/b:neon.0000021739.34343.75.10.1023/B:NEON.0000021739.34343.75Search in Google Scholar PubMed

Stummer, W. and Suero Molina, E. (2017). Fluorescence imaging/agents in tumor resection. Neurosurg. Clin. N. Am. 28: 569–583, https://doi.org/10.1016/j.nec.2017.05.009.Search in Google Scholar PubMed

Stupp, R., Hegi, M.E., Mason, W.P., van den Bent, M.J., Taphoorn, M.J., Janzer, R.C., Ludwin, S.K., Allgeier, A., Fisher, B., Belanger, K., et al.. (2009). Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol. 10: 459–466, https://doi.org/10.1016/s1470-2045(09)70025-7.Search in Google Scholar

Sun, C.Y., Qin, C., Wang, X.L., and Su, Z.M. (2013). Metal-organic frameworks as potential drug delivery systems. Expert Opin. Drug Deliv. 10: 89–101, https://doi.org/10.1517/17425247.2013.741583.Search in Google Scholar PubMed

Sun, Y., Zheng, L., Yang, Y., Qian, X., Fu, T., Li, X., Yang, Z., Yan, H., Cui, C., and Tan, W. (2020). Metal-organic framework nanocarriers for drug delivery in biomedical applications. Nano Micro Lett. 12: 103, https://doi.org/10.1007/s40820-020-00423-3.Search in Google Scholar PubMed PubMed Central

Suzuki, R., Oda, Y., Unga, J., Negishi, Y., and Maruyama, K. (2016). Cancer therapy with nanotechnology-based drug delivery systems: applications and challenges of liposome technologies for advanced cancer therapy. Nanomater. Pharmacol.: 457–482, https://doi.org/10.1007/978-1-4939-3121-7_23.Search in Google Scholar

Tomei, S., Volontè, A., Ravindran, S., Mazzoleni, S., Wang, E., Galli, R., and Maccalli, C. (2021). MicroRNA expression profile distinguishes glioblastoma stem cells from differentiated tumor cells. J. Pers. Med. 11: 264, https://doi.org/10.3390/jpm11040264.Search in Google Scholar PubMed PubMed Central

Tripathi, R.M., Shrivastav, A., and Shrivastav, B.R. (2015). Biogenic gold nanoparticles: as a potential candidate for brain tumor-directed drug delivery. Artif. Cells, Nanomed. Biotechnol. 43: 311–317, https://doi.org/10.3109/21691401.2014.885445.Search in Google Scholar PubMed

Turan, O., Bielecki, P., Perera, V., Lorkowski, M., Covarrubias, G., Tong, K., Yun, A., Rahmy, A., Ouyang, T., Raghunathan, S., et al.. (2019). Delivery of drugs into brain tumors using multicomponent silica nanoparticles. Nanoscale 11: 11910–11921, https://doi.org/10.1039/c9nr02876e.Search in Google Scholar PubMed PubMed Central

Uy, G.L., Rettig, M.P., Motabi, I.H., McFarland, K., Trinkaus, K.M., Hladnik, L.M., Kulkarni, S., Abboud, C.N., Cashen, A.F., Stockerl-Goldstein, K.E., et al.. (2012). A phase 1/2 study of chemosensitization with the CXCR4 antagonist plerixafor in relapsed or refractory acute myeloid leukemia. Blood 119: 3917–3924, https://doi.org/10.1182/blood-2011-10-383406.Search in Google Scholar PubMed PubMed Central

Veeren, A., Olaitan, M.O., Shin, J.E., and Zasadzinski, J.A. (2022). Liposome-tethered gold nanoparticles triggered by pulsed NIR light for rapid liposome contents release and endosome escape. Pharmaceutics 14: 701, https://doi.org/10.3390/pharmaceutics14040701.Search in Google Scholar PubMed PubMed Central

Wang, B., Tang, M., Yuan, Z., Li, Z., Hu, B., Bai, X., Chu, J., Xu, X., and Zhang, X.Q. (2022). Targeted delivery of a STING agonist to brain tumors using bioengineered protein nanoparticles for enhanced immunotherapy. Bioact. Mater. 16: 232–248, https://doi.org/10.1016/j.bioactmat.2022.02.026.Search in Google Scholar PubMed PubMed Central

Wang, C., Ye, Y., Hu, Q., Bellotti, A., and Gu, Z. (2017). Tailoring biomaterials for cancer immunotherapy: emerging trends and future outlook. Adv. Mater. 29: 1606036, https://doi.org/10.1002/adma.201606036.Search in Google Scholar PubMed

Wang, D., Starr, R., Chang, W.C., Aguilar, B., Alizadeh, D., Wright, S.L., Yang, X., Brito, A., Sarkissian, A., Ostberg, J.R., et al.. (2020). Chlorotoxin-directed CAR T cells for specific and effective targeting of glioblastoma. Sci. Transl. Med. 12: eaaw2672, https://doi.org/10.1126/scitranslmed.aaw2672.Search in Google Scholar PubMed PubMed Central

Wang, N., Li, T., and Deng, Y. (2009). Modulation of the physicochemical state of interior agents to prepare controlled release liposomes. Colloids Surf., B 69: 232–238, https://doi.org/10.1016/j.colsurfb.2008.11.033.Search in Google Scholar PubMed

Wilson, T.A., Harter, D.H., and Karajannis, M. (2014). Glioblastoma multiforme: state of the art and future therapeutics. Surg. Neurol. Int. 5: 64, https://doi.org/10.4103/2152-7806.132138.Search in Google Scholar PubMed PubMed Central

Wong, C.H.A., Kubesova, M., Kucera, J., Matejkova, S., and Pumera, M. (2014). Synthetic routes contaminate graphene materials with a whole spectrum of unanticipated metallic elements. Proc. Natl. Acad. Sci. U. S. A. 111: 13774–13779, https://doi.org/10.1073/pnas.1413389111.Search in Google Scholar PubMed PubMed Central

Wu, M., Zheng, D., Zhang, D., Yu, P., Peng, L., Chen, F., Lin, Z., Cai, Z., Li, J., Wei, Z., et al.. (2020). Converting immune cold into hot by biosynthetic functional vesicles to boost systematic antitumor immunity. iScience 23, https://doi.org/10.1016/j.isci.2020.101341.Search in Google Scholar PubMed PubMed Central

Xiao, L. and Sun, H. (2018). Novel properties and applications of carbon nanodots. Nanoscale Horiz. 3: 565–597, https://doi.org/10.1039/c8nh00106e.Search in Google Scholar PubMed

Xie, Y., Lugano, R., Zhang, Y., Cao, H., He, Q., Chao, M., Liu, B., Cao, Q., Wang, J., Jiao, Y., et al.. (2021). Key molecular alterations in endothelial cells in human glioblastoma uncovered through single-cell RNA sequencing. JCI Insight 6: e150861, https://doi.org/10.1172/jci.insight.150861.Search in Google Scholar PubMed PubMed Central

Xun, Y., Yang, H., Kaminska, B., and You, H. (2021). Toll-like receptors and toll-like receptor-targeted immunotherapy against glioma. J. Hematol. Oncol. 14: 176, https://doi.org/10.1186/s13045-021-01191-2.Search in Google Scholar PubMed PubMed Central

Yang, M., Li, J., Gu, P., and Fan, X. (2020). The application of nanoparticles in cancer immunotherapy: targeting tumor microenvironment. Bioact. Mater. 6: 1973–1987, https://doi.org/10.1016/j.bioactmat.2020.12.010.Search in Google Scholar PubMed PubMed Central

Yang, T., Kong, Z., and Ma, W. (2021). PD-1/PD-L1 immune checkpoint inhibitors in glioblastoma: clinical studies, challenges, and potential. Hum. Vaccin. Immunother. 17: 546–553, https://doi.org/10.1080/21645515.2020.1782692.Search in Google Scholar PubMed PubMed Central

Yang, X., Xing, Z., She, D., Lin, Y., Zhang, H., Su, Y., and Cao, D. (2022). Grading of IDH-mutant astrocytoma using diffusion, susceptibility, and perfusion-weighted imaging. BMC Med. Imag. 22: 105, https://doi.org/10.1186/s12880-022-00832-3.Search in Google Scholar PubMed PubMed Central

Yusuf, V.F., Malek, N.I., and Kailasa, S.K. (2022). Review on metal-organic framework classification, synthetic approaches, and influencing factors: applications in energy, drug delivery, and wastewater treatment. ACS Omega 7: 44507–44531, https://doi.org/10.1021/acsomega.2c05310.Search in Google Scholar PubMed PubMed Central

Zare-Zardini, H., Hatamizadeh, N., Haddadzadegan, N., Soltaninejad, H., and Karimi-Zarchi, M. (2022). Advantages and disadvantages of using carbon nanostructures in reproductive medicine: two sides of the same coin. JBRA Assist. Reprod. 26: 142, https://doi.org/10.5935/1518-0557.20210070.Search in Google Scholar PubMed PubMed Central

Zhang, L.W. and Monteiro-Riviere, N.A. (2009). Mechanisms of quantum dot nanoparticle cellular uptake. Toxicol. Sci. 110: 138–155, https://doi.org/10.1093/toxsci/kfp087.Search in Google Scholar PubMed

Zhang, Q., Zhong, H., Fan, Y., Liu, Q., Song, J., Yao, S., and Cao, F. (2020). Immune and clinical features of CD96 expression in glioma by in silico analysis. Front. Bioeng. Biotechnol. 8: 592, https://doi.org/10.3389/fbioe.2020.00592.Search in Google Scholar PubMed PubMed Central

Zhang, W., Sigdel, G., Mintz, K.J., Seven, E.S., Zhou, Y., Wang, C., and Leblanc, R.M. (2021). Carbon dots: a future blood-brain barrier penetrating nanomedicine and drug nanocarrier. Int. J. Nanomed. 16: 5003–5016, https://doi.org/10.2147/ijn.s318732.Search in Google Scholar PubMed PubMed Central

Zhang, Y., Guoqiang, L., Sun, M., and Lu, X. (2020). Targeting and exploitation of tumor-associated neutrophils to enhance immunotherapy and drug delivery for cancer treatment. Cancer Biol. Med. 17: 32–43, https://doi.org/10.20892/j.issn.2095-3941.2019.0372.Search in Google Scholar PubMed PubMed Central

Zhang, Y., Liu, C., Wang, F., Liu, Z., Ren, J., and Qu, X. (2017). Metal-organic-framework-supported immunostimulatory oligonucleotides for enhanced immune response and imaging. Chem. Commun. 53: 1840–1843, https://doi.org/10.1039/c6cc09280b.Search in Google Scholar PubMed

Zhang, Z., Lei, Y., Yang, X., Shi, N., Geng, L., Wang, S., Zhang, J., and Shi, S. (2019). High drug-loading system of hollow carbon dots-doxorubicin: preparation, in vitro release, and pH-targeted research. J. Mater. Chem. B 7: 2130–2137, https://doi.org/10.1039/c9tb00032a.Search in Google Scholar PubMed

Zhao, H., Xu, J., Li, Y., Guan, X., Han, X., Xu, Y., Zhou, H., Peng, R., Wang, J., and Liu, Z. (2019). Nanoscale coordination polymer-based nanovaccine for tumor immunotherapy. ACS Nano. 13: 13127–13135, https://doi.org/10.1021/acsnano.9b05974.Search in Google Scholar PubMed

Zhao, M., van Straten, D., Broekman, M.L., Préat, V., and Schiffelers, R.M. (2020). Nanocarrier-based drug combination therapy for glioblastoma. Theranostics 10: 1355–1372, https://doi.org/10.7150/thno.38147.Search in Google Scholar PubMed PubMed Central

Zheng, L., Wu, H., Mo, L., Xie, S., Li, J., Peng, C., Xu, S., Qiu, L., and Tan, W. (2020). In vivo monocyte/macrophage-hitchhiked intratumoral accumulation of nanomedicines for enhanced tumor therapy. J. Am. Chem. Soc. 142: 382–391, https://doi.org/10.1021/jacs.9b11046.Search in Google Scholar PubMed

Zhu, W., Chen, Q., and Liu, Z. (2019). Nanoscale metal-organic frameworks and coordination polymers as theranostic platforms for cancer treatment. Coord. Chem. Rev. 398: 113007.10.1016/j.ccr.2019.07.006Search in Google Scholar

Zong, Z., Tian, G., Wang, J., Fan, C., Yang, F., and Guo, F. (2022). Recent advances in metal-organic-framework-based nanocarriers for controllable drug delivery and release. Pharmaceutics 14: 2790, https://doi.org/10.3390/pharmaceutics14122790.Search in Google Scholar PubMed PubMed Central

Zorainy, M.Y., Kaliaguine, S., and Boffito, D.C.C. (2021). Revisiting the MIL-101 metal-organic framework: design, synthesis, modifications, advances, and recent applications. J. Mater. Chem. A 9: 22159–22217, https://doi.org/10.1039/d1ta06238g.Search in Google Scholar

Received: 2024-07-19
Accepted: 2024-12-08
Published Online: 2024-12-30
Published in Print: 2025-06-26

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 23.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/revneuro-2024-0097/html
Scroll to top button