Startseite The impact of genetic factors on the response to migraine therapy
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

The impact of genetic factors on the response to migraine therapy

  • Daniil Tsirelis , Alexandros Tsekouras , Polyxeni Stamati , Ioannis Liampas ORCID logo , Elli Zoupa , Metaxia Dastamani , Zisis Tsouris , Anastasios Papadimitriou , Efthimios Dardiotis und Vasileios Siokas EMAIL logo
Veröffentlicht/Copyright: 11. Juni 2024
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Migraine is a multidimensional disease affecting a large portion of the human population presenting with a variety of symptoms. In the era of personalized medicine, successful migraine treatment presents a challenge, as several studies have shown the impact of a patient’s genetic profile on therapy response. However, with the emergence of contemporary treatment options, there is promise for improved outcomes. A literature search was conducted in PubMed and Scopus, in order to obtain studies investigating the impact of genetic factors on migraine therapy outcome. Overall, 23 studies were included in the current review, exhibiting diversity in the treatments used and the genetic variants investigated. Divergent genes were assessed for each category of migraine treatment. Several genetic factors were identified to contribute to the heterogeneous response to treatment. SNPs related to pharmacodynamic receptors, pharmacogenetics and migraine susceptibility loci were the most investigated variants, revealing some interesting significant results. To date, various associations have been recorded correlating the impact of genetic factors on migraine treatment responses. More extensive research needs to take place with the aim of shedding light on the labyrinthine effects of genetic variations on migraine treatment, and, consequently, these findings can promptly affect migraine treatment and improve migraine patients’ life quality in the vision of precise medicine.


Corresponding author: Vasileios Siokas, Department of Neurology, University Hospital of Larissa, Faculty of Medicine, University of Thessaly, 41110 Larissa, Greece, E-mail:
Efthimios Dardiotis and Vasileios Siokas share senior authorship.
  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  4. Competing interests: The authors state no conflict of interest.

  5. Research funding: None declared.

  6. Data availability: Not applicable.

References

Amiri, P., Kazeminasab, S., Nejadghaderi, S.A., Mohammadinasab, R., Pourfathi, H., Araj-Khodaei, M., Sullman, M.J.M., Kolahi, A.-A., and Safiri, S. (2022). Migraine: a review on its history, global epidemiology, risk factors, and comorbidities. Front. Neurol. 12: 800605, https://doi.org/10.3389/fneur.2021.800605.Suche in Google Scholar PubMed PubMed Central

Asuni, C., Cherchi, A., Congiu, D., Piccardi, M.P., Del Zompo, M., and Stochino, M.E. (2007). Association study between clinical response to rizatriptan and some candidate genes. J. Headache Pain 8: 185–189, https://doi.org/10.1007/s10194-007-0388-5.Suche in Google Scholar PubMed PubMed Central

Atasayar, G., Eryilmaz, I.E., Karli, N., Egeli, U., Zarifoglu, M., Cecener, G., Taskapilioglu, O., Tunca, B., Yildirim, O., Ak, S., et al.. (2016). Association of MDR1, CYP2D6, and CYP2C19 gene polymorphisms with prophylactic migraine treatment response. J. Neurol. Sci. 366: 149–154, https://doi.org/10.1016/j.jns.2016.05.019.Suche in Google Scholar PubMed

Aynacioglu, A.S., Sachse, C., Bozkurt, A., Kortunay, S., Nacak, M., Schröder, T., Kayaalp, S.O., Roots, I., and Brockmöller, J. (1999). Low frequency of defective alleles of cytochrome P450 enzymes 2C19 and 2D6 in the Turkish population. Clin. Pharmacol. Ther. 66: 185–192, https://doi.org/10.1053/cp.1999.v66.100072001.Suche in Google Scholar PubMed

Barbanti, P., Fofi, L., Aurilia, C., and Egeo, G. (2013). Dopaminergic symptoms in migraine. Neurol. Sci. 34(Suppl. 1): S67–S70, https://doi.org/10.1007/s10072-013-1415-8.Suche in Google Scholar PubMed

Bigal, M.E. and Lipton, R.B. (2008). Excessive acute migraine medication use and migraine progression. Neurology 71: 1821–1828, https://doi.org/10.1212/01.wnl.0000335946.53860.1d.Suche in Google Scholar PubMed

Bjornsdottir, G., Chalmer, M.A., Stefansdottir, L., Skuladottir, A.T., Einarsson, G., Andresdottir, M., Beyter, D., Ferkingstad, E., Gretarsdottir, S., Halldorsson, B.V., et al.. (2023). Rare variants with large effects provide functional insights into the pathology of migraine subtypes, with and without aura. Nat. Genet. 55: 1843–1853, https://doi.org/10.1038/s41588-023-01538-0.Suche in Google Scholar PubMed PubMed Central

Børte, S., Zwart, J.-A., Skogholt, A.H., Gabrielsen, M.E., Thomas, L.F., Fritsche, L.G., Surakka, I., Nielsen, J.B., Zhou, W., Wolford, B.N., et al.. (2020). Mitochondrial genome-wide association study of migraine – the HUNT Study. Cephalalgia 40: 625–634, https://doi.org/10.1177/0333102420906835.Suche in Google Scholar PubMed PubMed Central

Buchan, P., Wade, A., Ward, C., Oliver, S.D., Mfpm, Stewart, A.J., and Freestone, S. (2002). Frovatriptan: a review of drug‐drug interactions. Headache 42: 63–73, https://doi.org/10.1046/j.1526-4610.42.s2.4.x.Suche in Google Scholar PubMed

Burch, R. (2019). Antidepressants for preventive treatment of migraine. Curr. Treat Options Neurol. 21: 18, https://doi.org/10.1007/s11940-019-0557-2.Suche in Google Scholar PubMed

Burch, R. (2021). Preventive migraine treatment. Continuum (Minneap, Minn) 27: 613–632, https://doi.org/10.1212/con.0000000000000957.Suche in Google Scholar

Buse, D.C., Pozo-Rosich, P., Dupont-Benjamin, L., Balkaran, B.L., Lee, L., Jauregui, A., Gandhi, P., Parikh, M., and Reuter, U. (2023). Impact of headache frequency and preventive medication failure on quality of life, functioning, and costs among individuals with migraine across several European countries: need for effective preventive treatment. J. Headache Pain 24: 115, https://doi.org/10.1186/s10194-023-01655-5.Suche in Google Scholar PubMed PubMed Central

Busse, D., Cosme, J., Beaune, P., Kroemer, H.K., Eichelbaum, M., and Kroemer, H. (1995). Cytochromes of the P450 2C subfamily are the major enzymes involved in the O-demethylation of verapamil in humans. Naunyn. Schmiedeb. Arch. Pharmacol. 353: 116–121, https://doi.org/10.1007/bf00168924.Suche in Google Scholar

Cameron, C., Kelly, S., Hsieh, S., Murphy, M., Chen, L., Kotb, A., Peterson, J., Coyle, D., Skidmore, B., Gomes, T., et al.. (2015). Triptans in the acute treatment of migraine: a systematic review and network meta‐analysis. Headache 55: 221–235, https://doi.org/10.1111/head.12601.Suche in Google Scholar PubMed

Carcel, C., Haghdoost, F., Shen, J., Nanda, P., Bai, Y., Atkins, E., Torii-Yoshimura, T., Clough, A.J., Davies, L., Cordato, D., et al.. (2023). The effect of blood pressure lowering medications on the prevention of episodic migraine: a systematic review and meta-analysis. Cephalalgia 43: 3331024231183166, https://doi.org/10.1177/03331024231183166.Suche in Google Scholar PubMed

Cargnin, S., Magnani, F., Viana, M., Tassorelli, C., Mittino, D., Cantello, R., Sances, G., Nappi, G., Canonico, P.L., Genazzani, A.A., et al.. (2013). An opposite-direction modulation of the COMT Val158Met polymorphism on the clinical response to intrathecal morphine and triptans. J. Pain 14: 1097–1106, https://doi.org/10.1016/j.jpain.2013.04.006.Suche in Google Scholar PubMed

Cargnin, S., Viana, M., Mittino, D., Bellomo, G., Tassorelli, C., Nappi, G., Canonico, P.L., and Terrazzino, S. (2014). Lack of association between GRIA1 polymorphisms and haplotypes with migraine without aura or response to triptans. Neurol. Sci. 35: 421–427, https://doi.org/10.1007/s10072-013-1535-1.Suche in Google Scholar PubMed

Cargnin, S., Viana, M., Sances, G., Cantello, R., Tassorelli, C., and Terrazzino, S. (2019). Using a genetic risk score approach to predict headache response to triptans in migraine without aura. J. Clin. Pharmacol. 59: 288–294, https://doi.org/10.1002/jcph.1320.Suche in Google Scholar PubMed

Chase, B.A., Semenov, I., Rubin, S., Meyers, S., Mark, A., Makhlouf, T., Chirayil, T.T., Maraganore, D., Wei, J., Zheng, S.L., et al.. (2024). Characteristics associated with response to subcutaneously administered anti‐CGRP monoclonal antibody medications in a real‐world community cohort of persons living with migraine: a retrospective clinical and genetic study. Headache 64: 68–92, https://doi.org/10.1111/head.14655.Suche in Google Scholar PubMed

Choquet, H., Yin, J., Jacobson, A.S., Horton, B.H., Hoffmann, T.J., Jorgenson, E., Avins, A.L., and Pressman, A.R. (2021). New and sex-specific migraine susceptibility loci identified from a multiethnic genome-wide meta-analysis. Commun. Biol. 4: 864, https://doi.org/10.1038/s42003-021-02356-y.Suche in Google Scholar PubMed PubMed Central

Christensen, A.F., Esserlind, A.-L., Werge, T., Stefánsson, H., Stefánsson, K., and Olesen, J. (2016). The influence of genetic constitution on migraine drug responses. Cephalalgia 36: 624–639, https://doi.org/10.1177/0333102415610874.Suche in Google Scholar PubMed

Cooke, E.M., Armstrong, T., Boisvert, D., Wells, J., Lewis, R.H., Hughes-Stamm, S., and Gangitano, D. (2018). The relationship between the MAOA-uVNTR polymorphism, delinquent peer affiliation, and antisocial behavior with a consideration of sex differences. Psychiatr. Q 89: 841–853, https://doi.org/10.1007/s11126-018-9582-7.Suche in Google Scholar PubMed

Cutrer, F.M., Moyer, A.M., Atkinson, E.J., Wang, L., Tian, S., Wu, Y., Garza, I., Robertson, C.E., Huebert, C.A., Moore, B.E., et al.. (2021). Genetic variants related to successful migraine prophylaxis with verapamil. Mol. Genet. Genom. Med. 9: e1680, https://doi.org/10.1002/mgg3.1680.Suche in Google Scholar PubMed PubMed Central

D’Andrea, G., Granella, F., Perini, F., Farruggio, A., Leone, M., and Bussone, G. (2006). Platelet levels of dopamine are increased in migraine and cluster headache. Headache 46: 585–591, https://doi.org/10.1111/j.1526-4610.2006.00407.x.Suche in Google Scholar PubMed

Diener, H.C., Gaul, C., Lehmacher, W., and Weiser, T. (2022). Aspirin, paracetamol (acetaminophen) and caffeine for the treatment of acute migraine attacks: a systemic review and meta-analysis of randomized placebo-controlled trials. Eur. J. Neurol. 29: 350–357, https://doi.org/10.1111/ene.15103.Suche in Google Scholar PubMed

Di Lorenzo, C., Pierelli, F., Coppola, G., Grieco, G.S., Rengo, C., Ciccolella, M., Magis, D., Bolla, M., Casali, C., Santorelli, F.M., et al.. (2009). Mitochondrial DNA haplogroups influence the therapeutic response to riboflavin in migraineurs. Neurology 72: 1588–1594, https://doi.org/10.1212/wnl.0b013e3181a41269.Suche in Google Scholar PubMed

Dixon, R., French, S., Kemp, J., Sellers, M., and Yates, R. (1998). The metabolism of zolmitriptan: effects of an inducer and an inhibitor of cytochrome P450 on its pharmacokinetics in healthy volunteers. Clin. Drug Investig. 15: 515–522, https://doi.org/10.2165/00044011-199815060-00008.Suche in Google Scholar PubMed

Dodick, D.W. (2018). Migraine. Lancet 391: 1315–1330, https://doi.org/10.1016/s0140-6736(18)30478-1.Suche in Google Scholar

Durham, P.L., Cady, R., and Cady, R. (2004). Regulation of calcitonin gene-related peptide secretion from trigeminal nerve cells by botulinum toxin type A: implications for migraine therapy. Headache 44: 35–43, https://doi.org/10.1111/j.1526-4610.2004.04007.x.Suche in Google Scholar PubMed

Edvinsson, L. (2021). CGRP and migraine: from bench to bedside. Rev. Neurol. 177: 785–790, https://doi.org/10.1016/j.neurol.2021.06.003.Suche in Google Scholar PubMed

Fernández-de-las-Peñas, C., Ambite-Quesada, S., Florencio, L.L., Palacios-Ceña, M., Ordás-Bandera, C., and Arendt-Nielsen, L. (2019). Catechol-O-Methyltransferase Val158Met polymorphism is associated with anxiety, depression, and widespread pressure pain sensitivity in women with chronic, but not episodic, migraine. Pain Med. 20: 1409–1417, https://doi.org/10.1093/pm/pny237.Suche in Google Scholar PubMed

Fila, M., Sobczuk, A., Pawlowska, E., and Blasiak, J. (2022). Epigenetic connection of the calcitonin gene-related peptide and its potential in migraine. Int. J. Mol. Sci. 23, Article 11, https://doi.org/10.3390/ijms23116151.Suche in Google Scholar PubMed PubMed Central

Finnerup, N.B., Sindrup, S.H., and Jensen, T.S. (2010). The evidence for pharmacological treatment of neuropathic pain. Pain 150: 573–581, https://doi.org/10.1016/j.pain.2010.06.019.Suche in Google Scholar PubMed

Gentile, G., Borro, M., Lala, N., Missori, S., Simmaco, M., and Martelletti, P. (2010). Genetic polymorphisms related to efficacy and overuse of triptans in chronic migraine. J. Headache Pain. 11: 431–435, https://doi.org/10.1007/s10194-010-0241-0.Suche in Google Scholar PubMed PubMed Central

Goadsby, P.J., Holland, P.R., Martins-Oliveira, M., Hoffmann, J., Schankin, C., and Akerman, S. (2017). Pathophysiology of migraine: a disorder of sensory processing. Physiol. Rev. 97: 553–622, https://doi.org/10.1152/physrev.00034.2015.Suche in Google Scholar PubMed PubMed Central

Goldstein, J.A., Ishizaki, T., Chiba, K., de Morais, S.M.F., Bell, D., Krahn, P.M., and Price Evans, D.A. (1997). Frequencies of the defective CYP2C19 alleles responsible for the mephenytoin poor metabolizer phenotype in various Oriental, Caucasian, Saudi Arabian and American black populations. Pharmacogenetics 7: 59, https://doi.org/10.1097/00008571-199702000-00008.Suche in Google Scholar PubMed

Grangeon, L., Lange, K.S., Waliszewska-Prosół, M., Onan, D., Marschollek, K., Wiels, W., Mikulenka, P., Farham, F., Gollion, C., and Ducros, A. (2023). Genetics of migraine: where are we now? J. Headache Pain 24, https://doi.org/10.1186/s10194-023-01547-8.Suche in Google Scholar PubMed PubMed Central

Gross, E.C., Lisicki, M., Fischer, D., Sándor, P.S., and Schoenen, J. (2019). The metabolic face of migraine—from pathophysiology to treatment. Nat. Rev. Neurol. 15: 627–643, https://doi.org/10.1038/s41582-019-0255-4.Suche in Google Scholar PubMed

Guerzoni, S., Baraldi, C., and Pani, L. (2022). The association between onabotulinumtoxinA and anti-CGRP monoclonal antibodies: a reliable option for the optimal treatment of chronic migraine. Neurol. Sci. 43: 5687–5695, https://doi.org/10.1007/s10072-022-06195-5.Suche in Google Scholar PubMed

Guo, J., Feng, Z., Rao, Y., Lian, K., Jiang, J., Chen, N., and Rao, Y. (2022). MTHFR polymorphism’s influence on the clinical features and therapeutic effects in patients with migraine: an observational study. Front. Neurol. 13, https://doi.org/10.3389/fneur.2022.1074857.Suche in Google Scholar PubMed PubMed Central

Ha, H. and Gonzalez, A. (2019). Migraine headache prophylaxis. Am. Fam. Physician 99.Suche in Google Scholar

Hautakangas, H., Winsvold, B.S., Ruotsalainen, S.E., Bjornsdottir, G., Harder, A.V.E., Kogelman, L.J.A., Thomas, L.F., Noordam, R., Benner, C., Gormley, P., et al.. (2022). Genome-wide analysis of 102,084 migraine cases identifies 123 risk loci and subtype-specific risk alleles. Nat. Genet. 54: 152–160, https://doi.org/10.1038/s41588-021-00990-0.Suche in Google Scholar PubMed PubMed Central

Hicks, J.K., Swen, J.J., Thorn, C.F., Sangkuhl, K., Kharasch, E.D., Ellingrod, V.L., Skaar, T.C., Müller, D.J., Gaedigk, A., and Stingl, J.C. (2013). Clinical pharmacogenetics implementation Consortium guideline for CYP2D6 and CYP2C19 genotypes and dosing of tricyclic antidepressants. Clin. Pharmacol. Ther. 93: 402–408, https://doi.org/10.1038/clpt.2013.2.Suche in Google Scholar PubMed PubMed Central

International Headache Genetics Consortium, Gormley, P., Anttila, V., Winsvold, B.S., Palta, P., Esko, T., Pers, T.H., Farh, K.-H., Cuenca-Leon, E., Muona, M., et al.. (2016). Meta-analysis of 375,000 individuals identifies 38 susceptibility loci for migraine. Nat. Genet. 48: 856–866, https://doi.org/10.1038/ng.3598.Suche in Google Scholar PubMed PubMed Central

Ishii, M., Sakairi, Y., Hara, H., Imagawa, A., Shimizu, S., Takahashi, J., Nagamine, A., Naito, Y., Masuda, Y., Usami, S., et al.. (2012). Negative predictors of clinical response to triptans in patients with migraine. Neurol. Sci. 33: 453–461, https://doi.org/10.1007/s10072-011-0716-z.Suche in Google Scholar PubMed

Joshi, G., Pradhan, S., and Mittal, B. (2010). No direct association of serotonin transporter (STin2 VNTR) and receptor (HT 102T>C) gene variants in genetic susceptibility to migraine. Dis. Markers 29: 223–229, https://doi.org/10.1155/2010/280987.Suche in Google Scholar

Kaunisto, M.A., Kallela, M., Hämäläinen, E., Kilpikari, R., Havanka, H., Harno, H., Nissilä, M., Säkö, E., Ilmavirta, M., Liukkonen, J., et al.. (2006). Testing of variants of the MTHFR and ESR1 genes in 1798 Finnish individuals fails to confirm the association with migraine with aura. Cephalalgia 26: 1462–1472, https://doi.org/10.1111/j.1468-2982.2006.01228.x.Suche in Google Scholar PubMed

Kawata, A.K., Shah, N., Poon, J.L., Shaffer, S., Sapra, S., Wilcox, T.K., Shah, S., Tepper, S.J., Dodick, D.W., and Lipton, R.B. (2021). Understanding the migraine treatment landscape prior to the introduction of calcitonin gene-related peptide inhibitors: results from the Assessment of TolerabiliTy and Effectiveness in MigrAINe Patients using Preventive Treatment (ATTAIN) study. Headache 61: 438–454, https://doi.org/10.1111/head.14053.Suche in Google Scholar PubMed PubMed Central

Kogelman, L.J.A., Esserlind, A.-L., Francke Christensen, A., Awasthi, S., Ripke, S., Ingason, A., Davidsson, O.B., Erikstrup, C., Hjalgrim, H., Ullum, H., and DBDS Genomic Consortium, The International Headache Genetics Consortium, et al.. (2019). Migraine polygenic risk score associates with efficacy of migraine-specific drugs. Neurol. Genet. 5: e364, https://doi.org/10.1212/nxg.0000000000000364.Suche in Google Scholar

Krasenbaum, L.J., Pedarla, V.L., Thompson, S.F., Tangirala, K., Cohen, J.M., and Driessen, M.T. (2022). A real-world study of acute and preventive medication use, adherence, and persistence in patients prescribed fremanezumab in the United States. J. Headache Pain 23: 54, https://doi.org/10.1186/s10194-022-01413-z.Suche in Google Scholar PubMed PubMed Central

Kraveishvili, N., Kvaratshelia, E., Surmava, S., Gagua, M., Maisuradze, E., and Abzianidze, E. (2023). One-carbon metabolism gene polymorphism correlate with levels of dna methyltransferases in patients with migraine. Exp. Clin. Med. Ga 1, Article 1, https://doi.org/10.52340/jecm.2023.01.12.Suche in Google Scholar

Kroemer, H.K., Gautier, J.C., Beaune, P., Henderson, C., Wolf, C.R., and Eichelbaum, M. (1993). Identification of P450 enzymes involved in metabolism of verapamil in humans. Naunyn. Schmiedeb. Arch. Pharmacol. 348: 332–337, https://doi.org/10.1007/bf00169164.Suche in Google Scholar

Lampl, C., MaassenVanDenBrink, A., Deligianni, C.I., Gil-Gouveia, R., Jassal, T., Sanchez-del-Rio, M., Reuter, U., Uluduz, D., Versijpt, J., Zeraatkar, D., et al.. (2023). The comparative effectiveness of migraine preventive drugs: a systematic review and network meta-analysis. J. Headache Pain 24: 56, https://doi.org/10.1186/s10194-023-01594-1.Suche in Google Scholar PubMed PubMed Central

Lan, N.C., Heinzmann, C., Gal, A., Klisak, I., Orth, U., Lai, E., Grimsby, J., Sparkes, R.S., Mohandas, T., and Shih, J.C. (1989). Human monoamine oxidase A and B genes map to Xp 11.23 and are deleted in a patient with Norrie disease. Genomics 4: 552–559, https://doi.org/10.1016/0888-7543(89)90279-6.Suche in Google Scholar PubMed

Lea, R., Colson, N., Quinlan, S., Macmillan, J., and Griffiths, L. (2009). The effects of vitamin supplementation and MTHFR (C677T) genotype on homocysteine-lowering and migraine disability. Pharmacogenet. Genomics 19: 422–428, https://doi.org/10.1097/fpc.0b013e32832af5a3.Suche in Google Scholar

Leclerc, D., Campeau, E., Goyette, P., Adjalla, C.E., Christensen, B., Ross, M., Eydoux, P., Rosenblatt, D.S., Rozen, R., and Gravel, R.A. (1996). Human methionine synthase: cDNA cloning and identification of mutations in patients of the cblG complementation group of folate/cobalamin disorders. Hum. Mol. Genet. 5: 1867–1874, https://doi.org/10.1093/hmg/5.12.1867.Suche in Google Scholar PubMed

Lee, M.J., Al-Karagholi, M.A.-M., and Reuter, U. (2023). New migraine prophylactic drugs: current evidence and practical suggestions for non-responders to prior therapy. Cephalalgia 43: 033310242211463, https://doi.org/10.1177/03331024221146315.Suche in Google Scholar PubMed

Li, M., Tan, J., Yang, X., Su, L., Xie, J., Liang, B., Long, J., Jiang, H., Wei, Q., Shen, T., et al.. (2014). The ABCB1-C3435T polymorphism likely acts as a risk factor for resistance to antiepileptic drugs. Epilepsy Res. 108: 1052–1067, https://doi.org/10.1016/j.eplepsyres.2014.03.019.Suche in Google Scholar PubMed

Liampas, I., Mylonas, K.S., Brotis, A., Dervenis, P., Siokas, V., Mentis, A.-F.A., Dastamani, M., Aloizou, A.-M., Tsouris, Z., Aslanidou, P., et al.. (2021). Serum lipid abnormalities in migraine: a meta-analysis of observational studies. Headache 61: 44–59, https://doi.org/10.1111/head.14039.Suche in Google Scholar PubMed

Liampas, I., Siokas, V., Brotis, A., and Dardiotis, E. (2020). Vitamin D serum levels in patients with migraine: a meta-analysis. Rev. Neurol. 176: 560–570, https://doi.org/10.1016/j.neurol.2019.12.008.Suche in Google Scholar PubMed

Liampas, I., Siokas, V., Brotis, A., Vikelis, M., and Dardiotis, E. (2020). Endogenous melatonin levels and therapeutic use of exogenous melatonin in migraine: systematic review and meta‐analysis. Headache 60: 1273–1299, https://doi.org/10.1111/head.13828.Suche in Google Scholar PubMed

Liampas, I., Siokas, V., Mentis, A.A., Aloizou, A., Dastamani, M., Tsouris, Z., Aslanidou, P., Brotis, A., and Dardiotis, E. (2020). Serum homocysteine, pyridoxine, folate, and vitamin B12 levels in migraine: systematic review and meta‐analysis. Headache 60: 1508–1534, https://doi.org/10.1111/head.13892.Suche in Google Scholar PubMed

Liampas, I., Siouras, A.S., Siokas, V., Tsouris, Z., Rikos, D., Brotis, A., Aloizou, A.-M., Dastamani, M., and Dardiotis, E. (2022). Migraine in transient global amnesia: a meta-analysis of observational studies. J. Neurol. 269: 184–196, https://doi.org/10.1007/s00415-020-10363-y.Suche in Google Scholar PubMed

Liao, Y.-J., Jiang, J.-R., and Jin, S.-Q. (2017). The association between COMT Val158Met polymorphism and migraine risk: a meta-analysis. Cephalalgia 37: 592–598, https://doi.org/10.1177/0333102416649758.Suche in Google Scholar PubMed

Lucas, C. (2021). Migraine with aura. Rev. Neurol. 177: 779–784, https://doi.org/10.1016/j.neurol.2021.07.010.Suche in Google Scholar PubMed

MaassenVanDenBrink, A., Vergouwe, M.N., Ophoff, R.A., Saxena, P.R., Ferrari, M.D., and Frants, R.R. (1998). 5-HT1B receptor polymorphism and clinical response to sumatriptan. Headache 38: 288–291, https://doi.org/10.1046/j.1526-4610.1998.3804288.x.Suche in Google Scholar PubMed

Mallet, C., Desmeules, J., Pegahi, R., and Eschalier, A. (2023). An updated review on the metabolite (AM404)-Mediated central mechanism of action of paracetamol (acetaminophen): experimental evidence and potential clinical impact. J. Pain Res. 16: 1081–1094, https://doi.org/10.2147/jpr.s393809.Suche in Google Scholar PubMed PubMed Central

Martínez, R.M., Liao, T.-T., Fan, Y.-T., Chen, Y.-C., and Chen, C. (2022). Interaction effects of the 5-HTT and MAOA-uVNTR gene variants on pre-attentive EEG activity in response to threatening voices. Commun. Biol. 5: 340, https://doi.org/10.1038/s42003-022-03297-w.Suche in Google Scholar PubMed PubMed Central

Mayans, L. and Walling, A. (2018). Acute migraine headache: treatment strategies. Am. Fam. Phys. 97.Suche in Google Scholar

Mehrotra, S., Vanmolkot, K.R.J., Frants, R.R., van den Maagdenberg, A.M.J.M., Ferrari, M.D., and MaassenVanDenBrink, A. (2007). The phe-124-Cys and A-161T variants of the human 5-HT1B receptor gene are not major determinants of the clinical response to sumatriptan. Headache 47: 711–716, https://doi.org/10.1111/j.1526-4610.2007.00792.x.Suche in Google Scholar PubMed

Menon, S., Lea, R.A., Roy, B., Hanna, M., Wee, S., Haupt, L.M., Oliver, C., and Griffiths, L.R. (2012). Genotypes of the MTHFR C677T and MTRR A66G genes act independently to reduce migraine disability in response to vitamin supplementation. Pharmacogenet. Genom. 22: 741–749, https://doi.org/10.1097/fpc.0b013e3283576b6b.Suche in Google Scholar PubMed

Miller, S. (2012). The acute and preventative treatment of episodic migraine. Ann Indian Acad. Neurol. 15: 33, https://doi.org/10.4103/0972-2327.99998.Suche in Google Scholar PubMed PubMed Central

Molana, A., Mehrpour, M., Vousooghi, N., Hajighasem, M.R., and Joghataei, M.T. (2014). Effect of NOS3 gene polymorphism on response to Tricyclic antidepressants in migraine attacks. Iran J. Neurol. 13: 154–159.Suche in Google Scholar

Moreno-Mayordomo, R., Ruiz, M., Pascual, J., Gallego De La Sacristana, M., Vidriales, I., Sobrado, M., Cernuda-Morollon, E., Gago-Veiga, A.B., Garcia-Azorin, D., Telleria, J.J., et al.. (2019). CALCA and TRPV1 genes polymorphisms are related to a good outcome in female chronic migraine patients treated with OnabotulinumtoxinA. J. Headache Pain 20: 39, https://doi.org/10.1186/s10194-019-0989-9.Suche in Google Scholar PubMed PubMed Central

Nicolas, S. and Nicolas, D. (2024) Triptans. In: StatPearls. StatPearls Publishing, http://www.ncbi.nlm.nih.gov/books/NBK554507/.Suche in Google Scholar

North American Brain Expression Consortium, UK Brain Expression Consortium, the International Headache Genetics Consortium, Anttila, V., Winsvold, B.S., Gormley, P., Kurth, T., Bettella, F., McMahon, G., Kallela, M., de Vries, B., Terwindt, G., et al.. (2013). Genome-wide meta-analysis identifies new susceptibility loci for migraine. Nat. Genet. 45: 912–917, https://doi.org/10.1038/ng.2676.Suche in Google Scholar PubMed PubMed Central

Ong, J.J.Y. and De Felice, M. (2018). Migraine treatment: current acute medications and their potential mechanisms of action. Neurotherapeutics 15: 274–290, https://doi.org/10.1007/s13311-017-0592-1.Suche in Google Scholar PubMed PubMed Central

Ozgon, G.O., Bebek, N., Gul, G., and Cine, N. (2007). Association of MDR1 (C3435T) polymorphism and resistance to carbamazepine in epileptic patients from Turkey. Eur. Neurol. 59: 67–70, https://doi.org/10.1159/000109264.Suche in Google Scholar PubMed

Papasavva, M., Vikelis, M., Siokas, V., Katsarou, M.-S., Dermitzakis, E., Raptis, A., Dardiotis, E., and Drakoulis, N. (2022a). VDR gene polymorphisms and cluster headache susceptibility: case-control study in a southeastern European caucasian population. J. Mol. Neurosci. 72: 382–392, https://doi.org/10.1007/s12031-021-01892-w.Suche in Google Scholar PubMed

Papasavva, M., Vikelis, M., Siokas, V., Katsarou, M.-S., Dermitzakis, E.V., Raptis, A., Kalliantasi, A., Dardiotis, E., and Drakoulis, N. (2022b). Variability in oxidative stress-related genes (SOD2, CAT, GPX1, GSTP1, NOS3, NFE2L2, and UCP2) and susceptibility to migraine clinical phenotypes and features. Front. Neurol. 13: 1054333, https://doi.org/10.3389/fneur.2022.1054333.Suche in Google Scholar PubMed PubMed Central

Peroutka, S.J., Wilhoit, T., and Jones, K. (1997). Clinical susceptibility to migraine with aura is modified by dopamine D 2 receptor (DRD2) Nco I alleles. Neurology 49: 201–206, https://doi.org/10.1212/wnl.49.1.201.Suche in Google Scholar PubMed

Rubino, E., Ferrero, M., Rainero, I., Binello, E., Vaula, G., and Pinessi, L. (2009). Association of the C677T polymorphism in the MTHFR gene with migraine: a meta-analysis. Cephalalgia 29: 818–825, https://doi.org/10.1111/j.1468-2982.2007.01400.x.Suche in Google Scholar PubMed

Rubino, E., Marcinnò, A., Grassini, A., Piella, E.M., Ferrandes, F., Roveta, F., Boschi, S., Cermelli, A., Gallone, S., Savi, L., et al.. (2022). Polymorphisms of the proinflammatory cytokine genes modulate the response to NSAIDs but not to triptans in migraine attacks. Int. J. Mol. Sci. 24: 657, https://doi.org/10.3390/ijms24010657.Suche in Google Scholar PubMed PubMed Central

Russo, A.F. and Hay, D.L. (2023). CGRP physiology, pharmacology, and therapeutic targets: migraine and beyond. Physiol. Rev. 103: 1565–1644, https://doi.org/10.1152/physrev.00059.2021.Suche in Google Scholar PubMed PubMed Central

Sarchielli, P., Granella, F., Prudenzano, M.P., Pini, L.A., Guidetti, V., Bono, G., Pinessi, L., Alessandri, M., Antonaci, F., Fanciullacci, M., et al.. (2012). Italian guidelines for primary headaches: 2012 revised version. J. Headache Pain 13, Article 2, https://doi.org/10.1007/s10194-012-0437-6.Suche in Google Scholar PubMed PubMed Central

Saygi, S., Alehan, F., Atac, F.B., Erol, I., Verdi, H., and Erdem, R. (2014). Multidrug resistance 1 (MDR1) 3435C/T genotyping in childhood drug-resistant epilepsy. Brain Dev. 36: 137–142, https://doi.org/10.1016/j.braindev.2013.01.016.Suche in Google Scholar PubMed

Saylor, D. and Steiner, T.J. (2018). The global burden of headache. Semin. Neurol. 38: 182–190, https://doi.org/10.1055/s-0038-1646946.Suche in Google Scholar PubMed

Scher, A.I., Bigal, M.E., and Lipton, R.B. (2005). Comorbidity of migraine. Curr. Opin. Neurol. 18: 305, https://doi.org/10.1097/01.wco.0000169750.52406.a2.Suche in Google Scholar PubMed

Schürks, M., Rist, P.M., and Kurth, T. (2010). STin2 VNTR polymorphism in the serotonin transporter gene and migraine: pooled and meta-analyses. J. Headache Pain 11: 317–326, https://doi.org/10.1007/s10194-010-0230-3.Suche in Google Scholar PubMed PubMed Central

Scuteri, D., Corasaniti, M.T., Tonin, P., Nicotera, P., and Bagetta, G. (2021). Role of CGRP pathway polymorphisms in migraine: a systematic review and impact on CGRP mAbs migraine therapy. J. Headache Pain 22: 87, https://doi.org/10.1186/s10194-021-01295-7.Suche in Google Scholar PubMed PubMed Central

Shimizu, T., Shibata, M., Toriumi, H., Iwashita, T., Funakubo, M., Sato, H., Kuroi, T., Ebine, T., Koizumi, K., and Suzuki, N. (2012). Reduction of TRPV1 expression in the trigeminal system by botulinum neurotoxin type-A. Neurobiol. Dis. 48: 367–378, https://doi.org/10.1016/j.nbd.2012.07.010.Suche in Google Scholar PubMed

Silberstein, S.D. (1995). Migraine symptoms: results of a survey of self‐reported migraineurs. Headache 35: 387–396, https://doi.org/10.1111/j.1526-4610.1995.hed3507387.x.Suche in Google Scholar PubMed

Silberstein, S.D. and McCrory, D.C. (2003). Ergotamine and dihydroergotamine: history, pharmacology, and efficacy. Headache 43: 144–166, https://doi.org/10.1046/j.1526-4610.2003.03034.x.Suche in Google Scholar PubMed

Spekker, E., Tanaka, M., Szabó, Á., and Vécsei, L. (2021). Neurogenic inflammation: the participant in migraine and recent advancements in translational research. Biomedicines 10: 76, https://doi.org/10.3390/biomedicines10010076.Suche in Google Scholar PubMed PubMed Central

Steiner, T.J. and Stovner, L.J. (2023). Global epidemiology of migraine and its implications for public health and health policy. Nat. Rev. Neurol. 19: 109–117, https://doi.org/10.1038/s41582-022-00763-1.Suche in Google Scholar PubMed

Stovner, L.J., Nichols, E., Steiner, T.J., Abd-Allah, F., Abdelalim, A., Al-Raddadi, R.M., Ansha, M.G., Barac, A., Bensenor, I.M., Doan, L.P., et al.. (2018). Global, regional, and national burden of migraine and tension-type headache, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 17: 954–976, https://doi.org/10.1016/s1474-4422(18)30322-3.Suche in Google Scholar

Tepper, S.J., Rapoport, A.M., and Sheftell, F.D. (2002). Mechanisms of action of the 5-HT1B/1D receptor agonists. Arch. Neurol. 59: 1084, https://doi.org/10.1001/archneur.59.7.1084.Suche in Google Scholar PubMed

Terrazzino, S., Viana, M., Floriddia, E., Monaco, F., Mittino, D., Sances, G., Tassorelli, C., Nappi, G., Rinaldi, M., Canonico, P.L., et al.. (2010). The serotonin transporter gene polymorphism STin2 VNTR confers an increased risk of inconsistent response to triptans in migraine patients. Eur. J. Pharmacol. 641: 82–87, https://doi.org/10.1016/j.ejphar.2010.04.049.Suche in Google Scholar PubMed

Thuraiaiyah, J., Erritzøe-Jervild, M., Al-Khazali, H.M., Schytz, H.W., and Younis, S. (2022). The role of cytokines in migraine: a systematic review. Cephalalgia 42: 1565–1588, https://doi.org/10.1177/03331024221118924.Suche in Google Scholar PubMed

Tracy, T.S., Korzekwa, K.R., Gonzalez, F.J., and Wainer, I.W. (1999). Cytochrome P450 isoforms involved in metabolism of the enantiomers of verapamil and norverapamil. Br. J. Clin. Pharmacol. 47: 545–552, https://doi.org/10.1046/j.1365-2125.1999.00923.x.Suche in Google Scholar PubMed PubMed Central

Van Casteren, D.S., Kurth, T., Danser, A.H.J., Terwindt, G.M., and MaassenVanDenBrink, A. (2021). Sex differences in response to triptans: a systematic review and meta-analysis. Neurology 96: 162–170, https://doi.org/10.1212/wnl.0000000000011216.Suche in Google Scholar

Varnado, O.J., Brady, B.L., Zagar, A.J., Robles, Y.P., and Hoyt, M. (2024). Comparison of treatment patterns in patients with migraine initiating calcitonin gene-related peptide monoclonal antibodies: a retrospective real-world US study. Patient Prefer. Adherence 18: 69–88, https://doi.org/10.2147/ppa.s437396.Suche in Google Scholar PubMed PubMed Central

Velati, D., Viana, M., Cresta, S., Mantegazza, P., Testa, L., Bettucci, D., Rinaldi, M., Sances, G., Tassorelli, C., Nappi, G., et al.. (2008). 5-hydroxytryptamine1B receptor and triptan response in migraine, lack of association with common polymorphisms. Eur. J. Pharmacol. 580: 43–47, https://doi.org/10.1016/j.ejphar.2007.10.058.Suche in Google Scholar PubMed

Wang-Tilz, Y., Tilz, C., Wang, B., Tilz, G.P., and Stefan, H. (2006). Influence of lamotrigine and topiramate on MDR1 expression in difficult-to-treat temporal lobe epilepsy. Epilepsia 47: 233–239, https://doi.org/10.1111/j.1528-1167.2006.00414.x.Suche in Google Scholar PubMed

White, H.S. (2005). Molecular pharmacology of topiramate: managing seizures and preventing migraine. Headache 45(Suppl. 1): S48–S56, https://doi.org/10.1111/j.1526-4610.2005.4501006.x.Suche in Google Scholar PubMed

Zecca, C., Cargnin, S., Schankin, C., Giannantoni, N.M., Viana, M., Maraffi, I., Riccitelli, G.C., Sihabdeen, S., Terrazzino, S., and Gobbi, C. (2022). Clinic and genetic predictors in response to erenumab. Eur. J. Neurol. 29: 1209–1217, https://doi.org/10.1111/ene.15236.Suche in Google Scholar PubMed PubMed Central

Zecca, C., Terrazzino, S., Para, D., Campagna, G., Viana, M., Schankin, C.J., and Gobbi, C. (2023). Response to erenumab assessed by Headache Impact Test‐6 is modulated by genetic factors and arterial hypertension: an explorative cohort study. Eur. J. Neurol. 30: 1099–1108, https://doi.org/10.1111/ene.15678.Suche in Google Scholar PubMed


Supplementary Material

This article contains supplementary material (https://doi.org/10.1515/revneuro-2024-0045).


Received: 2024-03-29
Accepted: 2024-05-17
Published Online: 2024-06-11
Published in Print: 2024-10-28

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 3.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/revneuro-2024-0045/html
Button zum nach oben scrollen