Abstract
Alzheimer’s disease (AD) is the most common type of dementia in the elderly and causes neurodegeneration, leading to memory loss, behavioral disorder, and psychiatric impairment. One potential mechanism contributing to the pathogenesis of AD may be the imbalance in gut microbiota, local and systemic inflammation, and dysregulation of the microbiota–gut–brain axis (MGBA). Most of the AD drugs approved for clinical use today are symptomatic treatments that do not improve AD pathologic changes. As a result, researchers are exploring novel therapeutic modalities. Treatments involving the MGBA include antibiotics, probiotics, transplantation of fecal microbiota, botanical products, and others. However, single-treatment modalities are not as effective as expected, and a combination therapy is gaining momentum. The purpose of this review is to summarize recent advances in MGBA-related pathological mechanisms and treatment modalities in AD and to propose a new concept of combination therapy. “MGBA-based multitherapy” is an emerging view of treatment in which classic symptomatic treatments and MGBA-based therapeutic modalities are used in combination. Donepezil and memantine are two commonly used drugs in AD treatment. On the basis of the single/combined use of these two drugs, two/more additional drugs and treatment modalities that target the MGBA are chosen based on the characteristics of the patient’s condition as an adjuvant treatment, as well as the maintenance of good lifestyle habits. “MGBA-based multitherapy” offers new insights for the treatment of cognitive impairment in AD patients and is expected to show good therapeutic results.
Funding source: Science and Technology Plan Project of Liaoning Province
Award Identifier / Grant number: (grant no. LZ2020014)
-
Author contributions: JHL and CBD contributed to the main conception and structure of the review. JHL carried out the literature search and interpreted relevant articles. JHL and FZ wrote the first draft of the manuscript. JHL, FZ, LZ, and CBD revised the manuscript and made suggestions for further improvement. All authors read and approved the final manuscript.
-
Research funding: This work was supported by the Science and Technology Plan Project of Liaoning Province (grant no. LZ2020014).
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
Abdelhamid, M., Zhou, C., Jung, C.G., and Michikawa, M. (2022). Probiotic bifidobacterium breve mcc1274 mitigates Alzheimer’s disease-related pathologies in wild-type mice. Nutrients 14: 2543, https://doi.org/10.3390/nu14122543.Search in Google Scholar PubMed PubMed Central
Abozaid, O.A.R., Sallam, M.W., El-Sonbaty, S., Aziza, S., Emad, B., and Ahmed, E.S.A. (2022). Resveratrol-selenium nanoparticles alleviate neuroinflammation and neurotoxicity in a rat model of Alzheimer’s disease by regulating sirt1/mirna-134/gsk3beta expression. Biol. Trace Elem. Res. 200: 5104–5114, https://doi.org/10.1007/s12011-021-03073-7.Search in Google Scholar PubMed
Abraham, D., Feher, J., Scuderi, G.L., Szabo, D., Dobolyi, A., Cservenak, M., Juhasz, J., Ligeti, B., Pongor, S., Gomez-Cabrera, M.C., et al.. (2019). Exercise and probiotics attenuate the development of Alzheimer’s disease in transgenic mice: role of microbiome. Exp. Gerontol. 115: 122–131, https://doi.org/10.1016/j.exger.2018.12.005.Search in Google Scholar PubMed
Ağagündüz, D., Kocaadam-Bozkurt, B., Bozkurt, O., Sharma, H., Esposito, R., Özoğul, F., and Capasso, R. (2022). Microbiota alteration and modulation in Alzheimer’s disease by gerobiotics: the gut-health axis for a good mind. Biomed. Pharmacother. 153: 113430, https://doi.org/10.1016/j.biopha.2022.113430.Search in Google Scholar PubMed
Akhgarjand, C., Vahabi, Z., Shab-Bidar, S., Etesam, F., and Djafarian, K. (2022). Effects of probiotic supplements on cognition, anxiety, and physical activity in subjects with mild and moderate Alzheimer’s disease: a randomized, double-blind, and placebo-controlled study. Front. Aging Neurosci. 14: 1032494, https://doi.org/10.3389/fnagi.2022.1032494.Search in Google Scholar PubMed PubMed Central
Amani, M., Shokouhi, G., and Salari, A.A. (2019). Minocycline prevents the development of depression-like behavior and hippocampal inflammation in a rat model of Alzheimer’s disease. Psychopharmacology (Berl) 236: 1281–1292, https://doi.org/10.1007/s00213-018-5137-8.Search in Google Scholar PubMed
Angelucci, F., Cechova, K., Amlerova, J., and Hort, J. (2019). Antibiotics, gut microbiota, and Alzheimer’s disease. J. Neuroinflammation 16: 108, https://doi.org/10.1186/s12974-019-1494-4.Search in Google Scholar PubMed PubMed Central
Arora, K., Green, M., and Prakash, S. (2020). The microbiome and alzheimer’s disease: potential and limitations of prebiotic, synbiotic, and probiotic formulations. Front. Bioeng. Biotechnol. 8: 537847, https://doi.org/10.3389/fbioe.2020.537847.Search in Google Scholar PubMed PubMed Central
Asaoka, D., Xiao, J., Takeda, T., Yanagisawa, N., Yamazaki, T., Matsubara, Y., Sugiyama, H., Endo, N., Higa, M., Kasanuki, K., et al.. (2022). Effect of probiotic Bifidobacterium breve in improving cognitive function and preventing brain atrophy in older patients with suspected mild cognitive impairment: results of a 24-week randomized, double-blind, placebo-controlled trial. J. Alzheim. Dis. 88: 75–95, https://doi.org/10.3233/jad-220148.Search in Google Scholar
Bairamian, D., Sha, S., Rolhion, N., Sokol, H., Dorothée, G., Lemere, C.A., and Krantic, S. (2022). Microbiota in neuroinflammation and synaptic dysfunction: a focus on Alzheimer’s disease. Mol. Neurodegener. 17: 19, https://doi.org/10.1186/s13024-022-00522-2.Search in Google Scholar PubMed PubMed Central
Bakulski, K.M., Seo, Y.A., Hickman, R.C., Brandt, D., Vadari, H.S., Hu, H., and Park, S.K. (2020). Heavy metals exposure and Alzheimer’s disease and related dementias. J. Alzheim. Dis. 76: 1215–1242, https://doi.org/10.3233/jad-200282.Search in Google Scholar PubMed PubMed Central
Batista, L.L., Malta, S.M., Guerra Silva, H.C., Borges, L.D.F., Rocha, L.O., da Silva, J.R., Rodrigues, T.S., Venturini, G., Padilha, K., da Costa Pereira, A., et al.. (2021). Kefir metabolites in a fly model for Alzheimer’s disease. Sci. Rep. 11: 11262, https://doi.org/10.1038/s41598-021-90749-8.Search in Google Scholar PubMed PubMed Central
Baum, L.W. (2005). Sex, hormones, and Alzheimer’s disease. J. Gerontol. A Biol. Sci. Med. Sci. 60: 736–743, https://doi.org/10.1093/gerona/60.6.736.Search in Google Scholar PubMed
Bello-Medina, P.C., Hernández-Quiroz, F., Pérez-Morales, M., González-Franco, D.A., Cruz-Pauseno, G., García-Mena, J., Díaz-Cintra, S., and Pacheco-López, G. (2021). Spatial memory and gut microbiota alterations are already present in early adulthood in a pre-clinical transgenic model of Alzheimer’s disease. Front. Neurosci. 15: 595583.10.3389/fnins.2021.595583Search in Google Scholar PubMed PubMed Central
Bello-Medina, P.C., Corona-Cervantes, K., Zavala Torres, N.G., Gonzalez, A., Perez-Morales, M., Gonzalez-Franco, D.A., Gomez, A., Garcia-Mena, J., Diaz-Cintra, S., and Pacheco-Lopez, G. (2022). Chronic-antibiotics induced gut microbiota dysbiosis rescues memory impairment and reduces β-amyloid aggregation in a preclinical Alzheimer’s disease model. Int. J. Mol. Sci. 23, https://doi.org/10.3390/ijms23158209.Search in Google Scholar PubMed PubMed Central
Beltagy, D.M., Nawar, N.F., Mohamed, T.M., Tousson, E., and El-Keey, M.M. (2021). Beneficial consequences of probiotic on mitochondrial hippocampus in Alzheimer’s disease. J. Compl. Integr. Med. 18: 761–767, https://doi.org/10.1515/jcim-2020-0156.Search in Google Scholar PubMed
Berk, C., Paul, G., and Sabbagh, M. (2014). Investigational drugs in Alzheimer’s disease: current progress. Expet Opin. Invest. Drugs 23: 837–846, https://doi.org/10.1517/13543784.2014.905542.Search in Google Scholar PubMed
Birks, J.S. and Harvey, R.J. (2018). Donepezil for dementia due to Alzheimer’s disease. Cochrane Database Syst. Rev. 6: CD001190, https://doi.org/10.1002/14651858.cd001190.pub3.Search in Google Scholar PubMed PubMed Central
Bonfili, L., Gong, C., Lombardi, F., Cifone, M.G., and Eleuteri, A.M. (2021). Strategic modification of gut microbiota through oral bacteriotherapy influences hypoxia inducible factor-1α: therapeutic implication in Alzheimer’s disease. Int. J. Mol. Sci. 23: 357, https://doi.org/10.3390/ijms23010357.Search in Google Scholar PubMed PubMed Central
Bonfili, L., Cuccioloni, M., Gong, C., Cecarini, V., Spina, M., Zheng, Y., Angeletti, M., and Eleuteri, A.M. (2022). Gut microbiota modulation in Alzheimer’s disease: focus on lipid metabolism. Clin. Nutr. 41: 698–708, https://doi.org/10.1016/j.clnu.2022.01.025.Search in Google Scholar PubMed
Brody, M., Agronin, M., Herskowitz, B.J., Bookheimer, S.Y., Small, G.W., Hitchinson, B., Ramdas, K., Wishard, T., McInerney, K.F., Vellas, B., et al.. (2023). Results and insights from a phase I clinical trial of lomecel-b for Alzheimer’s disease. Alzheimer’s Dementia 19: 261–273.10.1002/alz.12651Search in Google Scholar PubMed PubMed Central
Calhoun, A., King, C., Khoury, R., and Grossberg, G.T. (2018). An evaluation of memantine er + donepezil for the treatment of Alzheimer’s disease. Expet Opin. Pharmacother. 19: 1711–1717, https://doi.org/10.1080/14656566.2018.1519022.Search in Google Scholar PubMed
Cani, P.D., Amar, J., Iglesias, M.A., Poggi, M., Knauf, C., Bastelica, D., Neyrinck, A.M., Fava, F., Tuohy, K.M., Chabo, C., et al.. (2007). Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 56: 1761–1772, https://doi.org/10.2337/db06-1491.Search in Google Scholar PubMed
Cao, J., Amakye, W.K., Qi, C., Liu, X., Ma, J., and Ren, J. (2021). Bifidobacterium lactis probio-m8 regulates gut microbiota to alleviate alzheimer’s disease in the app/ps1 mouse model. Eur. J. Nutr. 60: 3757–3769, https://doi.org/10.1007/s00394-021-02543-x.Search in Google Scholar PubMed
Cecarini, V., Bonfili, L., Gogoi, O., Lawrence, S., Venanzi, F.M., Azevedo, V., Mancha-Agresti, P., Drumond, M.M., Rossi, G., Berardi, S., et al.. (2020). Neuroprotective effects of p62(sqstm1)-engineered lactic acid bacteria in Alzheimer’s disease: a pre-clinical study. Aging 12: 15995–16020, https://doi.org/10.18632/aging.103900.Search in Google Scholar PubMed PubMed Central
Cecarini, V., Gogoi, O., Bonfili, L., Veneruso, I., Pacinelli, G., De Carlo, S., Benvenuti, F., D’Argenio, V., Angeletti, M., Cannella, N., et al. (2022). Modulation of gut microbiota and neuroprotective effect of a yeast-enriched beer. Nutrients 14: 2380, https://doi.org/10.3390/nu14122380.Search in Google Scholar PubMed PubMed Central
Chen, T., Tian, P., Huang, Z., Zhao, X., Wang, H., Xia, C., Wang, L., and Wei, H. (2018). Engineered commensal bacteria prevent systemic inflammation-induced memory impairment and amyloidogenesis via producing glp-1. Appl. Microbiol. Biotechnol. 102: 7565–7575, https://doi.org/10.1007/s00253-018-9155-6.Search in Google Scholar PubMed
Chen, Y., Fang, L., Chen, S., Zhou, H., Fan, Y., Lin, L., Li, J., Xu, J., Chen, Y., Ma, Y., et al.. (2020). Gut microbiome alterations precede cerebral amyloidosis and microglial pathology in a mouse model of Alzheimer’s disease. BioMed Res. Int. 2020: 8456596, https://doi.org/10.1155/2020/8456596.Search in Google Scholar PubMed PubMed Central
Chen, J., Li, Q., Zhu, J., Yuan, Z., Wang, T., and Song, J. (2021a). Gpr40 agonist ameliorate pathological neuroinflammation of Alzheimer’s disease via the modulation of gut microbiota and immune system, a mini-review. Neurotox. Res. 39: 2175–2185, https://doi.org/10.1007/s12640-021-00408-z.Search in Google Scholar PubMed
Chen, Q., Wu, J., Dong, X., Yin, H., Shi, X., Su, S., Che, B., Li, Y., and Yang, J. (2021b). Gut flora-targeted photobiomodulation therapy improves senile dementia in an aß-induced Alzheimer’s disease animal model. J. Photochem. Photobiol., B 216: 112152, https://doi.org/10.1016/j.jphotobiol.2021.112152.Search in Google Scholar PubMed
Chi, H., Cao, W., Zhang, M., Su, D., Yang, H., Li, Z., Li, C., She, X., Wang, K., Gao, X., et al.. (2021). Environmental noise stress disturbs commensal microbiota homeostasis and induces oxi-inflammmation and ad-like neuropathology through epithelial barrier disruption in the eoad mouse model. J. Neuroinflammation 18: 9.10.1186/s12974-020-02053-3Search in Google Scholar PubMed PubMed Central
Chianese, R., Coccurello, R., Viggiano, A., Scafuro, M., Fiore, M., Coppola, G., Operto, F.F., Fasano, S., Laye, S., Pierantoni, R., et al.. (2018). Impact of dietary fats on brain functions. Curr. Neuropharmacol. 16: 1059–1085, https://doi.org/10.2174/1570159x15666171017102547.Search in Google Scholar
Chu, X., Hou, Y., Meng, Q., Croteau, D.L., Wei, Y., De, S., Becker, K.G., and Bohr, V.A. (2022). Nicotinamide adenine dinucleotide supplementation drives gut microbiota variation in Alzheimer’s mouse model. Front. Aging Neurosci. 14: 993615, https://doi.org/10.3389/fnagi.2022.993615.Search in Google Scholar PubMed PubMed Central
Cox, L.M., Schafer, M.J., Sohn, J., Vincentini, J., Weiner, H.L., Ginsberg, S.D., and Blaser, M.J. (2019). Calorie restriction slows age-related microbiota changes in an Alzheimer’s disease model in female mice. Sci. Rep. 9: 17904, https://doi.org/10.1038/s41598-019-54187-x.Search in Google Scholar PubMed PubMed Central
Cryan, J.F. and Dinan, T.G. (2012). Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nat. Rev. Neurosci. 13: 701–712, https://doi.org/10.1038/nrn3346.Search in Google Scholar PubMed
Cryan, J.F., O’Riordan, K.J., Cowan, C.S.M., Sandhu, K.V., Bastiaanssen, T.F.S., Boehme, M., Codagnone, M.G., Cussotto, S., Fulling, C., Golubeva, A.V., et al.. (2019). The microbiota-gut-brain axis. Physiol. Rev. 99: 1877–2013, https://doi.org/10.1152/physrev.00018.2018.Search in Google Scholar PubMed
Cui, B., Gai, Z., She, X., Wang, R., and Xi, Z. (2016). Effects of chronic noise on glucose metabolism and gut microbiota-host inflammatory homeostasis in rats. Sci. Rep. 6: 36693, https://doi.org/10.1038/srep36693.Search in Google Scholar PubMed PubMed Central
Cui, B., Su, D., Li, W., She, X., Zhang, M., Wang, R., and Zhai, Q. (2018). Effects of chronic noise exposure on the microbiome-gut-brain axis in senescence-accelerated prone mice: implications for Alzheimer’s disease. J. Neuroinflammation 15: 190, https://doi.org/10.1186/s12974-018-1223-4.Search in Google Scholar PubMed PubMed Central
Cummings, J.L., Tong, G., and Ballard, C. (2019). Treatment combinations for Alzheimer’s disease: current and future pharmacotherapy options. J. Alzheim. Dis. 67: 779–794, https://doi.org/10.3233/jad-180766.Search in Google Scholar
Darvesh, A.S., Carroll, R.T., Bishayee, A., Novotny, N.A., Geldenhuys, W.J., and Van der Schyf, C.J. (2012). Curcumin and neurodegenerative diseases: a perspective. Expet Opin. Invest. Drugs 21: 1123–1140, https://doi.org/10.1517/13543784.2012.693479.Search in Google Scholar PubMed
De la Rosa, A., Olaso-Gonzalez, G., Arc-Chagnaud, C., Millan, F., Salvador-Pascual, A., García-Lucerga, C., Blasco-Lafarga, C., Garcia-Dominguez, E., Carretero, A., Correas, A.G., et al.. (2020). Physical exercise in the prevention and treatment of Alzheimer’s disease. J. Sport Health Sci. 9: 394–404, https://doi.org/10.1016/j.jshs.2020.01.004.Search in Google Scholar PubMed PubMed Central
Ding, N., Jiang, J., Xu, A., Tang, Y., and Li, Z. (2019). Manual acupuncture regulates behavior and cerebral blood flow in the samp8 mouse model of Alzheimer’s disease. Front. Neurosci. 13: 37, https://doi.org/10.3389/fnins.2019.00037.Search in Google Scholar PubMed PubMed Central
Dodiya, H.B., Kuntz, T., Shaik, S.M., Baufeld, C., Leibowitz, J., Zhang, X., Gottel, N., Zhang, X., Butovsky, O., Gilbert, J.A., et al.. (2019). Sex-specific effects of microbiome perturbations on cerebral Aβ amyloidosis and microglia phenotypes. J. Exp. Med. 216: 1542–1560, https://doi.org/10.1084/jem.20182386.Search in Google Scholar PubMed PubMed Central
Dodiya, H.B., Lutz, H.L., Weigle, I.Q., Patel, P., Michalkiewicz, J., Roman-Santiago, C.J., Zhang, C.M., Liang, Y., Srinath, A., Zhang, X., et al. (2022). Gut microbiota-driven brain abeta amyloidosis in mice requires microglia. J. Exp. Med. 219: e20200895, https://doi.org/10.1084/jem.20200895.Search in Google Scholar PubMed PubMed Central
Doifode, T., Giridharan, V.V., Generoso, J.S., Bhatti, G., Collodel, A., Schulz, P.E., Forlenza, O.V., and Barichello, T. (2021). The impact of the microbiota-gut-brain axis on Alzheimer’s disease pathophysiology. Pharmacol. Res. 164: 105314, https://doi.org/10.1016/j.phrs.2020.105314.Search in Google Scholar PubMed
Dunn, N.R., Pearce, G.L., and Shakir, S.A. (2000). Adverse effects associated with the use of donepezil in general practice in England. J. Psychopharmacol. 14: 406–408, https://doi.org/10.1177/026988110001400410.Search in Google Scholar PubMed
Duntas, L.H. (2009). Selenium and inflammation: underlying anti-inflammatory mechanisms. Horm. Metab. Res. 41: 443–447, https://doi.org/10.1055/s-0029-1220724.Search in Google Scholar PubMed
El Sayed, N.S., Kandil, E.A., and Ghoneum, M.H. (2021). Enhancement of insulin/pi3k/akt signaling pathway and modulation of gut microbiome by probiotics fermentation technology, a kefir grain product, in sporadic Alzheimer’s disease model in mice. Front. Pharmacol. 12: 666502, https://doi.org/10.3389/fphar.2021.666502.Search in Google Scholar PubMed PubMed Central
Enengl, J., Hamblin, M.R., and Dungel, P. (2020). Photobiomodulation for Alzheimer’s disease: translating basic research to clinical application. J. Alzheim. Dis. 75: 1073–1082, https://doi.org/10.3233/jad-191210.Search in Google Scholar
Fang, X., Zhou, X., Miao, Y., Han, Y., Wei, J., and Chen, T. (2020). Therapeutic effect of glp-1 engineered strain on mice model of Alzheimer’s disease and Parkinson’s disease. Amb. Express 10: 80, https://doi.org/10.1186/s13568-020-01014-6.Search in Google Scholar PubMed PubMed Central
Fasina, O.B., Wang, J., Mo, J., Osada, H., Ohno, H., Pan, W., Xiang, L., and Qi, J. (2022). Gastrodin from Gastrodia elata enhances cognitive function and neuroprotection of AD mice via the regulation of gut microbiota composition and inhibition of neuron inflammation. Front. Pharmacol. 13: 814271, https://doi.org/10.3389/fphar.2022.814271.Search in Google Scholar PubMed PubMed Central
Feng, Y.S., Tan, Z.X., Wu, L.Y., Dong, F., and Zhang, F. (2020). The involvement of nlrp3 inflammasome in the treatment of Alzheimer’s disease. Ageing Res. Rev. 64: 101192, https://doi.org/10.1016/j.arr.2020.101192.Search in Google Scholar PubMed
Filippou, C.D., Tsioufis, C.P., Thomopoulos, C.G., Mihas, C.C., Dimitriadis, K.S., Sotiropoulou, L.I., Chrysochoou, C.A., Nihoyannopoulos, P.I., and Tousoulis, D.M. (2020). Dietary approaches to stop hypertension (dash) diet and blood pressure reduction in adults with and without hypertension: a systematic review and meta-analysis of randomized controlled trials. Adv. Nutr. 11: 1150–1160, https://doi.org/10.1093/advances/nmaa041.Search in Google Scholar PubMed PubMed Central
Fox, M., Berzuini, C., and Knapp, L.A. (2013). Cumulative estrogen exposure, number of menstrual cycles, and alzheimer’s risk in a cohort of British women. Psychoneuroendocrinology 38: 2973–2982, https://doi.org/10.1016/j.psyneuen.2013.08.005.Search in Google Scholar PubMed
Fujii, Y., Nguyen, T.T.T., Fujimura, Y., Kameya, N., Nakamura, S., Arakawa, K., and Morita, H. (2019). Fecal metabolite of a gnotobiotic mouse transplanted with gut microbiota from a patient with Alzheimer’s disease. Biosci. Biotechnol. Biochem. 83: 2144–2152, https://doi.org/10.1080/09168451.2019.1644149.Search in Google Scholar PubMed
Gaitan, J.M., Moon, H.Y., Stremlau, M., Dubal, D.B., Cook, D.B., Okonkwo, O.C., and van Praag, H. (2021). Effects of aerobic exercise training on systemic biomarkers and cognition in late middle-aged adults at risk for Alzheimer’s disease. Front. Endocrinol. 12: 660181, https://doi.org/10.3389/fendo.2021.660181.Search in Google Scholar PubMed PubMed Central
Gibson, G.R., Hutkins, R., Sanders, M.E., Prescott, S.L., Reimer, R.A., Salminen, S.J., Scott, K., Stanton, C., Swanson, K.S., Cani, P.D., et al.. (2017). Expert consensus document: the international scientific association for probiotics and prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat. Rev. Gastroenterol. Hepatol. 14: 491–502, https://doi.org/10.1038/nrgastro.2017.75.Search in Google Scholar PubMed
Gilsanz, P., Lee, C., Corrada, M.M., Kawas, C.H., Quesenberry, C.P.Jr., and Whitmer, R.A. (2019). Reproductive period and risk of dementia in a diverse cohort of health care members. Neurology 92: e2005–e2014, https://doi.org/10.1212/wnl.0000000000007326.Search in Google Scholar
Go, J., Chang, D.H., Ryu, Y.K., Park, H.Y., Lee, I.B., Noh, J.R., Hwang, D.Y., Kim, B.C., Kim, K.S., and Lee, C.H. (2021). Human gut microbiota Agathobaculum butyriciproducens improves cognitive impairment in lps-induced and app/ps1 mouse models of Alzheimer’s disease. Nutr. Res. 86: 96–108, https://doi.org/10.1016/j.nutres.2020.12.010.Search in Google Scholar PubMed
Gong, Y., Li, Y., Liu, X., and He, L. (2021). Gw9508 ameliorates cognitive dysfunction via the external treatment of encephalopathy in Aβ1-42 induced mouse model of Alzheimer’s disease. Eur. J. Pharmacol. 909: 174362, https://doi.org/10.1016/j.ejphar.2021.174362.Search in Google Scholar PubMed
Greig, S.L. (2015). Memantine er/donepezil: a review in Alzheimer’s disease. CNS Drugs 29: 963–970, https://doi.org/10.1007/s40263-015-0287-2.Search in Google Scholar PubMed
Guo, J., Wang, Z., Liu, R., Huang, Y., Zhang, N., and Zhang, R. (2020). Memantine, donepezil, or combination therapy-what is the best therapy for Alzheimer’s disease? A network meta-analysis. Brain Behav. 10: e01831, https://doi.org/10.1002/brb3.1831.Search in Google Scholar PubMed PubMed Central
Han, C., Yang, Y., Guan, Q., Zhang, X., Shen, H., Sheng, Y., Wang, J., Zhou, X., Li, W., Guo, L., et al.. (2020). New mechanism of nerve injury in Alzheimer’s disease: β-amyloid-induced neuronal pyroptosis. J. Cell Mol. Med. 24: 8078–8090, https://doi.org/10.1111/jcmm.15439.Search in Google Scholar PubMed PubMed Central
Hang, Z., Cai, S., Lei, T., Zhang, X., Xiao, Z., Wang, D., Li, Y., Bi, W., Yang, Y., Deng, S., et al.. (2022). Transfer of tumor-bearing mice intestinal flora can ameliorate cognition in Alzheimer’s disease mice. J. Alzheim. Dis. 86: 1287–1300, https://doi.org/10.3233/jad-215495.Search in Google Scholar PubMed
Hara, T., Ichimura, A., and Hirasawa, A. (2014). Therapeutic role and ligands of medium- to long-chain fatty acid receptors. Front. Endocrinol. 5: 83, https://doi.org/10.3389/fendo.2014.00083.Search in Google Scholar PubMed PubMed Central
Harach, T., Marungruang, N., Duthilleul, N., Cheatham, V., Mc Coy, K.D., Frisoni, G., Neher, J.J., Fak, F., Jucker, M., Lasser, T., et al.. (2017). Reduction of Aβ amyloid pathology in appps1 transgenic mice in the absence of gut microbiota. Sci. Rep. 7: 41802, https://doi.org/10.1038/srep41802.Search in Google Scholar PubMed PubMed Central
Haran, J.P., Bhattarai, S.K., Foley, S.E., Dutta, P., Ward, D.V., Bucci, V., and McCormick, B.A. (2019). Alzheimer’s disease microbiome is associated with dysregulation of the anti-inflammatory p-glycoprotein pathway. mBio 10: e00632-19, https://doi.org/10.1128/mbio.00632-19.Search in Google Scholar PubMed PubMed Central
Hazan, S. (2020). Rapid improvement in Alzheimer’s disease symptoms following fecal microbiota transplantation: a case report. J. Int. Med. Res. 48: 1–6, https://doi.org/10.1177/0300060520925930.Search in Google Scholar PubMed PubMed Central
He, X., Yan, C., Zhao, S., Zhao, Y., Huang, R., and Li, Y. (2022). The preventive effects of probiotic akkermansia muciniphila on D-galactose/alcl3 mediated Alzheimer’s disease-like rats. Exp. Gerontol. 170: 111959, https://doi.org/10.1016/j.exger.2022.111959.Search in Google Scholar PubMed
Hill, C., Guarner, F., Reid, G., Gibson, G.R., Merenstein, D.J., Pot, B., Morelli, L., Canani, R.B., Flint, H.J., Salminen, S., et al.. (2014). Expert consensus document. The international scientific association for probiotics and prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat. Rev. Gastroenterol. Hepatol. 11: 506–514, https://doi.org/10.1038/nrgastro.2014.66.Search in Google Scholar PubMed
Holingue, C., Budavari, A.C., Rodriguez, K.M., Zisman, C.R., Windheim, G., and Fallin, M.D. (2020). Sex differences in the gut-brain axis: implications for mental health. Curr. Psychiatr. Rep. 22: 83, https://doi.org/10.1007/s11920-020-01202-y.Search in Google Scholar PubMed PubMed Central
Honarpisheh, P., Reynolds, C.R., Blasco Conesa, M.P., Moruno Manchon, J.F., Putluri, N., Bhattacharjee, M.B., Urayama, A., McCullough, L.D., and Ganesh, B.P. (2020). Dysregulated gut homeostasis observed prior to the accumulation of the brain amyloid-β in tg2576 mice. Int. J. Mol. Sci. 21: 1711, https://doi.org/10.3390/ijms21051711.Search in Google Scholar PubMed PubMed Central
Hossain, M.F., Uddin, M.S., Uddin, G.M.S., Sumsuzzman, D.M., Islam, M.S., Barreto, G.E., Mathew, B., and Ashraf, G.M. (2019). Melatonin in Alzheimer’s disease: a latent endogenous regulator of neurogenesis to mitigate Alzheimer’s neuropathology. Mol. Neurobiol. 56: 8255–8276, https://doi.org/10.1007/s12035-019-01660-3.Search in Google Scholar PubMed
Howard, R., McShane, R., Lindesay, J., Ritchie, C., Baldwin, A., Barber, R., Burns, A., Dening, T., Findlay, D., Holmes, C., et al.. (2012). Donepezil and memantine for moderate-to-severe Alzheimer’s disease. N. Engl. J. Med. 366: 893–903, https://doi.org/10.1056/nejmoa1106668.Search in Google Scholar PubMed
Howard, R., Zubko, O., Bradley, R., Harper, E., Pank, L., O’Brien, J., Fox, C., Tabet, N., Livingston, G., Bentham, P., Minocycline in Alzheimer Disease Efficacy Trialist, G, et al.. (2020). Minocycline at 2 different dosages vs placebo for patients with mild alzheimer disease: a randomized clinical trial. JAMA Neurol. 77: 164–174, https://doi.org/10.1001/jamaneurol.2019.3762.Search in Google Scholar PubMed PubMed Central
Hsuchou, H., Pan, W., and Kastin, A.J. (2013). Fibroblast growth factor 19 entry into brain. Fluids Barriers CNS 10: 32, https://doi.org/10.1186/2045-8118-10-32.Search in Google Scholar PubMed PubMed Central
Hu, X., Wang, T., and Jin, F. (2016). Alzheimer’s disease and gut microbiota. Sci. China Life Sci. 59: 1006–1023, https://doi.org/10.1007/s11427-016-5083-9.Search in Google Scholar PubMed
Ianiro, G., Tilg, H., and Gasbarrini, A. (2016). Antibiotics as deep modulators of gut microbiota: between good and evil. Gut 65: 1906–1915, https://doi.org/10.1136/gutjnl-2016-312297.Search in Google Scholar PubMed
Jafari, Z., Kolb, B.E., and Mohajerani, M.H. (2020). Noise exposure accelerates the risk of cognitive impairment and Alzheimer’s disease: adulthood, gestational, and prenatal mechanistic evidence from animal studies. Neurosci. Biobehav. Rev. 117: 110–128, https://doi.org/10.1016/j.neubiorev.2019.04.001.Search in Google Scholar PubMed
Jena, P.K., Setayesh, T., Sheng, L., Di Lucente, J., Jin, L.W., and Wan, Y.Y. (2022). Intestinal microbiota remodeling protects mice from western diet-induced brain inflammation and cognitive decline. Cells 11: 504, https://doi.org/10.3390/cells11030504.Search in Google Scholar PubMed PubMed Central
Ji, H.F. and Shen, L. (2021). Probiotics as potential therapeutic options for Alzheimer’s disease. Appl. Microbiol. Biotechnol. 105: 7721–7730, https://doi.org/10.1007/s00253-021-11607-1.Search in Google Scholar PubMed
Jiang, J., Gao, K., Zhou, Y., Xu, A., Shi, S., Liu, G., and Li, Z. (2015). Electroacupuncture treatment improves learning-memory ability and brain glucose metabolism in a mouse model of Alzheimer’s disease: using Morris water maze and micro-PET. Evid. Based Complement. Alternat. Med. 2015: 142129.10.1155/2015/142129Search in Google Scholar PubMed PubMed Central
Jiang, J., Ding, N., Wang, K., and Li, Z. (2018). Electroacupuncture could influence the expression of il-1beta and nlrp3 inflammasome in hippocampus of Alzheimer’s disease animal model. Evid. Based Complement. Alternat. Med. 2018: 8296824, https://doi.org/10.1155/2018/8296824.Search in Google Scholar PubMed PubMed Central
Jiang, J., Liu, H., Wang, Z., Tian, H., Wang, S., Yang, J., and Ren, J. (2021). Electroacupuncture could balance the gut microbiota and improve the learning and memory abilities of Alzheimer’s disease animal model. PLoS One 16: e0259530, https://doi.org/10.1371/journal.pone.0259530.Search in Google Scholar PubMed PubMed Central
Jin, Y.Y., Singh, P., Chung, H.J., and Hong, S.T. (2018). Blood ammonia as a possible etiological agent for Alzheimer’s disease. Nutrients 10: 564, https://doi.org/10.3390/nu10050564.Search in Google Scholar PubMed PubMed Central
Ju, Z., Shen, L., Zhou, M., Luo, J., Yu, Z., Qu, C., Lei, R., Lei, M., and Huang, R. (2022). Helicobacter pylori and Alzheimer’s disease-related metabolic dysfunction: activation of tlr4/myd88 inflammation pathway from p53 perspective and a case study of low-dose radiation intervention. ACS Chem. Neurosci. 13: 1065–1081, https://doi.org/10.1021/acschemneuro.2c00082.Search in Google Scholar PubMed
Katafuchi, T. and Makishima, M. (2022). Molecular basis of bile acid-fxr-fgf15/19 signaling axis. Int. J. Mol. Sci. 23: 6046, https://doi.org/10.3390/ijms23116046.Search in Google Scholar PubMed PubMed Central
Kaur, H., Golovko, S., Golovko, M.Y., Singh, S., Darland, D.C., and Combs, C.K. (2020a). Effects of probiotic supplementation on short chain fatty acids in the appnl-g-f mouse model of Alzheimer’s disease. J. Alzheim. Dis. 76: 1083–1102, https://doi.org/10.3233/jad-200436.Search in Google Scholar PubMed PubMed Central
Kaur, H., Nagamoto-Combs, K., Golovko, S., Golovko, M.Y., Klug, M.G., and Combs, C.K. (2020b). Probiotics ameliorate intestinal pathophysiology in a mouse model of Alzheimer’s disease. Neurobiol. Aging 92: 114–134, https://doi.org/10.1016/j.neurobiolaging.2020.04.009.Search in Google Scholar PubMed PubMed Central
Kaur, H., Nookala, S., Singh, S., Mukundan, S., Nagamoto-Combs, K., and Combs, C.K. (2021). Sex-dependent effects of intestinal microbiome manipulation in a mouse model of Alzheimer’s disease. Cells 10: 2370, https://doi.org/10.3390/cells10092370.Search in Google Scholar PubMed PubMed Central
Kelly, C.R., Khoruts, A., Staley, C., Sadowsky, M.J., Abd, M., Alani, M., Bakow, B., Curran, P., McKenney, J., Tisch, A., et al.. (2016). Effect of fecal microbiota transplantation on recurrence in multiply recurrent Clostridium difficile infection: a randomized trial. Ann. Intern. Med. 165: 609–616, https://doi.org/10.7326/m16-0271.Search in Google Scholar
Khan, M.Z. and He, L. (2017). The role of polyunsaturated fatty acids and gpr40 receptor in brain. Neuropharmacology 113: 639–651, https://doi.org/10.1016/j.neuropharm.2015.05.013.Search in Google Scholar PubMed
Kim, M.S., Kim, Y., Choi, H., Kim, W., Park, S., Lee, D., Kim, D.K., Kim, H.J., Choi, H., Hyun, D.W., et al.. (2020). Transfer of a healthy microbiota reduces amyloid and tau pathology in an Alzheimer’s disease animal model. Gut 69: 283–294, https://doi.org/10.1136/gutjnl-2018-317431.Search in Google Scholar PubMed
Kim, C.S., Cha, L., Sim, M., Jung, S., Chun, W.Y., Baik, H.W., and Shin, D.M. (2021a). Probiotic supplementation improves cognitive function and mood with changes in gut microbiota in community-dwelling older adults: a randomized, double-blind, placebo-controlled, multicenter trial. J. Gerontol. A Biol. Sci. Med. Sci. 76: 32–40, https://doi.org/10.1093/gerona/glaa090.Search in Google Scholar PubMed PubMed Central
Kim, H., Kim, S., Park, S.J., Park, G., Shin, H., Park, M.S., and Kim, J. (2021b). Administration of Bifidobacterium bifidum Bgn4 and Bifidobacterium longum bori improves cognitive and memory function in the mouse model of Alzheimer’s disease. Front. Aging Neurosci. 13: 709091, https://doi.org/10.3389/fnagi.2021.709091.Search in Google Scholar PubMed PubMed Central
Kim, N., Jeon, S.H., Ju, I.G., Gee, M.S., Do, J., Oh, M.S., and Lee, J.K. (2021c). Transplantation of gut microbiota derived from Alzheimer’s disease mouse model impairs memory function and neurogenesis in c57Bl/6 mice. Brain Behav. Immun. 98: 357–365, https://doi.org/10.1016/j.bbi.2021.09.002.Search in Google Scholar PubMed
Kincaid, H.J., Nagpal, R., and Yadav, H. (2021). Diet-microbiota-brain axis in Alzheimer’s disease. Ann. Nutr. Metab. 77: 21–27.10.1159/000515700Search in Google Scholar PubMed PubMed Central
Kobayashi, Y., Kinoshita, T., Matsumoto, A., Yoshino, K., Saito, I., and Xiao, J.Z. (2019a). Bifidobacterium breve a1 supplementation improved cognitive decline in older adults with mild cognitive impairment: an open-label, single-arm study. J. Prev. Alzheimers Dis. 6: 70–75, https://doi.org/10.14283/jpad.2018.32.Search in Google Scholar PubMed
Kobayashi, Y., Kuhara, T., Oki, M., and Xiao, J.Z. (2019b). Effects of Bifidobacterium breve a1 on the cognitive function of older adults with memory complaints: a randomised, double-blind, placebo-controlled trial. Benef. Microbes 10: 511–520, https://doi.org/10.3920/bm2018.0170.Search in Google Scholar PubMed
Kolagar, T.A., Farzaneh, M., Nikkar, N., and Khoshnam, S.E. (2020). Human pluripotent stem cells in neurodegenerative diseases: potentials, advances and limitations. Curr. Stem Cell Res. Ther. 15: 102–110, https://doi.org/10.2174/1574888x14666190823142911.Search in Google Scholar PubMed
Kowalski, K. and Mulak, A. (2019). Brain-gut-microbiota axis in Alzheimer’s disease. J. Neurogastroenterol. Motil. 25: 48–60, https://doi.org/10.5056/jnm18087.Search in Google Scholar PubMed PubMed Central
Leblhuber, F., Steiner, K., Schuetz, B., Fuchs, D., and Gostner, J.M. (2018). Probiotic supplementation in patients with Alzheimer’s dementia – an explorative intervention study. Curr. Alzheimer Res. 15: 1106–1113, https://doi.org/10.2174/1389200219666180813144834.Search in Google Scholar PubMed PubMed Central
Lee, F.Y., Lee, H., Hubbert, M.L., Edwards, P.A., and Zhang, Y. (2006). Fxr, a multipurpose nuclear receptor. Trends Biochem. Sci. 31: 572–580, https://doi.org/10.1016/j.tibs.2006.08.002.Search in Google Scholar PubMed
Lee, C.H., Steiner, T., Petrof, E.O., Smieja, M., Roscoe, D., Nematallah, A., Weese, J.S., Collins, S., Moayyedi, P., Crowther, M., et al.. (2016). Frozen vs fresh fecal microbiota transplantation and clinical resolution of diarrhea in patients with recurrent Clostridium difficile infection: a randomized clinical trial. J. Am. Med. Assoc. 315: 142–149, https://doi.org/10.1001/jama.2015.18098.Search in Google Scholar PubMed
Lee, J.Y., Xu, K., Nguyen, H., Guedes, V.A., Borlongan, C.V., and Acosta, S.A. (2017). Stem cell-induced biobridges as possible tools to aid neuroreconstruction after CNS injury. Front. Cell Dev. Biol. 5: 51, https://doi.org/10.3389/fcell.2017.00051.Search in Google Scholar PubMed PubMed Central
Lee, J.Y., Lin, R., Nguyen, H., Grant Liska, M., Lippert, T., Kaneko, Y., and Borlongan, C.V. (2019). Histopathological and behavioral assessments of aging effects on stem cell transplants in an experimental traumatic brain injury. Methods Mol. Biol. 2045: 299–310, https://doi.org/10.1007/7651_2018_121.Search in Google Scholar PubMed
Lee, K.E., Kim, J.K., Han, S.K., Lee, D.Y., Lee, H.J., Yim, S.V., and Kim, D.H. (2020). The extracellular vesicle of gut microbial paenalcaligenes hominis is a risk factor for vagus nerve-mediated cognitive impairment. Microbiome 8: 107, https://doi.org/10.1186/s40168-020-00881-2.Search in Google Scholar PubMed PubMed Central
Lee, D.Y., Shin, Y.J., Kim, J.K., Jang, H.M., Joo, M.K., and Kim, D.H. (2021). Alleviation of cognitive impairment by gut microbiota lipopolysaccharide production-suppressing Lactobacillus plantarum and Bifidobacterium longum in mice. Food Funct. 12: 10750–10763, https://doi.org/10.1039/d1fo02167b.Search in Google Scholar PubMed
Li, X., Guo, F., Zhang, Q., Huo, T., Liu, L., Wei, H., Xiong, L., and Wang, Q. (2014). Electroacupuncture decreases cognitive impairment and promotes neurogenesis in the app/ps1 transgenic mice. BMC Complement. Altern. Med. 14: 37, https://doi.org/10.1186/1472-6882-14-37.Search in Google Scholar PubMed PubMed Central
Li, H., Jia, J., Wang, W., Hou, T., Tian, Y., Wu, Q., Xu, L., Wei, Y., and Wang, X. (2018). Honokiol alleviates cognitive deficits of Alzheimer’s disease (ps1v97l) transgenic mice by activating mitochondrial Sirt3. J. Alzheim. Dis. 64: 291–302, https://doi.org/10.3233/jad-180126.Search in Google Scholar PubMed
Li, B., He, Y., Ma, J., Huang, P., Du, J., Cao, L., Wang, Y., Xiao, Q., Tang, H., and Chen, S. (2019). Mild cognitive impairment has similar alterations as Alzheimer’s disease in gut microbiota. Alzheimer’s Dementia 15: 1357–1366.10.1016/j.jalz.2019.07.002Search in Google Scholar PubMed
Li, C., Wang, N., Zheng, G., and Yang, L. (2021a). Oral administration of resveratrol-selenium-peptide nanocomposites alleviates Alzheimer’s disease-like pathogenesis by inhibiting abeta aggregation and regulating gut microbiota. ACS Appl. Mater. Interfaces 13: 46406–46420, https://doi.org/10.1021/acsami.1c14818.Search in Google Scholar PubMed
Li, Y., Shao, L., Mou, Y., Zhang, Y., and Ping, Y. (2021b). Sleep, circadian rhythm and gut microbiota: alterations in Alzheimer’s disease and their potential links in the pathogenesis. Gut Microb. 13: 1957407.10.1080/19490976.2021.1957407Search in Google Scholar PubMed PubMed Central
Lin, Y.T., Shi, Q.Q., Zhang, L., Yue, C.P., He, Z.J., Li, X.X., He, Q.J., Liu, Q., and Du, X.B. (2022). Hydrogen-rich water ameliorates neuropathological impairments in a mouse model of Alzheimer’s disease through reducing neuroinflammation and modulating intestinal microbiota. Neural Regen. Res. 17: 409–417, https://doi.org/10.4103/1673-5374.317992.Search in Google Scholar PubMed PubMed Central
Liu, Y., Gao, J., Peng, M., Meng, H., Ma, H., Cai, P., Xu, Y., Zhao, Q., and Si, G. (2018). A review on central nervous system effects of gastrodin. Front. Pharmacol. 9: 24.10.3389/fphar.2018.00024Search in Google Scholar PubMed PubMed Central
Liu, J., Yu, C., Li, R., Liu, K., Jin, G., Ge, R., Tang, F., and Cui, S. (2020). High-altitude Tibetan fermented milk ameliorated cognitive dysfunction by modified gut microbiota in Alzheimer’s disease transgenic mice. Food Funct. 11: 5308–5319, https://doi.org/10.1039/c9fo03007g.Search in Google Scholar PubMed
Liu, N., Yang, C., Liang, X., Cao, K., Xie, J., Luo, Q., and Luo, H. (2022). Mesoporous silica nanoparticle-encapsulated bifidobacterium attenuates brain Aβ burden and improves olfactory dysfunction of app/ps1 mice by nasal delivery. J. Nanobiotechnol. 20: 439, https://doi.org/10.1186/s12951-022-01642-z.Search in Google Scholar PubMed PubMed Central
Lynch, S.V. and Pedersen, O. (2016). The human intestinal microbiome in health and disease. N. Engl. J. Med. 375: 2369–2379, https://doi.org/10.1056/nejmra1600266.Search in Google Scholar
Ma, D., Wang, A.C., Parikh, I., Green, S.J., Hoffman, J.D., Chlipala, G., Murphy, M.P., Sokola, B.S., Bauer, B., Hartz, A.M.S., et al.. (2018). Ketogenic diet enhances neurovascular function with altered gut microbiome in young healthy mice. Sci. Rep. 8: 6670, https://doi.org/10.1038/s41598-018-25190-5.Search in Google Scholar PubMed PubMed Central
Maldonado Weng, J., Parikh, I., Naqib, A., York, J., Green, S.J., Estus, S., and LaDu, M.J. (2019). Synergistic effects of apoe and sex on the gut microbiome of young efad transgenic mice. Mol. Neurodegener. 14: 47, https://doi.org/10.1186/s13024-019-0352-2.Search in Google Scholar PubMed PubMed Central
Markowiak, P. and Slizewska, K. (2017). Effects of probiotics, prebiotics, and synbiotics on human health. Nutrients 9: 1021, https://doi.org/10.3390/nu9091021.Search in Google Scholar PubMed PubMed Central
McMillin, M., Frampton, G., Quinn, M., Divan, A., Grant, S., Patel, N., Newell-Rogers, K., and DeMorrow, S. (2015). Suppression of the hpa axis during cholestasis can be attributed to hypothalamic bile acid signaling. Mol. Endocrinol. 29: 1720–1730, https://doi.org/10.1210/me.2015-1087.Search in Google Scholar PubMed PubMed Central
McShane, R., Westby, M.J., Roberts, E., Minakaran, N., Schneider, L., Farrimond, L.E., Maayan, N., Ware, J., and Debarros, J. (2019). Memantine for dementia. Cochrane Database Syst. Rev. 3: CD003154, https://doi.org/10.1002/14651858.cd003154.pub6.Search in Google Scholar
Mehrabadi, S. and Sadr, S.S. (2020). Assessment of probiotics mixture on memory function, inflammation markers, and oxidative stress in an Alzheimer’s disease model of rats. Iran. Biomed. J. 24: 220–228, https://doi.org/10.29252/ibj.24.4.220.Search in Google Scholar PubMed PubMed Central
Menden, A., Hall, D., Hahn-Townsend, C., Broedlow, C.A., Joshi, U., Pearson, A., Crawford, F., Evans, J.E., Klatt, N., Crynen, S., et al.. (2022). Exogenous lipase administration alters gut microbiota composition and ameliorates Alzheimer’s disease-like pathology in app/ps1 mice. Sci. Rep. 12: 4797, https://doi.org/10.1038/s41598-022-08840-7.Search in Google Scholar PubMed PubMed Central
Meng, D., Yang, M., Hu, L., Liu, T., Zhang, H., Sun, X., Wang, X., Chen, Y., Jin, Y., and Liu, R. (2022). Rifaximin protects against circadian rhythm disruption-induced cognitive impairment through preventing gut barrier damage and neuroinflammation. J. Neurochem. 163: 406–418, https://doi.org/10.1111/jnc.15701.Search in Google Scholar PubMed
Milani, C., Duranti, S., Bottacini, F., Casey, E., Turroni, F., Mahony, J., Belzer, C., Delgado Palacio, S., Arboleya Montes, S., Mancabelli, L., et al. (2017). The first microbial colonizers of the human gut: composition, activities, and health implications of the infant gut microbiota. Microbiol. Mol. Biol. Rev. 81: e00036-17, https://doi.org/10.1128/mmbr.00036-17.Search in Google Scholar
Moghadam, F.H., Alaie, H., Karbalaie, K., Tanhaei, S., Nasr Esfahani, M.H., and Baharvand, H. (2009). Transplantation of primed or unprimed mouse embryonic stem cell-derived neural precursor cells improves cognitive function in Alzheimerian rats. Differentiation 78: 59–68, https://doi.org/10.1016/j.diff.2009.06.005.Search in Google Scholar PubMed
Mohammadi, G., Dargahi, L., Peymani, A., Mirzanejad, Y., Alizadeh, S.A., Naserpour, T., and Nassiri-Asl, M. (2019). The effects of probiotic formulation pretreatment (Lactobacillus helveticus r0052 and Bifidobacterium longum r0175) on a lipopolysaccharide rat model. J. Am. Coll. Nutr. 38: 209–217, https://doi.org/10.1080/07315724.2018.1487346.Search in Google Scholar PubMed
Morris, M.C., Tangney, C.C., Wang, Y., Sacks, F.M., Bennett, D.A., and Aggarwal, N.T. (2015). Mind diet associated with reduced incidence of Alzheimer’s disease. Alzheimer’s Dementia 11: 1007–1014, https://doi.org/10.1016/j.jalz.2014.11.009.Search in Google Scholar PubMed PubMed Central
Mulak, A. (2021). Bile acids as key modulators of the brain-gut-microbiota axis in Alzheimer’s disease. J. Alzheim. Dis. 84: 461–477, https://doi.org/10.3233/jad-210608.Search in Google Scholar PubMed PubMed Central
Naaldijk, Y., Jäger, C., Fabian, C., Leovsky, C., Blüher, A., Rudolph, L., Hinze, A., and Stolzing, A. (2017). Effect of systemic transplantation of bone marrow-derived mesenchymal stem cells on neuropathology markers in app/ps1 Alzheimer mice. Neuropathol. Appl. Neurobiol. 43: 299–314, https://doi.org/10.1111/nan.12319.Search in Google Scholar PubMed
Nagpal, R., Neth, B.J., Wang, S., Craft, S., and Yadav, H. (2019). Modified mediterranean-ketogenic diet modulates gut microbiome and short-chain fatty acids in association with Alzheimer’s disease markers in subjects with mild cognitive impairment. EBioMedicine 47: 529–542, https://doi.org/10.1016/j.ebiom.2019.08.032.Search in Google Scholar PubMed PubMed Central
Nagpal, R., Neth, B.J., Wang, S., Mishra, S.P., Craft, S., and Yadav, H. (2020). Gut mycobiome and its interaction with diet, gut bacteria and Alzheimer’s disease markers in subjects with mild cognitive impairment: a pilot study. EBioMedicine 59: 102950, https://doi.org/10.1016/j.ebiom.2020.102950.Search in Google Scholar PubMed PubMed Central
Naomi, R., Embong, H., Othman, F., Ghazi, H.F., Maruthey, N., and Bahari, H. (2021). Probiotics for Alzheimer’s disease: a systematic review. Nutrients 14: 20, https://doi.org/10.3390/nu14010020.Search in Google Scholar PubMed PubMed Central
Nash, V., Ranadheera, C.S., Georgousopoulou, E.N., Mellor, D.D., Panagiotakos, D.B., McKune, A.J., Kellett, J., and Naumovski, N. (2018). The effects of grape and red wine polyphenols on gut microbiota – a systematic review. Food Res. Int. 113: 277–287, https://doi.org/10.1016/j.foodres.2018.07.019.Search in Google Scholar PubMed
Oh, D.Y. and Lagakos, W.S. (2011). The role of g-protein-coupled receptors in mediating the effect of fatty acids on inflammation and insulin sensitivity. Curr. Opin. Clin. Nutr. Metab. Care 14: 322–327, https://doi.org/10.1097/mco.0b013e3283479230.Search in Google Scholar
Ohno, K., Abdelhamid, M., Zhou, C., Jung, C.G., and Michikawa, M. (2022). Bifidobacterium breve mcc1274 supplementation increased the plasma levels of metabolites with potential anti-oxidative activity in app knock-in mice. J. Alzheim. Dis. 89: 1413–1425, https://doi.org/10.3233/jad-220479.Search in Google Scholar PubMed PubMed Central
Ou, Z., Deng, L., Lu, Z., Wu, F., Liu, W., Huang, D., and Peng, Y. (2020). Protective effects of Akkermansia muciniphila on cognitive deficits and amyloid pathology in a mouse model of Alzheimer’s disease. Nutr. Diabetes 10: 12, https://doi.org/10.1038/s41387-020-0115-8.Search in Google Scholar PubMed PubMed Central
Ouyang, Q., Meng, Y., Zhou, W., Tong, J., Cheng, Z., and Zhu, Q. (2022). New advances in brain-targeting nano-drug delivery systems for Alzheimer’s disease. J. Drug Target. 30: 61–81, https://doi.org/10.1080/1061186x.2021.1927055.Search in Google Scholar PubMed
Park, S.H., Lee, J.H., Shin, J., Kim, J.S., Cha, B., Lee, S., Kwon, K.S., Shin, Y.W., and Choi, S.H. (2021). Cognitive function improvement after fecal microbiota transplantation in Alzheimer’s dementia patient: a case report. Curr. Med. Res. Opin. 37: 1739–1744, https://doi.org/10.1080/03007995.2021.1957807.Search in Google Scholar PubMed
Park, S.H., Lee, J.H., Kim, J.S., Kim, T.J., Shin, J., Im, J.H., Cha, B., Lee, S., Kwon, K.S., Shin, Y.W., et al.. (2022). Fecal microbiota transplantation can improve cognition in patients with cognitive decline and Clostridioides difficile infection. Aging (Albany NY) 14: 6449–6466, https://doi.org/10.18632/aging.204230.Search in Google Scholar PubMed PubMed Central
Patel, C., Pande, S., and Acharya, S. (2020). Potentiation of anti-Alzheimer activity of curcumin by probiotic Lactobacillus rhamnosus ublr-58 against scopolamine-induced memory impairment in mice. Naunyn-Schmiedeberg’s Arch. Pharmacol. 393: 1955–1962.10.1007/s00210-020-01904-3Search in Google Scholar PubMed
Pathak, P., Xie, C., Nichols, R.G., Ferrell, J.M., Boehme, S., Krausz, K.W., Patterson, A.D., Gonzalez, F.J., and Chiang, J.Y.L. (2018). Intestine farnesoid X receptor agonist and the gut microbiota activate G-protein bile acid receptor-1 signaling to improve metabolism. Hepatology 68: 1574–1588, https://doi.org/10.1002/hep.29857.Search in Google Scholar PubMed PubMed Central
Peng, M.S., He, J.D., Zhu, C.L., Wu, S.F., Jin, J.Q., and Zhang, Y.P. (2012). Lactase persistence may have an independent origin in Tibetan populations from Tibet, China. J. Hum. Genet. 57: 394–397, https://doi.org/10.1038/jhg.2012.41.Search in Google Scholar PubMed
Phan, T.X. and Malkani, R.G. (2019). Sleep and circadian rhythm disruption and stress intersect in Alzheimer’s disease. Neurobiol. Stress 10: 100133, https://doi.org/10.1016/j.ynstr.2018.10.001.Search in Google Scholar PubMed PubMed Central
Qi, X., Yun, C., Pang, Y., and Qiao, J. (2021). The impact of the gut microbiota on the reproductive and metabolic endocrine system. Gut Microb. 13: 1–21, https://doi.org/10.1080/19490976.2021.1894070.Search in Google Scholar PubMed PubMed Central
Qian, X.H., Song, X.X., Liu, X.L., Chen, S.D., and Tang, H.D. (2021). Inflammatory pathways in Alzheimer’s disease mediated by gut microbiota. Ageing Res. Rev. 68: 101317, https://doi.org/10.1016/j.arr.2021.101317.Search in Google Scholar PubMed
Qiao, L., Chen, Y., Song, X., Dou, X., and Xu, C. (2022). Selenium nanoparticles-enriched Lactobacillus casei ATCC 393 prevents cognitive dysfunction in mice through modulating microbiota-gut-brain axis. Int. J. Nanomed. 17: 4807–4827, https://doi.org/10.2147/ijn.s374024.Search in Google Scholar
Qu, T., Brannen, C.L., Kim, H.M., and Sugaya, K. (2001). Human neural stem cells improve cognitive function of aged brain. Neuroreport 12: 1127–1132, https://doi.org/10.1097/00001756-200105080-00016.Search in Google Scholar PubMed
Qu, C., Li, Q.P., Su, Z.R., Ip, S.P., Yuan, Q.J., Xie, Y.L., Xu, Q.Q., Yang, W., Huang, Y.F., Xian, Y.F., et al.. (2022). Nano-honokiol ameliorates the cognitive deficits in tgcrnd8 mice of Alzheimer’s disease via inhibiting neuropathology and modulating gut microbiota. J. Adv. Res. 35: 231–243, https://doi.org/10.1016/j.jare.2021.03.012.Search in Google Scholar PubMed PubMed Central
Reich, H.J. and Hondal, R.J. (2016). Why nature chose selenium. ACS Chem. Biol. 11: 821–841.10.1021/acschembio.6b00031Search in Google Scholar PubMed
Reilly, A.M., Tsai, A.P., Lin, P.B., Ericsson, A.C., Oblak, A.L., and Ren, H. (2020). Metabolic defects caused by high-fat diet modify disease risk through inflammatory and amyloidogenic pathways in a mouse model of Alzheimer’s disease. Nutrients 12: 2977, https://doi.org/10.3390/nu12102977.Search in Google Scholar PubMed PubMed Central
Ribaric, S. (2018). Peptides as potential therapeutics for Alzheimer’s disease. Molecules 23: 283, https://doi.org/10.3390/molecules23020283.Search in Google Scholar PubMed PubMed Central
Ridlon, J.M., Kang, D.J., and Hylemon, P.B. (2006). Bile salt biotransformations by human intestinal bacteria. J. Lipid Res. 47: 241–259, https://doi.org/10.1194/jlr.r500013-jlr200.Search in Google Scholar PubMed
Rusek, M., Pluta, R., Ułamek-Kozioł, M., and Czuczwar, S.J. (2019). Ketogenic diet in Alzheimer’s disease. Int. J. Mol. Sci. 20: 3892, https://doi.org/10.3390/ijms20163892.Search in Google Scholar PubMed PubMed Central
Salminen, S., Collado, M.C., Endo, A., Hill, C., Lebeer, S., Quigley, E.M.M., Sanders, M.E., Shamir, R., Swann, J.R., Szajewska, H., et al.. (2021). The International Scientific Association of Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of postbiotics. Nat. Rev. Gastroenterol. Hepatol. 18: 649–667, https://doi.org/10.1038/s41575-021-00440-6.Search in Google Scholar PubMed PubMed Central
Samadi, M., Moradi, S., Moradinazar, M., Mostafai, R., and Pasdar, Y. (2019). Dietary pattern in relation to the risk of Alzheimer’s disease: a systematic review. Neurol. Sci. 40: 2031–2043, https://doi.org/10.1007/s10072-019-03976-3.Search in Google Scholar PubMed
Schlegel, P., Novotny, M., Klimova, B., and Valis, M. (2019). “Muscle-gut-brain axis:” can physical activity help patients with Alzheimer’s disease due to microbiome modulation? J. Alzheim. Dis. 71: 861–878, https://doi.org/10.3233/jad-190460.Search in Google Scholar
Shamsipour, S., Sharifi, G., and Taghian, F. (2021a). An 8-week administration of Bifidobacterium bifidum and Lactobacillus plantarum combined with exercise training alleviates neurotoxicity of Aβ and spatial learning via acetylcholine in Alzheimer rat model. J. Mol. Neurosci. 71: 1495–1505, https://doi.org/10.1007/s12031-021-01812-y.Search in Google Scholar PubMed
Shamsipour, S., Sharifi, G., and Taghian, F. (2021b). Impact of interval training with probiotic (L. plantarum/Bifidobacterium bifidum) on passive avoidance test, chat and bdnf in the hippocampus of rats with Alzheimer’s disease. Neurosci. Lett. 756: 135949, https://doi.org/10.1016/j.neulet.2021.135949.Search in Google Scholar PubMed
Shen, H., Guan, Q., Zhang, X., Yuan, C., Tan, Z., Zhai, L., Hao, Y., Gu, Y., and Han, C. (2020). New mechanism of neuroinflammation in Alzheimer’s disease: the activation of NLRP3 inflammasome mediated by gut microbiota. Prog. Neuro-Psychopharmacol. Biol. Psychiatr. 100: 109884, https://doi.org/10.1016/j.pnpbp.2020.109884.Search in Google Scholar PubMed
Shukla, P.K., Delotterie, D.F., Xiao, J., Pierre, J.F., Rao, R., McDonald, M.P., and Khan, M.M. (2021). Alterations in the gut-microbial-inflammasome-brain axis in a mouse model of Alzheimer’s disease. Cells 10: 779, https://doi.org/10.3390/cells10040779.Search in Google Scholar PubMed PubMed Central
Silva, M.V.F., Loures, C.M.G., Alves, L.C.V., de Souza, L.C., Borges, K.B.G., and Carvalho, M.D.G. (2019). Alzheimer’s disease: risk factors and potentially protective measures. J. Biomed. Sci. 26: 33, https://doi.org/10.1186/s12929-019-0524-y.Search in Google Scholar PubMed PubMed Central
Singh, B., Parsaik, A.K., Mielke, M.M., Erwin, P.J., Knopman, D.S., Petersen, R.C., and Roberts, R.O. (2014). Association of mediterranean diet with mild cognitive impairment and Alzheimer’s disease: a systematic review and meta-analysis. J. Alzheim. Dis. 39: 271–282, https://doi.org/10.3233/jad-130830.Search in Google Scholar
Smith, C.A., Smith, H., Roberts, L., Coward, L., Gorman, G., Verma, A., Li, Q., Buford, T.W., Carter, C.S., and Jumbo-Lucioni, P. (2022). Probiotic releasing angiotensin (1-7) in a Drosophila model of Alzheimer’s disease produces sex-specific effects on cognitive function. J. Alzheim. Dis. 85: 1205–1217, https://doi.org/10.3233/jad-210464.Search in Google Scholar
Sofi, F., Macchi, C., Abbate, R., Gensini, G.F., and Casini, A. (2013). Mediterranean diet and health. Biofactors 39: 335–342, https://doi.org/10.1002/biof.1096.Search in Google Scholar PubMed
Song, X., Zhao, Z., Zhao, Y., Wang, Z., Wang, C., Yang, G., and Li, S. (2022). Lactobacillus plantarum dp189 prevents cognitive dysfunction in D-galactose/alcl(3) induced mouse model of Alzheimer’s disease via modulating gut microbiota and Pi3k/Akt/Gsk-3β signaling pathway. Nutr. Neurosci. 25: 2588–2600, https://doi.org/10.1080/1028415x.2021.1991556.Search in Google Scholar
Soriano, S., Curry, K., Wang, Q., Chow, E., Treangen, T.J., and Villapol, S. (2022). Fecal microbiota transplantation derived from Alzheimer’s disease mice worsens brain trauma outcomes in wild-type controls. Int. J. Mol. Sci. 23: 4476, https://doi.org/10.3390/ijms23094476.Search in Google Scholar PubMed PubMed Central
Sorrentino, G., Perino, A., Yildiz, E., El Alam, G., Bou Sleiman, M., Gioiello, A., Pellicciari, R., and Schoonjans, K. (2020). Bile acids signal via tgr5 to activate intestinal stem cells and epithelial regeneration. Gastroenterology 159: 956–968.e958, https://doi.org/10.1053/j.gastro.2020.05.067.Search in Google Scholar PubMed
Suhocki, P.V., Ronald, J.S., Diehl, A.M.E., Murdoch, D.M., and Doraiswamy, P.M. (2022). Probing gut-brain links in Alzheimer’s disease with rifaximin. Alzheimer’s Dementia 8: e12225, https://doi.org/10.1002/trc2.12225.Search in Google Scholar PubMed PubMed Central
Sumsuzzman, D.M., Choi, J., Jin, Y., and Hong, Y. (2021). Neurocognitive effects of melatonin treatment in healthy adults and individuals with Alzheimer’s disease and insomnia: a systematic review and meta-analysis of randomized controlled trials. Neurosci. Biobehav. Rev. 127: 459–473, https://doi.org/10.1016/j.neubiorev.2021.04.034.Search in Google Scholar PubMed
Sun, J., Xu, J., Ling, Y., Wang, F., Gong, T., Yang, C., Ye, S., Ye, K., Wei, D., Song, Z., et al.. (2019). Fecal microbiota transplantation alleviated Alzheimer’s disease-like pathogenesis in app/ps1 transgenic mice. Transl. Psychiatry 9: 189, https://doi.org/10.1038/s41398-019-0525-3.Search in Google Scholar PubMed PubMed Central
Sun, J., Xu, J., Yang, B., Chen, K., Kong, Y., Fang, N., Gong, T., Wang, F., Ling, Z., and Liu, J. (2020). Effect of clostridium butyricum against microglia-mediated neuroinflammation in Alzheimer’s disease via regulating gut microbiota and metabolites butyrate. Mol. Nutr. Food Res. 64: e1900636, https://doi.org/10.1002/mnfr.201900636.Search in Google Scholar PubMed
Sun, M., Bao, W., Huang, C., Xia, Z., Zhang, C., Wang, G., Wang, R., Li, J., Roux, S., Li, Q., et al.. (2021). A novel probiotic formula, biocg, protects against Alzheimer’s-related cognitive deficits via regulation of dendritic spine dynamics. Curr. Alzheimer Res. 18: 558–572, https://doi.org/10.2174/1567205018666211022091110.Search in Google Scholar PubMed
Sun, J., Zhang, Y., Kong, Y., Ye, T., Yu, Q., Kumaran Satyanarayanan, S., Su, K.P., and Liu, J. (2022). Microbiota-derived metabolite indoles induced aryl hydrocarbon receptor activation and inhibited neuroinflammation in app/ps1 mice. Brain Behav. Immun. 106: 76–88, https://doi.org/10.1016/j.bbi.2022.08.003.Search in Google Scholar PubMed
Takamatsu, K., Ikeda, T., Haruta, M., Matsumura, K., Ogi, Y., Nakagata, N., Uchino, M., Ando, Y., Nishimura, Y., and Senju, S. (2014). Degradation of amyloid β by human induced pluripotent stem cell-derived macrophages expressing neprilysin-2. Stem Cell Res. 13: 442–453.10.1016/j.scr.2014.10.001Search in Google Scholar PubMed
Tamtaji, O.R., Heidari-Soureshjani, R., Mirhosseini, N., Kouchaki, E., Bahmani, F., Aghadavod, E., Tajabadi-Ebrahimi, M., and Asemi, Z. (2019). Probiotic and selenium co-supplementation, and the effects on clinical, metabolic and genetic status in Alzheimer’s disease: a randomized, double-blind, controlled trial. Clin. Nutr. 38: 2569–2575, https://doi.org/10.1016/j.clnu.2018.11.034.Search in Google Scholar PubMed
Tang, B.L. (2020). Neuropathological mechanisms associated with pesticides in Alzheimer’s disease. Toxics 8: 21, https://doi.org/10.3390/toxics8020021.Search in Google Scholar PubMed PubMed Central
Ton, A.M.M., Campagnaro, B.P., Alves, G.A., Aires, R., Coco, L.Z., Arpini, C.M., Guerra, E.O.T., Campos-Toimil, M., Meyrelles, S.S., Pereira, T.M.C., et al.. (2020). Oxidative stress and dementia in Alzheimer’s patients: effects of synbiotic supplementation. Oxid. Med. Cell. Longev. 2020: 2638703, https://doi.org/10.1155/2020/2638703.Search in Google Scholar PubMed PubMed Central
Vendrik, K.E.W., Ooijevaar, R.E., de Jong, P.R.C., Laman, J.D., van Oosten, B.W., van Hilten, J.J., Ducarmon, Q.R., Keller, J.J., Kuijper, E.J., and Contarino, M.F. (2020). Fecal microbiota transplantation in neurological disorders. Front. Cell. Infect. Microbiol. 10: 98, https://doi.org/10.3389/fcimb.2020.00098.Search in Google Scholar PubMed PubMed Central
Vogt, N.M., Kerby, R.L., Dill-McFarland, K.A., Harding, S.J., Merluzzi, A.P., Johnson, S.C., Carlsson, C.M., Asthana, S., Zetterberg, H., Blennow, K., et al.. (2017). Gut microbiome alterations in Alzheimer’s disease. Sci. Rep. 7: 13537, https://doi.org/10.1038/s41598-017-13601-y.Search in Google Scholar PubMed PubMed Central
Wang, Y., Wu, Y., Wang, Y., Xu, H., Mei, X., Yu, D., Wang, Y., and Li, W. (2017). Antioxidant properties of probiotic bacteria. Nutrients 9: 521, https://doi.org/10.3390/nu9050521.Search in Google Scholar PubMed PubMed Central
Wang, H., Yang, F., Xin, R., Cui, D., He, J., Zhang, S., and Sun, Y. (2020a). The gut microbiota attenuate neuroinflammation in manganese exposure by inhibiting cerebral nlrp3 inflammasome. Biomed. Pharmacother. 129: 110449, https://doi.org/10.1016/j.biopha.2020.110449.Search in Google Scholar PubMed
Wang, M., Cao, J., Amakye, W.K., Gong, C., Li, Q., and Ren, J. (2020b). Mid infrared light treatment attenuates cognitive decline and alters the gut microbiota community in app/ps1 mouse model. Biochem. Biophys. Res. Commun. 523: 60–65, https://doi.org/10.1016/j.bbrc.2019.12.015.Search in Google Scholar PubMed
Wang, G., Zhou, H.H., Luo, L., Qin, L.Q., Yin, J., Yu, Z., Zhang, L., and Wan, Z. (2021a). Voluntary wheel running is capable of improving cognitive function only in the young but not the middle-aged male appswe/ps1de9 mice. Neurochem. Int. 145: 105010, https://doi.org/10.1016/j.neuint.2021.105010.Search in Google Scholar PubMed
Wang, M., Cao, J., Gong, C., Amakye, W.K., Yao, M., and Ren, J. (2021b). Exploring the microbiota-Alzheimer’s disease linkage using short-term antibiotic treatment followed by fecal microbiota transplantation. Brain Behav. Immun. 96: 227–238.10.1016/j.bbi.2021.06.003Search in Google Scholar PubMed
Wang, F., Gu, Y., Xu, C., Du, K., Zhao, C., Zhao, Y., and Liu, X. (2022). Transplantation of fecal microbiota from app/ps1 mice and Alzheimer’s disease patients enhanced endoplasmic reticulum stress in the cerebral cortex of wild-type mice. Front. Aging Neurosci. 14: 858130, https://doi.org/10.3389/fnagi.2022.858130.Search in Google Scholar PubMed PubMed Central
Webberley, T.S., Masetti, G., Bevan, R.J., Kerry-Smith, J., Jack, A.A., Michael, D.R., Thomas, S., Glymenaki, M., Li, J., McDonald, J.A.K., et al.. (2022). The impact of probiotic supplementation on cognitive, pathological and metabolic markers in a transgenic mouse model of Alzheimer’s disease. Front. Neurosci. 16: 843105.10.3389/fnins.2022.843105Search in Google Scholar PubMed PubMed Central
Weng, M.H., Chen, S.Y., Li, Z.Y., and Yen, G.C. (2020). Camellia oil alleviates the progression of Alzheimer’s disease in aluminum chloride-treated rats. Free Radic. Biol. Med. 152: 411–421, https://doi.org/10.1016/j.freeradbiomed.2020.04.004.Search in Google Scholar PubMed
Wieckowska-Gacek, A., Mietelska-Porowska, A., Wydrych, M., and Wojda, U. (2021). Western diet as a trigger of Alzheimer’s disease: from metabolic syndrome and systemic inflammation to neuroinflammation and neurodegeneration. Ageing Res. Rev. 70: 101397, https://doi.org/10.1016/j.arr.2021.101397.Search in Google Scholar PubMed
Wu, S., Bekhit, A.E.-D.A., Wu, Q., Chen, M., Liao, X., Wang, J., and Ding, Y. (2021). Bioactive peptides and gut microbiota: candidates for a novel strategy for reduction and control of neurodegenerative diseases. Trends Food Sci. Technol. 108: 164–176, https://doi.org/10.1016/j.tifs.2020.12.019.Search in Google Scholar
Wu, S., Wu, Q., Wang, J., Li, Y., Chen, B., Zhu, Z., Huang, R., Chen, M., Huang, A., Xie, Y., et al.. (2022). Novel selenium peptides obtained from selenium-enriched cordyceps militaris alleviate neuroinflammation and gut microbiota dysbacteriosis in lps-injured mice. J. Agric. Food Chem. 70: 3194–3206, https://doi.org/10.1021/acs.jafc.1c08393.Search in Google Scholar PubMed
Xiao, J., Katsumata, N., Bernier, F., Ohno, K., Yamauchi, Y., Odamaki, T., Yoshikawa, K., Ito, K., and Kaneko, T. (2020). Probiotic Bifidobacterium breve in improving cognitive functions of older adults with suspected mild cognitive impairment: a randomized, double-blind, placebo-controlled trial. J. Alzheim. Dis. 77: 139–147, https://doi.org/10.3233/jad-200488.Search in Google Scholar
Xu, P., Wang, J., Hong, F., Wang, S., Jin, X., Xue, T., Jia, L., and Zhai, Y. (2017). Melatonin prevents obesity through modulation of gut microbiota in mice. J. Pineal Res. 62, https://doi.org/10.1111/jpi.12399.Search in Google Scholar PubMed
Xu, H.M., Huang, H.L., Zhou, Y.L., Zhao, H.L., Xu, J., Shou, D.W., Liu, Y.D., Zhou, Y.J., and Nie, Y.Q. (2021). Fecal microbiota transplantation: a new therapeutic attempt from the gut to the brain. Gastroenterol. Res. Pract. 2021: 6699268, https://doi.org/10.1155/2021/6699268.Search in Google Scholar PubMed PubMed Central
Yang, X., Yu, D., Xue, L., Li, H., and Du, J. (2020). Probiotics modulate the microbiota-gut-brain axis and improve memory deficits in aged samp8 mice. Acta Pharm. Sin. B 10: 475–487, https://doi.org/10.1016/j.apsb.2019.07.001.Search in Google Scholar PubMed PubMed Central
Yang, L., Cui, Y., Liang, H., Li, Z., Wang, N., Wang, Y., and Zheng, G. (2022). Multifunctional selenium nanoparticles with different surface modifications ameliorate neuroinflammation through the gut microbiota-Nlrp3 inflammasome-brain axis in app/ps1 mice. ACS Appl. Mater. Interfaces 14: 30557–30570, https://doi.org/10.1021/acsami.2c06283.Search in Google Scholar PubMed
Yanguas-Casas, N., Torres, C., Crespo-Castrillo, A., Diaz-Pacheco, S., Healy, K., Stanton, C., Chowen, J.A., Garcia-Segura, L.M., Arevalo, M.A., Cryan, J.F., et al.. (2021). High-fat diet alters stress behavior, inflammatory parameters and gut microbiota in tg app mice in a sex-specific manner. Neurobiol. Dis. 159: 105495.10.1016/j.nbd.2021.105495Search in Google Scholar PubMed
Yu, F., Han, W., Zhan, G., Li, S., Xiang, S., Zhu, B., Jiang, X., Yang, L., Luo, A., Hua, F., et al.. (2019). Abnormal gut microbiota composition contributes to cognitive dysfunction in streptozotocin-induced diabetic mice. Aging 11: 3262–3279, https://doi.org/10.18632/aging.101978.Search in Google Scholar PubMed PubMed Central
Yuan, S., Yang, J., Jian, Y., Lei, Y., Yao, S., Hu, Z., Liu, X., Tang, C., and Liu, W. (2022). Treadmill exercise modulates intestinal microbes and suppresses LPS displacement to alleviate neuroinflammation in the brains of app/ps1 mice. Nutrients 14: 4134, https://doi.org/10.3390/nu14194134.Search in Google Scholar PubMed PubMed Central
Yusufov, M., Weyandt, L.L., and Piryatinsky, I. (2017). Alzheimer’s disease and diet: a systematic review. Int. J. Neurosci. 127: 161–175, https://doi.org/10.3109/00207454.2016.1155572.Search in Google Scholar PubMed
Zangerolamo, L., Vettorazzi, J.F., Rosa, L.R.O., Carneiro, E.M., and Barbosa, H.C.L. (2021). The bile acid tudca and neurodegenerative disorders: an overview. Life Sci. 272: 119252, https://doi.org/10.1016/j.lfs.2021.119252.Search in Google Scholar PubMed
Zhan, G., Yang, N., Li, S., Huang, N., Fang, X., Zhang, J., Zhu, B., Yang, L., Yang, C., and Luo, A. (2018). Abnormal gut microbiota composition contributes to cognitive dysfunction in samp8 mice. Aging 10: 1257–1267, https://doi.org/10.18632/aging.101464.Search in Google Scholar PubMed PubMed Central
Zhang, Z., Song, M., Liu, X., Kang, S.S., Kwon, I.S., Duong, D.M., Seyfried, N.T., Hu, W.T., Liu, Z., Wang, J.Z., et al.. (2014). Cleavage of tau by asparagine endopeptidase mediates the neurofibrillary pathology in Alzheimer’s disease. Nat. Med. 20: 1254–1262, https://doi.org/10.1038/nm.3700.Search in Google Scholar PubMed PubMed Central
Zhang, L., Wang, Y., Xiayu, X., Shi, C., Chen, W., Song, N., Fu, X., Zhou, R., Xu, Y.F., Huang, L., et al.. (2017). Altered gut microbiota in a mouse model of Alzheimer’s disease. J. Alzheim. Dis. 60: 1241–1257, https://doi.org/10.3233/jad-170020.Search in Google Scholar
Zhang, F., Zhong, R.J., Cheng, C., Li, S., and Le, W.D. (2021). New therapeutics beyond amyloid-β and tau for the treatment of Alzheimer’s disease. Acta Pharmacol. Sin. 42: 1382–1389.10.1038/s41401-020-00565-5Search in Google Scholar PubMed PubMed Central
Zhang, B., Chen, T., Cao, M., Yuan, C., Reiter, R.J., Zhao, Z., Zhao, Y., Chen, L., Fan, W., Wang, X., et al.. (2022a). Gut microbiota dysbiosis induced by decreasing endogenous melatonin mediates the pathogenesis of Alzheimer’s disease and obesity. Front. Immunol. 13: 900132, https://doi.org/10.3389/fimmu.2022.900132.Search in Google Scholar PubMed PubMed Central
Zhang, F., Zhu, F., Chen, B., Su, E., Chen, Y., and Cao, F. (2022b). Composition, bioactive substances, extraction technologies and the influences on characteristics of Camellia oleifera oil: a review. Food Res. Int. 156: 111159, https://doi.org/10.1016/j.foodres.2022.111159.Search in Google Scholar PubMed
Zhang, S., Wei, D., Lv, S., Wang, L., An, H., Shao, W., Wang, Y., Huang, Y., Peng, D., and Zhang, Z. (2022c). Scutellarin modulates the microbiota-gut-brain axis and improves cognitive impairment in app/ps1 mice. J. Alzheim. Dis. 89: 955–975.10.3233/JAD-220532Search in Google Scholar PubMed
Zhang, W., Guo, Y., Cheng, Y., Yao, W., and Qian, H. (2022d). Neuroprotective effects of polysaccharide from Sparassis crispa on Alzheimer’s disease-like mice: involvement of microbiota-gut-brain axis. Int. J. Biol. Macromol. 225: 974–986, https://doi.org/10.1016/j.ijbiomac.2022.11.160.Search in Google Scholar PubMed
Zhang, Z., Tan, X., Sun, X., Wei, J., Li, Q.X., and Wu, Z. (2022e). Isoorientin affects markers of Alzheimer’s disease via effects on the oral and gut microbiota in app/ps1 mice. J. Nutr. 152: 140–152.10.1093/jn/nxab328Search in Google Scholar PubMed
Zhao, W., Wang, J., Latta, M., Wang, C., Liu, Y., Ma, W., Zhou, Z., Hu, S., Chen, P., and Liu, Y. (2022). Rhizoma gastrodiae water extract modulates the gut microbiota and pathological changes of p-tau(thr231) to protect against cognitive impairment in mice. Front. Pharmacol. 13: 903659, https://doi.org/10.3389/fphar.2022.903659.Search in Google Scholar PubMed PubMed Central
Zhou, H., Zhao, J., Liu, C., Zhang, Z., Zhang, Y., and Meng, D. (2022). Xanthoceraside exerts anti-Alzheimer’s disease effect by remodeling gut microbiota and modulating microbial-derived metabolites level in rats. Phytomedicine 98: 153937, https://doi.org/10.1016/j.phymed.2022.153937.Search in Google Scholar PubMed
Zhu, G., Zhao, J., Zhang, H., Chen, W., and Wang, G. (2021). Administration of bifidobacterium breve improves the brain function of Aβ(1-42)-treated mice via the modulation of the gut microbiome. Nutrients 13: 1602, https://doi.org/10.3390/nu13051602.Search in Google Scholar PubMed PubMed Central
Zhuang, Z.Q., Shen, L.L., Li, W.W., Fu, X., Zeng, F., Gui, L., Lu, Y., Cai, M., Zhu, C., Tan, Y.L., et al.. (2018). Gut microbiota is altered in patients with Alzheimer’s disease. J. Alzheim. Dis. 63: 1337–1346, https://doi.org/10.3233/jad-180176.Search in Google Scholar
© 2023 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- An update to pain management after spinal cord injury: from pharmacology to circRNAs
- Current advances in stem cell therapy in the treatment of multiple sclerosis
- Targeting NMDA receptor signaling for therapeutic intervention in brain disorders
- A review of the application of three-dimensional convolutional neural networks for the diagnosis of Alzheimer’s disease using neuroimaging
- A systematic review of the effects of transcranial photobiomodulation on brain activity in humans
- Microbiota–gut–brain axis and related therapeutics in Alzheimer’s disease: prospects for multitherapy and inflammation control
Articles in the same Issue
- Frontmatter
- An update to pain management after spinal cord injury: from pharmacology to circRNAs
- Current advances in stem cell therapy in the treatment of multiple sclerosis
- Targeting NMDA receptor signaling for therapeutic intervention in brain disorders
- A review of the application of three-dimensional convolutional neural networks for the diagnosis of Alzheimer’s disease using neuroimaging
- A systematic review of the effects of transcranial photobiomodulation on brain activity in humans
- Microbiota–gut–brain axis and related therapeutics in Alzheimer’s disease: prospects for multitherapy and inflammation control