Giovanni Frisullo*, Irene Scala, Simone Bellavia, Aldobrando Broccolini, Valerio Brunetti, Roberta Morosetti, Giacomo Della Marca and Paolo Calabresi

COVID-19 and stroke: from the cases to the causes

https://doi.org/10.1515/revneuro-2020-0136 Received November 19, 2020; accepted January 19, 2021; published online February 15, 2021

Abstract: During COVID-19 pandemic, a wide variety of stroke typologies have been described in patients affected by SARS-CoV-2. Investigating the case reports of acute stroke in COVID-19 patients, published since the beginning of the pandemic, we tried to trace the pathogenic mechanisms of stroke during SARS-CoV-2 infection. We conducted a systematic review analyzing demographic data, cerebrovascular risk factors, NIHSS score, vascular territory involvement and laboratory findings of 168 patients described in 89 studies, from a pool of 1243 records. Based on our results, we have identified different stroke profiles: (1) cerebral large vessel disease (CLVD) profile with a low disability, simultaneous onset of COVID-19 and stroke symptoms, good outcome and low serum levels of D-dimer and CRP; (2) intracranial bleeding (IB) profile with high disability, poor outcome and low levels of serum markers of inflammation and coagulopathy; (3) CLVD profile with a short time-lapse between COVID-19 symptoms and stroke onset, high neurological disability and very high systemic inflammatory markers; (4) multiple thrombo-embolic disease (MTED) profile with older patients, many comorbidities, disabling stroke, poor outcome, evident alteration of coagulation tests and high serum levels of both D-dimer and CRP. We therefore summarized these different profiles in a spectrum similar to that of visible light, where the violet-blue band included IB and CSVD with low inflammation and prothrombotic activity, the green-yellow band

*Corresponding author: Giovanni Frisullo, Fondazione Policlinico Universitario A. Gemelli, IRCCS, UOC Neurologia, Dipartimento di Scienze dell'Invecchiamento, Neurologiche, Ortopediche e della Testa-Collo, Largo A Gemelli, 8, 00168, Rome, Italy, E-mail: giovanni.frisullo@policlinicogemelli.it. https://orcid.org/0000-0002-1604-6594

Irene Scala, Simone Bellavia, Aldobrando Broccolini, Giacomo Della Marca and Paolo Calabresi, Fondazione Policlinico Universitario A. Gemelli, IRCCS, UOC Neurologia, Dipartimento di Scienze dell'Invecchiamento, Neurologiche, Ortopediche e della Testa-Collo, Largo A Gemelli, 8, 00168, Rome, Italy; and Catholic University of Sacred Heart, Rome, Italy

Valerio Brunetti and Roberta Morosetti, Fondazione Policlinico Universitario A. Gemelli, IRCCS, UOC Neurologia, Dipartimento di Scienze dell'Invecchiamento, Neurologiche, Ortopediche e della Testa-Collo, Largo A Gemelli, 8, 00168, Rome, Italy included CLVD with high inflammation and moderate prothrombotic activity and the orange-red band for MTED with moderate-high levels of inflammation and very high prothrombotic activity.

Keywords: COVID-19; D-dimer; intracranial bleeding; SARS-COV-2; small vessel; stroke.

Introduction

In October 2019, an outbreak of pneumonia due to the novel Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), rapidly spread firstly throughout China and then, in few months, all over the world (Li et al. 2020). From then on, coronavirus disease 2019 (COVID-19) pandemic and the resulting lockdown profoundly changed the lives of people everywhere, influenced behaviors and crushed the economic and the healthcare system. The new reorganization of the health network had to face new challenges over an unexpected and severe disease with a multi-organ involvement. Indeed, although COVID-19 mainly causes lung and respiratory tract infections, it often determines a systemic disease involving several organs and systems including central nervous system. Anosmia and ageusia as early indicators of SARS-CoV-2 infection (Lechien et al. 2020) and delirium experienced in COVID-19 hospitalized people (Kotfis et al. 2020) have been the early clues of selective neutropism. Later, the "neurological" list has been further extended to include Parkinsonism (Eldeeb et al. 2020), encephalomyelitis (Ye et al. 2020), Guillain-Barré syndrome (Zhao et al. 2020), memory loss (Cothran et al. 2020) but most of all brain hemorrhage and stroke (Tsivgoulis et al. 2020). Since the beginning of the COVID-19 pandemic, meta-analysis and epidemiological studies have evidenced an increased stroke incidence in patients with SARS-CoV-2 infection. Patients are generally younger and with few comorbidities, while clinical manifestations are more severe (Oxley et al. 2020; Tsivgoulis et al. 2020). On the other hand, case reports and case series published in the same period describe acute stroke patients with heterogeneous clinical, neuroradiological and laboratory features, suggesting different underlying pathogenic mechanisms (Alay et al. 2020; Al-Dalahmah et al. 2020; Alkhaibary et al. 2020; Al-mufty et al. 2020; Al-Olama et al. 2020; Al Saiegh et al. 2020; Ashraf et al. 2020; Avci et al. 2020: Avula et al. 2020: Ballvè-Martin et al. 2020: Basi et al. 2020; Bessa et al. 2020; Beyrouti et al. 2020; Bhagat et al. 2020; Bigliardi et al. 2020; Bonardel et al. 2020; Brüggemann et al. 2020; Cerasti et al. 2020; Chibane et al. 2020; Co et al. 2020; De Lorenzo et al. 2020; De Sousa et al. 2020; Deliwala et al. 2020; Díaz-Pérez et al. 2020; Doo et al. 2020; Eschereye and Erdinc 2020; Fara et al. 2020; Flores et al. 2020; Ford et al. 2020; Fraiman et al. 2020; Frisullo et al. 2020; Garg et al. 2020; Gemcioglu et al. 2020; Gill et al. 2020; Goette et al. 2020; Gogia et al. 2020; Goldberg et al. 2020; Gonçalves et al. 2020; González-Pinto et al. 2020; Gunasekaran et al. 2020; Hanafi et al. 2020; Hosseini et al. 2020; Hossri et al. 2020; Kariyanna et al. 2020; Khan et al. 2020; Kohli et al. 2021; Kwon et al. 2020; Mahboob et al. 2020: Malentacchi et al. 2020: Mansour et al. 2020: Mohamed et al. 2020; Morassi et al. 2020; Muhammad et al. 2020; Najjar et al. 2020; Oxley et al. 2020; Panico et al. 2020; Papi et al. 2020; Patel et al. 2020a, b, c; Pavlov et al. 2020; Pisano et al. 2020; Priftis et al. 2020; Rajdev et al. 2020; Ranard et al. 2020; Reddy et al. 2020; Rudilosso et al. 2020; Saggese et al. 2020; Sangalli et al. 2020; Sattar et al. 2020; Sharifi-Razavi et al. 2020; Shoukry and Kite 2020; Singhal et al. 2020; Sparr and Bieri 2020; Trifan et al. 2020; TunÇ et al. 2020; Umemura et al. 2021; Valderrama et al. 2020; Viguier et al. 2020; Vu et al. 2020; Wang et al. 2020a,b; Wijeratne et al. 2020; Yang et al. 2020; Zayet et al. 2020; Zhai et al. 2020; Zhang et al. 2020a, b, c; Zheng et al. 2020).

The aim of the present study was to select COVID patients from case reports and case series reported in literature, and to perform a systematic review on this cohort in order to identify specific risk factors for COVID-19-related stroke, looking for possible clues able to trace the pathogenetic mechanisms of stroke in COVID-19 patients.

Methods

Search strategy

We conducted a systematic review of articles in Medline/PubMed, data published between January 1st, 2020 and December 31st, 2020. We performed search strategies using keywords and Mesh terms of "stroke", "cerebrovascular diseases", "cerebral infarction", "brain ischemia", "stroke alert", "intracranial bleeding", "intracranial hemorrhage", and "COVID-19" or "coronavirus disease 2019" or "SARS-CoV-2". The initial search was performed by three independent researchers and the resulting discrepancies were solved by discussion. In addition, reference lists of eligible articles were screened for further relevant studies and systematic reviews scanned for appropriate references. Inclusion and exclusion criteria were then applied to the retrieved records. This protocol follows the recommendations established by the preferred reporting items for systematic reviews and meta-analyses (PRISMA) statement.

Inclusion and exclusion criteria

The inclusion criteria have been applied to the selected systematic review case series, case report, research letters, short reports, and original articles containing detailed data of individual patients. The data of interest were age, gender, and vascular territory involvement. The latter was classified as follows based on neuroimaging data: cerebral large vessel disease (CLVD), cerebral small vessel disease (CSVD), multiple thrombo-embolic disease (MTED) or intracranial bleeding (IB). CLVD was defined as an occlusion of internal carotid artery (ICA), first and second segments of the middle cerebral artery (MCA M1, M2), the first segments of anterior cerebral artery (ACA A1), vertebral artery, basilar artery, or the proximal posterior cerebral artery (PCA P1) or ischemia of the corresponding vascular territory (Lima et al. 2016). MTED was defined as the presence of multiple (two or more) ischemic lesions involving two different vascular territories. Stroke etiology was determined using available data and according to the Trial of Org 10172 in Acute Stroke Treatment (TOAST) criteria for ischemic stroke (Adams et al. 1993). Review articles, opinion articles and letters not presenting original data were excluded, as well as studies reporting cases with incomplete information or non-English language articles.

Data collection

Age, gender, antiplatelet therapy, cerebrovascular risk factors (hypertension, diabetes mellitus, congestive heart failure, hyperlipidemia, smoking status, history of transient ischemic attack, stroke or coronary heart disease, alcohol consumption, atrial fibrillation, peripheral artery disease, carotid stenosis, obesity, cancer, thrombophilia, heart valve prosthesis, endocarditis), National Institutes of Health Stroke Scale (NIHSS) score on admission, outcome (death, discharge at home, discharge to rehabilitation), vascular territory involvement, laboratory findings (white cell count, lymphocytes, C reactive protein (CRP), D-dimer, activated partial thromboplastin time (aPTT), prothrombin time (PT), international normalized ratio (INR), ferritin, fibrinogen), time between COVID-19 related symptoms and stroke onset, stroke symptoms, COVID-19 symptoms, specific acute stroke treatments (thrombolysis, mechanical thrombectomy), NIHSS and mRS scores at last follow-up were collected.

Statistics

Categorical variables were presented as percentages and continuous variables as mean with SD or median with IQR. Comparison of baseline variables among four categories: CLVD, CSVD, IB, MTED were performed using χ^2 test for categorical variables and one-way analysis of variance or Kruskal-Wallis test for continuous variables. A value of p < 0.05 was considered significant. Statistical analyses were performed using Statistical Package for Social Science (SPSS) software version 20.

Results

A total of 1243 records were retrieved from database or other sources using the search strategy, of which 1229

remained after removal of duplicates. A total of 821 records were then removed after assessing whether the inclusion criteria were met. After the full texts were screened for eligibility, we excluded 319 more articles because detailed data on the involved cerebral territory of individual patients were not present. We included 89 studies for our qualitative and quantitative analyses. PRISMA flow diagram summarizes the study selection criteria (Figure 1) (Supplementary Table 1).

In this systematic review, we included 168 patients, 144 (85.7%) with ischemic stroke and 24 (14.3%) with IB (Table 1). The median age of the patients was 53 (IQR: 30), ranging from 25 to 89 years, with a male prevalence (58.9%). One-hundred-twenty-nine (76.8%) patients showed at least one cerebrovascular risk factor. The most common risk factor was arterial hypertension (47.6%) followed by diabetes mellitus (32.1%), vascular disease (peripheral artery, myocardial infarction, aortic plaque) (13.1%), hyperlipidemia (11.9%), previous stroke (7.7%), atrial fibrillation (7.7%), smoking or alcohol consumption (7.7%), obesity (6.5%), cancer (5.3%), thrombophilia (4.1%), congestive heart failure (4.1%), carotid stenosis (0.6%), heart valve prosthesis (0.6%), endocarditis (0.6%) and CADASIL (0.6%). The median NIHSS score was 14 (IQR = 12), ranging between 1 and 36. Considering the recanalization procedures performed in ischemic stroke patients, 22/144 (15.3%) patients received

intravenous thrombolysis, 16/144 (11.1%) direct mechanical thrombectomy and 11/144 (7.6%) both procedures. The median time between the onset of COVID-19 symptoms and stroke was 5 days (IOR = 10.5). In-hospital mortality was 32.1%.

Considering vascular territory, CLVD was observed in 62/168 (36.9%) patients, CSVD in 52/168 (30.9%) patients, MTED in 30/168 (17.9%). The patients affected by MTED and CSVD were significantly older (mean age = 64.4 and 61.8 years, respectively) than IB patients (mean age = 52 years; p = 0.015 and p = 0.036, respectively). The time between the onset of COVID-19 symptoms and the onset of stroke was significantly longer in the MTED group (mean time = 11.1 days) than in CLVB (mean time = 5.2 days; p = 0.041) and CSVD (mean time = 4.8 days; p = 0.018) (Figure 2A).

Female gender was more frequent in the CSVD group (53.9%), while almost all MTED patients (86.7%) had at least one cerebrovascular risk factor. Considering the risk factors individually, arterial hypertension was the most frequent (61.5%) in patients with CSVD. Unexpectedly, atrial fibrillation was not a prevalent risk factor in the CLVD group, involving only 8.1% of patients. The prevalence of thrombophilia was significantly higher in MTED patients (13.8%; Pearson's chi-squared, p = 0.028) compared to the other patient groups. The survival of patients with IB and MTED was lower (42.6% and 45.0, respectively) than that

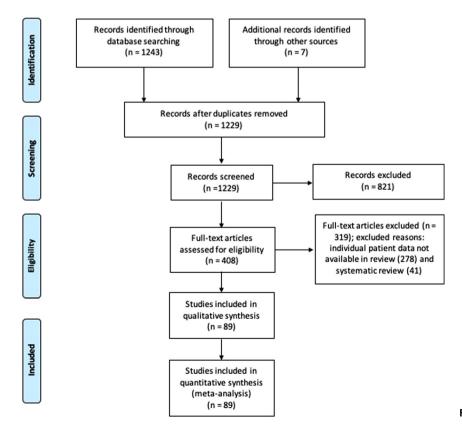
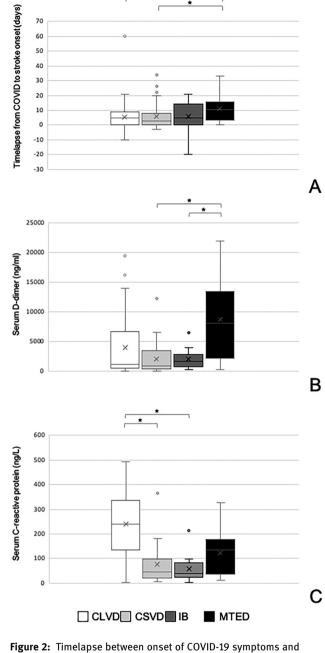



Figure 1: PRISMA flow diagram.

Table 1: Clinical features and laboratory parameters of stroke patients divided according to the type of stroke (hemorrhagic or ischemic) and the vascular territory involvement.

Percentage	CLVD	CSVD	IB	MTED	<i>p</i> value
Gender (male)	62.0	46.1	60.9	63.3	0.757
Risk factors (all)	74.2	20.8	62.5	86.7	0.165
Hypertension	41.9	61.5	41.7	40.0	0.118
Congestive heart	4.8	1.9	0.0	10.0	0.228
failure					
Diabetes	24.2	23.1	25.0	40.0	0.185
Previous stroke	6.4	13.5	37.5	6.7	0.204
Hyperlipidemia	14.5	15.4	8.3	3.3	0.334
Vascular disease	11.3	9.7	4.1	20.0	0.340
Atrial fibrillation	8.1	7.7	0.0	13.3	0.342
Smoking or alcohol	6.4	5.8	12.5	10.0	0.705
Carotid stenosis	1.6	0.0	0.0	0.0	0.633
Obesity	8.1	5.8	12.5	0.0	0.287
Cancer*	1.3	8.3	0.0	16.7	0.014
Thrombophilia*	3.2	0.0	4.1	13.8	0.028
Heart valve prosthesis	0.0	0.0	0.0	3.3	0.310
Outcome (alive)	67.9	74.4	42.6	45.0	0.046
White cell count*					0.010
Н	25.0	20.6	52.9	47.6	
L	17.8	5.9	0.0	4.8	
N	57.1	73.5	47.1	47.6	
Platelet count*					0.039
Н	7.4	6.1	0.0	0.0	
L	11.1	12.1	11.8	40.0	
N	81.5	81.8	88.2	60.0	
Prothrombin time*					0.018
Н	38.1	4.8	0.0	34.9	
L	4.8	0.0	0.0	7.7	
N	57.1	93.7	100	38.5	
aPTT*					0.011
Н	36.4	4.8	18.7	55.6	
L	4.5	9.5	6.2	0.0	
N	59.1	85.7	75	44.4	
Ferritin					0.410
Н	70.0	50.0	57.1	93.3	
L	5.0	0.0	0.0	0.0	
N	25.0	50.0	42.9	6.7	
Fibrinogen					0.004
Н	55.6	41.7	16.7	50.0	
N	44.4	58.3		50.0	
D-dimer*					0.019
Н	77.8	61.1	75.0	96.5	
N	22.2	38.9	25.0	3.4	
CRP		50.7	23.0	2.7	0.017
Н	97.3	64.5	66.7	92.2	0.017
N	14.7			4.8	

CLVD, cerebral large vessel disease; CSVD, cerebral small vessel disease; MTED, multiple thrombo-embolic disease; IB, intracranial bleeding; H, high levels; L, Low levels; N, normal levels; aPTT, activated partial thromboplastin time; CRP, C reactive protein.*Statistical significance - p value < 0.05.

stroke onset, D-dimer and C-reactive protein. (A) Time in days from the onset of COVID-19 symptoms and the stroke onset. (B) D-dimer serum levels. (C) C-reactive-protein serum level. Box plots express the first (Q1) and third (Q3) quartiles within a given dataset by the upper and lower horizontal lines in a rectangular box, in which the horizontal line shows the median. The whiskers extend upwards and downwards to the highest or lowest observation within the upper (Q3 + 1.5 \times interquartile range) and lower (Q1 – 1.5 \times interquartile

range) limits. *p-values indicate statistical significances (<0.05) between the different groups.

observed among CLVD (67.9%) or CSVD (74.4%) patients. A more detailed distribution of risk factors is reported in Table 1. As expected, NIHSS was significantly lower in CSVD patients (mean NIHSS = 9.4) compared to NIHSS observed in MTED patients (mean NIHSS = 16.2; p = 0.039) and in CLVD (mean NIHSS = 17.2; p = 0.018). Evaluating the etiology of ischemic stroke, according to the TOAST classification, most strokes were cryptogenic (55%), followed by stroke due to large-artery atherosclerosis (16%), cardioembolic stroke (12%), lacunar stroke (10%) and stroke of other determined etiology (7%). Subdividing stroke of undetermined etiology according to vascular territory involvement, 54/92 (58.7%) were consistent with CLVD, 23/92 (25.0%) with CSVD and 15/92 (16.3%) with MTED.

Considering the blood examinations performed when the patients were admitted to the emergency department, white blood cell and platelet counts and blood coagulation parameters, such as prothrombin time and aPTT, were frequently normal in patients with CSVD or IB. Conversely, prothrombin time and aPTT were significantly increased in about half of the patients with CLVD and MTED.

Although elevated serum levels of D-dimer and CRP were detected in all four patient groups, almost all MTED patients (96.5%) showed high serum levels of D-dimer, while high levels of CRP were found in almost all patients with CLVD (97.3%). The prevalence of patients with increased fibrinogen serum levels was significantly higher in CSVD (41.7%), CLVD (55%) and MTED (50%) than in IB patients. The serum concentration of D-dimer and CRP, whose values have been regularly reported on published papers, was significantly higher in MTED patients (mean D-dimer = 8921 ng/ml) compared to CSVD (mean D-dimer = 2461 ng/ml; p = 0.011)

and to IB (2108 ng/ml; p = 0.009) (Figure 2B). CRP, on the other hand, was significantly higher in patients with CLVD (mean CRP = 241.5 mg/l) than in IB (mean CRP = 77 mg/l, p = 0.019) (Figure 2C).

Discussion

Growing evidence is mounting on the increased risk of stroke in COVID-19 patients, even in comparison with the other seasonal infectious diseases or influenza, with a reported incidence that ranges from 1 to 6% (Merkler et al. 2020). Clinical pictures of stroke can be extremely variable, although generally more severe than in non-COVID patients, and with a poor prognosis (Yaghi et al. 2020; Ying-Kiat et al. 2020). In this systematic review, we have grouped the clinical cases reported in the literature according to the type of stroke (ischemic or hemorrhagic) and to the vascular district involved (large vessels, small vessels, multiple districts involvement). Then we have compared the demographic features, risk factors, outcome, treatments and laboratory parameters in order to trace a possible pathogenic profile by which SARS-CoV-2 determines cerebrovascular disease.

As a result of this work, we have summarized the possible pathogenic profile in a color-coded spectrum similar to visible light, that ranges from direct virus damage to the endothelium of small and medium-caliber vessels (violet-blue band) through immune-mediated or inflammatory damage (green-yellow band), up to a thrombophilic mechanism that determines a state of diffuse hypercoagulability (orange-red band) (Figure 3).

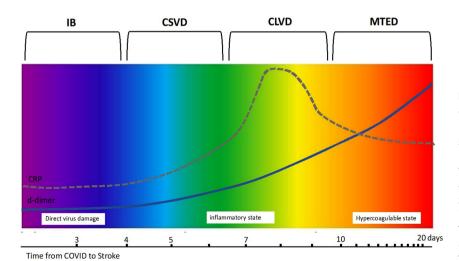


Figure 3: The "spectrum" of cerebrovascular disease in COVID-19 patients. Diagram that exemplifies possible pathogenic mechanisms of stroke in patients with COVID-19. Violet-blue band for IB and CSVD: low levels of inflammation and low prothrombotic activity; green-yellow band for CLVD: high levels of inflammation with moderate prothrombotic activity; orange-red band for MTED: moderate-high levels of inflammation and very high prothrombotic activity.

Violet-blue band

The clinical profile of IB in the violet-blue band identifies a patient with high disability, with few cerebrovascular risk factors and poor outcome in almost two out of three cases. From a laboratory point of view, the serum markers of inflammation and of systemic coagulopathy are likely to be normal. The profile of CSVD is characterized by a predominant female gender, with a low degree of disability and simultaneous onset of stroke and COVID-19 symptoms. Two out of three patients suffer from hypertension and their outcome tends to be good with a survival of three out of four. Serum inflammatory or pro-thrombotic markers are low.

SARS-CoV-2 infects the host using the angiotensin converting enzyme 2 (ACE2) receptor, which is expressed on the epithelium of lung and small intestine, thus providing possible routes of entry for the SARS-CoV-2 (Hamming et al. 2004, Iadecola et al. 2020; Natoli et al. 2020). The attack to the endothelium by SARS-CoV-2, however, does not seem to end exclusively through the ACE2 receptor, as it possibly mediated also by other receptors/facilitators, including transmembrane serine protease 2, sialic acid and extracellular matrix metalloproteinase inducer, that are more common in arterial and venous endothelial cells, also in the central nervous system (Matsuyama et al. 2020; Tortorici et al. 2019). Signs of endotheli-itis with the presence of viral elements within endothelial cells and inflammatory cell death has been recently described in a post-mortem analysis of patients infected by SARS-CoV-2 (Varga et al. 2020). Morphological alterations and disappearance of endothelial cells in arterioles, capillaries and venules, secondary to caspase-3 mediated apoptosis, leukoencephalopathy and intracerebral hemorrhages are more common neuropathological findings confirming the SARS-CoV-2-induced endothelial dysfunction (Hernández-Fernández et al. 2020; Kremer et al. 2020). On the other hand, the viral attack can also induce endothelial activation at the microcirculation level in response to the release of cytokines and poor cleavage of von Willebrand factor (VWF), thus resulting in bleeding (Crawley et al. 2011).

Hemorrhagic or ischemic damage is worsened in the presence of pre-existing endothelial dysfunction, as observed in patients with smoking habits, hypertension, diabetes, obesity, and cardiovascular disease. Accordingly, these latter conditions are associated with poor outcomes in COVID-19. The SARS-CoV-2 related microangiopathic damage, secondary to either direct virus damage or local immune response, usually is not associated to an increase of systemic inflammatory or prothrombotic serum markers that remain silent.

Green-vellow band

The CLVD profile of the green-vellow band identifies patients that develop neurological symptoms shortly after COVID-19 onset with high neurological disability. The presence of very high systemic inflammation without evident signs of hyper-coagulopathy is a typical feature of this profile.

SARS-CoV-2 infection polarizes the immune response into T-helper type 1 (Th1) profile, triggering the production of pro-inflammatory cytokines, such as interleukin (IL)-2, IL-12, interferon-y and tumor necrosis factor-α, and the induction of nitric oxide free radicals. On the contrary, T-helper type 2 (Th2) response or T regulatory response (Treg) has a compensatory function, regulating the Th1 response against the virus. An erroneous balance among the Th1, Th2 and Treg responses may result in a systemic post-infectious immune-mediated disease. The term "cytokine storm" associated with COVID-19 infection has been already linked to the avian H5N1 influenza virus infection and correlated directly with tissue injury and an unfavorable prognosis of severe influenza (Yuen and Wong 2005). In patients with SARS-CoV-2 infection, an increased secretion of both pro-inflammatory Th1 (Huang et al. 2020) and Th2-immune-oriented cytokine (Zhang et al. 2020a, b, c) induce a diffuse inflammatory state (Ellul et al. 2020), which in turn causes ARDS, acute stroke, multiple organ failure, and, at least in the most severe cases of SARS-CoV-2 infection, death (Xu et al. 2020). IL-6 plays a crucial role in mediating inflammation of SARS-CoV-2 infection and is increased in more than one half of patients with COVID-19 (Zhang et al. 2020a, b, c). Moreover, IL-6 induces the hepatic synthesis of CRP, a known proinflammatory marker of atherothrombotic vascular disease, that is significantly increased in patients with severe COVID-19 (Ali et al. 2020; Wang et al. 2020a, b). In this inflammatory phase of the disease, CRP amplifies immune damage by activating the classical complement pathway of the immune system and modulating the phagocytic activity (Young et al. 1991).

In addition to CRP and IL-6, other proinflammatory cytokines such as IL-1\beta, IL-2, tumor necrosis factor, and granulocyte-macrophage colony-stimulating factor upregulate procoagulants such as tissue factor, P-selectin, factor VIII, fibrinogen, and VWF. Moreover, these molecules also downregulate anticoagulants such as thrombomodulin and endothelial protein C receptor contributing to a condition of hypercoagulability (Al-Samkari et al. 2020).

There is growing evidence that systemic inflammation is involved in multiple aspects of stroke etiology and pathology since it compromises normal endothelial function. Indeed, co-morbidities, such as atherosclerosis,

hypertension, diabetes or infection, that increase systemic inflammatory status, are the same poor prognostic factors in severe COVID-19 disease (Varga et al. 2020).

Systemic inflammation, endothelial dysregulation, and an increase of inflammatory markers as CRP are associated with overall ischemic stroke and the largevessel disease subtype (Ladenvall et al. 2006). In our review we confirmed the relationship of high CRP serum levels and the development of CLVD, supporting a general link between systemic inflammation and stroke susceptibility. Systemic inflammatory response in patients with SARS-CoV-2 infection can result in endothelial damage, with a consequent increase in thrombin generation and a reduction in endogenous fibrinolysis (Shorr et al. 1999). Accordingly, in patients with CLVD it has been observed a parallel increase in inflammatory markers leading to elevated D-dimer levels via cytokine activation of the coagulation cascade and corresponding inhibition of fibrinolysis.

Orange-red band

The profile of the MTED patient belonging to the orangered band is generally characterized by older age, with a more disabling stroke, many comorbidities, and a poor outcome in about half of the cases. These patients show clear signs of hypercoagulability with thrombocytopenia in one out of three patients, an increase of aPTT in more than half of the cases and high levels of D-dimer.

The SAR-CoV-2 related hypercoagulability seems to go beyond its relationship with the pro-inflammatory profile. It should be related to a specific SARS-CoV-2 interaction with coagulation cascade or to the effect of persistency of pro-inflammatory status producing multiple thromboembolism phenomena. The question is not yet cleared up. Despite the absence of robust evidence, interim guidelines recommend regularly monitoring of hemostatic markers, namely D-dimers, prothrombin time, and platelet count, in all patients presenting with COVID-19 and prophylactic use of low molecular weight heparin in all hospitalized patients, unless there are contraindications. Moreover, antiphospholipid antibodies (anticardiolipin and anti-β-glycoprotein I antibodies) and lupus anticoagulant have been reported in COVID-19 patients with multiple hemispheric infarcts and with concomitant elevation of D-dimer and CRP (Bowles et al. 2020; Harzallah et al. 2020; Zhang et al. 2020a, b, c).

The longer time-lapse that we observed between the onset of COVID-19 symptoms and the development of MTED could be in favor of a prolonged permanence of a

pro-inflammatory micro-environment as the cause of the state of hypercoagulability. In this scenario, early interventions aimed at reducing inflammation might help prevent thrombosis. The alternative hypothesis of the virus directly or indirectly interfering with coagulation pathways and causing systemic thrombosis, would require early prophylaxis to manage the coagulopathy. The hypoxia and immobility in hospitalized patients with COVID-19 are potent triggers and "amplifiers" of thrombosis.

Conclusions

With this systematic review, we have drawn different profiles of patients with COVID-19 developing an acute cerebrovascular event. In particular, based on common serum markers such as CRP and D-dimer, we postulated clinical parameters and vascular territory as well as different possible pathogenic mechanisms associated with SARS-CoV-2 infection: direct virus damage to the endothelium of small and medium-caliber vessels, immunemediated or inflammatory damage and prothrombotic mechanism that determines a state of diffuse hypercoagulability. Further studies are necessary to confirm our data and better define the relationship between stroke types and the pathogenic mechanism/s activated by SARS-CoV-2 infection.

Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

Research funding: None declared.

Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

Adams, H.P. Jr., Bendixen, B.H., Kappelle, L.J., Biller, J., Love, B.B., Gordon, D.L., and Marsh, E.E. (1993). Classification of subtype of acute ischemic stroke. Definitions for use in a multicenter clinical trial. TOAST. Trial of Org 10172 in acute stroke treatment. Stroke 24: 35-41.

Al-Dalahmah, O., Thakur, K.T., Nordvig, A.S., Prust, M.L., Roth, W., Lignelli, A., Uhlemann, A.C., Miller, E.H., Kunnath-Velayudhan, S., Del Portillo, A., et al. (2020). Neuronophagia and microglial nodules in a SARS-CoV-2 patient with cerebellar hemorrhage. Acta Neuropathol. Commun. 8: 147.

Al-Mufti, F., Becker, C., Kamal, H., Alshammari, H., Dodson, V., Nuoman, R., Dakay, K., Cooper, J., Gulko, E., and Gandhi, C.D. (2020). Acute cerebrovascular disorders and vasculopathies associated with significant mortality in SARS-CoV-2 patients

- admitted to the intensive care unit in the New York epicenter. J. Stroke Cerebrovasc. Dis. 30: 105429.
- Al-Olama, M., Rashid, A., and Garozzo, D. (2020). COVID-19-associated meningoencephalitis complicated with intracranial hemorrhage: a case report. Acta Neurochir. 162: 1495-1499.
- Al Saiegh, F., Ghosh, R., Leibold, A., Avery, M.B., Schmidt, R.F., Theofanis, T., Mouchtouris, N., Philipp, L., Peiper, S.C., Wang, Z.X., et al. (2020). Status of SARS-CoV-2 in cerebrospinal fluid of patients with COVID-19 and stroke. J. Neurol. Neurosurg. Psychiatry 91: 846-848.
- Al-Samkari, H., Karp Leaf, R.S., Dzik, W.H., Carlson, J., Fogerty, A.E., Waheed, A., Goodarzi, K., Bendapudi, P.K., Bornikova, L., Gupta, S., et al. (2020). COVID-19 and coagulation: bleeding and thrombotic manifestations of SARS-CoV-2 infection. Blood 136: 489-500.
- Alay, H., Can, F.K., and Gözgeç, E. (2020). Cerebral infarction in an elderly patient with coronavirus disease. Rev. Soc. Bras. Med. Trop. 53: e20200307.
- Ali, N. (2020). Elevated level of C-reactive protein may be an early marker to predict risk for severity of COVID-19. J. Med. Virol. 92: 2409-2411.
- Alkhaibary, A., Abbas, M., Ahmed, M.E., Khatri, I.A., and Alkhani, A. (2020). Common carotid artery occlusion in a young patient: can large-vessel stroke be the initial clinical manifestation of coronavirus disease 2019? World Neurosurg 144: 140-142.
- Ashraf, M. and Sajed, S. (2020). Acute stroke in a young patient with coronavirus disease 2019 in the presence of patent foramen ovale. Cureus 12: e10233.
- Avci, A., Yesiloglu, O., Avci, B.S., Sumbul, H.E., BugraYapici, S., Kuvvetli, A., Pekoz, B.C., Cinar, H., and Satar, S. (2020). Spontaneous subarachnoidal hemorrhage in patients with Covid-19: case report. J. Neurovirol. 26: 802-804.
- Avula, A., Nalleballe, K., Narula, N., Sapozhnikov, S., Dandu, V., Toom, S., Glaser, A., and Elsayegh, D. (2020). COVID-19 presenting as stroke. Brain Behav. Immun. 87: 115-119.
- Ballvé-Martín, A., Boned, S., and Rubiera, M. (2020). Thrombotic complication of severe COVID-19 pneumonia: stroke due to atypical paradoxical embolism. Rev. Neurol. 71: 186-190.
- Basi, S., Hamdan, M., and Punekar, S. (2020). Clinical course of a 66-year-old man with an acute ischaemic stroke in the setting of a COVID-19 infection. BMJ Case Rep. 13: e235920.
- Bessa, P.B., Brito, A., Pereira, F.R., Silva, S., Almeida, T., and Almeida, A.P. (2020). Ischemic stroke related to HIV and SARS-COV-2 coinfection: a case report. Rev. Soc. Bras. Med. Trop. 53: e20200692.
- Beyrouti, R., Adams, M.E., Benjamin, L., Cohen, H., Farmer, S.F., Goh, Y.Y., Humphries, F., Jäger, H.R., Losseff, N.A., Perry, R.J., et al. (2020). Characteristics of ischaemic stroke associated with COVID-19. J. Neurol. Neurosurg. Psychiatry 91: 889-891.
- Bhagat, R., Narayanan, S., Karki, B.J., Liu, W., and Remmel, K. (2020). A case of isolated dysarthria in a COVID-19 infected stroke patient: a Nondisabling neurological symptom with Grave prognosis. Cureus 12: e9921.
- Bigliardi, G., Ciolli, L., Giovannini, G., Vandelli, L., Dell'Acqua, M.L., Borzì, G.M., Picchetto, L., Rosafio, F., Ricceri, R., and Meletti, S. (2020). Middle cerebral artery ischemic stroke and COVID-19: a case report. J. Neurovirol. 2020: 1-3.
- Bonardel, C., Bonnerot, M., Ludwig, M., Vadot, W., Beaune, G., Chanzy, B., Cornut, L., Baysson, H., Farines, M., Combes, et al.

- (2020). Bilateral posterior cerebral artery territory infarction in a SARS-Cov-2 infected patient: discussion about an unusual case. Stroke Cerebrovasc. Dis. 29: 105095.
- Bowles, L., Platton, S., Yartey, N., Dave, M., Lee, K., Hart, D.P., MacDonald, V., Green, L., Sivapalaratnam, S., Pasi, K.J., and MacCallum, P. (2020). Lupus anticoagulant and abnormal coagulation tests in patients with Covid-19. N. Engl. J. Med. 383: 288-290.
- Brüggemann, R., Gietema, H., Jallah, B., Ten Cate, H., Stehouwer, C., and Spaetgens, B. (2020). Arterial and venous thromboembolic disease in a patient with COVID-19: a case report. Thromb. Res. 191: 153-155.
- Cerasti, D., Ormitti, F., Pardatscher, S., Malchiodi, L., Picetti, E., Menozzi, R., and Rossi, S. (2020). Multiple acute ischemic strokes in a COVID-19 patient: a case report. SN. Compr. Clin. Med. 2020: 1-5.
- Chibane, S., Gibeau, G., Poulin, F., Tessier, P., Goulet, M., Carrier, M., and Lanthier, S. (2020). Hyperacute multi-organ thromboembolic storm in COVID-19: a case report. J. Thromb. Thrombolysis 2020:
- Co, C., Yu, J., Laxamana, L.C., and David-Ona, D. (2020). Intravenous thrombolysis for stroke in a COVID-19 positive Filipino patient, a case report. J. Clin. Neurosci. 77: 234-236.
- Cothran, T.P., Kellman, S., Singh, S., Beck, J.S., Powell, K.J., Bolton, C.J., and Tam, J.W. (2020). A brewing storm: the neuropsychological sequelae of hyperinflammation due to COVID-19. Brain Behav. Immun. 88: 957-958.
- Crawley, J.T., de Groot, R., Xiang, Y., Luken, B.M., and Lane, D.A. (2011). Unraveling the scissile bond: how ADAMTS13 recognizes and cleaves von Willebrand factor. Blood 118: 3212-3221.
- De Lorenzo Alvarez, A., Revilla, Á., Corbalán, T., Villar, A., Espinel, L., Martins, J., and Cubas, A. (2020). Ischemic stroke and purpuric dermatitis as COVID-19-related complications in a peritoneal dialysis patient. CEN. Case Rep. 17: 1-5.
- De Sousa, G.C., de Sousa, T.C., Sakiyama, M., da Silva, J., and de Sousa, E. (2020). Vasculitis-related stroke in young as a presenting feature of novel coronavirus disease (COVID19) - case report. J. Clin. Neurosci. 79: 169-171.
- Deliwala, S., Abdulhamid, S., Abusalih, M.F., Al-Qasmi, M.M., and Bachuwa, G. (2020). Encephalopathy as the sentinel sign of a cortical stroke in a patient infected with coronavirus disease-19 (COVID-19). Cureus 12: e8121.
- Díaz-Pérez, C., Ramos, C., López-Cruz, A., Muñoz Olmedo, J., Lázaro González, J., De Vega-Ríos, E., González-Ávila, C., Hervás, C., Trillo, S., and Vivancos, J. (2020). Acutely altered mental status as the main clinical presentation of multiple strokes in critically ill patients with COVID-19. Neurol. Sci. 41: 2681-2684.
- Doo, F.X., Kassim, G., Lefton, D.R., Patterson, S., Pham, H., and Belani, P. (2020). Rare presentations of COVID-19: PRES-like leukoencephalopathy and carotid thrombosis. Clin. Imag. 69: 94-101
- Eldeeb, M.A., Hussain, F.S., and Siddiqi, Z.A. (2020). COVID-19 infection may increase the risk of parkinsonism - remember the Spanish flu? Cytokine Growth Factor Rev. 54: 6-7.
- Ellul, M.A., Benjamin, L., Singh, B., Lant, S., Michael, B.D., Easton, A., Kneen, R., Defres, S., Sejvar, J., and Solomon, T. (2020). Neurological associations of COVID-19. Lancet Neurol. 19: 767-783.
- Elshereye, A. and Erdinc, B. (2020). Multiple lacunar cerebral infarcts as the initial presentation of COVID-19. Cureus 12: e9638.

DE GRUYTER

- Fara, M.G., Stein, L.K., Skliut, M., Morgello, S., Fifi, J.T., and Dhamoon, M.S. (2020). Macrothrombosis and stroke in patients with mild COVID-19 infection. J. Thromb. Haemostasis 18: 2031-2033.
- Flores, G., Kumar, J.I., Pressman, E., Sack, J., and Alikhani, P. (2020). Spontaneous brainstem hemorrhagic stroke in the setting of novel coronavirus disease 2019 - a case report. Cureus 12:
- Ford, J.S., Holmes, J.F., and Jones, R.F. (2020). Cardioembolic stroke in a patient with coronavirus disease of 2019 (COVID-19) myocarditis: a case report. Clin. Pract. Cases Emerg. Med. 4:
- Fraiman, P., Freire, M., Moreira-Neto, M., and Godeiro-Junior, C. (2020). Hemorrhagic stroke and COVID-19 infection: coincidence or causality? eNeurologicalSci 21: 100274.
- Frisullo, G., Bellavia, S., Scala, I., Piano, C., Morosetti, R., Brunetti, V., Calabresi, P., and Della Marca, G. (2020). Stroke and COVID19: not only a large-vessel disease. J. Stroke Cerebrovasc. Dis. 29: 105074.
- Garg, A., Marji, A., Goyal, S., and Ismail, R. (2020). A case of COVID-19 with memory impairment and delayed presentation as stroke. Cureus 12: e10025.
- Gemcioglu, E., Erden, A., Davutoglu, M., Karabuga, B., and Kucuksahin, O. (2020). Acute ischemic stroke in a lupus anticoagulant-positive woman with COVID-19. J. Clin. Rheumatol. 26: 236-237.
- Gill, I., Chan, S., and Fitzpatrick, D. (2020). COVID-19-associated pulmonary and cerebral thromboembolic disease. Radiol. Case Rep. 15: 1242-1249.
- Goette, A., Patscheke, M., Henschke, F., and Hammwöhner, M. (2020). COVID-19-Induced cytokine release syndrome associated with pulmonary vein thromboses, atrial cardiomyopathy, and arterial intima inflammation. TH Open 4: e271-e279.
- Gogia, B., Fang, X., and Rai, P. (2020). Intracranial hemorrhage in a patient with COVID-19: possible explanations and considerations. Cureus 12: e10159.
- Goldberg, M.F., Goldberg, M.F., Cerejo, R., and Tayal, A.H. (2020). Cerebrovascular disease in COVID-19. AJNR Am. J Neuroradiol. 41:
- Gonçalves, B., Righy, C., and Kurtz, P. (2020). Thrombotic and hemorrhagic neurological complications in critically ill COVID-19 patients. Neurocrit. Care 33: 587-590.
- González-Pinto, T., Luna-Rodríguez, A., Moreno-Estébanez, A., Agirre-Beitia, G., Rodríguez-Antigüedad, A., and Ruiz-Lopez, M. (2020). Emergency room neurology in times of COVID-19: malignant ischaemic stroke and SARS-CoV-2 infection. Eur. J. Neurol., https://doi.org/10.1111/ene.14286.
- Gunasekaran, K., Amoah, K., Rajasurya, V., and Buscher, M.G. (2020). Stroke in a young COVID-19 patient. QJM 113: 573-574.
- Hamming, I., Timens, W., Bulthuis, M.L., Lely, A.T., Navis, G., and van Goor, H. (2004). Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J. Pathol. 203: 631-637.
- Hanafi, R., Roger, P.A., Perin, B., Kuchcinski, G., Deleval, N., Dallery, F., Michel, D., Hacein-Bey, L., Pruvo, J.P., Outteryck, O., and Constans, J.M. (2020). COVID-19 neurologic complication with CNS vasculitis-like pattern. AJNR Am. J. Neuroradiol. 41: 1384-1387.
- Harzallah, I., Debliquis, A., and Drénou, B. (2020). Lupus anticoagulant is frequent in patients with Covid-19: response to

- Reply. J. Thromb. Haemostasis 2020, https://doi.org/10.1111/ jth.14980.
- Hernández-Fernández, F., Sandoval Valencia, H., Barbella-Aponte, R.A., Collado-Jiménez, R., Ayo-Martín, Ó., Barrena, C., Molina-Nuevo, J.D., García-García, J., Lozano-Setién, E., Alcahut-Rodriguez, C., et al. (2020). Cerebrovascular disease in patients with COVID-19: neuroimaging, histological and clinical description. Brain 143: 3089-3103.
- Hosseini, M., Sahajwani, S., Zhang, J., Toursavadkohi, S., and Ucuzian, A.A. (2020). Delayed stroke after hospitalization for COVID-19 pneumonia from common and internal carotid artery thrombosis. J. Vasc. Surg. Cases Innov. Tech. 2020, https://doi. org/10.1016/j.jvscit.2020.11.001.
- Hossri, S., Shadi, M., Hamarsha, Z., Schneider, R., and El-Sayegh, D. (2020). Clinically significant anticardiolipin antibodies associated with COVID-19. J. Crit. Care 59: 32-34.
- Huang, C., Wang, Y., Li, X., Ren, L., Zhao, J., Hu, Y., Zhang, L., Fan, G., Xu, J., Gu, X., et al. (2020). Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 395: 497-506.
- ladecola, C., Anrather, J., and Kamel, H. (2020). Effects of COVID-19 on the nervous system. Cell 183: 16-27.
- Kariyanna, P.T., Chandrakumar, H.P., Jayarangaiah, A., Khan, A., Vulkanov, V., Ashamalla, M., Salifu, M.O., and McFarlane, S.I. (2020). Apical takotsubo cardiomyopathy in a COVID-19 patient presenting with stroke: a case report and pathophysiologic insights. Am. J. Med. Case Rep. 8: 350-357.
- Khan, A.W., Ullah, I., and Khan, K.S. (2020). Ischemic stroke leading to bilateral vision loss in COVID-19 patient-A rare case report. J. Med. Virol., https://doi.org/10.1002/jmv.26484.
- Kohli, A., Gupta, C., Dutta, S., and Madaan, C. (2021). Changes in stroke presentation in neo-Covid patients: a case study. Interdiscip. Neurosurg. 2021, https://doi.org/10.1016/j.inat.
- Kotfis, K., Williams Roberson, S., Wilson, J.E., Dabrowski, W., Pun, B.T., and Ely, E.W. (2020). COVID-19: ICU delirium management during SARS-CoV-2 pandemic. Crit. Care 24: 176.
- Kremer, S., Lersy, F., de Sèze, J., Ferré, J.C., Maamar, A., Carsin-Nicol, B., Collange, O., Bonneville, F., Adam, G., Martin-Blondel, G., et al. (2020). Brain MRI findings in severe COVID-19: a retrospective observational study. Radiology 297: E242-E251.
- Kwon, D.H., Do, Y., Eun, M.Y., Lee, J., Park, H., Sohn, S.I., and Hong, J.H. (2020). Characteristics of acute stroke in patients with coronavirus disease 2019 and challenges in stroke management during an epidemic. J. Kor. Med. Sci. 35: e324.
- Ladenvall, C., Jood, K., Blomstrand, C., Nilsson, S., Jern, C., and Ladenvall, P. (2006). Serum C-reactive protein concentration and genotype in relation to ischemic stroke subtype. Stroke 37: 2018-2023.
- Lechien, J.R., Chiesa-Estomba, C.M., De Siati, D.R., Horoi, M., Le Bon, S.D., Rodriguez, A., Dequanter, D., Blecic, S., El Afia, F., Distinguin, L., et al. (2020). Olfactory and gustatory dysfunctions as a clinical presentation of mild-to-moderate forms of the coronavirus disease (COVID-19): a multicenter European study. Eur. Arch. Oto-Rhino-Laryngol. 277: 2251-2261.
- Li, Q., Guan, X., Wu, P., Wang, X., Zhou, L., Tong, Y., Ren, R., Leung, K., Lau, E., Wong, J.Y., et al. (2020). Early transmission dynamics in wuhan, China, of novel coronavirus-infected pneumonia. N. Engl. J. Med. 382: 1199-1207.

- Lima, F.O., Silva, G.S., Furie, K.L., Frankel, M.R., Lev, M.H., Camargo, É.C., Haussen, D.C., Singhal, A.B., Koroshetz, W.J., Smith, W.S., et al. (2016). Field assessment stroke triage for emergency destination: a simple and accurate prehospital Scale to detect large vessel occlusion strokes. Stroke 47: 1997-2002.
- Mahboob, S., Boppana, S.H., Rose, N.B., Beutler, B.D., and Tabaac, B.J. (2020). Large vessel stroke and COVID-19: case report and literature review. eNeurologicalSci. 20: 100250.
- Malentacchi, M., Gned, D., Angelino, V., Demichelis, S., Perboni, A., Veltri, A., Bertolotto, A., and Capobianco, M. (2020). Concomitant brain arterial and venous thrombosis in a COVID-19 patient. Eur. J. Neurol., https://doi.org/10.1111/ene.14380.
- Mansour, O.Y., Malik, A.M., and Linfante, I. (2020). Mechanical Thrombectomy of COVID-19 positive acute ischemic stroke patient: a case report and call for preparedness. BMC Neurol. 20: 358.
- Matsuyama, S., Nao, N., Shirato, K., Kawase, M., Saito, S., Takayama, I., Nagata, N., Sekizuka, T., Katoh, H., Kato, F., et al. (2020). Enhanced isolation of SARS-CoV-2 by TMPRSS2-expressing cells. Proc. Natl. Acad. Sci. U.S.A. 117: 7001-7003.
- Merkler, A.E., Parikh, N.S., Mir, S., Gupta, A., Kamel, H., Lin, E., Lantos, J., Schenck, E.J., Goyal, P., Bruce, S.S., et al. (2020). Risk of ischemic stroke in patients with coronavirus disease 2019 (COVID-19) vs patients with influenza. JAMA Neurol: e202730.
- Mohamed, I., Balson, L., and Madathil, S. (2020). Massive bilateral stroke in a COVID-19 patient. BMJ Case Rep. 13: e236254.
- Morassi, M., Bagatto, D., Cobelli, M., D'Agostini, S., Gigli, G.L., Bnà, C., and Vogrig, A. (2020). Stroke in patients with SARS-CoV-2 infection: case series. J. Neurol. 267: 2185-2192.
- Muhammad, S., Petridis, A., Cornelius, J.F., and Hänggi, D. (2020). Letter to editor: severe brain haemorrhage and concomitant COVID-19 Infection: a neurovascular complication of COVID-19. Brain Behav. Immun. 87: 150-151.
- Najjar, S., Najjar, A., Chong, D.J., Pramanik, B.K., Kirsch, C., Kuzniecky, R.I., Pacia, S.V., and Azhar, S. (2020). Central nervous system complications associated with SARS-CoV-2 infection: integrative concepts of pathophysiology and case reports. J. Neuroinflamm. 17: 231.
- Natoli, S., Oliveira, V., Calabresi, P., Maia, L.F., and Pisani, A. (2020). Does SARS-Cov-2 invade the brain? Translational lessons from animal models. Eur. J. Neurol., https://doi.org/10.1111/ene.
- Oxley, T.J., Mocco, J., Majidi, S., Kellner, C.P., Shoirah, H., Singh, I.P., De Leacy, R.A., Shigematsu, T., Ladner, T.R., Yaeger, K.A., et al. (2020). Large-vessel stroke as a presenting feature of covid-19 in the young. N. Engl. J. Med. 382: e60.
- Panico, F., Arini, A., Cantone, P., Crisci, C., and Trojano, L. (2020). Balint-Holmes syndrome due to stroke following SARS-CoV-2 infection: a single-case report. Neurol. Sci. 41: 3487-3489.
- Papi, C., Spagni, G., Alexandre, A., Calabresi, P., Della Marca, G., and Broccolini, A. (2020). Unprotected stroke management in an undiagnosed case of severe acute respiratory syndrome coronavirus 2 infection. J. Stroke Cerebrovasc. Dis. 29: 104981.
- Patel, H.N., Syed, A., Lobel, J.S., Galler, R., Georges, J., Carmody, M., and Puumala, M. (2020c). Cerebellar infarction requiring surgical decompression in patient with COVID 19 pathological analysis and brief review. Interdiscip. Neurosurg. 22: 100850.
- Patel, P., Khandelwal, P., Gupta, G., and Singla, A. (2020a). COVID-19 and cervical artery dissection - a causative association?. J. Stroke Cerebrovasc. Dis. 29: 105047.

- Patel, S.D., Kollar, R., Troy, P., Song, X., Khaled, M., Parra, A., and Pervez, M. (2020b). Malignant cerebral ischemia in A COVID-19 infected patient: case review and histopathological findings. J. Stroke Cerebrovasc. Dis. 29: 105231.
- Pavlov, V., Beylerli, O., Gareev, I., Torres Solis, L.F., Solís Herrera, A., and Aliev, G. (2020). COVID-19-Related intracerebral hemorrhage. Front. Aging Neurosci. 12: 600172.
- Pisano, T.J., Hakkinen, I., and Rybinnik, I. (2020). Large vessel occlusion secondary to COVID-19 hypercoagulability in a young patient: a case report and literature review. J. Stroke Cerebrovasc. Dis. 29: 105307.
- Priftis, K., Algeri, L., Villella, S., and Spada, M.S. (2020). COVID-19 presenting with agraphia and conduction aphasia in a patient with left-hemisphere ischemic stroke. Neurol. Sci. 41: 3381-3384.
- Rajdev, K., Lahan, S., Klein, K., Piquette, C.A., and Thi, M. (2020). Acute ischemic and hemorrhagic stroke in COVID-19: mounting evidence. Cureus 12: e10157.
- Ranard, L.S., Engel, D.J., Kirtane, A.J., and Masoumi, A. (2020). Coronary and cerebral thrombosis in a young patient after mild COVID-19 illness: a case report. Eur. Heart J. Case Rep. 4: 1-5.
- Reddy, S.T., Garg, T., Shah, C., Nascimento, F.A., Imran, R., Kan, P., Bowry, R., Gonzales, N., Barreto, A., Kumar, A., et al. (2020). Cerebrovascular disease in patients with COVID-19: a review of the literature and case series. Case Rep. Neurol. 12: 199-209.
- Rudilosso, S., Esteller, D., Urra, X., and Chamorro, Á. (2020). Thalamic perforating artery stroke on computed tomography perfusion in a patient with coronavirus disease 2019. J. Stroke Cerebrovasc. Dis. 29: 104974.
- Saggese, C.E., Del Bianco, C., Di Ruzza, M.R., Magarelli, M., Gandini, R., and Plocco, M. (2020). COVID-19 and stroke: casual or causal role? Cerebrovasc. Dis. 49: 341-344.
- Sangalli, D., Polonia, V., Colombo, D., Mantero, V., Filizzolo, M., Scaccabarozzi, C., and Salmaggi, A. (2020). A single-centre experience of intravenous thrombolysis for stroke in COVID-19 patients. Neurol. Sci. 41: 2325-2329.
- Sattar, S., Igbal, Q.Z., Haider, M.A., Zia, Z., Niazi, M., Hanif, M., Ali, M.J., and Khan, M.A. (2020). Locked-in syndrome in a young patient due to SARS-CoV-2: a case report. Front. Med. 7: 574690.
- Sharifi-Razavi, A., Karimi, N., Zarvani, A., Cheraghmakani, H., and Baghbanian, S.M. (2020). Ischemic stroke associated with novel coronavirus 2019: a report of three cases. Int. J. Neurosci: 1-5, https://doi.org/10.1080/00207454.2020.1782902.
- Shorr, A.F., Trotta, R.F., Alkins, S.A., Hanzel, G.S., and Diehl, L.F. (1999). D-dimer assay predicts mortality in critically ill patients without disseminated intravascular coagulation or venous thromboembolic disease. Intensive Care Med. 25: 207-210.
- Shoukry, A., and Kite, T.A. (2020). Large-vessel thrombotic stroke despite concurrent therapeutic anticoagulation in COVID-19-positive patient. Oxf. Med. Case Rep. 11: omaa096.
- Singhal, A.B., Gonzalez, R.G., Chwalisz, B.K., and Mukerji, S.S. (2020). Case 26-2020: a 60-year-old woman with altered mental status and weakness on the left side. N. Engl. J. Med. 383: 764-773.
- Sparr, S.A., and Bieri, P.L. (2020). Infarction of the splenium of the corpus callosum in the age of COVID-19: a snapshot in time. Stroke 51: e223-e226.
- Tortorici, M.A., Walls, A.C., Lang, Y., Wang, C., Li, Z., Koerhuis, D., Boons, G.J., Bosch, B.J., Rey, F.A., de Groot, R.J., and Veesler, D. (2019). Structural basis for human coronavirus attachment to sialic acid receptors. Nat. Struct. Mol. Biol. 26: 481-489.

- Trifan, G., Hillmann, M., and Testai, F.D. (2020). Acute stroke as the presenting symptom of SARS-CoV-2 infection in a young patient with cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy. J. Stroke Cerebrovasc. Dis. 29: 105167.
- Tsivgoulis, G., Katsanos, A.H., Ornello, R., and Sacco, S. (2020). Ischemic stroke epidemiology during the COVID-19 pandemic: navigating uncharted waters with changing tides. Stroke 51: 1924-1926
- TunÇ, A., ÜnlÜbaŞ, Y., Alemdar, M., and AkyÜz, E. (2020). Coexistence of COVID-19 and acute ischemic stroke report of four cases. J. Clin. Neurosci. 77: 227-229.
- Umemura, T., Kondo, H., Ohta, H., Futatsuya, K., Mizobe, T., and Yamamoto, J. (2021). D-dimer level elevation can aid in detection of asymptomatic COVID-19 presenting with acute cerebral infarction. eNeurological Sci. 22: 100294.
- Valderrama, E.V., Humbert, K., Lord, A., Frontera, J., and Yaghi, S. (2020). Severe acute respiratory syndrome coronavirus 2 infection and ischemic stroke. Stroke 51: e124-e127.
- Varga, Z., Flammer, A.J., Steiger, P., Haberecker, M., Andermatt, R., Zinkernagel, A.S., Mehra, M.R., Schuepbach, R.A., Ruschitzka, F., and Moch, H. (2020). Endothelial cell infection and endotheliitis in COVID-19. Lancet 395: 1417-1418.
- Viguier, A., Delamarre, L., Duplantier, J., Olivot, J.M., and Bonneville, F. (2020). Acute ischemic stroke complicating common carotid artery thrombosis during a severe COVID-19 infection. J. Neuroradiol. 47: 393-394.
- Vu, D., Ruggiero, M., Choi, W.S., Masri, D., Flyer, M., Shyknevsky, I., and Stein, E.G. (2020). Three unsuspected CT diagnoses of COVID-19. Emerg. Radiol. 27: 229-232.
- Wang, A., Mandigo, G.K., Yim, P.D., Meyers, P.M., and Lavine, S.D. (2020a). Stroke and mechanical thrombectomy in patients with COVID-19: technical observations and patient characteristics. J. Neurointervent. Surg. 12: 648-653.
- Wang, G., Wu, C., Zhang, Q., Wu, F., Yu, B., Lv, J., Li, Y., Li, T., Zhang, S., Wu, C., et al. (2020b). C-reactive protein level may predict the risk of COVID-19 aggravation. Open Forum Infect. Dis. 7: ofaa153.
- Wijeratne, T., Sales, C.A., Crewther, S.G., Nguyen, V., and Karimi, L. (2020). First Australian case of good recovery of a COVID-19 patient with severe neurological symptoms post prolonged hospitalization. Cureus 12: e10366.
- Xu, Z., Shi, L., Wang, Y., Zhang, J., Huang, L., Zhang, C., Liu, S., Zhao, P., Liu, H., Zhu, L., et al. (2020). Pathological findings of COVID-19

- associated with acute respiratory distress syndrome. Lancet. Resp. Med. 8: 420-422.
- Yaghi, S., Ishida, K., Torres, J., Mac Grory, B., Raz, E., Humbert, K., Henninger, N., Trivedi, T., Lillemoe, K., Alam, S., et al. (2020). SARS-CoV-2 and stroke in a New York healthcare system. Stroke 51: 2002-2011.
- Yang, Y., Qidwai, U., Burton, B.J.L., and Capena, C. Bilateral, vertical supranuclear gaze palsy following unilateral midbrain infarct. BMJ Case Rep. 13: e238422.
- Ye, M., Ren, Y., and Lv, T. (2020). Encephalitis as a clinical manifestation of COVID-19. Brain Behav. Immunity 88: 945-946.
- Yuen, K.Y. and Wong, S.S. (2005). Human infection by avian influenza A H5N1. Hong Kong Med. J. 11: 189-199.
- Young, B., Gleeson, M., and Cripps, A.W. (1991). C-reactive protein: a critical review. Pathology 23: 118-124.
- Zayet, S., Klopfenstein, T., Kovács, R., Stancescu, S., and Hagenkötter, B. (2020). Acute cerebral stroke with multiple infarctions and COVID-19, France, 2020. Emerg. Infect. Dis. 26: 2258-2260.
- Zhai, P., Ding, Y., and Li, Y. (2020). The impact of COVID-19 on ischemic stroke. Diagn. Pathol. 15: 78.
- Zhang, C., Wu, Z., Li, J.W., Zhao, H., and Wang, G.Q. (2020b). Cytokine release syndrome in severe COVID-19: interleukin-6 receptor antagonist tocilizumab may be the key to reduce mortality. Int. J. Antimicrob. Agents 55: 105954.
- Zhang, Y., Xiao, M., Zhang, S., Xia, P., Cao, W., Jiang, W., Chen, H., Ding, X., Zhao, H., Zhang, H., et al. (2020c). Coagulopathy and antiphospholipid antibodies in patients with COVID-19. Engl. I. Med. 382: e38.
- Zhang, Z.L., Hou, Y.L., Li, D.T., and Li, F.Z. (2020a). Laboratory findings of COVID-19: a systematic review and meta-analysis. Scand. J. Clin. Lab. Invest. 80: 441-447.
- Zhao, H., Shen, D., Zhou, H., Liu, J., and Chen, S. (2020). Guillain-Barré syndrome associated with SARS-CoV-2 infection: causality or coincidence?. Lancet Neurol. 19: 383-384.
- Zheng, H., Stergiopoulos, K., Wang, L., Chen, L., and Cao, J. (2020). COVID-19 presenting as major thromboembolic events: virchow's triad revisited and clinical considerations of therapeutic anticoagulation. Cureus 12: e10137.

Supplementary Material: The online version of this article offers supplementary material (https://doi.org/10.1515/revneuro-2020-0136).