Home A BRD’s (BiRD’s) eye view of BET and BRPF bromodomains in neurological diseases
Article
Licensed
Unlicensed Requires Authentication

A BRD’s (BiRD’s) eye view of BET and BRPF bromodomains in neurological diseases

  • Harish Iyer , Abhipradnya B. Wahul , Annapoorna P. K. , Bharvi S. Sawant and Arvind Kumar
Published/Copyright: January 5, 2021
Become an author with De Gruyter Brill

Abstract

Neurological disorders (NLDs) are among the top leading causes for disability worldwide. Dramatic changes in the epigenetic topography of the brain and nervous system have been found in many NLDs. Histone lysine acetylation has prevailed as one of the well characterised epigenetic modifications in these diseases. Two instrumental components of the acetylation machinery are the evolutionarily conserved Bromodomain and PHD finger containing (BRPF) and Bromo and Extra terminal domain (BET) family of proteins, also referred to as acetylation ‘readers’. Several reasons, including their distinct mechanisms of modulation of gene expression and their property of being highly tractable small molecule targets, have increased their translational relevance. Thus, compounds which demonstrated promising results in targeting these proteins have advanced to clinical trials. They have been established as key role players in pathologies of cancer, cardiac diseases, renal diseases and rheumatic diseases. In addition, studies implicating the role of these bromodomains in NLDs are gaining pace. In this review, we highlight the findings of these studies, and reason for the plausible roles of all BET and BRPF members in NLDs. A comprehensive understanding of their multifaceted functions would be radical in the development of therapeutic interventions.


Corresponding author: Arvind Kumar, Epigenetics and Neuropsychiatric Disorders’ Laboratory, CSIR – Centre for Cellular and Molecular Biology (CCMB), Hyderabad500007, India; and Academy of Scientific and Innovative Research (AcSIR), Ghaziabad201002, India, E-mail:

Award Identifier / Grant number: BT/PR27426/MED/122/140/2018

Acknowledgments

Annapoorna P. K. acknowledges Junior and Senior Research Fellowship from the Department of Biotechnology, Government of India.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: Dr. Arvind Kumar’s work is supported by Department of Biotechnology Grant BT/PR27426/MED/122/140/2018.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

Achim, K., Peltopuro, P., Lahti, L., Tsai, H.H., Zachariah, A., Astrand, M., Salminen, M., Rowitch, D., and Partanen, J. (2013). The role of Tal2 and Tal1 in the differentiation of midbrain GABAergic neuron precursors. Biol. Open 2: 990–997, https://doi.org/10.1242/bio.20135041.Search in Google Scholar

Anand, P., Brown, J.D., Lin, C.Y., Qi, J., Zhang, R., Artero, P.C., Alaiti, M.A., Bullard, J., Alazem, K., Margulies, K.B., et al.. (2013). BET bromodomains mediate transcriptional pause release in heart failure. Cell 154: 569–582, https://doi.org/10.1016/j.cell.2013.07.013.Search in Google Scholar

Anderson, I.M., Haddad, P.M., and Scott, J. (2012). Bipolar disorder. BMJ 345: e8508, https://doi.org/10.1136/bmj.e8508.Search in Google Scholar

Andreasen, N.C. and Pierson, R. (2008). The role of the cerebellum in schizophrenia. Biol. Psychiatr. 64: 81–88, https://doi.org/10.1016/j.biopsych.2008.01.003.Search in Google Scholar

Annapoorna, P.K., Iyer, H., Parnaik, T., Narasimhan, H., Bhattacharya, A., and Kumar, A. (2019). FTO: an emerging molecular player in neuropsychiatric diseases. Neuroscience 418: 15–24, https://doi.org/10.1016/j.neuroscience.2019.08.021.Search in Google Scholar

Antolic, A., Wakimoto, H., Jiao, Z., Gorham, J.M., DePalma, S.R., Lemieux, M.E., Conner, D.A., Lee, D.Y., Qi, J., Seidman, J.G., et al.. (2020). BET bromodomain proteins regulate transcriptional reprogramming in genetic dilated cardiomyopathy. JCI Insight 5, https://doi.org/10.1172/jci.insight.138687.Search in Google Scholar

Appleton, R., Beirne, M., and Acomb, B. (2000). Photosensitivity in juvenile myoclonic epilepsy. Seizure 9: 108–111, https://doi.org/10.1053/seiz.1999.0376.Search in Google Scholar

Aricioglu, F., Ozkartal, C.S., Unal, G., Dursun, S., Cetin, M., and Müller, N. (2016). Neuroinflammation in schizophrenia: a critical review and the future. Bull. Clin. Psychopharmacol. 26: 429–437, https://doi.org/10.5455/bcp.20161123044657.Search in Google Scholar

Bae, J.W., Kim, H.J., Ban, J.Y., Park, H.J., Kim, S.K., Kang, S.W., Park, J.K., Kim, J.W., and Chung, J.H. (2012). Association between polymorphisms of TAL1 gene and schizophrenia in a Korean population. Psychiatr. Genet. 22: 50, https://doi.org/10.1097/ypg.0b013e328345464b.Search in Google Scholar

Baksi, S., Jana, N.R., Bhattacharyya, N.P., and Mukhopadhyay, D. (2013). GRB2 is regulated by FOXD3 and has roles in preventing accumulation and aggregation of mutant huntingtin. PLoS One 8, e76792, https://doi.org/10.1371/journal.pone.0076792.Search in Google Scholar

Balu, D.T., Carlson, G.C., Talbot, K., Kazi, H., Hill-Smith, T.E., Easton, R.M., Birnbaum, M.J., and Lucki, I. (2012). Akt1 deficiency in schizophrenia and impairment of hippocampal plasticity and function. Hippocampus 22: 230–240, https://doi.org/10.1002/hipo.20887.Search in Google Scholar

Bannister, A.J. and Kouzarides, T. (2011). Regulation of chromatin by histone modifications. Cell Res. 21: 381–395, https://doi.org/10.1038/cr.2011.22.Search in Google Scholar

Barbieri, I., Cannizzaro, E., and Dawson, M.A. (2013). Bromodomains as therapeutic targets in cancer. Briefings Funct. Genomics 12: 219–230, https://doi.org/10.1093/bfgp/elt007.Search in Google Scholar

Bartolini, E., Pesaresi, I., Fabbri, S., Cecchi, P., Giorgi, F.S., Sartucci, F., Bonuccelli, U., and Cosottini, M. (2014). Abnormal response to photic stimulation in juvenile myoclonic epilepsy: an EEG-fMRI study. Epilepsia 55: 1038–1047, https://doi.org/10.1111/epi.12634.Search in Google Scholar

Beck, S., Hanson, I., Kelly, A., Pappin, D.J., and Trowsdale, J. (1992). A homologue of the drosophila female sterile homeotic (FSH) gene in the class II region of the human MHC. DNA Sequence 2: 203–210, https://doi.org/10.3109/10425179209020804.Search in Google Scholar

Bednarczyk, J., Dębski, K.J., Bot, A.M., and Lukasiuk, K. (2016). MBD3 expression and DNA binding patterns are altered in a rat model of temporal lobe epilepsy. Sci. Rep. 6: 33736, https://doi.org/10.1038/srep33736.Search in Google Scholar

Belkina, A.C., Nikolajczyk, B.S., and Denis, G.V. (2013). BET protein function is required for inflammation: Brd2 genetic disruption and BET inhibitor JQ1 impair mouse macrophage inflammatory responses. J. Immunol. 190: 3670–3678, https://doi.org/10.4049/jimmunol.1202838.Search in Google Scholar

Benito, E., Ramachandran, B., Schroeder, H., Schmidt, G., Urbanke, H., Burkhardt, S., Capece, V., Dean, C., and Fischer, A. (2017). The BET/BRD inhibitor JQ1 improves brain plasticity in WT and APP mice. Transl. Psychiatry 7: e1239, https://doi.org/10.1038/tp.2017.202.Search in Google Scholar

Bourova-Flin, E., Chuffart, F., Rousseaux, S., and Khochbin, S. (2017). The role of bromodomain testis-specific factor, BRDT, in cancer: a biomarker and a possible therapeutic target. Cell J. 19: 1–8.Search in Google Scholar

Bowry, A., Piberger, A.L., Rojas, P., Saponaro, M., and Petermann, E. (2018). BET inhibition induces HEXIM1- and RAD51-dependent conflicts between transcription and replication. Cell Rep. 25: 2061–2069.e2064, https://doi.org/10.1016/j.celrep.2018.10.079.Search in Google Scholar

Brown, A.S., Hooton, J., Schaefer, C.A., Zhang, H., Petkova, E., Babulas, V., Perrin, M., Gorman, J.M., and Susser, E.S. (2004). Elevated maternal interleukin-8 levels and risk of schizophrenia in adult offspring. Am. J. Psychiatr. 161: 889–895, https://doi.org/10.1176/appi.ajp.161.5.889.Search in Google Scholar

Casanova, J.R., Nishimura, M., and Swann, J.W. (2014). The effects of early-life seizures on hippocampal dendrite development and later-life learning and memory. Brain Res. Bull. 103: 39–48, https://doi.org/10.1016/j.brainresbull.2013.10.004.Search in Google Scholar

Cavalleri, G.L., Weale, M.E., Shianna, K.V., Singh, R., Lynch, J.M., Grinton, B., Szoeke, C., Murphy, K., Kinirons, P., O’Rourke, D., et al.. (2007). Multicentre search for genetic susceptibility loci in sporadic epilepsy syndrome and seizure types: a case-control study. Lancet Neurol. 6: 970–980, https://doi.org/10.1016/s1474-4422(07)70247-8.Search in Google Scholar

Chachua, T., Goletiani, C., Maglakelidze, G., Sidyelyeva, G., Daniel, M., Morris, E., Miller, J., Shang, E., Wolgemuth, D.J., Greenberg, D.A., et al.. (2014). Sex-specific behavioral traits in the BRD2 mouse model of juvenile myoclonic epilepsy. Gene Brain Behav. 13: 702–712, https://doi.org/10.1111/gbb.12160.Search in Google Scholar

Chakravarty, S., Bhat, U.A., Reddy, R.G., Gupta, P., and Kumar, A. (2014). Chapter 25 - histone deacetylase inhibitors and psychiatric disorders. In: Peedicayil, J., Grayson, D.R., and Avramopoulos, D. (Eds.), Epigenetics in psychiatry. Boston: Academic Press, pp. 515–544.10.1016/B978-0-12-417114-5.00025-5Search in Google Scholar

Cheadle, L. and Biederer, T. (2014). Activity-dependent regulation of dendritic complexity by semaphorin 3A through Farp1. J. Neurosci. 34: 7999–8009, https://doi.org/10.1523/jneurosci.3950-13.2014.Search in Google Scholar

Chemerinski, E. and Robinson, R.G. (2000). The neuropsychiatry of stroke. Psychosomatics 41: 5–14, https://doi.org/10.1016/s0033-3182(00)71168-6.Search in Google Scholar

Chin, J., Palop, J.J., Puoliväli, J., Massaro, C., Bien-Ly, N., Gerstein, H., Scearce-Levie, K., Masliah, E., and Mucke, L. (2005). Fyn kinase induces synaptic and cognitive impairments in a transgenic mouse model of Alzheimer’s disease. J. Neurosci. 25: 9694–9703, https://doi.org/10.1523/jneurosci.2980-05.2005.Search in Google Scholar

Chong, Z.Z., Shang, Y.C., Wang, S., and Maiese, K. (2012). A critical kinase cascade in neurological disorders: PI3K, Akt and mTOR. Future Neurol. 7: 733–748, https://doi.org/10.2217/fnl.12.72.Search in Google Scholar

Christensen, J.H., Elfving, B., Muller, H.K., Fryland, T., Nyegaard, M., Corydon, T.J., Nielsen, A.L., Mors, O., Wegener, G., and Borglum, A.D. (2012). The schizophrenia and bipolar disorder associated BRD1 gene is regulated upon chronic restraint stress. Eur. Neuropsychopharmacol. 22: 651–656, https://doi.org/10.1016/j.euroneuro.2012.01.005.Search in Google Scholar

Chu, C., Zavala, K., Fahimi, A., Lee, J., Xue, Q., Eilers, H., and Schumacher, M.A. (2011). Transcription factors Sp1 and Sp4 regulate TRPV1 gene expression in rat sensory neurons. Mol. Pain 7: 44, https://doi.org/10.1186/1744-8069-7-44.Search in Google Scholar

Cochran, A.G., Conery, A.R., and Sims, R.J.3rd (2019). Bromodomains: a new target class for drug development. Nat. Rev. Drug Discov. 18: 609–628, https://doi.org/10.1038/s41573-019-0030-7.Search in Google Scholar

Col, E., Hoghoughi, N., Dufour, S., Penin, J., Koskas, S., Faure, V., Ouzounova, M., Hernandez-Vargash, H., Reynoird, N., Daujat, S., et al.. (2017). Bromodomain factors of BET family are new essential actors of pericentric heterochromatin transcriptional activation in response to heat shock. Sci. Rep. 7: 5418, https://doi.org/10.1038/s41598-017-05343-8.Search in Google Scholar

Covini, N., Tamburin, M., Consalez, G., Salvati, P., and Benatti, L. (1999). ZFM1/SF1 mRNA in rat and gerbil brain after global ischaemia. Eur. J. Neurosci. 11: 781–787, https://doi.org/10.1046/j.1460-9568.1999.00485.x.Search in Google Scholar

Crump, N.T., Ballabio, E., Godfrey, L., Thorne, R., Repapi, E., Kerry, J., Tapia, M., Hua, P., Filippakopoulos, P., Davies, J.O.J., et al.. (2019). BET inhibition disrupts transcription but retains enhancer-promoter contact. bioRxiv: 848325.10.1038/s41467-020-20400-zSearch in Google Scholar PubMed PubMed Central

Dai, D., Li, Q.-C., Zhu, Q.-B., Hu, S.-H., Balesar, R., Swaab, D., and Bao, A.-M. (2017). Direct involvement of androgen receptor in oxytocin gene expression: possible relevance for mood disorders. Neuropsychopharmacology 42: 2064–2071, https://doi.org/10.1038/npp.2017.76.Search in Google Scholar

de Kovel, C., Pinto, D., Tauer, U., Lorenz, S., Muhle, H., Leu, C., Neubauer, B., Hempelmann, A., Scheffer, I., and Berkovic, S. (2010). Whole-genome linkage scan for epilepsy-related photosensitivity: a mega-analysis. Epilepsy Res. 89: 286–294, https://doi.org/10.1016/j.eplepsyres.2010.01.013.Search in Google Scholar

de Kovel, C.G., Pinto, D., de Haan, G.J., Kasteleijn-Nolst Trenité, D.G., Lindhout, D., and Koeleman, B.P. (2007). Association analysis of BRD2 (RING 3) and epilepsy in a Dutch population. Epilepsia 48: 2191–2192, https://doi.org/10.1111/j.1528-1167.2007.01306.x.Search in Google Scholar

Delmore, J.E., Issa, G.C., Lemieux, M.E., Rahl, P.B., Shi, J., Jacobs, H.M., Kastritis, E., Gilpatrick, T., Paranal, R.M., Qi, J., et al.. (2011). BET bromodomain inhibition as a therapeutic strategy to target c-Myc. Cell 146: 904–917, https://doi.org/10.1016/j.cell.2011.08.017.Search in Google Scholar

DeMars, K.M., Yang, C., and Candelario-Jalil, E. (2019). Neuroprotective effects of targeting BET proteins for degradation with dBET1 in aged mice subjected to ischemic stroke. Neurochem. Int. 127: 94–102, https://doi.org/10.1016/j.neuint.2019.03.004.Search in Google Scholar

DeMars, K.M., Yang, C., Castro-Rivera, C.I., and Candelario-Jalil, E. (2018). Selective degradation of BET proteins with dBET1, a proteolysis-targeting chimera, potently reduces pro-inflammatory responses in lipopolysaccharide-activated microglia. Biochem. Biophys. Res. Commun. 497: 410–415, https://doi.org/10.1016/j.bbrc.2018.02.096.Search in Google Scholar

Devaiah, B.N., Gegonne, A., and Singer, D.S. (2016). Bromodomain 4: a cellular Swiss army knife. J. Leukoc. Biol. 100: 679–686, https://doi.org/10.1189/jlb.2ri0616-250r.Search in Google Scholar

Dey, A., Ellenberg, J., Farina, A., Coleman, A.E., Maruyama, T., Sciortino, S., Lippincott-Schwartz, J., and Ozato, K. (2000). A bromodomain protein, MCAP, associates with mitotic chromosomes and affects G2-to-M transition. Mol. Cell Biol. 20: 6537–6549, https://doi.org/10.1128/.20.17.6537-6549.2000.Search in Google Scholar

Dhalluin, C., Carlson, J.E., Zeng, L., He, C., Aggarwal, A.K., and Zhou, M.M. (1999). Structure and ligand of a histone acetyltransferase bromodomain. Nature 399: 491–496, https://doi.org/10.1038/20974.Search in Google Scholar

Donati, B., Lorenzini, E., and Ciarrocchi, A. (2018). BRD4 and cancer: going beyond transcriptional regulation. Mol. Canc. 17: 164, https://doi.org/10.1186/s12943-018-0915-9.Search in Google Scholar

Dorszewska, J., Rozycka, A., Oczkowska, A., Florczak-Wyspianska, J., Prendecki, M., Dezor, M., Postrach, I., Jagodzinski, P.P., and Kozubski, W. (2014). Mutations of TP53 gene and oxidative stress in Alzheimer’s disease patients. Adv. Alzheimer’s Dis. 3: 9.10.4236/aad.2014.31004Search in Google Scholar

Duan, Q., McMahon, S., Anand, P., Shah, H., Thomas, S., Salunga, H.T., Huang, Y., Zhang, R., Sahadevan, A., Lemieux, M.E., et al.. (2017). BET bromodomain inhibition suppresses innate inflammatory and profibrotic transcriptional networks in heart failure. Sci. Transl. Med. 9, https://doi.org/10.1126/scitranslmed.aah5084.Search in Google Scholar

Dyrvig, M., Qvist, P., Lichota, J., Larsen, K., Nyegaard, M., Borglum, A.D., and Christensen, J.H. (2017). DNA methylation analysis of BRD1 promoter regions and the schizophrenia rs138880 risk allele. PLoS One 12: e0170121, https://doi.org/10.1371/journal.pone.0170121.Search in Google Scholar

Edwards, D., Maganti, R., Tanksley, J.P., Park, J.J.H., Balkanska-Sinclair, E., Luo, J., Ling, J., and Floyd, S.R. (2019). BRD4 prevents R-loop formation and transcription-replication conflicts by ensuring efficient transcription elongation. bioRxiv: 854737.10.1101/854737Search in Google Scholar

Erber, L., Luo, A., and Chen, Y. (2019). Targeted and interactome proteomics revealed the role of PHD2 in regulating BRD4 proline hydroxylation. Mol. Cell. Proteomics 18: 1772–1781, https://doi.org/10.1074/mcp.ra119.001535.Search in Google Scholar

Fass, D.M., Lewis, M.C., Ahmad, R., Szucs, M.J., Zhang, Q., Fleishman, M., Wang, D., Kim, M.J., Biag, J., Carr, S.A., et al.. (2018). Brain-specific deletion of GIT1 impairs cognition and alters phosphorylation of synaptic protein networks implicated in schizophrenia susceptibility. bioRxiv: 290312.10.1101/290312Search in Google Scholar

Faundes, V., Newman, W.G., Bernardini, L., Canham, N., Clayton-Smith, J., Dallapiccola, B., Davies, S.J., Demos, M.K., Goldman, A., Gill, H., et al.. (2018). Histone lysine methylases and demethylases in the landscape of human developmental disorders. Am. J. Hum. Genet. 102: 175–187, https://doi.org/10.1016/j.ajhg.2017.11.013.Search in Google Scholar

Fawcett, J.P., Georgiou, J., Ruston, J., Bladt, F., Sherman, A., Warner, N., Saab, B.J., Scott, R., Roder, J.C., and Pawson, T. (2007). Nck adaptor proteins control the organization of neuronal circuits important for walking. Proc. Natl. Acad. Sci. U.S.A. 104: 20973–20978, https://doi.org/10.1073/pnas.0710316105.Search in Google Scholar

Feng, Y., Vlassis, A., Roques, C., Lalonde, M.E., Gonzalez-Aguilera, C., Lambert, J.P., Lee, S.B., Zhao, X., Alabert, C., Johansen, J.V., et al.. (2016). BRPF3-HBO1 regulates replication origin activation and histone H3K14 acetylation. EMBO J. 35: 176–192, https://doi.org/10.15252/embj.201591293.Search in Google Scholar

Ferrari, R., Dawoodi, S., Raju, M., Thumma, A., Hynan, L.S., Maasumi, S.H., Reisch, J.S., O’Bryant, S., Jenkins, M., Barber, R., et al.. (2013). Androgen receptor gene and sex-specific Alzheimer’s disease. Neurobiol. Aging 34: 2077.e2019–2020, https://doi.org/10.1016/j.neurobiolaging.2013.02.017.Search in Google Scholar

Ferri, A.L., Lin, W., Mavromatakis, Y.E., Wang, J.C., Sasaki, H., Whitsett, J.A., and Ang, S.L. (2007). Foxa1 and Foxa2 regulate multiple phases of midbrain dopaminergic neuron development in a dosage-dependent manner. Development 134: 2761–2769, https://doi.org/10.1242/dev.000141.Search in Google Scholar

Filichia, E., Shen, H., Zhou, X., Qi, X., Jin, K., Greig, N., Hoffer, B., and Luo, Y. (2015). Forebrain neuronal specific ablation of p53 gene provides protection in a cortical ischemic stroke model. Neuroscience 295: 1–10, https://doi.org/10.1016/j.neuroscience.2015.03.018.Search in Google Scholar

Filippakopoulos, P. and Knapp, S. (2014). Targeting bromodomains: epigenetic readers of lysine acetylation. Nat. Rev. Drug Discov. 13: 337–356, https://doi.org/10.1038/nrd4286.Search in Google Scholar

Filippakopoulos, P., Picaud, S., Mangos, M., Keates, T., Lambert, J.-P., Barsyte-Lovejoy, D., Felletar, I., Volkmer, R., Müller, S., and Pawson, T. (2012). Histone recognition and large-scale structural analysis of the human bromodomain family. Cell 149: 214–231, https://doi.org/10.1016/j.cell.2012.02.013.Search in Google Scholar

Filippakopoulos, P., Qi, J., Picaud, S., Shen, Y., Smith, W.B., Fedorov, O., Morse, E.M., Keates, T., Hickman, T.T., Felletar, I., et al.. (2010). Selective inhibition of BET bromodomains. Nature 468: 1067–1073, https://doi.org/10.1038/nature09504.Search in Google Scholar

Foster, E.M., Dangla-Valls, A., Lovestone, S., Ribe, E.M., and Buckley, N.J. (2019). Clusterin in Alzheimer’s disease: mechanisms, genetics, and lessons from other pathologies. Front. Neurosci. 13: 164, https://doi.org/10.3389/fnins.2019.00164.Search in Google Scholar

Fryland, T., Christensen, J.H., Pallesen, J., Mattheisen, M., Palmfeldt, J., Bak, M., Grove, J., Demontis, D., Blechingberg, J., Ooi, H.S., et al.. (2016). Identification of the BRD1 interaction network and its impact on mental disorder risk. Genome Med. 8: 53, https://doi.org/10.1186/s13073-016-0308-x.Search in Google Scholar

Fryland, T., Elfving, B., Christensen, J.H., Mors, O., Wegener, G., and Borglum, A.D. (2012). Electroconvulsive seizures regulates the BRD1 gene in the frontal cortex and hippocampus of the adult rat. Neurosci. Lett. 516: 110–113, https://doi.org/10.1016/j.neulet.2012.03.069.Search in Google Scholar

Fujisawa, T. and Filippakopoulos, P. (2017). Functions of bromodomain-containing proteins and their roles in homeostasis and cancer. Nat. Rev. Mol. Cell Biol. 18: 246–262, https://doi.org/10.1038/nrm.2016.143.Search in Google Scholar

Ganai, S.A. (2019). Implications of HDACs in neurological disorders. In: Histone deacetylase inhibitors—epidrugs for neurological disorders. Springer, Singapore, pp. 27–31.10.1007/978-981-13-8019-8_4Search in Google Scholar

García-Morales, V., Rodríguez-Bey, G., Gómez-Pérez, L., Domínguez-Vías, G., González-Forero, D., Portillo, F., Campos-Caro, A., Gento-Caro, Á., Issaoui, N., Soler, R.M., et al.. (2019). Sp1-regulated expression of p11 contributes to motor neuron degeneration by membrane insertion of TASK1. Nat. Commun. 10: 3784, https://doi.org/10.1038/s41467-019-11637-4.Search in Google Scholar

Ghazy, E., Zeyen, P., Herp, D., Hügle, M., Schmidtkunz, K., Erdmann, F., Robaa, D., Schmidt, M., Morales, E.R., and Romier, C. (2020). Design, synthesis, and biological evaluation of dual targeting inhibitors of histone deacetylase 6/8 and bromodomain BRPF1. Eur. J. Med. Chem.: 112338, https://doi.org/10.1016/j.ejmech.2020.112338.Search in Google Scholar

Gilan, O., Rioja, I., Knezevic, K., Bell, M.J., Yeung, M.M., Harker, N.R., Lam, E.Y.N., Chung, C.-W., Bamborough, P., Petretich, M., et al.. (2020). Selective targeting of BD1 and BD2 of the BET proteins in cancer and immunoinflammation. Science 368: 387–394, https://doi.org/10.1126/science.aaz8455.Search in Google Scholar

Gillette, T.G. and Hill, J.A. (2015). Readers, writers, and erasers: chromatin as the whiteboard of heart disease. Circ. Res. 116: 1245–1253, https://doi.org/10.1161/circresaha.116.303630.Search in Google Scholar

Goodman, J.V., Yamada, T., Yang, Y., Kong, L., Wu, D.Y., Zhao, G., Gabel, H.W., and Bonni, A. (2020). The chromatin remodeling enzyme Chd4 regulates genome architecture in the mouse brain. Nat. Commun. 11: 3419, https://doi.org/10.1038/s41467-020-17065-z.Search in Google Scholar

Götz, R., Wiese, S., Takayama, S., Camarero, G.C., Rossoll, W., Schweizer, U., Troppmair, J., Jablonka, S., Holtmann, B., Reed, J.C., et al.. (2005). Bag1 is essential for differentiation and survival of hematopoietic and neuronal cells. Nat. Neurosci. 8: 1169–1178, https://doi.org/10.1038/nn1524.Search in Google Scholar

Govindarajan, N., Agis-Balboa, R.C., Walter, J., Sananbenesi, F., and Fischer, A. (2011). Sodium butyrate improves memory function in an Alzheimer’s disease mouse model when administered at an advanced stage of disease progression. J. Alzheim. Dis. 26: 187–197, https://doi.org/10.3233/jad-2011-110080.Search in Google Scholar

Grande, I., Berk, M., Birmaher, B., and Vieta, E. (2016). Bipolar disorder. Lancet 387: 1561–1572, https://doi.org/10.1016/s0140-6736(15)00241-x.Search in Google Scholar

Greenberg, D.A., Delgado-Escueta, A.V., Widelitz, H., Sparkes, R.S., Treiman, L., Maldonado, H.M., Park, M.S., and Terasaki, P.I. (1988). Juvenile myoclonic epilepsy (JME) may be linked to the BF and HLA loci on human chromosome 6. Am. J. Med. Genet. 31: 185–192, https://doi.org/10.1002/ajmg.1320310125.Search in Google Scholar

Guan, J.-S., Haggarty, S.J., Giacometti, E., Dannenberg, J.-H., Joseph, N., Gao, J., Nieland, T.J., Zhou, Y., Wang, X., and Mazitschek, R. (2009). HDAC2 negatively regulates memory formation and synaptic plasticity. Nature 459: 55–60, https://doi.org/10.1038/nature07925.Search in Google Scholar

Guo, W., Long, H., Bu, Q., Zhao, Y., Wang, H., Tian, J., and Cen, X. (2019). Role of BRD4 phosphorylation in the nucleus accumbens in relapse to cocaine-seeking behavior in mice. Addiction Biol.: e12808, https://doi.org/10.1111/adb.12808.Search in Google Scholar

Gyuris, A., Donovan, D.J., Seymour, K.A., Lovasco, L.A., Smilowitz, N.R., Halperin, A.L., Klysik, J.E., and Freiman, R.N. (2009). The chromatin-targeting protein Brd2 is required for neural tube closure and embryogenesis. Biochim. Biophys. Acta 1789: 413–421, https://doi.org/10.1016/j.bbagrm.2009.03.005.Search in Google Scholar

Hackett, M.L., Kohler, S., O’Brien, J.T., and Mead, G.E. (2014). Neuropsychiatric outcomes of stroke. Lancet Neurol. 13: 525–534, https://doi.org/10.1016/s1474-4422(14)70016-x.Search in Google Scholar

Ham, J., Eilers, A., Whitfield, J., Neame, S.J., and Shah, B. (2000). c-Jun and the transcriptional control of neuronal apoptosis. Biochem. Pharmacol. 60: 1015–1021, https://doi.org/10.1016/s0006-2952(00)00372-5.Search in Google Scholar

Han, S.H., Kwon, K.J., Shin, C.Y., and Chung, S.Y. (2016). Effects of BET inhibitor JQ1 on neurotoxicity in rat primary cortical neurons: a potential therapeutic approach in Alzheimer’s disease. Eur. Psychiatr. 33: S139, https://doi.org/10.1016/j.eurpsy.2016.01.227.Search in Google Scholar

Handoko, L., Kaczkowski, B., Hon, C.C., Lizio, M., Wakamori, M., Matsuda, T., Ito, T., Jeyamohan, P., Sato, Y., Sakamoto, K., et al.. (2018). JQ1 affects BRD2-dependent and independent transcription regulation without disrupting H4-hyperacetylated chromatin states. Epigenetics 13: 410–431, https://doi.org/10.1080/15592294.2018.1469891.Search in Google Scholar

Haynes, S.R., Dollard, C., Winston, F., Beck, S., Trowsdale, J., and Dawid, I.B. (1992). The bromodomain: a conserved sequence found in human, Drosophila and yeast proteins. Nucleic Acids Res. 20: 2603, https://doi.org/10.1093/nar/20.10.2603.Search in Google Scholar

Henshall, D.C. and Kobow, K. (2015). Epigenetics and epilepsy. Cold Spring Harbor Perspect. Med. 5: a022731.10.1101/cshperspect.a022731Search in Google Scholar

Herdegen, T., Skene, P., and Bähr, M. (1997). The c-Jun transcription factor--bipotential mediator of neuronal death, survival and regeneration. Trends Neurosci. 20: 227–231, https://doi.org/10.1016/s0166-2236(96)01000-4.Search in Google Scholar

Hers, I., Vincent, E.E., and Tavaré, J.M. (2011). Akt signalling in health and disease. Cell. Signal. 23: 1515–1527, https://doi.org/10.1016/j.cellsig.2011.05.004.Search in Google Scholar

Hong, Y., Chan, C.B., Kwon, I.S., Li, X., Song, M., Lee, H.P., Liu, X., Sompol, P., Jin, P., Lee, H.G., et al.. (2012). SRPK2 phosphorylates tau and mediates the cognitive defects in Alzheimer’s disease. J. Neurosci. 32: 17262–17272, https://doi.org/10.1523/jneurosci.3300-12.2012.Search in Google Scholar

Huang, X., Powell-Coffman, J.A., and Jin, Y. (2004). The AHR-1 aryl hydrocarbon receptor and its co-factor the AHA-1 aryl hydrocarbon receptor nuclear translocator specify GABAergic neuron cell fate in C. elegans. Development 131: 819–828, https://doi.org/10.1242/dev.00959.Search in Google Scholar

Hwang, I., Lee, Y.-B., Yoo, K.-Y., Kang, T.-C., Kim, D.-W., Moon, W.-K., Kim, S.M., Oh, Y.-S., Sohn, H.-S., and Won, M. (2005). Seizure-induced changes of mineralocorticoid and glucocorticoid receptors in the hippocampus in seizure sensitive gerbils. Neurosci. Res. 53: 14–24, https://doi.org/10.1016/j.neures.2005.05.006.Search in Google Scholar

Inoue, K.-I., Ozaki, S., Ito, K., Iseda, T., Kawaguchi, S., Ogawa, M., Bae, S.-C., Yamashita, N., Itohara, S., Kudo, N., et al.. (2003). Runx3 is essential for the target-specific axon pathfinding of trkC-expressing dorsal root ganglion neurons. Blood Cells Mol. Dis. 30: 157–160, https://doi.org/10.1016/s1079-9796(03)00032-9.Search in Google Scholar

Jahn, H. (2013). Memory loss in Alzheimer’s disease. Dialogues Clin. Neurosci. 15: 445–454.10.31887/DCNS.2013.15.4/hjahnSearch in Google Scholar

Jang, S.W., Liu, X., Fu, H., Rees, H., Yepes, M., Levey, A., and Ye, K. (2009). Interaction of Akt-phosphorylated SRPK2 with 14-3-3 mediates cell cycle and cell death in neurons. J. Biol. Chem. 284: 24512–24525, https://doi.org/10.1074/jbc.m109.026237.Search in Google Scholar

Jayaraj, R.L., Azimullah, S., Beiram, R., Jalal, F.Y., and Rosenberg, G.A. (2019). Neuroinflammation: friend and foe for ischemic stroke. J. Neuroinflammation 16: 142, https://doi.org/10.1186/s12974-019-1516-2.Search in Google Scholar

Jessberger, S. and Parent, J.M. (2015). Epilepsy and adult neurogenesis. Cold Spring Harbor Perspect. Biol. 7, https://doi.org/10.1101/cshperspect.a020677.Search in Google Scholar

Jin, X., Fang, R., Fan, P., Zeng, L., Zhang, B., Lu, X., and Liu, T. (2019). PES1 promotes BET inhibitors resistance and cells proliferation through increasing c-Myc expression in pancreatic cancer. J. Exp. Clin. Canc. Res. 38: 463, https://doi.org/10.1186/s13046-019-1466-7.Search in Google Scholar

Jones, M.H., Numata, M., and Shimane, M. (1997). Identification and characterization of BRDT: a testis-specific gene related to the bromodomain genes RING3 and Drosophila fsh. Genomics 45: 529–534, https://doi.org/10.1006/geno.1997.5000.Search in Google Scholar

Juricek, L. and Coumoul, X. (2018). The aryl hydrocarbon receptor and the nervous system. Int. J. Mol. Sci. 19, https://doi.org/10.3390/ijms19092504.Search in Google Scholar

Kanyuch, N. and Anderson, S. (2017). Animal models of developmental neuropathology in schizophrenia. Schizophr. Bull. 43: 1172–1175, https://doi.org/10.1093/schbul/sbx116.Search in Google Scholar

Kermer, P., Digicaylioglu, M.H., Kaul, M., Zapata, J.M., Krajewska, M., Stenner-Liewen, F., Takayama, S., Krajewski, S., Lipton, S.A., and Reed, J.C. (2003). BAG1 over-expression in brain protects against stroke. Brain Pathol. 13: 495–506, https://doi.org/10.1111/j.1750-3639.2003.tb00480.x.Search in Google Scholar

Kinney, J.W., Bemiller, S.M., Murtishaw, A.S., Leisgang, A.M., Salazar, A.M., and Lamb, B.T. (2018). Inflammation as a central mechanism in Alzheimer’s disease. Alzheimer’s Dementia 4: 575–590, https://doi.org/10.1016/j.trci.2018.06.014.Search in Google Scholar

Klein, B.J., Lalonde, M.-E., Côté, J., Yang, X.-J., and Kutateladze, T.G. (2014). Crosstalk between epigenetic readers regulates the MOZ/MORF HAT complexes. Epigenetics 9: 186–193, https://doi.org/10.4161/epi.26792.Search in Google Scholar

Klein, K. (2018). Bromodomain protein inhibition: a novel therapeutic strategy in rheumatic diseases. RMD Open 4: e000744, https://doi.org/10.1136/rmdopen-2018-000744.Search in Google Scholar

Klein, K., Kato, M., Frank-Bertoncelj, M., Kolling, C., Ciurea, A., Gay, S., and Ospelt, C. (2018). Evaluating the bromodomain protein BRD1 as a therapeutic target in rheumatoid arthritis. Sci. Rep. 8: 11125, https://doi.org/10.1038/s41598-018-29127-w.Search in Google Scholar

Kobylarek, D., Iwanowski, P., Lewandowska, Z., Limphaibool, N., Szafranek, S., Labrzycka, A., and Kozubski, W. (2019). Advances in the potential biomarkers of epilepsy. Front. Neurol. 10, https://doi.org/10.3389/fneur.2019.00685.Search in Google Scholar

Kojima, N., Wang, J., Mansuy, I.M., Grant, S.G., Mayford, M., and Kandel, E.R. (1997). Rescuing impairment of long-term potentiation in fyn-deficient mice by introducing Fyn transgene. Proc. Natl. Acad. Sci. U.S.A. 94: 4761–4765, https://doi.org/10.1073/pnas.94.9.4761.Search in Google Scholar

Korb, E., Herre, M., Zucker-Scharff, I., Darnell, R.B., and Allis, C.D. (2015). BET protein Brd4 activates transcription in neurons and BET inhibitor Jq1 blocks memory in mice. Nat. Neurosci. 18: 1464–1473, https://doi.org/10.1038/nn.4095.Search in Google Scholar

Kotzalidis, G.D., Ambrosi, E., Simonetti, A., Cuomo, I., Del Casale, A., Janiri, D., Savoja, V., and Rapinesi, C. (2015). Neuroinflammation in bipolar disorders. Neuroimmunol. Neuroinflammation 2: 252–262, https://doi.org/10.4103/2347-8659.167309.Search in Google Scholar

Kougnassoukou Tchara, P.E., Filippakopoulos, P., and Lambert, J.P. (2019). Emerging tools to investigate bromodomain functions. Methods 184: 40–52, https://doi.org/10.1016/j.ymeth.2019.11.003.Search in Google Scholar

Kubota, T. (2016). Epigenetic alterations induced by environmental stress associated with metabolic and neurodevelopmental disorders. Environ. Epigenet. 2: dvw017, https://doi.org/10.1093/eep/dvw017.Search in Google Scholar

Kurita, M., Holloway, T., and González-Maeso, J. (2013). HDAC2 as a new target to improve schizophrenia treatment. Expert Rev. Neurother. 13: 1–3, https://doi.org/10.1586/ern.12.141.Search in Google Scholar

Kushima, I., Aleksic, B., Ikeda, M., Yamanouchi, Y., Kinoshita, Y., Ito, Y., Nakamura, Y., Inada, T., Iwata, N., and Ozaki, N. (2010). Association study of bromodomain-containing 1 gene with schizophrenia in Japanese population. Am. J. Med. Genet. B Neuropsychiatr. Genet. 153B: 786–791, https://doi.org/10.1002/ajmg.b.31048.Search in Google Scholar

Lee, H., Kim, D.-W., Remedios, R., Anthony, T.E., Chang, A., Madisen, L., Zeng, H., and Anderson, D.J. (2014). Scalable control of mounting and attack by Esr1+ neurons in the ventromedial hypothalamus. Nature 509: 627–632, https://doi.org/10.1038/nature13169.Search in Google Scholar

Lee, H.G., Ueda, M., Miyamoto, Y., Yoneda, Y., Perry, G., Smith, M.A., and Zhu, X. (2006). Aberrant localization of importin α1 in hippocampal neurons in Alzheimer disease. Brain Res. 1124: 1–4, https://doi.org/10.1016/j.brainres.2006.09.084.Search in Google Scholar

LeRoy, G., Rickards, B., and Flint, S.J. (2008). The double bromodomain proteins Brd2 and Brd3 couple histone acetylation to transcription. Mol. Cell 30: 51–60, https://doi.org/10.1016/j.molcel.2008.01.018.Search in Google Scholar

Leyns, C.E.G. and Holtzman, D.M. (2017). Glial contributions to neurodegeneration in tauopathies. Mol. Neurodegener. 12: 50, https://doi.org/10.1186/s13024-017-0192-x.Search in Google Scholar

Li, J., Gao, K., Cai, S., Liu, Y., Wang, Y., Huang, S., Zha, J., Hu, W., Yu, S., Yang, Z., et al.. (2019). Germline de novo variants in CSNK2B in Chinese patients with epilepsy. Sci. Rep. 9: 17909, https://doi.org/10.1038/s41598-019-53484-9.Search in Google Scholar

Li, J., Ma, J., Meng, G., Lin, H., Wu, S., Wang, J., Luo, J., Xu, X., Tough, D., Lindon, M., et al.. (2016). BET bromodomain inhibition promotes neurogenesis while inhibiting gliogenesis in neural progenitor cells. Stem Cell Res. 17: 212–221, https://doi.org/10.1016/j.scr.2016.07.006.Search in Google Scholar

Lin, L., Park, J.W., Ramachandran, S., Zhang, Y., Tseng, Y.-T., Shen, S., Waldvogel, H.J., Curtis, M.A., Faull, R.L.M., Troncoso, J.C., et al.. (2016). Transcriptome sequencing reveals aberrant alternative splicing in Huntington’s disease. Hum. Mol. Genet. 25: 3454–3466, https://doi.org/10.1093/hmg/ddw187.Search in Google Scholar

Lin, S. and Du, L. (2020). The therapeutic potential of BRD4 in cardiovascular disease. Hypertens. Res.: 1–9.10.1038/s41440-020-0459-4Search in Google Scholar PubMed

Liu, C., Sun, R., Huang, J., Zhang, D., Huang, D., Qi, W., Wang, S., Xie, F., Shen, Y., and Shen, C. (2017). The BAF45D protein is preferentially expressed in adult neurogenic zones and in neurons and may be required for retinoid acid induced PAX6 expression. Front. Neuroanat. 11: 94, https://doi.org/10.3389/fnana.2017.00094.Search in Google Scholar

Liu, D.X., Biswas, S.C., and Greene, L.A. (2004). B-myb and C-myb play required roles in neuronal apoptosis evoked by nerve growth factor deprivation and DNA damage. J. Neurosci. 24: 8720–8725, https://doi.org/10.1523/jneurosci.1821-04.2004.Search in Google Scholar

Liu, L., Qin, S., Zhang, J., Ji, P., Shi, Y., and Wu, J. (2012). Solution structure of an atypical PHD finger in BRPF2 and its interaction with DNA. J. Struct. Biol. 180: 165–173, https://doi.org/10.1016/j.jsb.2012.06.014.Search in Google Scholar

Liu, X., Jiao, B., and Shen, L. (2018). The epigenetics of Alzheimer’s disease: factors and therapeutic implications. Front. Genet. 9: 579, https://doi.org/10.3389/fgene.2018.00579.Search in Google Scholar

Lockwood, W.W., Zejnullahu, K., Bradner, J.E., and Varmus, H. (2012). Sensitivity of human lung adenocarcinoma cell lines to targeted inhibition of BET epigenetic signaling proteins. Proc. Natl. Acad. Sci. U.S.A. 109: 19408–19413, https://doi.org/10.1073/pnas.1216363109.Search in Google Scholar

Lorenz, S., Taylor, K.P., Gehrmann, A., Becker, T., Muhle, H., Gresch, M., Tauer, U., Sander, T., and Stephani, U. (2006). Association of BRD2 polymorphisms with photoparoxysmal response. Neurosci. Lett. 400: 135–139, https://doi.org/10.1016/j.neulet.2006.02.026.Search in Google Scholar

Lu, T., Kim, P., and Luo, Y. (2017). Tp53 gene mediates distinct dopaminergic neuronal damage in different dopaminergic neurotoxicant models. Neural Regen. Res. 12: 1413–1417, https://doi.org/10.4103/1673-5374.215243.Search in Google Scholar

Lu, T., Lu, W., and Luo, C. (2020). A patent review of BRD4 inhibitors (2013–2019). Expert Opin. Ther. Pat. 30: 57–81, https://doi.org/10.1080/13543776.2020.1702645.Search in Google Scholar

Ludwig, B. and Dwivedi, Y. (2016). Dissecting bipolar disorder complexity through epigenomic approach. Mol. Psychiatr. 21: 1490–1498, https://doi.org/10.1038/mp.2016.123.Search in Google Scholar

Lv, H., Li, J., and Che, Y.Q. (2019). CXCL8 gene silencing promotes neuroglial cells activation while inhibiting neuroinflammation through the PI3K/Akt/NF-κB-signaling pathway in mice with ischemic stroke. J. Cell Physiol. 234: 7341–7355, https://doi.org/10.1002/jcp.27493.Search in Google Scholar

Maggioni, E., Crespo-Facorro, B., Nenadic, I., Benedetti, F., Gaser, C., Sauer, H., Roiz-Santianez, R., Poletti, S., Marinelli, V., Bellani, M., et al.. (2017). Common and distinct structural features of schizophrenia and bipolar disorder: the European network on psychosis, affective disorders and cognitive trajectory (ENPACT) study. PLoS One 12: e0188000, https://doi.org/10.1371/journal.pone.0188000.Search in Google Scholar

Magistri, M., Velmeshev, D., Makhmutova, M., Patel, P., Sartor, G.C., Volmar, C.H., Wahlestedt, C., and Faghihi, M.A. (2016). The BET-bromodomain inhibitor JQ1 reduces inflammation and tau phosphorylation at Ser396 in the brain of the 3xTg model of Alzheimer’s disease. Curr. Alzheimer Res. 13: 985–995, https://doi.org/10.2174/1567205013666160427101832.Search in Google Scholar

Majdan, M., Walsh, G.S., Aloyz, R., and Miller, F.D. (2001). TrkA mediates developmental sympathetic neuron survival in vivo by silencing an ongoing p75NTR-mediated death signal. J. Cell Biol. 155: 1275–1285, https://doi.org/10.1083/jcb.200110017.Search in Google Scholar

Majumder, P., Chanda, K., Das, D., Singh, B.K., Chakrabarti, P., Jana, N.R., and Mukhopadhyay, D. (2020). Transcriptional regulator PAX4 links receptor tyrosine kinases (RTKs) and cytoskeleton stability in Alzheimer’s disease and type 2 diabetes. bioRxiv, https://doi.org/10.1101/2020.01.26.920512v1.abstract.Search in Google Scholar

Marlier, Q., Verteneuil, S., Vandenbosch, R., and Malgrange, B. (2015). Mechanisms and functional significance of stroke-induced neurogenesis. Front. Neurosci. 9: 458, https://doi.org/10.3389/fnins.2015.00458.Search in Google Scholar

Marmorstein, R. and Zhou, M.M. (2014). Writers and readers of histone acetylation: structure, mechanism, and inhibition. Cold Spring Harbor Perspect. Biol. 6: a018762, https://doi.org/10.1101/cshperspect.a018762.Search in Google Scholar

Maroso, M., Balosso, S., Ravizza, T., Liu, J., Aronica, E., Iyer, A.M., Rossetti, C., Molteni, M., Casalgrandi, M., Manfredi, A.A., et al.. (2010). Toll-like receptor 4 and high-mobility group box-1 are involved in ictogenesis and can be targeted to reduce seizures. Nat. Med. 16: 413–419, https://doi.org/10.1038/nm.2127.Search in Google Scholar

Matsuda, M., Rand, K., Palardy, G., Shimizu, N., Ikeda, H., Dalle Nogare, D., Itoh, M., and Chitnis, A.B. (2016). Epb41l5 competes with delta as a substrate for Mib1 to coordinate specification and differentiation of neurons. Development 143: 3085–3096, https://doi.org/10.1242/dev.138743.Search in Google Scholar

Mattioli, F., Schaefer, E., Magee, A., Mark, P., Mancini, G.M., Dieterich, K., Von Allmen, G., Alders, M., Coutton, C., van Slegtenhorst, M., et al.. (2017). Mutations in histone acetylase modifier BRPF1 cause an autosomal-dominant form of intellectual disability with associated ptosis. Am. J. Hum. Genet. 100: 105–116, https://doi.org/10.1016/j.ajhg.2016.11.010.Search in Google Scholar

McCullagh, P., Chaplin, T., Meerabux, J., Grenzelias, D., Lillington, D., Poulsom, R., Gregorini, A., Saha, V., and Young, B.D. (1999). The cloning, mapping and expression of a novel gene, BRL, related to the AF10 leukaemia gene. Oncogene 18: 7442–7452, https://doi.org/10.1038/sj.onc.1203117.Search in Google Scholar

McWilliam, M., and Al Khalili, Y. (2019). Idiopathic generalized epilepsy. StatPearls Publishing, Treasure Island (FL), USA.Search in Google Scholar

Mertz, J.A., Conery, A.R., Bryant, B.M., Sandy, P., Balasubramanian, S., Mele, D.A., Bergeron, L., and Sims, R.J.3rd (2011). Targeting MYC dependence in cancer by inhibiting BET bromodomains. Proc. Natl. Acad. Sci. U.S.A. 108: 16669–16674, https://doi.org/10.1073/pnas.1108190108.Search in Google Scholar

Michels, A.A. and Bensaude, O. (2018). Hexim1, an RNA-controlled protein hub. Transcription 9: 262–271, https://doi.org/10.1080/21541264.2018.1429836.Search in Google Scholar

Miller, T.C.R., Simon, B., Rybin, V., Grötsch, H., Curtet, S., Khochbin, S., Carlomagno, T., and Müller, C.W. (2016). A bromodomain–DNA interaction facilitates acetylation-dependent bivalent nucleosome recognition by the BET protein BRDT. Nat. Commun. 7: 13855, https://doi.org/10.1038/ncomms13855.Search in Google Scholar

Mishima, Y., Miyagi, S., Saraya, A., Negishi, M., Endoh, M., Endo, T.A., Toyoda, T., Shinga, J., Katsumoto, T., Chiba, T., et al.. (2011). The Hbo1-Brd1/Brpf2 complex is responsible for global acetylation of H3K14 and required for fetal liver erythropoiesis. Blood 118: 2443–2453, https://doi.org/10.1182/blood-2011-01-331892.Search in Google Scholar

Moon, B.S., Yun, H.M., Chang, W.H., Steele, B.H., Cai, M., Choi, S.H., and Lu, W. (2017). Smek promotes corticogenesis through regulating Mbd3’s stability and Mbd3/NuRD complex recruitment to genes associated with neurogenesis. PLoS Biol. 15: e2001220, https://doi.org/10.1371/journal.pbio.2001220.Search in Google Scholar

Moore-Morris, T., van Vliet, P.P., Andelfinger, G., and Puceat, M. (2018). Role of epigenetics in cardiac development and congenital diseases. Physiol. Rev. 98: 2453–2475, https://doi.org/10.1152/physrev.00048.2017.Search in Google Scholar

Moosavi, A. and Motevalizadeh Ardekani, A. (2016). Role of epigenetics in biology and human diseases. Iran. Biomed. J. 20: 246–258, https://doi.org/10.22045/ibj.2016.01.Search in Google Scholar

Morgado-Pascual, J.L., Rayego-Mateos, S., Tejedor, L., Suarez-Alvarez, B., and Ruiz-Ortega, M. (2019). Bromodomain and extraterminal proteins as novel epigenetic targets for renal diseases. Front. Pharmacol. 10: 1315, https://doi.org/10.3389/fphar.2019.01315.Search in Google Scholar

Mufson, E.J., Counts, S.E., Ginsberg, S.D., Mahady, L., Perez, S.E., Massa, S.M., Longo, F.M., and Ikonomovic, M.D. (2019). Nerve growth factor pathobiology during the progression of Alzheimer’s disease. Front. Neurosci. 13, https://doi.org/10.3389/fnins.2019.00533.Search in Google Scholar

Mujtaba, S., Zeng, L., and Zhou, M.M. (2007). Structure and acetyl-lysine recognition of the bromodomain. Oncogene 26: 5521–5527, https://doi.org/10.1038/sj.onc.1210618.Search in Google Scholar

Müller, N. (2019). The role of intercellular adhesion molecule-1 in the pathogenesis of psychiatric disorders. Front. Pharmacol. 10, https://doi.org/10.3389/fphar.2019.01251.Search in Google Scholar

Muller, S., Filippakopoulos, P., and Knapp, S. (2011). Bromodomains as therapeutic targets. Expet Rev. Mol. Med. 13: e29, https://doi.org/10.1017/s1462399411001992.Search in Google Scholar

Nakaguro, M., Kiyonari, S., Kishida, S., Cao, D., Murakami-Tonami, Y., Ichikawa, H., Takeuchi, I., Nakamura, S., and Kadomatsu, K. (2015). Nucleolar protein PES1 is a marker of neuroblastoma outcome and is associated with neuroblastoma differentiation. Canc. Sci. 106: 237–243, https://doi.org/10.1111/cas.12598.Search in Google Scholar

Neumann, H., Schweigreiter, R., Yamashita, T., Rosenkranz, K., Wekerle, H., and Barde, Y.-A. (2002). Tumor necrosis factor inhibits neurite outgrowth and branching of hippocampal neurons by a Rho-dependent mechanism. J. Neurosci. 22: 854–862, https://doi.org/10.1523/jneurosci.22-03-00854.2002.Search in Google Scholar

Nguyen, M.V., Loof, L., and Falchook, G.S. (2020). Bromodomain and extra-terminal (BET) domain protein inhibitors for solid tumor cancers. J. Immunother. Precis. Oncol. 3: 16–22.10.4103/JIPO.JIPO_2_20Search in Google Scholar

Nicholas, D.A., Andrieu, G., Strissel, K.J., Nikolajczyk, B.S., and Denis, G.V. (2017). BET bromodomain proteins and epigenetic regulation of inflammation: implications for type 2 diabetes and breast cancer. Cell Mol. Life Sci. 74: 231–243, https://doi.org/10.1007/s00018-016-2320-0.Search in Google Scholar

Nicodeme, E., Jeffrey, K.L., Schaefer, U., Beinke, S., Dewell, S., Chung, C.W., Chandwani, R., Marazzi, I., Wilson, P., Coste, H., et al.. (2010). Suppression of inflammation by a synthetic histone mimic. Nature 468: 1119–1123, https://doi.org/10.1038/nature09589.Search in Google Scholar

Nobakht, M., Hoseini, S.M., Mortazavi, P., Sohrabi, I., Esmailzade, B., Rahbar Rooshandel, N., and Omidzahir, S. (2011). Neuropathological changes in brain cortex and hippocampus in a rat model of Alzheimer’s disease. Iran. Biomed. J. 15: 51–58.Search in Google Scholar

Noguchi-Yachide, T. (2016). BET bromodomain as a target of epigenetic therapy. Chem. Pharm. Bull. (Tokyo) 64: 540–547, https://doi.org/10.1248/cpb.c16-00225.Search in Google Scholar

Nyegaard, M., Severinsen, J.E., Als, T.D., Hedemand, A., Straarup, S., Nordentoft, M., McQuillin, A., Bass, N., Lawrence, J., Thirumalai, S., et al.. (2010). Support of association between BRD1 and both schizophrenia and bipolar affective disorder. Am. J. Med. Genet. B Neuropsychiatr. Genet. 153B: 582–591, https://doi.org/10.1002/ajmg.b.31023.Search in Google Scholar

Obi, J.O., Lubula, M.Y., Cornilescu, G., Henrickson, A., McGuire, K., Evans, C.M., Phillips, M., Boyson, S.P., Demeler, B., Markley, J.L., et al.. (2020). The BRPF1 bromodomain is a molecular reader of di-acetyllysine. Curr. Res. Struct. Biol. 2: 104–115, https://doi.org/10.1016/j.crstbi.2020.05.001.Search in Google Scholar

Ouchida, R., Kusuhara, M., Shimizu, N., Hisada, T., Makino, Y., Morimoto, C., Handa, H., Ohsuzu, F., and Tanaka, H. (2003). Suppression of NF-κB-dependent gene expression by a hexamethylene bisacetamide-inducible protein HEXIM1 in human vascular smooth muscle cells. Gene Cell. 8: 95–107, https://doi.org/10.1046/j.1365-2443.2003.00618.x.Search in Google Scholar

Pack, A.M. (2019). Epilepsy overview and revised classification of seizures and epilepsies. Continuum 25, 306-321, https://doi.org/10.1212/con.0000000000000707.Search in Google Scholar

Padmanabhan, B., Mathur, S., Manjula, R., and Tripathi, S. (2016). Bromodomain and extra-terminal (BET) family proteins: new therapeutic targets in major diseases. J. Biosci. 41: 295–311, https://doi.org/10.1007/s12038-016-9600-6.Search in Google Scholar

Pal, D.K., Evgrafov, O.V., Tabares, P., Zhang, F., Durner, M., and Greenberg, D.A. (2003). BRD2 (RING3) is a probable major susceptibility gene for common juvenile myoclonic epilepsy. Am. J. Hum. Genet. 73: 261–270, https://doi.org/10.1086/377006.Search in Google Scholar

Panaccione, I., Spalletta, G., and Sani, G. (2015). Neuroinflammation and excitatory symptoms in bipolar disorder. Neuroimmunol. Neuroinflammation 36: 40.Search in Google Scholar

Pang, C., Yang, H., Hu, B., Wang, S., Chen, M., Cohen, D.S., Chen, H.S., Jarrell, J.T., Carpenter, K.A., Rosin, E.R., et al.. (2019). Identification and analysis of Alzheimer’s candidate genes by an amplitude deviation algorithm. J. Alzheim. Dis. Park. 9: 460, https://doi.org/10.4172/2161-0460.1000460.10.4172/2161-0460.1000460Search in Google Scholar PubMed PubMed Central

Papavassiliou, K.A. and Papavassiliou, A.G. (2014). Bromodomains: pockets with therapeutic potential. Trends Mol. Med. 20: 477–478, https://doi.org/10.1016/j.molmed.2014.06.004.Search in Google Scholar

Patel, A., Rees, S.D., Kelly, M.A., Bain, S.C., Barnett, A.H., Thalitaya, D., and Prasher, V.P. (2011). Association of variants within APOE, SORL1, RUNX1, BACE1 and ALDH18A1 with dementia in Alzheimer’s disease in subjects with Down syndrome. Neurosci. Lett. 487: 144–148, https://doi.org/10.1016/j.neulet.2010.10.010.Search in Google Scholar

Patel, D.C., Wallis, G., Dahle, E.J., McElroy, P.B., Thomson, K.E., Tesi, R.J., Szymkowski, D.E., West, P.J., Smeal, R.M., Patel, M., et al.. (2017). Hippocampal TNFα signaling contributes to seizure generation in an infection-induced mouse model of limbic epilepsy. eNeuro 4, https://doi.org/10.1523/eneuro.0105-17.2017.Search in Google Scholar

Patel, K.R., Cherian, J., Gohil, K., and Atkinson, D. (2014). Schizophrenia: overview and treatment options. Pharmacol. Ther. 39: 638–645.10.1111/apt.12628Search in Google Scholar

Paternoster, V., Svanborg, M., Edhager, A.V., Rajkumar, A.P., Eickhardt, E.A., Pallesen, J., Grove, J., Qvist, P., Fryland, T., Wegener, G., et al.. (2019). Brain proteome changes in female Brd1(+/−) mice unmask dendritic spine pathology and show enrichment for schizophrenia risk. Neurobiol. Dis. 124: 479–488, https://doi.org/10.1016/j.nbd.2018.12.011.Search in Google Scholar

Pathak, S., Miller, J., Morris, E.C., Stewart, W.C.L., and Greenberg, D.A. (2018). DNA methylation of the BRD2 promoter is associated with juvenile myoclonic epilepsy in Caucasians. Epilepsia 59: 1011–1019, https://doi.org/10.1111/epi.14058.Search in Google Scholar

Peleg, S., Sananbenesi, F., Zovoilis, A., Burkhardt, S., Bahari-Javan, S., Agis-Balboa, R.C., Cota, P., Wittnam, J.L., Gogol-Doering, A., and Opitz, L. (2010). Altered histone acetylation is associated with age-dependent memory impairment in mice. Science 328: 753–756, https://doi.org/10.1126/science.1186088.Search in Google Scholar

Penas, C., Maloof, M.E., Stathias, V., Long, J., Tan, S.K., Mier, J., Fang, Y., Valdes, C., Rodriguez-Blanco, J., Chiang, C.-M., et al.. (2019). Time series modeling of cell cycle exit identifies Brd4 dependent regulation of cerebellar neurogenesis. Nat. Commun. 10: 3028, https://doi.org/10.1038/s41467-019-10799-5.Search in Google Scholar

Perez-Salvia, M. and Esteller, M. (2017). Bromodomain inhibitors and cancer therapy: from structures to applications. Epigenetics 12: 323–339, https://doi.org/10.1080/15592294.2016.1265710.Search in Google Scholar

Planchamp, V., Bermel, C., Tönges, L., Ostendorf, T., Kügler, S., Reed, J.C., Kermer, P., Bähr, M., and Lingor, P. (2008). BAG1 promotes axonal outgrowth and regeneration in vivo via Raf-1 and reduction of ROCK activity. Brain 131: 2606–2619, https://doi.org/10.1093/brain/awn196.Search in Google Scholar

Pode-Shakked, N., Barel, O., Pode-Shakked, B., Eliyahu, A., Singer, A., Nayshool, O., Kol, N., Raas-Rothschild, A., Pras, E., and Shohat, M. (2019). BRPF1-associated intellectual disability, ptosis, and facial dysmorphism in a multiplex family. Mol. Genet. Genomic Med. 7: e665, https://doi.org/10.1002/mgg3.665.Search in Google Scholar

Poirier, K., Hubert, L., Viot, G., Rio, M., Billuart, P., Besmond, C., and Bienvenu, T. (2017). CSNK2B splice site mutations in patients cause intellectual disability with or without myoclonic epilepsy. Hum. Mutat. 38, https://doi.org/10.1002/humu.23270.Search in Google Scholar

Poplawski, A., Hu, K., Lee, W., Natesan, S., Peng, D., Carlson, S., Shi, X., Balaz, S., Markley, J.L., and Glass, K.C. (2014). Molecular insights into the recognition of N-terminal histone modifications by the BRPF1 bromodomain. J. Mol. Biol. 426: 1661–1676, https://doi.org/10.1016/j.jmb.2013.12.007.Search in Google Scholar

Potash, J.B. and Bienvenu, O.J. (2009). Shared genetics of bipolar disorder and schizophrenia. Nat. Rev. Neurol. 5: 299–300, https://doi.org/10.1038/nrneurol.2009.71.Search in Google Scholar

Pristera, A., Lin, W., Kaufmann, A.K., Brimblecombe, K.R., Threlfell, S., Dodson, P.D., Magill, P.J., Fernandes, C., Cragg, S.J., and Ang, S.L. (2015). Transcription factors FOXA1 and FOXA2 maintain dopaminergic neuronal properties and control feeding behavior in adult mice. Proc. Natl. Acad. Sci. U.S.A. 112: E4929–4938, https://doi.org/10.1073/pnas.1503911112.Search in Google Scholar

Purcell, S.M., Wray, N.R., Stone, J.L., Visscher, P.M., O’Donovan, M.C., Sullivan, P.F., Sklar, P., Purcell, S.M., Stone, J.L., Sullivan, P.F., et al.. (2009). Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature 460: 748–752.10.1038/nature08185Search in Google Scholar PubMed PubMed Central

Qvist, P., Christensen, J.H., Vardya, I., Rajkumar, A.P., Mork, A., Paternoster, V., Fuchtbauer, E.M., Pallesen, J., Fryland, T., Dyrvig, M., et al.. (2017a). The schizophrenia-associated BRD1 gene regulates behavior, neurotransmission, and expression of schizophrenia risk enriched gene sets in mice. Biol. Psychiatr. 82: 62–76, https://doi.org/10.1016/j.biopsych.2016.08.037.Search in Google Scholar

Qvist, P., Eskildsen, S.F., Hansen, B., Baragji, M., Ringgaard, S., Roovers, J., Paternoster, V., Molgaard, S., Corydon, T.J., Stodkilde-Jorgensen, H., et al.. (2018). Brain volumetric alterations accompanied with loss of striatal medium-sized spiny neurons and cortical parvalbumin expressing interneurons in Brd1(+/-) mice. Sci. Rep. 8: 16486, https://doi.org/10.1038/s41598-018-34729-5.Search in Google Scholar

Qvist, P., Rajkumar, A.P., Redrobe, J.P., Nyegaard, M., Christensen, J.H., Mors, O., Wegener, G., Didriksen, M., and Borglum, A.D. (2017b). Mice heterozygous for an inactivated allele of the schizophrenia associated Brd1 gene display selective cognitive deficits with translational relevance to schizophrenia. Neurobiol. Learn. Mem. 141: 44–52, https://doi.org/10.1016/j.nlm.2017.03.009.Search in Google Scholar

Radtke, F.A., Chapman, G., Hall, J., and Syed, Y.A. (2017). Modulating neuroinflammation to treat neuropsychiatric disorders. Biomed. Res. Int. 2017: 5071786, https://doi.org/10.1155/2017/5071786.Search in Google Scholar

Raivich, G., Bohatschek, M., Da Costa, C., Iwata, O., Galiano, M., Hristova, M., Nateri, A.S., Makwana, M., Riera-Sans, L., Wolfer, D.P., et al.. (2004). The AP-1 transcription factor c-Jun is required for efficient axonal regeneration. Neuron 43: 57–67, https://doi.org/10.1016/j.neuron.2004.06.005.Search in Google Scholar

Rajkumar, A.P., Qvist, P., Larsen, S.H., Lazarus, R., Pallesen, J., Nava, N., Winther, G., Liebenberg, N., Paternoster, V., Fryland, T., et al.. (2018). The neurobiology of BRD1 implicates sex-biased dysregulation of nuclear receptor signaling in mental disorders. bioRxiv: 257170.10.1101/257170Search in Google Scholar

Rana, A. and Musto, A.E. (2018). The role of inflammation in the development of epilepsy. J. Neuroinflammation 15: 144, https://doi.org/10.1186/s12974-018-1192-7.Search in Google Scholar

Rao, J.S., Keleshian, V.L., Klein, S., and Rapoport, S.I. (2012). Epigenetic modifications in frontal cortex from Alzheimer’s disease and bipolar disorder patients. Transl. Psychiatry 2: e132, https://doi.org/10.1038/tp.2012.55.Search in Google Scholar

Raychaudhuri, M. and Mukhopadhyay, D. (2010). Grb2-mediated alteration in the trafficking of AbetaPP: insights from Grb2-AICD interaction. J. Alzheim. Dis. 20: 275–292, https://doi.org/10.3233/jad-2010-1371.Search in Google Scholar

Rosato, M., Stringer, S., Gebuis, T., Paliukhovich, I., Li, K.W., Posthuma, D., Sullivan, P.F., Smit, A.B., and van Kesteren, R.E. (2019). Combined cellomics and proteomics analysis reveals shared neuronal morphology and molecular pathway phenotypes for multiple schizophrenia risk genes. Mol. Psychiatr.: 1–6, https://doi.org/10.1038/s41380-019-0436-y.Search in Google Scholar

Roth, T.L., Lubin, F.D., Sodhi, M., and Kleinman, J.E. (2009). Epigenetic mechanisms in schizophrenia. Biochim. Biophys. Acta 1790: 869–877, https://doi.org/10.1016/j.bbagen.2009.06.009.Search in Google Scholar

Ryou, M.G. and Mallet, R.T. (2018). An in vitro oxygen-glucose deprivation model for studying ischemia-reperfusion injury of neuronal cells. Methods Mol. Biol. 1717: 229–235, https://doi.org/10.1007/978-1-4939-7526-6_18.Search in Google Scholar

Sakamaki, J.I., Wilkinson, S., Hahn, M., Tasdemir, N., O’Prey, J., Clark, W., Hedley, A., Nixon, C., Long, J.S., New, M., et al.. (2017). Bromodomain protein BRD4 is a transcriptional repressor of autophagy and lysosomal function. Mol. Cell 66: 517–532.e519, https://doi.org/10.1016/j.molcel.2017.04.027.Search in Google Scholar

Sanchez, R., Meslamani, J., and Zhou, M.M. (2014). The bromodomain: from epigenome reader to druggable target. Biochim. Biophys. Acta 1839: 676–685, https://doi.org/10.1016/j.bbagrm.2014.03.011.Search in Google Scholar

Sander, T., Bockenkamp, B., Hildmann, T., Blasczyk, R., Kretz, R., Wienker, T.F., Volz, A., Schmitz, B., Beck-Mannagetta, G., Riess, O., et al.. (1997). Refined mapping of the epilepsy susceptibility locus EJM1 on chromosome 6. Neurology 49: 842–847, https://doi.org/10.1212/wnl.49.3.842.Search in Google Scholar

Santos, B.P.D., Marinho, C.R.M., Marques, T., Angelo, L.K.G., Malta, M., Duzzioni, M., Castro, O.W., Leite, J.P., Barbosa, F.T., and Gitaí, D.L.G. (2017). Genetic susceptibility in juvenile myoclonic epilepsy: systematic review of genetic association studies. PLoS One 12: e0179629, https://doi.org/10.1371/journal.pone.0179629.Search in Google Scholar

Santpere, G., Nieto, M., Puig, B., and Ferrer, I. (2006). Abnormal Sp1 transcription factor expression in Alzheimer disease and tauopathies. Neurosci. Lett. 397: 30–34, https://doi.org/10.1016/j.neulet.2005.11.062.Search in Google Scholar

Scheffer, I.E., Berkovic, S., Capovilla, G., Connolly, M.B., French, J., Guilhoto, L., Hirsch, E., Jain, S., Mathern, G.W., Moshe, S.L., et al.. (2017). ILAE classification of the epilepsies: position paper of the ILAE commission for classification and terminology. Epilepsia 58: 512–521, https://doi.org/10.1111/epi.13709.Search in Google Scholar

Schmitt, M. and Matthies, H. (1979). Biochemical studies on histones of the central nervous system. III. Incorporation of [14C]-acetate into the histones of different rat brain regions during a learning experiment. Acta Biol. Med. Ger. 38: 683–689.Search in Google Scholar

Schupf, N., Lee, A., Park, N., Dang, L.H., Pang, D., Yale, A., Oh, D.K., Krinsky-McHale, S.J., Jenkins, E.C., Luchsinger, J.A., et al.. (2015). Candidate genes for Alzheimer’s disease are associated with individual differences in plasma levels of β amyloid peptides in adults with Down syndrome. Neurobiol. Aging 36: 2907.e2901–2910, https://doi.org/10.1016/j.neurobiolaging.2015.06.020.Search in Google Scholar

Severinsen, J.E., Bjarkam, C.R., Kiaer-Larsen, S., Olsen, I.M., Nielsen, M.M., Blechingberg, J., Nielsen, A.L., Holm, I.E., Foldager, L., Young, B.D., et al.. (2006). Evidence implicating BRD1 with brain development and susceptibility to both schizophrenia and bipolar affective disorder. Mol. Psychiatr. 11: 1126–1138, https://doi.org/10.1038/sj.mp.4001885.Search in Google Scholar

Shang, E., Cui, Q., Wang, X., Beseler, C., Greenberg, D.A., and Wolgemuth, D.J. (2011). The bromodomain-containing gene BRD2 is regulated at transcription, splicing, and translation levels. J. Cell Biochem. 112: 2784–2793, https://doi.org/10.1002/jcb.23192.Search in Google Scholar

Shang, E., Wang, X., Wen, D., Greenberg, D.A., and Wolgemuth, D.J. (2009). Double bromodomain-containing gene Brd2 is essential for embryonic development in mouse. Dev. Dynam. 238: 908–917, https://doi.org/10.1002/dvdy.21911.Search in Google Scholar

Shawkatová, I., Javor, J., Párnická, Z., Minárik, G., Vašečková, B., Králová, M., Pečeňák, J., Režnáková, V., Filipčík, P., and Ďurmanová, V. (2019). ICAM1 gene polymorphism in late-onset Alzheimer’s disease. Biologia 74: 1531–1538, https://doi.org/10.2478/s11756-019-00295-y.Search in Google Scholar

Sheu, J.-R., Hsieh, C.-Y., Jayakumar, T., Tseng, M.-F., Lee, H.-N., Huang, S.-W., Manubolu, M., and Yang, C.-H. (2019). A critical period for the development of schizophrenia-like pathology by aberrant postnatal neurogenesis. Front. Neurosci. 13, https://doi.org/10.3389/fnins.2019.00635.Search in Google Scholar

Shilkina, O., Shnayder, N., Zobova, S., Dmitrenko, D., and Moskaleva, P. (2019). Association of the carriage of BRD2 rs206787 and rs516535 and GJD2 rs3743123 polymorphisms with juvenile myoclonic epilepsy in Caucasian patients of Siberia. Neurol. Neuropsychiatr. Psychosom. 11: 61–67, https://doi.org/10.14412/2074-2711-2019-4-61-67.Search in Google Scholar

Skaper, S.D., Facci, L., Zusso, M., and Giusti, P. (2018). An inflammation-centric view of neurological disease: beyond the neuron. Front. Cell Neurosci. 12: 72, https://doi.org/10.3389/fncel.2018.00072.Search in Google Scholar

Sladojevic, N., Stamatovic, S.M., Johnson, A.M., Choi, J., Hu, A., Dithmer, S., Blasig, I.E., Keep, R.F., and Andjelkovic, A.V. (2019). Claudin-1-dependent destabilization of the blood-brain barrier in chronic stroke. J. Neurosci. 39: 743–757, https://doi.org/10.1523/jneurosci.1432-18.2018.Search in Google Scholar

Spiltoir, J.I., Stratton, M.S., Cavasin, M.A., Demos-Davies, K., Reid, B.G., Qi, J., Bradner, J.E., and McKinsey, T.A. (2013). BET acetyl-lysine binding proteins control pathological cardiac hypertrophy. J. Mol. Cell Cardiol. 63: 175–179, https://doi.org/10.1016/j.yjmcc.2013.07.017.Search in Google Scholar

Su, Y., Liu, J., Yu, B., Ba, R., and Zhao, C. (2019). Brpf1 haploinsufficiency impairs dendritic arborization and spine formation, leading to cognitive deficits. Front. Cell Neurosci. 13: 249, https://doi.org/10.3389/fncel.2019.00249.Search in Google Scholar

Sullivan, J.M., Badimon, A., Schaefer, U., Ayata, P., Gray, J., Chung, C.W., von Schimmelmann, M., Zhang, F., Garton, N., Smithers, N., et al.. (2015). Autism-like syndrome is induced by pharmacological suppression of BET proteins in young mice. J. Exp. Med. 212: 1771–1781, https://doi.org/10.1084/jem.20151271.Search in Google Scholar

Sun, H., Kennedy, P.J., and Nestler, E.J. (2013). Epigenetics of the depressed brain: role of histone acetylation and methylation. Neuropsychopharmacology 38: 124–137, https://doi.org/10.1038/npp.2012.73.Search in Google Scholar

Swathy, B. and Banerjee, M. (2017). Understanding epigenetics of schizophrenia in the backdrop of its antipsychotic drug therapy. Epigenomics 9: 721–736, https://doi.org/10.2217/epi-2016-0106.Search in Google Scholar

Tamkun, J.W., Deuring, R., Scott, M.P., Kissinger, M., Pattatucci, A.M., Kaufman, T.C., and Kennison, J.A. (1992). Brahma: a regulator of Drosophila homeotic genes structurally related to the yeast transcriptional activator SNF2SWI2. Cell 68: 561–572, https://doi.org/10.1016/0092-8674(92)90191-e.Search in Google Scholar

Tang, B., Dean, B., and Thomas, E.A. (2011). Disease- and age-related changes in histone acetylation at gene promoters in psychiatric disorders. Transl. Psychiatry 1: e64, https://doi.org/10.1038/tp.2011.61.Search in Google Scholar

Tapias, A. and Wang, Z.Q. (2017). Lysine acetylation and deacetylation in brain development and neuropathies. Genom. Proteomics Bioinf. 15: 19–36, https://doi.org/10.1016/j.gpb.2016.09.002.Search in Google Scholar

Tauer, U., Lorenz, S., Lenzen, K.P., Heils, A., Muhle, H., Gresch, M., Neubauer, B.A., Waltz, S., Rudolf, G., Mattheisen, M., et al.. (2005). Genetic dissection of photosensitivity and its relation to idiopathic generalized epilepsy. Ann. Neurol. 57: 866–873, https://doi.org/10.1002/ana.20500.Search in Google Scholar

Thompson, K.A., Wang, B., Argraves, W.S., Giancotti, F.G., Schranck, D.P., and Ruoslahti, E. (1994). BR140, a novel zinc-finger protein with homology to the TAF250 subunit of TFIID. Biochem. Biophys. Res. Commun. 198: 1143–1152, https://doi.org/10.1006/bbrc.1994.1162.Search in Google Scholar

Tiwari, S., Atluri, V., Kaushik, A., Yndart, A., and Nair, M. (2019). Alzheimer’s disease: pathogenesis, diagnostics, and therapeutics. Int. J. Nanomed. 14: 5541–5554, https://doi.org/10.2147/ijn.s200490.Search in Google Scholar

Tong, B., Luo, M., Xie, Y., Spradlin, J.N., Tallarico, J.A., McKenna, J.M., Schirle, M., Maimone, T.J., and Nomura, D.K. (2020). Bardoxolone conjugation enables targeted protein degradation of BRD4. Sci. Rep. 10: 15543, https://doi.org/10.1038/s41598-020-72491-9.Search in Google Scholar

Tsankova, N., Renthal, W., Kumar, A., and Nestler, E.J. (2007). Epigenetic regulation in psychiatric disorders. Nat. Rev. Neurosci. 8: 355–367, https://doi.org/10.1038/nrn2132.Search in Google Scholar

Tsujikawa, L.M., Fu, L., Das, S., Halliday, C., Rakai, B.D., Stotz, S.C., Sarsons, C.D., Gilham, D., Daze, E., Wasiak, S., et al.. (2019). Apabetalone (RVX-208) reduces vascular inflammation in vitro and in CVD patients by a BET-dependent epigenetic mechanism. Clin. Epigenet. 11: 102, https://doi.org/10.1186/s13148-019-0696-z.Search in Google Scholar

Tzika, E., Dreker, T., and Imhof, A. (2018). Epigenetics and metabolism in health and disease. Front. Genet. 9: 361, https://doi.org/10.3389/fgene.2018.00361.Search in Google Scholar

Ulland, T.K. and Colonna, M. (2018). TREM2 - a key player in microglial biology and Alzheimer disease. Nat. Rev. Neurol. 14: 667–675, https://doi.org/10.1038/s41582-018-0072-1.Search in Google Scholar

Umemura, Y., Koike, N., Matsumoto, T., Yoo, S.H., Chen, Z., Yasuhara, N., Takahashi, J.S., and Yagita, K. (2014). Transcriptional program of Kpna2/Importin-α2 regulates cellular differentiation-coupled circadian clock development in mammalian cells. Proc. Natl. Acad. Sci. U.S.A. 111: E5039–5048, https://doi.org/10.1073/pnas.1419272111.Search in Google Scholar

Uzuneser, T.C., Speidel, J., Kogias, G., Wang, A.-L., de Souza Silva, M.A., Huston, J.P., Zoicas, I., von Hörsten, S., Kornhuber, J., Korth, C., et al.. (2019). Disrupted-in-schizophrenia 1 (DISC1) overexpression and juvenile immune activation cause sex-specific schizophrenia-related psychopathology in rats. Front. Psychiatr. 10, https://doi.org/10.3389/fpsyt.2019.00222.Search in Google Scholar

Valor, L.M., Viosca, J., Lopez-Atalaya, J.P., and Barco, A. (2013). Lysine acetyltransferases CBP and p300 as therapeutic targets in cognitive and neurodegenerative disorders. Curr. Pharmaceut. Des. 19: 5051–5064, https://doi.org/10.2174/13816128113199990382.Search in Google Scholar

Valvezan, A. and Klein, P. (2012). GSK-3 and Wnt signaling in neurogenesis and bipolar disorder. Front. Mol. Neurosci. 5: 1, https://doi.org/10.3389/fnmol.2012.00001.Search in Google Scholar

Vasileiou, G., Vergarajauregui, S., Endele, S., Popp, B., Büttner, C., Ekici, A.B., Gerard, M., Bramswig, N.C., Albrecht, B., Clayton-Smith, J., et al.. (2018). Mutations in the BAF-complex subunit DPF2 are associated with Coffin-Siris syndrome. Am. J. Hum. Genet. 102: 468–479, https://doi.org/10.1016/j.ajhg.2018.01.014.Search in Google Scholar

Velíšek, L., Shang, E., Velíšková, J., Chachua, T., Macchiarulo, S., Maglakelidze, G., Wolgemuth, D.J., and Greenberg, D.A. (2011). GABAergic neuron deficit as an idiopathic generalized epilepsy mechanism: the role of BRD2 haploinsufficiency in juvenile myoclonic epilepsy. PLoS One 6: e23656.10.1371/journal.pone.0023656Search in Google Scholar PubMed PubMed Central

Vezzani, A., Balosso, S., and Ravizza, T. (2019). Neuroinflammatory pathways as treatment targets and biomarkers in epilepsy. Nat. Rev. Neurol. 15: 459–472, https://doi.org/10.1038/s41582-019-0217-x.Search in Google Scholar

Vezzani, A., French, J., Bartfai, T., and Baram, T.Z. (2011). The role of inflammation in epilepsy. Nat. Rev. Neurol. 7: 31–40, https://doi.org/10.1038/nrneurol.2010.178.Search in Google Scholar

Waddington, C.H. (1939). An introduction to modern genetics. MacMillan, New York.10.5962/bhl.title.6461Search in Google Scholar

Wahul, A., Joshi, P., Kumar, A., and Chakravarty, S. (2018). Transient global cerebral ischemia differentially affects cortex, striatum and hippocampus in bilateral common carotid arterial occlusion (BCCAo) mouse model. J. Chem. Neuroanat. 92, https://doi.org/10.1016/j.jchemneu.2018.04.006.Search in Google Scholar

Walker, J., Curtis, V., and Murray, R.M. (2002). Schizophrenia and bipolar disorder: similarities in pathogenic mechanisms but differences in neurodevelopment. Int. Clin. Psychopharmacol. 17(Suppl 3): S11–19.Search in Google Scholar

Wang, C., Zhang, F., Jiang, S., Siedlak, S.L., Shen, L., Perry, G., Wang, X., Tang, B., and Zhu, X. (2016). Estrogen receptor-α is localized to neurofibrillary tangles in Alzheimer’s disease. Sci. Rep. 6: 20352, https://doi.org/10.1038/srep20352.Search in Google Scholar

Wang, H., Huang, W., Liang, M., Shi, Y., Zhang, C., Li, Q., Liu, M., Shou, Y., Yin, H., Zhu, X., et al.. (2018). (+)-JQ1 attenuated LPS-induced microglial inflammation via MAPK/NF-κB signaling. Cell Biosci. 8: 60, https://doi.org/10.1186/s13578-018-0258-7.Search in Google Scholar

Wang, J.W. and Stifani, S. (2017). Roles of runx genes in nervous system development. Adv. Exp. Med. Biol. 962: 103–116, https://doi.org/10.1007/978-981-10-3233-2_8.Search in Google Scholar

Wang, Q., Sun, Y., Li, T., Liu, L., Zhao, Y., Li, L., Zhang, L., and Meng, Y. (2019). Function of BRD4 in the pathogenesis of high glucoseinduced cardiac hypertrophy. Mol. Med. Rep. 19: 499–507.10.3892/mmr.2018.9681Search in Google Scholar

Wang, Z., Su, Y., Zhuang, D., and Lan, T. (2020). The role of EZH2 inhibitor, GSK-126, in seizure susceptibility. J. Mol. Neurosci.: 1–19, https://doi.org/10.1007/s12031-020-01677-7.Search in Google Scholar

Waring, M.J., Chen, H., Rabow, A.A., Walker, G., Bobby, R., Boiko, S., Bradbury, R.H., Callis, R., Clark, E., Dale, I., et al.. (2016). Potent and selective bivalent inhibitors of BET bromodomains. Nat. Chem. Biol. 12: 1097–1104, https://doi.org/10.1038/nchembio.2210.Search in Google Scholar

Weiss, K., Terhal, P.A., Cohen, L., Bruccoleri, M., Irving, M., Martinez, A.F., Rosenfeld, J.A., Machol, K., Yang, Y., Liu, P., et al.. (2016). De novo mutations in CHD4, an ATP-dependent chromatin remodeler gene, cause an intellectual disability syndrome with distinctive dysmorphisms. Am. J. Hum. Genet. 99: 934–941, https://doi.org/10.1016/j.ajhg.2016.08.001.Search in Google Scholar

Wever, I., von Oerthel, L., Wagemans, C.M.R.J., and Smidt, M.P. (2019). EZH2 influences mdDA neuronal differentiation, maintenance and survival. Front. Mol. Neurosci. 11, https://doi.org/10.3389/fnmol.2018.00491.Search in Google Scholar

Wille, A., Maurer, V., Piatti, P., Whittle, N., Rieder, D., Singewald, N., and Lusser, A. (2015). Impaired contextual fear extinction learning is associated with aberrant regulation of CHD-type chromatin remodeling factors. Front. Behav. Neurosci. 9, https://doi.org/10.3389/fnbeh.2015.00313.Search in Google Scholar

Wilson, A.G. (2008). Epigenetic regulation of gene expression in the inflammatory response and relevance to common diseases. J. Periodontol. 79: 1514–1519, https://doi.org/10.1902/jop.2008.080172.Search in Google Scholar

Wirths, O. (2017). Altered neurogenesis in mouse models of Alzheimer disease. Neurogenesis (Austin) 4: e1327002, https://doi.org/10.1080/23262133.2017.1327002.Search in Google Scholar

Wolf, P. and Goosses, R. (1986). Relation of photosensitivity to epileptic syndromes. J. Neurol. Neurosurg. Psychiatr. 49: 1386–1391, https://doi.org/10.1136/jnnp.49.12.1386.Search in Google Scholar

Wood, I.C. (2018). The contribution and therapeutic potentical of epigenetic modifications in Alzheimer’s disease. Front. Neurosci. 12: 649, https://doi.org/10.3389/fnins.2018.00649.Search in Google Scholar

Wu, M.V. and Tollkuhn, J. (2017). Estrogen receptor alpha is required in GABAergic, but not glutamatergic, neurons to masculinize the brain. bioRxiv: 114835.10.1101/114835Search in Google Scholar

Wu, Q., Heidenreich, D., Zhou, S., Ackloo, S., Kramer, A., Nakka, K., Lima-Fernandes, E., Deblois, G., Duan, S., Vellanki, R.N., et al.. (2019). A chemical toolbox for the study of bromodomains and epigenetic signaling. Nat. Commun. 10: 1915, https://doi.org/10.1038/s41467-019-09672-2.Search in Google Scholar

Wynshaw-Boris, A. (2009). Elongator bridges tubulin acetylation and neuronal migration. Cell 136: 393–394, https://doi.org/10.1016/j.cell.2009.01.024.Search in Google Scholar

Xu, F., Bi, Y., Ren, D., Zhu, Y., Hu, J., Yuan, F., Yuan, R., Ma, G., Niu, W., Guo, Z., et al.. (2018). No association of BRD1 and ZBED4 polymorphisms with schizophrenia in the Chinese Han population. Psychiatr. Genet. 28: 73–74, https://doi.org/10.1097/ypg.0000000000000200.Search in Google Scholar

Yan, K., Rousseau, J., Littlejohn, R.O., Kiss, C., Lehman, A., Rosenfeld, J.A., Stumpel, C.T.R., Stegmann, A.P.A., Robak, L., Scaglia, F., et al.. (2017). Mutations in the chromatin regulator gene BRPF1 cause syndromic intellectual disability and deficient histone acetylation. Am. J. Hum. Genet. 100: 91–104, https://doi.org/10.1016/j.ajhg.2016.11.011.Search in Google Scholar

Yan, K., Rousseau, J., Machol, K., Cross, L.A., Agre, K.E., Gibson, C.F., Goverde, A., Engleman, K.L., Verdin, H., De Baere, E., et al.. (2020). Deficient histone H3 propionylation by BRPF1-KAT6 complexes in neurodevelopmental disorders and cancer. Sci. Adv. 6: eaax0021, https://doi.org/10.1126/sciadv.aax0021.Search in Google Scholar

Yang, X.J. (2015). MOZ and MORF acetyltransferases: molecular interaction, animal development and human disease. Biochim. Biophys. Acta 1853: 1818–1826, https://doi.org/10.1016/j.bbamcr.2015.04.014.Search in Google Scholar

You, L., Yan, K., Zou, J., Zhao, H., Bertos, N.R., Park, M., Wang, E., and Yang, X.J. (2015a). The lysine acetyltransferase activator Brpf1 governs dentate gyrus development through neural stem cells and progenitors. PLoS Genet. 11: e1005034, https://doi.org/10.1371/journal.pgen.1005034.Search in Google Scholar

You, L., Zou, J., Zhao, H., Bertos, N.R., Park, M., Wang, E., and Yang, X.J. (2015b). Deficiency of the chromatin regulator BRPF1 causes abnormal brain development. J. Biol. Chem. 290: 7114–7129, https://doi.org/10.1074/jbc.m114.635250.Search in Google Scholar

Zhang, M., Zhang, Y., Xu, Q., Crawford, J., Qian, C., Wang, G.-H., Lewis, E., Hall, P., Dolen, G., Huganir, R.L., et al.. (2019). Neuronal histone methyltransferase EZH2 regulates neuronal morphogenesis, synaptic plasticity, and cognitive behavior of mice. bioRxiv: 582908.10.1101/582908Search in Google Scholar

Zhang, Y. (2011). Pax6/c-Myb regulates neuronal apoptosis in a mouse model of Alzheimer’s disease, HKU Theses Online (HKUTO). Pokfulam, Hong Kong, The University of Hong Kong.10.5353/th_b4733114Search in Google Scholar

Zhao, Z., Cao, L., and Reece, E.A. (2017). Formation of neurodegenerative aggresome and death-inducing signaling complex in maternal diabetes-induced neural tube defects. Proc. Natl. Acad. Sci. U.S.A. 114: 4489–4494, https://doi.org/10.1073/pnas.1616119114.Search in Google Scholar

Zhou, J., Li, J., Rosenbaum, D.M., Zhuang, J., Poon, C., Qin, P., Rivera, K., Lepore, J., Willette, R.N., Hu, E., et al.. (2017). The prolyl 4-hydroxylase inhibitor GSK360A decreases post-stroke brain injury and sensory, motor, and cognitive behavioral deficits. PLoS One 12: e0184049, https://doi.org/10.1371/journal.pone.0184049.Search in Google Scholar

Zhou, R., Gray, N.A., Yuan, P., Li, X., Chen, J., Chen, G., Damschroder-Williams, P., Du, J., Zhang, L., and Manji, H.K. (2005). The anti-apoptotic, glucocorticoid receptor cochaperone protein BAG-1 is a long-term target for the actions of mood stabilizers. J. Neurosci. 25: 4493–4502, https://doi.org/10.1523/jneurosci.4530-04.2005.Search in Google Scholar

Zhou, Y., Gu, Y., and Liu, J. (2019). BRD4 suppression alleviates cerebral ischemia-induced brain injury by blocking glial activation via the inhibition of inflammatory response and pyroptosis. Biochem. Biophys. Res. Commun. 519: 481–488, https://doi.org/10.1016/j.bbrc.2019.07.097.Search in Google Scholar

Zhuang, B., Su, Y.S., and Sockanathan, S. (2009). FARP1 promotes the dendritic growth of spinal motor neuron subtypes through transmembrane Semaphorin6A and PlexinA4 signaling. Neuron 61: 359–372, https://doi.org/10.1016/j.neuron.2008.12.022.Search in Google Scholar

Zigman, W., Schupf, N., Haveman, M., and Silverman, W. (1997). The epidemiology of Alzheimer disease in intellectual disability: results and recommendations from an international conference. J. Intellect. Disabil. Res. 41: 76–80, https://doi.org/10.1111/j.1365-2788.1997.tb00679.x.Search in Google Scholar

Zinin, N., Adameyko, I., Wilhelm, M., Fritz, N., Uhlén, P., Ernfors, P., and Henriksson, M.A. (2014). MYC proteins promote neuronal differentiation by controlling the mode of progenitor cell division. EMBO Rep. 15: 383–391, https://doi.org/10.1002/embr.201337424.Search in Google Scholar

Zuber, J., Shi, J., Wang, E., Rappaport, A.R., Herrmann, H., Sison, E.A., Magoon, D., Qi, J., Blatt, K., Wunderlich, M., et al.. (2011). RNAi screen identifies Brd4 as a therapeutic target in acute myeloid leukaemia. Nature 478: 524–528, https://doi.org/10.1038/nature10334.Search in Google Scholar

Received: 2020-07-08
Accepted: 2020-10-11
Published Online: 2021-01-05
Published in Print: 2021-06-25

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 28.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/revneuro-2020-0067/html?lang=en
Scroll to top button