Home Brain metabolic DNA: recent evidence for a mitochondrial connection
Article
Licensed
Unlicensed Requires Authentication

Brain metabolic DNA: recent evidence for a mitochondrial connection

  • Antonio Giuditta EMAIL logo , Gigliola Grassi Zucconi and Adolfo Sadile
Published/Copyright: August 31, 2020
Become an author with De Gruyter Brill

Abstract

This review highlights recent data concerning the synthesis of brain metabolic DNA (BMD) by cytoplasmic reverse transcription and the prompt acquisition of the double-stranded configuration that allows its partial transfer to nuclei. BMD prevails in the mitochondrial fraction and is present in presynaptic regions and astroglial processes where it undergoes a turnover lasting a few weeks. Additional data demonstrate that BMD sequences are modified by learning, thus indicating that the modified synaptic activity allowing proper brain responses is encoded in learning BMD. In addition, several converging observations regarding the origin of BMD strongly suggest that BMD is reverse transcribed by mitochondrial telomerase.


Corresponding author: Antonio Giuditta, Accademia di Scienze Fisiche e Matematiche, Via Mezzocannone 8, Naples, I-80134, Italy, E-mail:
Dedicated to the Author of life and music, and to Ezio Bosso who believed that understanding life and music requires togetherness.

Acknowledgments

We warmly thank Prof. Carla Perrone Capano and Marianna Crispino from the Federico II University in Naples, Italy, for their improving comments to our article.

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflict of interest.

References

Ambrosini, M.V., Sadile, A.G., Gironi Carnevale, U.A., Mattiaccio, M., and Giuditta, A. (1988). The sequential hypothesis on sleep function. II. A correlative study between sleep variables and newly synthesized brain DNA. Physiol. Behav. 43: 339–350, https://doi.org/10.1016/0031-9384(88)90197-7.Search in Google Scholar

Ashapkin, V.V., Romanov, G.A., Tushmalova, N.A., and Vanyushin, B.F. (1983). Selective DNA synthesis in the rat brain induced by learning. Biokhimija 48: 355–362.Search in Google Scholar

Barrell, B.G., Bankier, A.T., and Drouin, J. (1979). A different genetic code in human mitochondria. Nature 282: 189–194, https://doi.org/10.1038/282189a0.Search in Google Scholar PubMed

Bartolucci, M., Ravera, S., Garbarino, G., Ramoino, P., Ferrando, S., Calzia, D., Candiani, S., Morelli, A., and Panfoli, I. (2015). Functional expression of electron transport chain and F0F1-ATP synthase in optic nerve myelin sheath. Neurochem. Res. 40: 2230–2241, https://doi.org/10.1007/s11064-015-1712-0.Search in Google Scholar PubMed

Berglund, A.-K., Navarrete, C., Engqvist, M.K., Hoberg, E., Szilagyi, Z., Taylor, R.W., Gustafsson, C.M., Falkenberg, M., and Clausen, A.R. (2017). Nucleotide pools dictate the identity and frequency of ribonucleotide incorporation in mitochondrial DNA. PLoS Genet. 16, 13: e1006628.10.1371/journal.pgen.1006628Search in Google Scholar PubMed PubMed Central

Bruschi, M., Bartolucci, M., Petretto, A., Calzia, D., Caicci, F., Manni, L., Traverso, C.E., Candiano, G., and Panfoli, I. (2020). Differential expression of the five redox complexes in the retinal mitochondria or rod outer segment disks is consistent with their different functionality. FASEB Bioadv. 2: 315–324, https://doi.org/10.1096/fba.2019-00093.Search in Google Scholar PubMed PubMed Central

Bruschi, M., Petretto, A., Caicci, F., Bartolucci, M., Calzia, D., Santucci, L., Manni, L., Ramenghi, L.A., Ghiggeri, G., Traverso, C.E., et al. (2018). Proteome of bovine mitochondria and rod outer segment disks: commonalities and differences. J. Proteome Res. 17: 918–925, https://doi.org/10.1021/acs.jproteome.7b00741.Search in Google Scholar PubMed

Calzia, D., Garbarino, G., Caicci, F., Manni, L., Candiani, S., Ravera, S., Petretto, A., and Candiano, G. (2014). Functional expression of electron transport chain complexes in mouse rod outer segments. Biochimie 102: 78–82, https://doi.org/10.1016/j.biochi.2014.02.007.Search in Google Scholar PubMed

Casalino, J., Prisco, M., Valiante, S., Crispino, M., and Giuditta, A. (inpress). Brain metabolic DNA is reverse transcribed by mitochondrial telomerase. Rend. Acc. Sci. Fis. Mat.Search in Google Scholar

Cefaliello, C., Prisco, M., Crispino, M., and Giuditta, A. (2019). DNA in squid synaptosomes. Mol. Neurobiol. 56: 56–60, https://doi.org/10.1007/s12035-018-1071-3.Search in Google Scholar PubMed

Cheng, Y., Liu, P., Zheng, Q., Gao, G., Yuan, J., Wang, P., Huang, J., Xie, L., Lu, X., Tong, T., et al. (2018). Mitochondrial trafficking and processing of telomerase RNA TERC. Cell Rep. 4: 2589–2595, https://doi.org/10.1016/j.celrep.2018.08.003.Search in Google Scholar PubMed

Cluett, T.J., Akman, G., Reyes, A., Kazak, L., Mitchell, A., Wood, S.R., Spinazzola, A., Spelbrink, J.N., and Holt, I.J. (2018). Transcript availability dictates the balance between strand-asynchronous and strand-coubled mitochondrial DNA replication. Nucleic Acids Res. 46: 10771–10781.10.1093/nar/gky852Search in Google Scholar

Cruz, A.C.P., Ferrasa, A., Muotri, A.R., and Herai, R.H. (2018). Frequency and association of mitochondrial genetic variants with neurological disorders. Mitochondrion 46: 345–360.10.1016/j.mito.2018.09.005Search in Google Scholar PubMed

Cuperfain, A.B., Zhang, Z.L., Kennedy, J.L., and Gonçalves, V.F. (2018). The complex interaction of mitochondrial genetics and mitochondrial pathways in psychiatric disease. Mol. Neuropsychiatry 4: 52–69, https://doi.org/10.1159/000488031.Search in Google Scholar

Cutillo, V., Montagnese, P., Gremo, F., Casola, L., and Giuditta, A. (1983). Origin of axoplasmic RNA in the squid giant fibre. Neurochem. Res. 8: 1621–1634, https://doi.org/10.1007/bf00964163.Search in Google Scholar

De Marianis, B., and Giuditta, A. (1978). Separation of nuclei with different DNA content from the subesophageal lobe of octopus brain. Brain Res. 154: 134–136, https://doi.org/10.1016/0006-8993(78)91059-4.Search in Google Scholar

De Marianis, B., Olmo, E., and Giuditta, A. (1979). Excess DNA in the nuclei of the subesophageal region of octopus brain. J. Comp. Neurol. 186: 293–300, https://doi.org/10.1002/cne.901860211.Search in Google Scholar

Eitan, E., Braverman, C., Tichon, A., Gitler, D., Hutchison, E.R., Mattson, M.P., and Priel, E. (2016). Exitotoxic and radiation stress increase TERT levels in the mitochondria and cytosol of cerebellar Purkinje neurons. Cerebellum 15: 509–517, https://doi.org/10.1007/s12311-015-0720-6.Search in Google Scholar

Eyman, M., Cefaliello, C., Ferrara, E., De Stefano, R., Scotto Lavina, Z., Crispino, M., Squillace, A., van Minnen, J., Kaplan, B.B., and Giuditta, A. (2007). Local synthesis of axonal and presynaptic RNA in squid model systems. Eur. J. Neurosci. 25: 341–350, https://doi.org/10.1111/j.1460-9568.2007.05304.x.Search in Google Scholar

Eyman, M., Cefaliello, C., Mandile, P., Piscopo, S., Crispino, M., and Giuditta, A. (2013). Training old rats selectively modulates synaptosomal protein synthesis. J. Neurosci. Res. 91: 20–29.10.1002/jnr.23133Search in Google Scholar

Fischer, S., Gariglio, P., and Tarifeno, E. (1969). Incorporation of H3-uridine and the isolation and the characterization of RNA from squid axon. J. Cell. Physiol. 74: 155–162, https://doi.org/10.1002/jcp.1040740207.Search in Google Scholar

Giuditta, A. (1982). Proposal of a "spiral" mechanism of evolution. Riv. Biol. 75: 13–31.Search in Google Scholar

Giuditta, A., Abrescia, P., and Rutigliano, B. (1978). Effect of electroshock on thymidine incorporation into rat brain DNA. J. Neurochem. 31: 983–987, https://doi.org/10.1111/j.1471-4159.1978.tb00137.x.Search in Google Scholar

Giuditta, A., Ambrosini, M.V., Scaroni, R., Chiurulla, C., and Sadile, A. (1985). Effect of sleep on cerebral DNA synthesized during shuttle-box avoidance training. Physiol. Behav. 34: 769–778, https://doi.org/10.1016/0031-9384(85)90376-2.Search in Google Scholar

Giuditta, A., and Barbato, R. (2017). Sintesi del DNA nel ganglio-nervo stellato del calamaro: effetti della stimolazione. Rend. Acc. Sci. Fis. Mat. LXXXIV: 63–70.Search in Google Scholar

Giuditta, A., and Casalino, J. (2020). Sequences of reverse transcribed brain DNA are modified by learning. Front. Mol. Neurosci. 13: 57.10.3389/fnmol.2020.00057Search in Google Scholar

Giuditta, A., Chun, J.T., Eyman, M., Cefaliello, C., and Crispino, M. (2008). Local gene expression in axons and nerve endings: the glia-neuron unit. Physiol. Rev. 88: 515–555, https://doi.org/10.1152/physrev.00051.2006.Search in Google Scholar

Giuditta, A., De Marianis, B., and Sorrentino, P. (2017b). Hyperdiploid DNA from octopus brain is enriched in AT sequences. Rend. Acc. Sci. Fis. Mat. LXXXIV: 5–16.Search in Google Scholar

Giuditta, A., Grassi-Zucconi, G., and Sadile, A. (2017a). Brain metabolic DNA in memory processing and genome turnover. Rev. Neurosci. 28: 21–30, https://doi.org/10.1515/revneuro-2016-0027.Search in Google Scholar

Giuditta, A., Libonati, M., Packard, A., and Prozzo, N. (1971). Nuclear counts in the brain lobes of Octopus vulgaris as a function of body size. Brain Res. 25: 55–62, https://doi.org/10.1016/0006-8993(71)90566-x.Search in Google Scholar

Giuditta, A., Perrone Capano, C., D’Onofrio, G., Toniatti, C., Menna, T., and Hydèn, H. (1986). Synthesis of rat brain DNA during acquisition of an appetitive task. Pharmacol. Biochem. Behav. 25: 651–658, https://doi.org/10.1016/0091-3057(86)90155-3.Search in Google Scholar

Giuditta, A., and Rutigliano, B. (2017). Brain metabolic DNA in rat cytoplasm. Rend. Acc. Sci. Fis. Mat. LXXXIV: 131–152.10.1007/s12035-018-0932-0Search in Google Scholar

Giuditta, A., and Rutigliano, B. (2018). Brain metabolic DNA in rat cytoplasm. Mol. Neurobiol. 55: 7476–7486, https://doi.org/10.1007/s12035-018-0932-0.Search in Google Scholar

Grassi Zucconi, G., Carandente, F., Menichini, E., Belia, S., and Giuditta, A. (1988b). Circadian rhythms of DNA content in brain and kidney: effects of environmental stimulation. Chronobiology 15: 195–204.Search in Google Scholar

Grassi Zucconi, G., Crognale, M.C., Bassetti, M.A., and Giuditta, A. (1990). Environmental stimuli modulate the circadian rhythm of (3H-methyl)thymidine incorporation into brain DNA of male rats. Behav. Brain Res. 41: 103–110, https://doi.org/10.1016/0166-4328(90)90146-6.Search in Google Scholar

Grassi Zucconi, G., Menichini, E., Castigli, E., Belia, S., and Giuditta, A. (1988a). Circadian oscillations of DNA synthesis in rat brain. Brain Res. 447: 253–261, https://doi.org/10.1016/0006-8993(88)91127-4.Search in Google Scholar

Hydèn, H., and Egyhàzi, E. (1964). Changes in RNA content and base composition in cortical neurons of rats in a learning experiment involving transfer of handedness. Proc. Natl. Acad. Sci. U.S.A. 52: 1030–1035, https://doi.org/10.1073/pnas.52.4.1030.Search in Google Scholar PubMed PubMed Central

Ivashkina, O.I., Zots, M.A., Bezriadnov, D.V., and Anokhin, K.V. (2012). Increased 5′-bromo-2′-deoxyuridine incorporation in various brain structures following passive avoidance training in mice. Bull. Exp. Biol. Med. 154: 171–173, https://doi.org/10.1007/s10517-012-1901-7.Search in Google Scholar

Krämer-Albers, E.M. (2020). Extracellular vesicles in the oligodendrocyte microenvironment. Neurosci. Lett. 725: 134915, https://doi.org/10.1016/j.neulet.2020.134915.Search in Google Scholar

Langella, M., Colarieti, L., Ambrosini, M.V., and Giuditta, A. (1992). The sequential hypothesis of sleep function. IV. A correlative analysis of sleep variables in learning and non-learning rats. Physiol. Behav. 51: 227–238, https://doi.org/10.1016/0031-9384(92)90135-o.Search in Google Scholar

Madabhushi, R., Gao, F., Pfenning, A.R., Pan, L., Yamakawa, S., Seo, J., Rueda, R., Phan, T.X., Yamakawa, H., Pao, P.-C., et al. (2015). Activity-induced DNA breaks govern the expression of neuronal early-response genes. Cell 161: 1592–1605, https://doi.org/10.1016/j.cell.2015.05.032.Search in Google Scholar

Maida, Y., Yasukawa, M., Furuuchi, M., Lassmann, T., Possemato, R., Okamoto, N., Kasim, V., Hayashizaki, Y., Hahn, W.C., and Masutomi, K. (2009). An RNA-dependent RNA polymerase formed by TERT and the RMRP RNA. Nature 461: 230–235, https://doi.org/10.1038/nature08283.Search in Google Scholar

Maida, Y., Yasukawa, M., Ghilotti, M., Ando, Y., and Masutomi, K. (2018). Semi-quantitative detection of RNA-dependent RNA polymerase activity of human telomerase reverse transcriptase protein. J. Vis. Exp. 136: 57021.10.3791/57021Search in Google Scholar

Maida, Y., Yasukawa, M., and Masutomi, K. (2016). De novo RNA synthesis by RNA-dependent RNA polymerase activity of telomerase reverse transcriptase. Mol. Cell Biol. 36: 1248–59, https://doi.org/10.1128/mcb.01021-15.Search in Google Scholar

Menna, T., Morelli, F., Buono, C., and Giuditta, A. (2017). Newly synthesized DNA in subcellular fractions of rat brain. Rend. Acc. Sci. Fis. Mat. LXXXIV: 153–160.Search in Google Scholar

Montagnier, L., Del Giudice, E., Aïssa, J., Lavallee, C., Motschwiller, S., Capolupo, A., Polcari, A., Romano, P., Tedeschi, A., and Vitiello, G. (2015). Transduction of DNA information through water and electromagnetic waves. Electromagn. Biol. Med. 34: 106–112, https://doi.org/10.3109/15368378.2015.1036072.Search in Google Scholar

Moss, C.F., Dalla Rosa, I., Hunt, L.E., Yasukawa, T., Young, R., Jones, A.W.E., Reddy, K., Desai, R., Virtue, S., Elgar, G., et al. (2017). Aberrant ribonucleotide incorporation and multiple deletions in mitochondrial DNA of the murine MPV17 disease model. Nucleic Acids Res. 45: 12808–12815, https://doi.org/10.1093/nar/gkx1009.Search in Google Scholar

Papa, M., Pellicano, M.P., Cerbone, A., Lamberti-D’Mello, C., Menna, T., Buono, C., Giuditta, A, Welzl, H., and Sadile, A.G. (1995). Immediate early genes and brain DNA remodeling in the Naples high- and low-excitability rat lines following exposure to a spatial novelty. Brain Res. Bull. 37: 111–118, https://doi.org/10.1016/0361-9230(94)00254-x.Search in Google Scholar

Pelc, S.R. (1968). Biological implications of DNA-turnover in higher organisms. Acta Histochem. (Suppl) 8: 441–452.Search in Google Scholar

Pelc, S.R. (1972). Metabolic DNA in Ciliated protozoa, salivary gland chromosomes, and mammalian cells. Int. Rev. Cytol. 32: 327–355, https://doi.org/10.1016/s0074-7696(08)60344-7.Search in Google Scholar

Pelc, S.R., and Viola-Magni, M.P. (1969). Decrease of labeled DNA in cells of the adrenal medulla after intermittent exposure to cold. J. Cell Biol. 42: 460–468, https://doi.org/10.1083/jcb.42.2.460.Search in Google Scholar

Perrone Capano, C., D’Onofrio, G., and Giuditta, A. (1982). DNA turnover in rat cerebral cortex. J. Neurochem. 38: 52–56, https://doi.org/10.1111/j.1471-4159.1982.tb10852.x.Search in Google Scholar

Prisco, M., Casalino, J., Cefaliello, C., and Giuditta, A. (2019). Brain metabolic DNA is reverse transcribed in cytoplasm: evidence by immunofluorescence analysis. Mol. Neurobiol. 56: 6770–6776, https://doi.org/10.1007/s12035-019-1569-3.Search in Google Scholar

Ravera, S., Bartolucci, M., Garbati, P, Ferrando, S., Calzia, D., Ramoino, P., Balestrino, M., Morelli, A., and Panfoli, I. (2016). Evaluation of the acquisition of the aerobic metabolic capacity by myelin, during its development. Mol. Neurobiol. 53: 7048–7056, https://doi.org/10.1007/s12035-015-9575-6.Search in Google Scholar

Reinis, S. (1972). Autoradiographic study of 3H-thymidine incorporation into brain DNA during learning. Physiol. Chem. Phys. 4: 391–397.Search in Google Scholar

Rutigliano, B., and Giuditta, A. (2015). The unexpected recovery of misplaced data on brain metabolic DNA. Rend. Acc. Sci. Fis. Mat. LXXXII: 99–106.Search in Google Scholar

Sadacharan, S.K., Singh, B., Bowes, T., and Gupta, R.S. (2005). Localization of mitochondrial DNA encoded cytochrome c oxidase subunits I and II in rat pancreatic zymogen granules and pituitary growth hormone granules. Histochem. Cell Biol. 124: 409–421, https://doi.org/10.1007/s00418-005-0056-2.Search in Google Scholar

Sadile, A.G., Cerbone, A., Lamberti-D’Mello, C., Amoroso, S., Annunziato, L., Menna, T., Buono, C., Rafti, F., and Giuditta, A. (1995b). The dorsal noradrenergic bundle modulates DNA remodeling in the rat brain upon exposure to a spatial novelty. Brain Res. Bull. 37: 9–16, https://doi.org/10.1016/0361-9230(94)00251-7.Search in Google Scholar

Sadile, A.G., Lamberti-D’Mello, C., Cerbone, A., Amoroso, S., Annunziato, L., Menna, T., Buono, C., and Giuditta, A. (1995c). Adrenergic receptor systems and unscheduled DNA synthesis in the rat brain. Brain Res. Bull. 37: 139–148, https://doi.org/10.1016/0361-9230(94)00267-5.Search in Google Scholar

Sadile, A.G., Neugebauer, A., and Giuditta, A. (1995a). Unscheduled brain DNA synthesis, long-term potentiation, and depression at the perforant path-granule cell synapse in the rat. Brain Res. Bull. 36: 333–341, https://doi.org/10.1016/0361-9230(94)00190-c.Search in Google Scholar

Sadile, A.G., Neugebauer, A., Morelli, F., Horvàth, Z., Buzsàki, G., and Giuditta, A. (1991). Distributed changes in rat brain DNA synthesis with long-term habituation and potentiation of the perforant path-granule cell synapse. Behav. Brain Res. 46: 83–94, https://doi.org/10.1016/s0166-4328(05)80099-3.Search in Google Scholar

Salgado, P.S, Koivunen, M.R.L., Makeyev, E.V., Bamford, D.H., Stuart, D.I., and Grimes, J. M. (2006). The structure of an RNAi polymerase links RNA silencing and transcription. PLoS Biol. 4: e434, https://doi.org/10.1371/journal.pbio.0040434.Search in Google Scholar

Salganik, R.I., Parvez, H., Tomson, V.P., and Shumskaya, I.A. (1983). Probable role of reverse transcription in learning: correlation between hippocampal RNA-dependent DNA synthesis and learning ability in rats. Neurosci. Lett. 36: 317–322, https://doi.org/10.1016/0304-3940(83)90019-8.Search in Google Scholar

Saretzki, G (2014). Extra-telomeric function of human telomerase: cancer, mitochondria and oxidative stress. Curr. Pharm. Des. 20: 6386–6403, https://doi.org/10.2174/1381612820666140630095606.Search in Google Scholar

Scaroni, R., Ambrosini, M.V., Principato, G.B., Federici, F., Ambrosi, G., and Giuditta, A. (1983). Synthesis of brain DNA during acquisition of an active avoidance task. Physiol. Behav. 30: 577–582, https://doi.org/10.1016/0031-9384(83)90224-x.Search in Google Scholar

Schoenfeld, R., Wong, A., Silva, J., Li, M., Itoh, A., Horiuchi, M., Itoh, T., Pleasure, D., and Cortopassi, G. (2010). Oligodendroglial differentiation induces mitochondrial genes and inhibition of mitochondrial function represses oligodendroglial differentiation. Mitochondrion 10: 143–50, https://doi.org/10.1016/j.mito.2009.12.141.Search in Google Scholar PubMed PubMed Central

Sharma, N.K., Reyes, A., Green, P., Caron, M.J., Bonini, M.G., Gordon, D.M., Holt, I.J., and Santos, J.H. (2012). Human telomerase acts as a hTR-independent reverse-transcriptase in mitochondria. Nucleic Acids Res. 40: 712–725, https://doi.org/10.1093/nar/gkr758.Search in Google Scholar PubMed PubMed Central

Spadafora, C. (2017). Sperm-mediated transgenerational inheritance. Front. Microbiol. 8: 2401, https://doi.org/10.3389/fmicb.2017.02401.Search in Google Scholar PubMed PubMed Central

Suberbielle, E., Sanchez, P.E., Kravitz, A.V., Wang, X., Ho, K., Eilertson, K., Devidze, N., Kreitzer, A.C., and Mucke, L. (2013). Physiologic brain activity causes DNA double-strand breaks in neurons, with exacerbation by amyloid-F. Nat. Neurosci. 16: 613–621, https://doi.org/10.1038/nn.3356.Search in Google Scholar PubMed PubMed Central

Thakurela, S., Garding, A., Jung, R.B., Müller, C., Goebbels, S., White, R., Werner, H.B., and Tiwari, V.K. (2016). The transcriptome of mouse central nervous system myelin. Sci. Rep. 6: 25828, https://doi.org/10.1038/srep25828.Search in Google Scholar PubMed PubMed Central

Viola-Magni, M.P. (1965). Changes in the DNA content of adrenal medulla nuclei of rats intermittently exposed to cold. J. Cell Biol. 25: 415–433, https://doi.org/10.1083/jcb.25.3.415.Search in Google Scholar PubMed PubMed Central

Received: 2020-05-30
Accepted: 2020-07-18
Published Online: 2020-08-31
Published in Print: 2021-01-27

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 25.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/revneuro-2020-0050/html?lang=en
Scroll to top button