Abstract
Huntington’s disease (HD) is a highly common inherited monogenic neurodegenerative disease, and the gene responsible for its development is located in the 4p16.3 chromosome. The product of that gene mutation is an abnormal huntingtin (Htt) protein that disrupts the neural conduction, thus leading to motor and cognitive disorders. The disease progresses to irreversible changes in the central nervous system (CNS). Although only a few drugs are available to symptomatic treatment, ‘dopamine stabilizers’ (as represented by the pridopidine) may be the new treatment options. The underlying causes of HD are dopaminergic conduction disorders. Initially, the disease is hyperkinetic (chorea) until it eventually reaches the hypokinetic phase. Studies confirmed a correlation between the amount of dopamine in the CNS and the stage of the disease. Pridopidine has the capacity to be a dopamine buffer, which could increase or decrease the dopamine content depending on the disease phase. A research carried out on animal models demonstrated the protective effect of pridopidine on nerve cells thanks to its ability to alter the cortical glutamatergic signaling through the N-methyl-D-aspartate (NMDA) receptors. Studies on dopamine stabilizers also reported that pridopidine has a 100-fold greater affinity for the sigma-1 receptor than for the D2 receptor. Disturbances in the activity of sigma-1 receptors occur in neurodegenerative diseases, including HD. Their interaction with pridopidine results in the neuroprotective effect, which is manifested as an increase in the plasticity of synaptic neurons and prevention of their atrophy within the striatum. To determine the effectiveness of pridopidine in the treatment of HD, large multicenter randomized studies such as HART, MermaiHD, and PRIDE-HD were carried out.
Conflict of interest statement: The authors declare no conflict of interest.
References
Bading, H. (2017). Therapeutic targeting of the pathological triad of extrasynaptic NMDA receptor signaling in neurodegenerations. J. Exp. Med. 214, 569–578.10.1084/jem.20161673Suche in Google Scholar
Bates, G.P., Dorsey, R., Gusella, J.F., Hayden, M.R., Kay, C., Leavitt, B.R., Nance, M., Ross, C.A., Scahill, R.I., Wetzel, R., et al. (2015). Huntington disease. Nat. Rev. Dis. Prim. 1, 15005.10.1038/nrdp.2015.5Suche in Google Scholar
Cepeda, C., Murphy, K.P., Parent, M., and Levine, M.S. (2014). The role of dopamine in Huntington’s disease. Prog. Brain Res. 211, 235–254.10.1016/B978-0-444-63425-2.00010-6Suche in Google Scholar
Chu, U.B., and Ruoho, A.E. (2016). Biochemical pharmacology of the sigma-1 receptor. Mol. Pharmacol. 89, 142–153.10.1124/mol.115.101170Suche in Google Scholar
Coppen, E.M. and Roos, R.A.C. (2017). Current pharmacological approaches to reduce chorea in Huntington’s disease. Drugs 77, 29–46.10.1007/s40265-016-0670-4Suche in Google Scholar
Dayalu, P. and Albin, R.L. (2015). Huntington disease: pathogenesis and treatment. Neurol. Clin. 33, 101–114.10.1016/j.ncl.2014.09.003Suche in Google Scholar
De Yebenes, J.G., Landwehrmeyer, B., Squitieri, F., Reilmann, R., Rosser, A., Barker, R.A., Saft, C., Magnet, M.K., Sword, A., Rembratt, Å., et al. (2011). Pridopidine for the treatment of motor function in patients with Huntington’s disease (MermaiHD): a phase 3, randomised, double-blind, placebo-controlled trial. Lancet Neurol. 10, 1049–1057.10.1016/S1474-4422(11)70233-2Suche in Google Scholar
Dickey, A.S. and La Spada, A.R. (2018). Therapy development in Huntington disease: from current strategies to emerging opportunities. Am. J. Med. Genet. A 176, 842–861.10.1002/ajmg.a.38494Suche in Google Scholar PubMed PubMed Central
Dyhring, T., Nielsen, E., Sonesson, C., Pettersson, F., Karlsson, J., Svensson, P., Christophersen, P., and Waters, N. (2010). The dopaminergic stabilizers pridopidine (ACR16) and (−)-OSU6162 display dopamine D2 receptor antagonism and fast receptor dissociation properties. Eur. J. Pharmacol. 628, 19–26.10.1016/j.ejphar.2009.11.025Suche in Google Scholar PubMed
Francardo, V., Bez, F., Francardo, V., Bez, F., Wieloch, T., Nissbrandt, H., Ruscher, K., and Cenci, M.A. (2014). Pharmacological stimulation of sigma-1 receptors has neurorestorative effects in experimental parkinsonism. Brain 137, 1998–2014.10.1093/brain/awu107Suche in Google Scholar PubMed
Frank, S. (2014). Treatment of Huntington’s disease. Neurotherapeutics 11, 153–160.10.1007/s13311-013-0244-zSuche in Google Scholar PubMed PubMed Central
Fujimoto, M., Hayashi, T., Urfer, R., Mita, S., and Su, T.P. (2012). Sigma-1 receptor chaperones regulate the secretion of brain-derived neurotrophic factor. Synapse 66, 630–639.10.1002/syn.21549Suche in Google Scholar PubMed PubMed Central
Gelderblom, H., Wüstenberg, T., McLean, T., Mütze, L., Fischer, W., Saft, C., Hoffmann, R., Süssmuth, S., Schlattmann, P., Van Duijn, E., et al. (2017). Bupropion for the treatment of apathy in Huntington’s disease: a multicenter, randomised, double-blind, placebo controlled, prospective crossover trial. PLoS One 12, e0173872.10.1371/journal.pone.0173872Suche in Google Scholar PubMed PubMed Central
Geva, M., Kusko, R., Soares, H., Fowler, K.D., Birnberg, T., Barash, S., Merenlender-Wagner, A., Fine, T., Lysaght, A., Weiner, B., et al. (2016). Pridopidine activates neuroprotective pathways impaired in Huntington Disease. Hum. Mol. Genet. 25, 3975–3987.10.1093/hmg/ddw238Suche in Google Scholar PubMed PubMed Central
Ginovart, N., Lundin, A., Farde, L., Halldin, C., Bäckman, L., Swahn, C.G., Pauli, S., and Sedvall, G. (1997). PET study of the pre- and post-synaptic dopaminergic markers for the neurodegenerative process in Huntington’s disease. Brain 120, 503–514.10.1093/brain/120.3.503Suche in Google Scholar PubMed
Hardingham, G.E. and Bading, H. (2010). Synaptic versus extrasynaptic NMDA receptor signalling: implications for neurodegenerative disorders. Nat. Rev. Neurosci. 11, 682–696.10.1038/nrn2911Suche in Google Scholar PubMed PubMed Central
Harrison, L.M. and LaHoste, G.J. (2013). The role of Rhes, Ras homolog enriched in striatum, in neurodegenerative processes. Exp. Cell Res. 319, 2310–2315.10.1016/j.yexcr.2013.03.033Suche in Google Scholar PubMed
Hyrskyluoto, A., Pulli, I., Törnqvist, K., Huu Ho, T., Korhonen, L., and Lindholm, D. (2013). Sigma-1 receptor agonist PRE084 is protective against mutant huntingtin-induced cell degeneration: involvement of calpastatin and the NF-κB pathway. Cell Death Dis. 4, e646.10.1038/cddis.2013.170Suche in Google Scholar PubMed PubMed Central
Jankovic, J. and Roos, R.A. (2014). Chorea associated with Huntington’s disease: to treat or not to treat? Mov. Disord. 29, 1414–1418.10.1002/mds.25996Suche in Google Scholar PubMed
Jimenez-Sanchez, M., Licitra, F., Underwood, B.R., and Rubinsztein, D.C. (2017). Huntington’s disease: mechanisms of pathogenesis and therapeutic strategies. Cold Spring Harb. Perspect. Med. 7, 1–22.10.1101/cshperspect.a024240Suche in Google Scholar PubMed PubMed Central
Karl, K., McGarry, A., McDermott, M.P., Kayson, E., Walker, F., Goldstein, J., Hyson, C., Agarwal, P., Deppen, P., Fiedorowicz, J., et al. (2013). A randomized, double-blind, placebo-controlled trial of pridopidine in Huntington’s disease. Mov. Disord. 28, 1407–1415.10.1002/mds.25362Suche in Google Scholar PubMed
Kourrich, S., Su, T.P., Fujimoto, M., and Bonci, A. (2012). The sigma-1 receptor: roles in neuronal plasticity and disease. Trends Neurosci. 35, 762–771.10.1016/j.tins.2012.09.007Suche in Google Scholar PubMed PubMed Central
Kusko, R., Dreymann, J., Ross, J., Cha, Y., Escalante-Chong, R., Garcia-Miralles, M., Tan, L.J., Burczynski, M.E., Zeskind, B., Laifenfeld, D., et al. (2018). Large-scale transcriptomic analysis reveals that pridopidine reverses aberrant gene expression and activates neuroprotective pathways in the YAC128 HD mouse. Mol. Neurodegener. 13, 25.10.1186/s13024-018-0259-3Suche in Google Scholar PubMed PubMed Central
Lee, J.M., Ramos, E.M., Lee, J.H., Gillis, T., Mysore, J.S., Hayden, M.R., Warby, S.C., Morrison, P., Nance, M., Ross, C.A., et al. (2012). CAG repeat expansion in Huntington disease determines age at onset in a fully dominant fashion. Neurology 78, 690–695.10.1212/WNL.0b013e318249f683Suche in Google Scholar PubMed PubMed Central
Malik, M., Rangel-Barajas, C., Sumien, N., Su, C., Singh, M., Chen, Z., Huang, R.Q., Meunier, J., Maurice, T., Mach, R.H., et al. (2015). The effects of sigma (σ1) receptor-selective ligands on muscarinic receptor antagonist-induced cognitive deficits in mice. Br. J. Pharmacol. 172, 2519–2531.10.1111/bph.13076Suche in Google Scholar PubMed PubMed Central
Mason, S. and Barker, R. (2016). Novel targets for Huntington’s disease: future prospects. Degener. Neurol. Neuromuscul. Dis. 6, 25–36.10.2147/DNND.S83808Suche in Google Scholar
McColgan, P. and Tabrizi, S.J. (2018). Huntington’s disease: a clinical review. Eur. J. Neurol. 25, 24–34.10.1111/ene.13413Suche in Google Scholar PubMed
McGarry, A., Kieburtz, K., Abler, V., Grachev, I.D., Gandhi, S., Auinger, P., Papapetropoulos, S., and Hayden, M. (2017). Safety and Exploratory Efficacy at 36 Months in Open-HART, an Open-Label Extension Study of Pridopidine in Huntington’s Disease. J. Huntingtons. Dis. 6, 189–199.10.3233/JHD-170241Suche in Google Scholar PubMed
McKinstry, S.U., Karadeniz, Y.B., Worthington, A.K., Hayrapetyan, V.Y., Ilcim Ozlu, M., Serafin-Molina, K., Christopher, R.W., Ustunkaya, T., Dragatsis, I., Zeitlin, S., et al. (2014). Huntingtin is required for normal excitatory synapse development in cortical and striatal circuits. J. Neurosci. 34, 9455–9472.10.1523/JNEUROSCI.4699-13.2014Suche in Google Scholar PubMed PubMed Central
Milnerwood, A.J., Kaufman, A.M., Sepers, M.D., Gladding, C.M., Zhang, L., Wang, L., Fan, J., Coquinco, A., Qiao, J.Y., Lee, H., et al. (2012). Mitigation of augmented extrasynaptic NMDAR signaling and apoptosis in cortico-striatal co-cultures from Huntington’s disease mice. Neurobiol. Dis. 48, 40–51.10.1016/j.nbd.2012.05.013Suche in Google Scholar PubMed
Natesan, S., Svensson, K.A., Reckless, G.E., Nobrega, J.N., Barlow, K.B.L., Johansson, A.M., and Kapur, S. (2006). The dopamine stabilizers (S)-(-)-(3-Methanesulfonyl-phenyl)-1-propyl-piperidine ((-)-OSU6162) and 4-(3-Methanesulfonylphenyl)-1-propyl-piperidine (ACR16) show high in vivo D2 receptor occupancy, antipsychotic-like efficacy, and low potential for motor side effects in the rat. J. Pharmacol. Exp. Ther. 318, 810–818.10.1124/jpet.106.102905Suche in Google Scholar PubMed
Papoutsi, M., Labuschagne, I., Tabrizi, S.J., and Stout, J.C. (2014). The cognitive burden in Huntington’s disease: pathology, phenotype, and mechanisms of compensation. Mov. Disord. 29, 673–683.10.1002/mds.25864Suche in Google Scholar
Ponten, H., Kullingsjö, J., Lagerkvist, S., Martin, P., Pettersson, F., Sonesson, C., Waters, S., and Waters, N. (2010). In vivo pharmacology of the dopaminergic stabilizer pridopidine. Eur. J. Pharmacol. 644, 88–95.10.1016/j.ejphar.2010.07.023Suche in Google Scholar
Potkin, K.T. and Potkin, S.G. (2018). New directions in therapeutics for Huntington disease. Future Neurol. 13, 101–121.10.2217/fnl-2017-0035Suche in Google Scholar
Reilmann, R., McGarry, A., Grachev, I.D., Savola, J.M., Borowsky, B., Eyal, E., Gross, N., Langbehn, D., Schubert, R., Wickenberg, A.T., et al. (2019). Safety and efficacy of pridopidine in patients with Huntington’s disease (PRIDE-HD): a phase 2, randomised, placebo-controlled, multicentre, dose-ranging study. Lancet Neurol. 18, 165–176.10.1016/S1474-4422(18)30391-0Suche in Google Scholar
Ross, C.A. and Tabrizi, S.J. (2011). Huntington’s disease: from molecular pathogenesis to clinical treatment. Lancet Neurol. 10, 83–98.10.1016/S1474-4422(10)70245-3Suche in Google Scholar
Ross, C.A., Aylward, E.H., Wild, E.J., Langbehn, D.R., Long, J.D., Warner, J.H., Scahill, R.I., Leavitt, B.R., Stout, J.C., Paulsen, J.S., et al. (2014). Huntington disease: natural history, biomarkers and prospects for therapeutics. Nat. Rev. Neurol. 10, 204–216.10.1038/nrneurol.2014.24Suche in Google Scholar PubMed
Ryskamp, D., Wu, J., Geva, M., Kusko, R., Grossman, I., Hayden, M., and Bezprozvanny, I. (2017). The sigma-1 receptor mediates the beneficial effects of pridopidine in a mouse model of Huntington disease. Neurobiol. Dis. 97, 46–59.10.1016/j.nbd.2016.10.006Suche in Google Scholar PubMed PubMed Central
Sahlholm, K., Århem, P., Fuxe, K., and Marcellino, D. (2013). The dopamine stabilizers ACR16 and ()-OSU6162 display nanomolar affinities at the σ-1 receptor. Mol. Psychiatry 18, 12–14.10.1038/mp.2012.3Suche in Google Scholar PubMed
Sahlholm, K., Sijbesma, J.W.A., Maas, B., Kwizera, C., Marcellino, D., Ramakrishnan, N.K., Dierckx, R.A.J.O., Elsinga, P.H., and Van Waarde, A. (2015). Pridopidine selectively occupies sigma-1 rather than dopamine D2 receptors at behaviorally active doses. Psychopharmacology (Berl.) 232, 3443–3453.10.1007/s00213-015-3997-8Suche in Google Scholar PubMed PubMed Central
Sahlholm, K., Valle-León, M., Fernández-Dueñas, V., and Ciruela, F. (2018a). Pridopidine reverses phencyclidine-induced memory impairment. Front. Pharmacol. 9, 338.10.3389/fphar.2018.00338Suche in Google Scholar PubMed PubMed Central
Sahlholm, K., Valle-León, M., Taura, J., Fernández-Dueńas, V., and Ciruela, F. (2018b). Effects of the dopamine stabilizer, pridopidine, on basal and phencyclidine-induced locomotion: role of dopamine D2 and sigma-1 receptors. CNS Neurol. Disord. – Drug Targets 17, 522–527.10.2174/1871527317666180627103337Suche in Google Scholar PubMed
Saudou, F. and Humbert, S. (2016). The biology of Huntingtin. Neuron 89, 910–926.10.1016/j.neuron.2016.02.003Suche in Google Scholar PubMed
Schmidt, H.R., Zheng, S., Gurpinar, E., Koehl, A., Manglik, A., and Kruse, A.C. (2016). Crystal structure of the human σ1 receptor. Nature 532, 527–530.10.1038/nature17391Suche in Google Scholar PubMed PubMed Central
Sciamanna, G., Napolitano, F., Pelosi, B., Bonsi, P., Vitucci, D., Nuzzo, T., Punzo, D., Ghiglieri, V., Ponterio, G., Pasqualetti, M., et al. (2015). Rhes regulates dopamine D2 receptor transmission in striatal cholinergic interneurons. Neurobiol. Dis. 78, 146–161.10.1016/j.nbd.2015.03.021Suche in Google Scholar PubMed
Snowden, J.S. (2017). The Neuropsychology of Huntington’s Disease. Arch. Clin. Neuropsychol. 32, 876–887.10.1093/arclin/acx086Suche in Google Scholar PubMed
Squitieri, F. and de Yebenes, J.G. (2015). Profile of pridopidine and its potential in the treatment of Huntington disease: the evidence to date. Drug Des. Dev. Ther. 9, 5827–5833.10.2147/DDDT.S65738Suche in Google Scholar PubMed PubMed Central
Squitieri, F., Di Pardo, A., Favellato, M., Amico, E., Maglione, V., and Frati, L. (2015). Pridopidine, a dopamine stabilizer, improves motor performance and shows neuroprotective effects in Huntington disease R6/2 mouse model. J. Cell. Mol. Med. 19, 2540–2548.10.1111/jcmm.12604Suche in Google Scholar PubMed PubMed Central
Tadori, Y., Kitagawa, H., Forbes, R.A., McQuade, R.D., Stark, A., and Kikuchi, T. (2007). Differences in agonist/antagonist properties at human dopamine D2 receptors between aripiprazole, bifeprunox and SDZ 208–912. Eur. J. Pharmacol. 574, 103–111.10.1016/j.ejphar.2007.07.031Suche in Google Scholar PubMed
Tang, B.L. (2018). Unconventional Secretion and Intercellular Transfer of Mutant Huntingtin. Cells 7, 59.10.3390/cells7060059Suche in Google Scholar PubMed PubMed Central
Tsai, S.Y., Rothman, R.K., and Su, T.P. (2012). Insights into the sigma-1 receptor chaperone’s cellular functions: a microarray report. Synapse 66, 42–51.10.1002/syn.20984Suche in Google Scholar PubMed PubMed Central
Van Duijn, E., Kingma, E.M., and Van Der Mast, R.C. (2007). Psychopathology in verified Huntington’s disease gene carriers. J. Neuropsychiatry Clin. Neurosci. 19, 441–448.10.1176/jnp.2007.19.4.441Suche in Google Scholar PubMed
Waters, S., Tedroff, J., Ponten, H., Klamer, D., Sonesson, C., and Watersc, N. (2018). Pridopidine: overview of pharmacology and rationale for its use in Huntington’s disease. J. Huntingtons. Dis. 7, 1–16.10.3233/JHD-170267Suche in Google Scholar PubMed PubMed Central
Weissman, A.D., Su, T.P., Hedreen, J.C., and London, E.D. (1988). Sigma receptors in post-mortem human brains. J. Pharmacol. Exp. Ther. 247, 29–33.Suche in Google Scholar
Wexler, A., Wild, E.J., and Tabrizi, S.J. (2016). George Huntington: a legacy of inquiry, empathy and hope. Brain 139, 2326–2333.10.1093/brain/aww165Suche in Google Scholar PubMed PubMed Central
Yapijakis, C. (2017). Huntington disease: genetics, prevention, and therapy approaches. Adv. Exp. Med. Biol. 987, 55–65.10.1007/978-3-319-57379-3_6Suche in Google Scholar PubMed
©2020 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- A complete overview of REEP1: old and new insights on its role in hereditary spastic paraplegia and neurodegeneration
- Brain energetics, mitochondria, and traumatic brain injury
- Amyloid-β, tau, and the cholinergic system in Alzheimer’s disease: seeking direction in a tangle of clues
- Gut dysbiosis and serotonin: intestinal 5-HT as a ubiquitous membrane permeability regulator in host tissues, organs, and the brain
- Assessment of the efficacy of passive cellular immunotherapy for glioma patients
- Pridopidine in the treatment of Huntington’s disease
- The involvement of the central nervous system in patients with COVID-19
Artikel in diesem Heft
- Frontmatter
- A complete overview of REEP1: old and new insights on its role in hereditary spastic paraplegia and neurodegeneration
- Brain energetics, mitochondria, and traumatic brain injury
- Amyloid-β, tau, and the cholinergic system in Alzheimer’s disease: seeking direction in a tangle of clues
- Gut dysbiosis and serotonin: intestinal 5-HT as a ubiquitous membrane permeability regulator in host tissues, organs, and the brain
- Assessment of the efficacy of passive cellular immunotherapy for glioma patients
- Pridopidine in the treatment of Huntington’s disease
- The involvement of the central nervous system in patients with COVID-19