Home Efficiency: an underlying principle of learning?
Article
Licensed
Unlicensed Requires Authentication

Efficiency: an underlying principle of learning?

  • Sean Commins EMAIL logo
Published/Copyright: September 11, 2017
Become an author with De Gruyter Brill

Abstract

Learning is essential. It allows animals to change circumstances, deal with new situations and adapt to environments. Here, we argue that learning, at behavioral and neural levels, involves efficiency, reflected in metabolic cost reductions. Behaviourally, although multiple solutions to a novel problem may be available, all solutions are not learnt – it is too costly. Furthermore, once a strategy has been selected, it is reinforced producing an efficiency that leads to a maximisation of performance and metabolic cost reductions. Learning can be represented in the brain through many mechanisms; however, if learning is truly efficient, then, all such mechanisms should also be accompanied by a reduction in measurable metabolic costs. By thinking about learning in terms of efficiency, not simply as a descriptive term but rather in terms of metabolic costs, it allows learning to be examined more carefully and provides predictions that can be easily tested (and indeed refuted).

Acknowledgments

The author would like to thank Dr. Daragh McLoughlin for comments on an earlier draft of the manuscript.

References

Allport, G.W. (1954/1979). The Nature of Prejudice (Cambridge, MA, USA: Perseus Books).Search in Google Scholar

Amedi, A., Malach, R., and Pascual-Leone, A. (2005). Negative BOLD differentiates visual imagery and perception. Neuron 48, 859–872.10.1016/j.neuron.2005.10.032Search in Google Scholar PubMed

Arellano, C.J. and Kram, R. (2011). The effects of step width and arm swing on energetic cost and lateral balance during running. J. Biomech. 44, 1291–1295.10.1016/j.jbiomech.2011.01.002Search in Google Scholar PubMed

Attwell, D. and Laughlin, S.B. (2001). An energy budget for signalling in the grey matter of the brain. J. Cereb. Blood Flow Metab. 21, 1133–1145.10.1097/00004647-200110000-00001Search in Google Scholar PubMed

Balle, M. (2002). La loi du moindre effort mental: les representations mentales. Sciences Humaines 128, 36–39.Search in Google Scholar

Barron, A.B., Hebets, E.A., Cleland, T.A., Fitzpatrick, C.L., Hauber, M.E., and Stevens, J.R. (2015). Embracing multiple definitions of learning. Trends Neurosci. 38, 405–407.10.1016/j.tins.2015.04.008Search in Google Scholar PubMed

Benson-Amram, S. and Holekamp, K.E. (2012). Innovative problem solving by wild spotted hyenas. Proc. R. Soc. B Biol. Sci. 279, 4087–4095.10.1098/rspb.2012.1450Search in Google Scholar PubMed PubMed Central

Bliss, T.V. and Lomo, T. (1973). Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J. Physiol. 232, 331–356.10.1113/jphysiol.1973.sp010273Search in Google Scholar PubMed PubMed Central

Bloomfield, T.M. (1967). A peak shift on a line-tilt continuum. J. Exp. Anal. Behav. 10, 361–366.10.1901/jeab.1967.10-361Search in Google Scholar PubMed PubMed Central

Braak, H. and Del Tredici, K. (2015). The preclinical phase of the pathological process underlying sporadic Alzheimer’s disease. Brain 138, 2814–2833.10.1093/brain/awv236Search in Google Scholar PubMed

Brennan, J.F. and Riccio, D.C. (1972). Stimulus control of shuttle avoidance in young and adult rats. Can. J. Psychol. 26, 361–373.10.1037/h0082443Search in Google Scholar

Brigman, J.L., Wright, T., Talani, G., Prasad-Mulcare, S., Jinde, S., Seabold, G.K., Mathur, P., Davis, M.I., Bock, R., Gustin, R.M., et al. (2010). Loss of GluN2B-containing NMDA receptors in CA1 hippocampus and cortex impairs long-term depression, reduces dendritic spine density, and disrupts learning. J. Neurosci. 30, 4590–600.10.1523/JNEUROSCI.0640-10.2010Search in Google Scholar PubMed PubMed Central

Burns, J.G., Foucaud, J., and Mery, F. (2011). Costs of memory: lessons from ‘mini’ brains. Proc. R. Soc. B Biol. Sci. 278, 923–929.10.1098/rspb.2010.2488Search in Google Scholar PubMed PubMed Central

Cabelli, R.J., Hohn, A., and Shatz, C.J. (1995). Inhibition of ocular dominance column formation by infusion of NT-4/5 or BDNF. Science 267, 1662–1666.10.1126/science.7886458Search in Google Scholar PubMed

Cantlon, J.F., Pinel, P., Dehaene, S., and Pelphrey, K.A. (2011). Cortical representations of symbols, objects, and faces are pruned back during early childhood. Cereb. Cortex 21, 191–199.10.1093/cercor/bhq078Search in Google Scholar PubMed PubMed Central

Carreiras, M., Seghier, M.L., Baquero, S., Estévez, A., Lozano, A., Devlin, J.T., and Price, C.J. (2009). An anatomical signature for literacy. Nature 461, 983–986.10.1038/nature08461Search in Google Scholar PubMed

Changeux, J.P., and Danchin, A. (1976). Selective stabilisation of developing synapses as a mechanism for the specification of neuronal networks. Nature 264, 705–712.10.1038/264705a0Search in Google Scholar PubMed

Chen, J.L., Margolis, D.J., Stankov, A., Sumanovski, L.T., Schneider, B.L., and Helmchen, F. (2015). Pathway-specific reorganization of projection neurons in somatosensory cortex during learning. Nat. Neurosci. 18, 1101–1108.10.1038/nn.4046Search in Google Scholar PubMed

Cheng, K. (2002). Generalisation: mechanistic and functional explanations. Anim. Cogn. 5, 33–40.10.1007/s10071-001-0122-7Search in Google Scholar PubMed

Cheng, K., Spetch, M.L., and Johnson, M. 1997. Spatial peak shift and generalization in pigeons. J. Exp. Psychol. Anim. Behav. Process. 23, 469–481.10.1037/0097-7403.23.4.469Search in Google Scholar

Chow, P.K.Y., Lea, S.E.G., and Leaver, L.A. (2016). How practice makes perfect: the role of persistence, flexibility and learning in problem solving efficiency. Anim. Behav. 112, 273–283.10.1016/j.anbehav.2015.11.014Search in Google Scholar

Christie, S.T. and Schrater, P. (2015). Cognitive cost as dynamic allocation of energetic resources. Front. Neurosci. 9, 289.10.3389/fnins.2015.00289Search in Google Scholar PubMed PubMed Central

Commins, S., Gigg, J., Anderson, M., and O’Mara, S.M. (1998). Interaction between paired-pulse facilitation and long-term potentiation in the projection from hippocampal area CA1 to the subiculum. Neuroreport 9, 4109–4113.10.1097/00001756-199812210-00019Search in Google Scholar PubMed

Connor, S.A. and Wang, Y.T. (2015). A place at the table: LTD as a mediator of memory genesis. Neuroscientist 22, 359–71.10.1177/1073858415588498Search in Google Scholar PubMed

Clarke, D.D. and Sokoloff, L. (1999). Circulation and Energy Metabolism of the Brain. Basic Neurochemistry: Molecular, Cellular and Medical Aspects. G.J. Siegel, B.W. Agranoff, R.W. Albers, S.K. Fisher and M.D. Uhler, eds. (Philadelphia: Lippincott-Raven), pp. 637–669.Search in Google Scholar

Craig, S. and Commins, S. (2005). Interaction between paired-pulse facilitation and long-term potentiation in the projection from hippocampal area CA1 to the entorhinal cortex. Neurosci. Res. 53, 140–146.10.1016/j.neures.2005.06.009Search in Google Scholar PubMed

Davis, S.W., Dennis, N.A., Daselaar, S.M., Fleck, M.S., and Cabeza, R. (2008). Que PASA? The posterior–anterior shift in aging. Cereb. Cortex 18, 1201–1209.10.1093/cercor/bhm155Search in Google Scholar PubMed PubMed Central

Dehaene, S., Pegado, F., Braga, L.W., Ventura, P., Nunes Filho, G., Jobert, A., Dehaene-Lambertz, G., Kolinsky, R., Morais, J., and Cohen L. (2010). How learning to read changes the cortical networks for vision and language. Science 330, 1359–1364.10.1126/science.1194140Search in Google Scholar PubMed

Dehaene, S., Cohen, L., Morais, J., and Kolinsky, R. (2015). Illiterate to literate: behavioural and cerebral changes induced by reading acquisition. Nat. Rev. Neurosci. 16, 234–244.10.1038/nrn3924Search in Google Scholar PubMed

De Houwer, J., Barnes-Holmes, D., and Moors, A. (2013). What is learning? On the nature and merits of a functional definition of learning. Psychon. Bull. Rev. 20, 631–642.10.3758/s13423-013-0386-3Search in Google Scholar PubMed

Diviney, M., Fey, D., and Commins, S. (2013). Hippocampal contribution to vector model hypothesis during cue-dependent navigation. Learn. Mem. 20, 367–378.10.1101/lm.029272.112Search in Google Scholar PubMed

Dukas, R. (1999). Costs of memory: ideas and predictions. J. Theor. Biol. 197, 41–50.10.1006/jtbi.1998.0856Search in Google Scholar PubMed

Duzel, E., van Praag, H., and Sendtner, M. (2016). Can physical exercise in old age improve memory and hippocampal function? Brain 139(Pt 3), 662–673.10.1093/brain/awv407Search in Google Scholar PubMed PubMed Central

Dymond, S., Dunsmoor, J.E., Vervliet, B., Roche, B., and Hermans, D. (2015). Fear generalization in humans: systematic review and implications for anxiety disorder research. Behav. Ther. 46, 561–582.10.1016/j.beth.2014.10.001Search in Google Scholar PubMed

Erickson, K.I., Voss, M.W., Prakash, R.S., Basak, C., Szabo, A., Chaddock, L., Kim, J.S. Heo, S., Alves, H., White, S.W., et al. (2011). Exercise training increases size of hippocampus and improves memory. Proc. Natl. Acad. Sci. USA 108, 3017–3022.10.1073/pnas.1015950108Search in Google Scholar PubMed PubMed Central

Evans, J.S.T.B.T. (2007). Hypothethical Thinking. Dual Processes in Reasoning and Judgement (New York, USA: Psychology Press: Taylor and Francis Group).10.4324/9780203947487Search in Google Scholar

Farina, F.R., Burke, T., Coyle, D., Jeter, K., McGee, M., O’Connell, J., Taheny, D., and Commins S. (2015). Learning efficiency: the influence of cue salience during spatial navigation. Behav. Processes 116, 17–27.10.1016/j.beproc.2015.04.010Search in Google Scholar PubMed

Fay, R. (1970). Auditory frequency generalization in the goldfish (Carassius auratus). J. Exp. Anal. Behav. 14, 353–360.10.1901/jeab.1970.14-353Search in Google Scholar PubMed PubMed Central

Fernández-Fernández, D., Rosenbrock, H., and Kroker, K.S. (2015). Inhibition of PDE2A, but not PDE9A, modulates presynaptic short-term plasticity measured by paired-pulse facilitation in the CA1 region of the hippocampus. Synapse 69, 484–496.10.1002/syn.21840Search in Google Scholar PubMed

Fiske, S.T. and Taylor, S.E. (1984). Social Cognition (Reading, MA, USA: Addison-Wesley Publishing Co).Search in Google Scholar

Fox, P.T., Raichle, M.E., Mintun, M.A., and Dence, C. (1988). Nonoxidative glucose consumption during focal physiologic neural activity. Science 241, 462–464.10.1126/science.3260686Search in Google Scholar PubMed

Francois, J., Huxter, J., Conway, M.W., Lowry, J.P., Tricklebank, M.D., and Gilmour, G. (2014). Differential contributions of infralimbic prefrontal cortex and nucleus accumbens during reward-based learning and extinction. J. Neurosci. 34, 596–607.10.1523/JNEUROSCI.2346-13.2014Search in Google Scholar PubMed PubMed Central

Gailliot, M.T., Baumeister, R.F., DeWall, C.N., Maner, J.K., Plant, E.A., Tice, D.M., Brewer, L.E., and Schmeichel, B.J. (2007). Self-control relies on glucose as a limited energy source: willpower is more than a metaphor. J Pers. Soc. Psychol. 92, 325–336.10.1037/0022-3514.92.2.325Search in Google Scholar PubMed

Galna, B. and Sparrow, W.A. (2006). Learning to minimize energy costs and maximize mechanical work in a bimanual coordination task. J. Motor. Behav. 38, 411–422.10.3200/JMBR.38.6.411-422Search in Google Scholar PubMed

Gauthier, I. and Logothetis, N.K. (2000). Is face recognition not so unique after all? Cogn. Neuropsychol. 17, 125–142.Search in Google Scholar

Ghirlanda, S. and Enquist, M. (2003). A century of generalization. Anim. Behav. 66, 15–36.10.1006/anbe.2003.2174Search in Google Scholar

Grillo, F.W., West, L., and De Paola, V. (2015). Removing synaptic brakes on learning. Nat. Neurosci. 18, 1062–1064.10.1038/nn.4073Search in Google Scholar PubMed

Haier, R.J. Siegel, B. Tang, C. Abel, L., and Buchsbaum, M.S. (1992). Intelligence and changes in regional cerebral glucose metabolic rate following learning. Intelligence 16, 415–426.10.1016/0160-2896(92)90018-MSearch in Google Scholar

Hallermann, S., de Kock, C.P., Stuart, G.J., and Kole, M.H. (2012). State and location dependence of action potential metabolic cost in cortical pyramidal neurons. Nat. Neurosci. 15, 1007–1014.10.1038/nn.3132Search in Google Scholar PubMed

Han, J.H., Kushner, S.A., Yiu, A.P., Cole, C.J., Matynia, A., Brown, R.A., Neve, R.L., Guzowski, J.F., Silva, A.J., and Josselyn, S.A. (2007). Neuronal competition and selection during memory formation. Science 316, 457–460.10.1126/science.1139438Search in Google Scholar PubMed

Hanson, H. (1959). Effects of discrimination training on stimulus generalization. J. Exp. Psychol. 58, 321–333.10.1037/h0042606Search in Google Scholar PubMed

Harvey, D.R., McGauran, A.M., Murphy, J., Burns, L., McMonagle, E., and Commins, S. (2008). Emergence of an egocentric cue guiding and allocentric inferring strategy that mirrors hippocampal brain-derived neurotrophic factor (BDNF) expression in the Morris water maze. Neurobiol. Learn. Mem. 89, 462–479.10.1016/j.nlm.2007.08.013Search in Google Scholar PubMed

Hasenstaub, A., Otte, S., Callaway, E., and Sejnowski, T.J. (2010). Metabolic cost as a unifying principle governing neuronal biophysics. Proc. Natl. Acad. Sci. USA 107, 12329–12334.10.1073/pnas.0914886107Search in Google Scholar PubMed PubMed Central

Hebb, D.O. (1949). The Organization of Behavior (New York, USA: Wiley and Sons).Search in Google Scholar

Herculano-Houzel, S. (2011). Scaling of brain metabolism with a fixed energy budget per neuron: implications for neural activity, plasticity and evolution. PLoS One 6, e17514.10.1371/journal.pone.0017514Search in Google Scholar PubMed PubMed Central

Hu, T., Genkin, A., and Chklovskii, D.B. (2012). A network of spiking neurons for computing sparse representations in an energy-efficient way. Neural. Comput. 24, 2852–2872.10.1162/NECO_a_00353Search in Google Scholar PubMed PubMed Central

Huang, H.J., Kram, R., and Ahmed, A.A. (2012). Reduction of metabolic cost during motor learning of arm reaching dynamics. J. Neurosci. 32, 2182–2190.10.1523/JNEUROSCI.4003-11.2012Search in Google Scholar PubMed PubMed Central

Hunt, K.L. and Chittka, L. (2015). Merging of long-term memories in an insect. Curr. Biol. 25, 741–745.10.1016/j.cub.2015.01.023Search in Google Scholar PubMed

Kahneman, D. (2011). Thinking, Fast and Slow (New York, USA: Farrar, Straus and Giroux).Search in Google Scholar

Kamil, A.C. and Cheng, K. (2001). Way-finding and landmarks: the multiple-bearings hypothesis. J. Exp. Biol. 204, 103–113.10.1242/jeb.204.1.103Search in Google Scholar PubMed

Kamin, L.J. (1969). Predictability, surprise, attention and conditioning. Punishment and Aversive Behavior. B.A. Campbell and R.M. Church, eds. (New York, USA: Appleton-Century-Crofts).Search in Google Scholar

Kazemi, B., Gamberale-Stille, G., Tullberg, B.S., and Leimar, O. (2014). Stimulus salience as an explanation for imperfect mimicry. Curr. Biol. 24, 965–969.10.1016/j.cub.2014.02.061Search in Google Scholar PubMed

Kealy, J., Diviney, M., Kehoe, E., McGonagle, V., O’Shea, A., Harvey, D., and Commins S. (2008). The effects of overtraining in the Morris water maze on allocentric and egocentric learning strategies in rats. Behav. Brain Res. 192, 259–263.10.1016/j.bbr.2008.04.009Search in Google Scholar PubMed

Kelly, A.M. and Garavan, H. (2005). Human functional neuroimaging of brain changes associated with practice. Cereb. Cortex 15, 1089–1102.10.1093/cercor/bhi005Search in Google Scholar PubMed

Kelly, D.M., Kamil, A.C., and Cheng, K. (2010). Landmark use by Clark’s nutcrackers (Nucifraga columbiana): influence of disorientation and cue rotation on distance and direction estimates. Anim. Cogn. 13, 175–188.10.1007/s10071-009-0256-6Search in Google Scholar PubMed

Kempermann, G., Kuhn, H.G., and Gage, F.H. (1997). More hippocampal neurons in adult mice living in an enriched environment. Nature 386, 493–495.10.1038/386493a0Search in Google Scholar PubMed

Kikuchi, D.W. and Pfennig, D.W. (2013). Imperfect mimicry and the limits of natural selection. Quart. Rev. Biol. 88, 297–315.10.1086/673758Search in Google Scholar PubMed

Kool, W., McGuire, J.T., Rosen, Z.B., and Botvinick, M.M. (2010). Decision making and the avoidance of cognitive demand. J. Exp. Psychol. Gen. 139, 665–682.10.1037/a0020198Search in Google Scholar PubMed PubMed Central

Krane, R.V. and Wagner, A.R. (1975). Taste aversion learning with a delayed shock US: implications for the generality of the laws of learning. J. Comp. Physiol. Psychol. 88, 882–889.10.1037/h0076417Search in Google Scholar

Krebs, J.R., Sherry, D.F., Healy, S.D., Perry, V.H., and Vaccarino, A.L. (1989). Hippocampal specialization of food-storing birds. Proc. Natl. Acad. Sci. USA 86, 1388–1392.10.1073/pnas.86.4.1388Search in Google Scholar

Krebs, R.M., Boehler, C.N., and Woldorff, M.G. (2010). The influence of reward associations on conflict processing in the Stroop task. Cognition 117, 341–347.10.1016/j.cognition.2010.08.018Search in Google Scholar PubMed

Kurzban, R. (2010). Does the brain consume additional glucose during self-control tasks? Evol. Psychol. 8, 245–260.Search in Google Scholar

Lay, B.S., Sparrow, W.A., Hughes, K.M., and O’Dwyer, N.J. (2002). Practice effects on coordination and control, metabolic energy expenditure, and muscle activation. Hum. Mov. Sci. 21, 807–830.10.1016/S0167-9457(02)00166-5Search in Google Scholar PubMed

Leonard, W.R. (2010). Measuring human energy expenditure and metabolic function: basic principles and methods. J. Anthropol. Sci. 88, 221–230.Search in Google Scholar PubMed

Loftus, E.F. and Palmer, J.C. (1974). Reconstruction of automobile destruction: an example of the interaction between language and memory. J. Verbal. Learn. Verbal. Behav. 13, 585–589.10.1016/S0022-5371(74)80011-3Search in Google Scholar

Li, J., Bravo, D.S., Upton, A.L., Gilmour, G., Tricklebank, M.D., Fillenz, M., Martin, C., Lowry, J.P., Bannerman, D.M., and McHugh, S.B. (2011). Close temporal coupling of neuronal activity and tissue oxygen responses in rodent whisker barrel cortex. Eur. J. Neurosci. 34, 1983–1996.10.1111/j.1460-9568.2011.07927.xSearch in Google Scholar PubMed

Li, Q., Rothkegel, M., Xiao, Z.C., Abraham, W.C., Korte, M., and Sajikumar, S. (2014). Making synapses strong: metaplasticity prolongs associativity of long-term memory by switching synaptic tag mechanisms. Cereb. Cortex 24, 353–363.10.1093/cercor/bhs315Search in Google Scholar PubMed

Lin, A.-L., Fox, P.T., Hardies, J., Duong, T.Q., and Gao, J.-H. (2010). Nonlinear coupling between cerebral blood flow, oxygen consumption and ATP production in the human visual cortex. Proc. Natl. Acad. Sci. USA 107, 8446–8451.10.1073/pnas.0909711107Search in Google Scholar

Lupien, S.J. and Lepage, M. (2001). Stress, memory, and the hippocampus: can’t live with it, can’t live without it. Behav. Brain Res. 127, 137–158.10.1016/S0166-4328(01)00361-8Search in Google Scholar PubMed

Mackintosh, N. (1974). The Psychology of Animal Learning (London, UK: Academic Press).Search in Google Scholar

Macrae, N.C., Milne, A.B., and Bodenhausen, G.V. (1994). Stereotypes as energy-saving devices: a peek inside the cognitive toolbox. J. Pers. Soc. Psychol. 66, 37–47.10.1037/0022-3514.66.1.37Search in Google Scholar

Maguire, E.A., Gadian, D.G., Johnsrude, I.S., Good, C.D., Ashburner, J., Frackowiak, R.S., and Frith, C.D. (2000). Navigation-related structural change in the hippocampi of taxi drivers. Proc. Natl. Acad. Sci. USA 97, 4398–4403.10.1073/pnas.070039597Search in Google Scholar PubMed PubMed Central

Meade, J., Biro, D., and Guilford, T. (2005). Homing pigeons develop local route stereotypy. Proc. Biol. Sci. 272, 17–23.10.1098/rspb.2004.2873Search in Google Scholar PubMed PubMed Central

McNay, E.C., Fries, T.M., and Gold, P.E. (2000). Decreases in rat extracellular hippocampal glucose concentration associated with cognitive demand during a spatial task. Proc. Natl. Acad. Sci. USA 97, 2881–2885.10.1073/pnas.050583697Search in Google Scholar PubMed PubMed Central

Mimura, K., Kimoto, T., and Okada, M. (2003). Synapse efficiency diverges due to synaptic pruning following overgrowth. Phys. Rev. E, 68, 031910.10.1103/PhysRevE.68.031910Search in Google Scholar PubMed

Mink, J.W., Blumenschine, R.J., and Adams, D.B. (1981). Ratio of central nervous system to body metabolism in vertebrates: its constancy and functional basis. Am. J. Physiol. 241, 203–212.10.1152/ajpregu.1981.241.3.R203Search in Google Scholar PubMed

Morcom, A.M., Li, J., and Rugg, M.D. (2007). Age effects on the neural correlates of episodic retrieval: increased cortical recruitment with matched performance. Cereb. Cortex 17, 2491–2506.10.1093/cercor/bhl155Search in Google Scholar PubMed

Morris, R.G., Anderson, E., Lynch, G.S., and Baudry, M. (1986). Selective impairment of learning and blockade of long-term potentiation by an N-methyl-D-aspartate receptor antagonist, AP5. Nature 319, 774–776.10.1038/319774a0Search in Google Scholar PubMed

Mukherjee, K. (2010). A dual system model of preferences under risk. Psychol. Rev. 177, 243–255.10.1037/a0017884Search in Google Scholar PubMed

Nabavi, S., Fox, R., Proulx, C.D., Lin, J.Y., Tsien, R.Y., and Malinow, R. (2014). Engineering a memory with LTD and LTP. Nature 511, 348–352.10.1038/nature13294Search in Google Scholar PubMed PubMed Central

Nakazawa, K., McHugh, T.J., Wilson, M.A., and Tonegawa, S. (2004). NMDA receptors, place cells and hippocampal spatial memory. Nat. Rev. Neurosci. 5, 361–372.10.1038/nrn1385Search in Google Scholar PubMed

Neubauer, A.C. and Fink, A. (2009). Intelligence and neural efficiency. Neurosci. Biobehav. Rev. 33, 1004–1023.10.1016/j.neubiorev.2009.04.001Search in Google Scholar PubMed

Neubauer, A.C., Grabner, R.H., Freudenthaler, H.H., Beckmann, J.F., and Guthke, J. (2004). Intelligence and individual differences in becoming neurally efficient. Acta Psychol. (Amst) 116, 55–74.10.1016/j.actpsy.2003.11.005Search in Google Scholar PubMed

Nicholls, R.E., Alarcon, J.M., Malleret, G., Carroll, R.C., Grody, M., Vronskaya, S., and Kandel, E.R. (2008). Transgenic mice lacking NMDAR-dependent LTD exhibit deficits in behavioral flexibility. Neuron 58, 104–117.10.1016/j.neuron.2008.01.039Search in Google Scholar PubMed

Nicholson, J.N. and Gray, J.A. (1971). Behavioural contrast and peak shift in children. Br. J. Psychol. 62, 367–373.10.1111/j.2044-8295.1971.tb02047.xSearch in Google Scholar PubMed

Nyberg, L., Andersson, M., Kauppi, K., Lundquist, A., Persson, J., Pudas, S., and Nilsson, L.G. (2014). Age-related and genetic modulation of frontal cortex efficiency. J. Cognit. Neurosci. 26, 746–754.10.1162/jocn_a_00521Search in Google Scholar PubMed

Ortega, J.D., Fehlman L.A., and Farley C.T. (2008). Effects of aging and arm swing on the metabolic cost of stability in human walking. J. Biomech. 41, 3303–3308.10.1016/j.jbiomech.2008.06.039Search in Google Scholar PubMed PubMed Central

Pascual-Leone, A., Nguyet, D., Cohen, L.G., Brasil-Neto, J.P., Cammarota, A., and Hallett, M. (1995). Modulation of muscle responses evoked by transcranial magnetic stimulation during the acquisition of new fine motor skills. J. Neurophysiol. 74, 1037–1045.10.1152/jn.1995.74.3.1037Search in Google Scholar PubMed

Pascual-Leone, A., Amedi, A., Fregni, F., and Merabet, L.B. (2005). The plastic human brain cortex. Annu. Rev. Neurosci. 28, 377–401.10.1146/annurev.neuro.27.070203.144216Search in Google Scholar PubMed

Pavlov, I.P. (1927). Conditioned Reflexes (Oxford, UK: Oxford University Press).Search in Google Scholar

Perera, T.D., Lu, D., Thirumangalakudi, L., Smith, E.L., Yaretskiy, A., Rosenblum, L.A., Kral, J.G., and Coplan, J.D. (2011). Correlations between hippocampal neurogenesis and metabolic indices in adult nonhuman primates. Neural Plast. 2011, 1–6.10.1155/2011/875307Search in Google Scholar PubMed PubMed Central

Picard, N., Matsuzaka, Y., and Strick, P.L. (2013). Extended practice of a motor skill is associated with reduced metabolic activity in M1. Nat. Neurosci. 16, 1340–1347.10.1038/nn.3477Search in Google Scholar PubMed PubMed Central

Poldrack, R.A. (2015). Is ‘efficiency’ a useful concept in cognitive neuroscience? Dev. Cognit. Neurosci. 11, 12–17.10.1016/j.dcn.2014.06.001Search in Google Scholar

Raichle, M.E. and Mintun, M.A. (2006). Brain work and brain imaging. Annu. Rev. Neurorsci. 29, 449–476.10.1146/annurev.neuro.29.051605.112819Search in Google Scholar

Rashid, A.J., Yan, C., Mercaldo, V., Hsiang, H.L., Park, S., Cole, C.J., De Cristofaro, A., Yu, J., Ramakrishnan, C., Lee, S.Y., et al. (2016). Competition between engrams influences fear memory formation and recall. Science 353, 383–387.10.1126/science.aaf0594Search in Google Scholar PubMed

Reed, W.J. (2001). The Pareto, Zipf and other power laws. Econ. Lett. 74, 15–19.10.1016/S0165-1765(01)00524-9Search in Google Scholar

Reiss, S. and Wagner A.R. (1972). CS habituation produces a ‘latent inhibition effect’ but no active ‘conditioned inhibition’. Learn. Motiv. 3, 237–245.10.1016/0023-9690(72)90020-3Search in Google Scholar

Rescorla, R.A. and Gillan, D.J. (1980). An analysis of the facilitative effect of similarity on second-order conditioning. J. Exp. Psychol. Anim. Behav. Process. 6, 339–351.10.1037/0097-7403.6.4.339Search in Google Scholar PubMed

Rizzolatti, G., Cattaneo, L., Fabbri-Destro, M., and Rozzi, S. (2014). Cortical mechanisms underlying the organization of goal-directed actions and mirror neuron-based action understanding. Physiol. Rev. 94, 655–706.10.1152/physrev.00009.2013Search in Google Scholar PubMed

Rumpel, S., LeDoux, J., Zador, A., and Malinow, R. (2005). Postsynaptic receptor trafficking underlying a form of associative learning. Science 308, 83–88.10.1126/science.1103944Search in Google Scholar PubMed

Rypma, B. and D’Esposito, M. (2000). Isolating the neural mechanisms of age-related changes in human working memory. Nat. Neurosci. 3, 509–515.10.1038/74889Search in Google Scholar PubMed

Sacramento, J., Wichert, A., and van Rossum, M.C. (2015). Energy efficient sparse connectivity from imbalanced synaptic plasticity rules. PLoS Comput. Biol. 11, e1004265.10.1371/journal.pcbi.1004265Search in Google Scholar PubMed PubMed Central

Shepard, R.N. (1987). Toward a universal law of generalization for psychological science. Science 237, 1317–1323.10.1126/science.3629243Search in Google Scholar PubMed

Scoville, W.B. and Milner, B.J. (1957). Loss of recent memory after bilateral hippocampal lesions. Neurol. Neurosurg. Psychiatry 20, 11–21.10.1136/jnnp.20.1.11Search in Google Scholar PubMed PubMed Central

Sengupta, B., Stemmler, M., Laughlin, S.B., and Niven, J.E. (2010). Action potential energy efficiency varies among neuron types in vertebrates and invertebrates. PLoS Comput. Biol. 6, e1000840.10.1371/journal.pcbi.1000840Search in Google Scholar PubMed PubMed Central

Solomon R.L. (1948). The influence of work on behavior. Psychol. Bull. 45, 1.10.1037/h0055527Search in Google Scholar PubMed

Sparrow, W.A. and Newell, K.M. (1994). Energy expenditure and motor performance relationships in humans learning a motor task. Psychophysiology 31, 338–346.10.1111/j.1469-8986.1994.tb02442.xSearch in Google Scholar PubMed

Stranahan, A.M. and Mattson, M.P. (2008). Impact of energy intake and expenditure on neuronal plasticity. Neuromol. Med. 10, 209–218.10.1007/s12017-008-8043-0Search in Google Scholar PubMed PubMed Central

Szilágyi, T., Orbán-Kis, K., Horváth, E., Metz, J., Pap, Z., and Pávai, Z. (2011). Morphological identification of neuron types in the rat hippocampus. Rom. J. Morphol. Embryol. 52, 15–20.Search in Google Scholar PubMed

Tang, Y.P., Shimizu, E., Dube, G.R., Rampon, C., Kerchner, G.A., Zhuo, M., Liu, G., and Tsien, J.Z. (1999). Genetic enhancement of learning and memory in mice. Nature 401, 63–69.10.1038/43432Search in Google Scholar PubMed

Takeuchi, T., Duszkiewicz, A.J., and Morris, R.G. (2013). The synaptic plasticity and memory hypothesis: encoding, storage and persistence. Phil. Trans. R. Soc. B 369, 20130288.10.1098/rstb.2013.0288Search in Google Scholar PubMed PubMed Central

Thiebaut de Schotten, M., Cohen, L., Amemiya, E., Braga, L.W., and Dehaene S. (2014). Learning to read improves the structure of the arcuate fasciculus. Cereb. Cortex 24, 989–995.10.1093/cercor/bhs383Search in Google Scholar PubMed

Thornton, A. and Samson, J. (2012). Innovative problem solving in wild meerkats. Anim. Behav. 83, 1459–1468.10.1016/j.anbehav.2012.03.018Search in Google Scholar

Turrigiano, G.G. (2008). The self-tuning neuron: synaptic scaling of excitatory synapses. Cell 135, 422–435.10.1016/j.cell.2008.10.008Search in Google Scholar PubMed

Tversky, A. and Kahneman, D. (1973). Availability: a heuristic for judging frequency and probability. Cogn. Psychol. 5, 207–232.10.1016/0010-0285(73)90033-9Search in Google Scholar

van Praag, H., Christie, B.R., Sejnowski, T.J., and Gage, F.H. (1999). Running enhances neurogenesis, learning, and long-term potentiation in mice. Proc. Natl. Acad. Sci. USA 96, 13427–13431.10.1073/pnas.96.23.13427Search in Google Scholar PubMed PubMed Central

Westbrook, A. and Braver, T.S. (2015). Cognitive effort: a neuroeconomic approach. Cognit. Affect. Behav. Neurosci. 15, 395–415.10.3758/s13415-015-0334-ySearch in Google Scholar PubMed PubMed Central

West-Eberhard, M.J. (2003). Developmental Plasticity and Evolution (Oxford, UK: Oxford University Press).10.1093/oso/9780195122343.001.0001Search in Google Scholar

Whitlock, J.R., Heynen, A.J., Shuler, M.G., and Bear, M.F. (2006). Learning induces long-term potentiation in the hippocampus. Science 313, 1093–1097.10.1126/science.1128134Search in Google Scholar PubMed

Yang, G., Pan, F., and Gan, W.B. (2009). Stably maintained dendritic spines are associated with lifelong memories. Nature 462, 920–924.10.1038/nature08577Search in Google Scholar PubMed PubMed Central

Yger, P., Stimberg, M., and Brette, R. (2015). Fast learning with weak synaptic plasticity. J. Neurosci. 35, 13351–13362.10.1523/JNEUROSCI.0607-15.2015Search in Google Scholar PubMed PubMed Central

Zhao, X., Ueba, T., Christie, B.R., Barkho, B., McConnell, M.J., Nakashima, K., Lein, E.S., Eadie, B.D., Willhoite, A.R., Muotri, A.R., et al. (2003). Mice lacking methyl-CpG binding protein 1 have deficits in adult neurogenesis and hippocampal function. Proc. Natl. Acad. Sci. USA 100, 6777–6782.10.1073/pnas.1131928100Search in Google Scholar PubMed PubMed Central

Zhao, C., Deng, W., and Gage, F.H. (2008). Mechanisms and functional implications of adult neurogenesis. Cell 132, 645–660.10.1016/j.cell.2008.01.033Search in Google Scholar PubMed

Zipf, G.K. (1949). Human Behavior and the Principle of Least Effort (Cambridge, MA, USA: Addison-Wesley).Search in Google Scholar

Received: 2017-7-6
Accepted: 2017-7-18
Published Online: 2017-9-11
Published in Print: 2018-2-23

©2018 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 5.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/revneuro-2017-0050/html
Scroll to top button