Home The use of mesenchymal stem cells (MSCs) for amyotrophic lateral sclerosis (ALS) therapy – a perspective on cell biological mechanisms
Article
Licensed
Unlicensed Requires Authentication

The use of mesenchymal stem cells (MSCs) for amyotrophic lateral sclerosis (ALS) therapy – a perspective on cell biological mechanisms

  • Bor Luen Tang ORCID logo EMAIL logo
Published/Copyright: May 25, 2017
Become an author with De Gruyter Brill

Abstract

Recent clinical trials of mesenchymal stem cells (MSCs) transplantation have demonstrated procedural safety and clinical proof of principle with a modest indication of benefit in patients with amyotrophic lateral sclerosis (ALS). While replacement therapy remained unrealistic, the clinical efficacy of this therapeutic option could be potentially enhanced if we could better decipher the mechanisms underlying some of the beneficial effects of transplanted cells, and work toward augmenting or combining these in a strategic manner. Novel ways whereby MSCs could act in modifying disease progression should also be explored. In this review, I discuss the known, emerging and postulated mechanisms of action underlying effects that transplanted MSCs may exert to promote motor neuron survival and/or to encourage regeneration in ALS. I shall also speculate on how transplanted cells may alter the diseased environment so as to minimize non-neuron cell autonomous damages by immune cells and astrocytes.

Acknowledgments

The author receives support from the NUS Graduate School for Integrative Sciences and Engineering (Grant/Award Number: ‘C-183-000-102-091’). He is grateful to all reviewers for their insightful and constructive comments, which improved the paper.

  1. Conflict of interest statement: The author declares that he has no conflict of interest.

References

Abdul Wahid, S.F., Law, Z.K., Ismail, N.A., Azman Ali, R., and Lai, N.M. (2016). Cell-based therapies for amyotrophic lateral sclerosis/motor neuron disease. Cochrane Database Syst. Rev. 11, CD011742.10.1002/14651858.CD011742Search in Google Scholar PubMed

Abdullah, R.H., Yaseen, N.Y., Salih, S.M., Al-Juboory, A.A., Hassan, A., and Al-Shammari, A.M. (2016). Induction of mice adult bone marrow mesenchymal stem cells into functional motor neuron-like cells. J. Chem. Neuroanat. 77, 129–142.10.1016/j.jchemneu.2016.07.003Search in Google Scholar PubMed

Abounit, S., Bousset, L., Loria, F., Zhu, S., de Chaumont, F., Pieri, L., Olivo-Marin, J.C., Melki, R., and Zurzolo, C. (2016). Tunneling nanotubes spread fibrillar α-synuclein by intercellular trafficking of lysosomes. EMBO J. 35, 2120–2138.10.15252/embj.201593411Search in Google Scholar PubMed PubMed Central

Atkin-Smith, G.K., Tixeira, R., Paone, S., Mathivanan, S., Collins, C., Liem, M., Goodall, K.J., Ravichandran, K.S., Hulett, M.D., and Poon, I.K.H. (2015). A novel mechanism of generating extracellular vesicles during apoptosis via a beads-on-a-string membrane structure. Nat. Commun. 6, 7439.10.1038/ncomms8439Search in Google Scholar PubMed PubMed Central

Austefjord, M.W., Gerdes, H.H., and Wang, X. (2014). Tunneling nanotubes: diversity in morphology and structure. Commun. Integr. Biol. 7, e27934.10.4161/cib.27934Search in Google Scholar PubMed PubMed Central

Bagher, Z., Azami, M., Ebrahimi-Barough, S., Mirzadeh, H., Solouk, A., Soleimani, M., Ai, J., Nourani, M.R., and Joghataei, M.T. (2016). Differentiation of Wharton’s jelly-derived mesenchymal stem cells into motor neuron-like cells on three-dimensional collagen-grafted nanofibers. Mol. Neurobiol. 53, 2397–2408.10.1007/s12035-015-9199-xSearch in Google Scholar PubMed

Bahrami, N., Bayat, M., Mohamadnia, A., Khakbiz, M., Yazdankhah, M., Ai, J., and Ebrahimi-Barough, S. (2017). Purmorphamine as a Shh signaling activator small molecule promotes motor neuron differentiation of mesenchymal stem cells cultured on nanofibrous PCL scaffold. Mol. Neurobiol. (in press).10.1007/s12035-016-0090-1Search in Google Scholar PubMed

Bátiz, L.F., Castro, M.A., Burgos, P.V., Velásquez, Z.D., Muñoz, R.I., Lafourcade, C.A., Troncoso-Escudero, P., and Wyneken, U. (2016). Exosomes as novel regulators of adult neurogenic niches. Front Cell Neurosci. 9, 501.10.3389/fncel.2015.00501Search in Google Scholar PubMed PubMed Central

Beers, D.R., Henkel, J.S., Zhao, W., Wang, J., Huang, A., Wen, S., Liao, B., and Appel, S.H. (2011). Endogenous regulatory T lymphocytes ameliorate amyotrophic lateral sclerosis in mice and correlate with disease progression in patients with amyotrophic lateral sclerosis. Brain 134, 1293–1314.10.1093/brain/awr074Search in Google Scholar PubMed PubMed Central

Bennion Callister, J., and Pickering-Brown, S.M. (2014). Pathogenesis/genetics of frontotemporal dementia and how it relates to ALS. Exp. Neurol. 262, 84–90.10.1016/j.expneurol.2014.06.001Search in Google Scholar PubMed PubMed Central

Boido, M., Piras, A., Valsecchi, V., Spigolon, G., Mareschi, K., Ferrero, I., Vizzini, A., Temi, S., Mazzini, L., Fagioli, F., et al. (2014). Human mesenchymal stromal cell transplantation modulates neuroinflammatory milieu in a mouse model of amyotrophic lateral sclerosis. Cytotherapy 16, 1059–1072.10.1016/j.jcyt.2014.02.003Search in Google Scholar PubMed

Bonafede, R., Scambi, I., Peroni, D., Potrich, V., Boschi, F., Benati, D., Bonetti, B., and Mariotti, R. (2016). Exosome derived from murine adipose-derived stromal cells: neuroprotective effect on in vitro model of amyotrophic lateral sclerosis. Exp. Cell Res. 340, 150–158.10.1016/j.yexcr.2015.12.009Search in Google Scholar PubMed

Boucherie, C., Schäfer, S., Lavand’homme, P., Maloteaux, J.M., and Hermans, E. (2009). Chimerization of astroglial population in the lumbar spinal cord after mesenchymal stem cell transplantation prolongs survival in a rat model of amyotrophic lateral sclerosis. J. Neurosci. Res. 87, 2034–2046.10.1002/jnr.22038Search in Google Scholar PubMed

Bozzo, F., Mirra, A., and Carrì, M.T. (2017). Oxidative stress and mitochondrial damage in the pathogenesis of ALS: new perspectives. Neurosci. Lett. 636, 3–8.10.1016/j.neulet.2016.04.065Search in Google Scholar PubMed

Bunton-Stasyshyn, R.K.A., Saccon, R.A., Fratta, P., and Fisher, E.M.C. (2015). SOD1 Function and its implications for amyotrophic lateral sclerosis pathology: new and renascent themes. Neuroscientist 21, 519–529.10.1177/1073858414561795Search in Google Scholar PubMed

Burkhardt, M.F., Martinez, F.J., Wright, S., Ramos, C., Volfson, D., Mason, M., Garnes, J., Dang, V., Lievers, J., Shoukat-Mumtaz, U., et al. (2013). A cellular model for sporadic ALS using patient-derived induced pluripotent stem cells. Mol. Cell Neurosci. 56, 355–364.10.1016/j.mcn.2013.07.007Search in Google Scholar PubMed PubMed Central

Cassatella, M.A., Mosna, F., Micheletti, A., Lisi, V., Tamassia, N., Cont, C., Calzetti, F., Pelletier, M., Pizzolo, G., and Krampera, M. (2011). Toll-like receptor-3-activated human mesenchymal stromal cells significantly prolong the survival and function of neutrophils. Stem Cells 29, 1001–1011.10.1002/stem.651Search in Google Scholar PubMed

Chan-Il, C., Young-Don, L., Heejaung, K., Kim, S.H., Suh-Kim, H., and Kim, S.S. (2013). Neural induction with neurogenin 1 enhances the therapeutic potential of mesenchymal stem cells in an amyotrophic lateral sclerosis mouse model. Cell Transplant. 22, 855–870.10.3727/096368912X637019Search in Google Scholar PubMed

Chao, Y.H., Wu, H.P., Wu, K.H., Tsai, Y.G., Peng, C.T., Lin, K.C., Chao, W.R., Lee, M.S., and Fu, Y.C. (2014). An increase in CD3+ CD4+ CD25+ regulatory T cells after administration of umbilical cord-derived mesenchymal stem cells during sepsis. PLoS One 9, e110338.10.1371/journal.pone.0110338Search in Google Scholar PubMed PubMed Central

Chen, Y., Teng, F.Y.H., and Tang, B.L. (2006). Coaxing bone marrow stromal mesenchymal stem cells towards neuronal differentiation: progress and uncertainties. Cell. Mol. Life Sci. 63, 1649–1657.10.1007/s00018-006-6019-5Search in Google Scholar PubMed

Cherry, J.D., Olschowka, J.A., and O’Banion, M.K. (2014). Neuroinflammation and M2 microglia: the good, the bad, and the inflamed. J. Neuroinflamm. 11, 98.10.1186/1742-2094-11-98Search in Google Scholar PubMed PubMed Central

Chipman, P.H., Toma, J.S., and Rafuse, V.F. (2012). Generation of motor neurons from pluripotent stem cells. Prog. Brain Res. 201, 313–331.10.1016/B978-0-444-59544-7.00015-9Search in Google Scholar PubMed

Chivet, M., Javalet, C., Hemming, F., Pernet-Gallay, K., Laulagnier, K., Fraboulet, S., and Sadoul, R. (2013). Exosomes as a novel way of interneuronal communication. Biochem. Soc. Trans. 41, 241–244.10.1042/BST20120266Search in Google Scholar PubMed

Coatti, G.C., Beccari, M.S., Olávio, T.R., Mitne-Neto, M., Okamoto, O.K., and Zatz, M. (2015). Stem cells for amyotrophic lateral sclerosis modeling and therapy: myth or fact? Cytometry A 87, 197–211.10.1002/cyto.a.22630Search in Google Scholar PubMed

Colombo, M., Moita, C., van Niel, G., Kowal, J., Vigneron, J., Benaroch, P., Manel, N., Moita, L.F., Théry, C., and Raposo, G. (2013). Analysis of ESCRT functions in exosome biogenesis, composition and secretion highlights the heterogeneity of extracellular vesicles. J. Cell Sci. 126, 5553–5565.10.1242/jcs.128868Search in Google Scholar PubMed

Costanzo, M., Abounit, S., Marzo, L., Danckaert, A., Chamoun, Z., Roux, P., and Zurzolo, C. (2013). Transfer of polyglutamine aggregates in neuronal cells occurs in tunneling nanotubes. J. Cell Sci. 126, 3678–3685.10.1242/jcs.126086Search in Google Scholar PubMed

Crigler, L., Robey, R.C., Asawachaicharn, A., Gaupp, D., and Phinney, D.G. (2006). Human mesenchymal stem cell subpopulations express a variety of neuro-regulatory molecules and promote neuronal cell survival and neuritogenesis. Exp. Neurol. 198, 54–64.10.1016/j.expneurol.2005.10.029Search in Google Scholar PubMed

Czarzasta, J., Habich, A., Siwek, T., Czapliński, A., Maksymowicz, W., and Wojtkiewicz, J. (2017). Stem cells for ALS: an overview of possible therapeutic approaches. Int. J. Dev. Neurosci. 57, 46–55.10.1016/j.ijdevneu.2017.01.003Search in Google Scholar PubMed

Deda, H., Inci, M.C., Kürekçi, A.E., Sav, A., Kayihan, K., Ozgün, E., Ustünsoy, G.E., and Kocabay, S. (2009). Treatment of amyotrophic lateral sclerosis patients by autologous bone marrow-derived hematopoietic stem cell transplantation: a 1-year follow-up. Cytotherapy 11, 18–25.10.1080/14653240802549470Search in Google Scholar PubMed

DeJesus-Hernandez, M., Mackenzie, I.R., Boeve, B.F., Boxer, A.L., Baker, M., Rutherford, N.J., Nicholson, A.M., Finch, N.A., Flynn, H., Adamson, J., et al. (2011). Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron 72, 245–256.10.1016/j.neuron.2011.09.011Search in Google Scholar PubMed PubMed Central

Del Fattore, A., Luciano, R., Pascucci, L., Goffredo, B.M., Giorda, E., Scapaticci, M., Fierabracci, A., and Muraca, M. (2015). Immunoregulatory effects of mesenchymal stem cell-derived extracellular vesicles on T lymphocytes. Cell Transplant. 24, 2615–2627.10.3727/096368915X687543Search in Google Scholar PubMed

DeLoach, A., Cozart, M., Kiaei, A., and Kiaei, M. (2015). A retrospective review of the progress in amyotrophic lateral sclerosis drug discovery over the last decade and a look at the latest strategies. Expert Opin. Drug Discov. 10, 1099–1118.10.1517/17460441.2015.1067197Search in Google Scholar PubMed

Deng, J., Petersen, B.E., Steindler, D.A., Jorgensen, M.L., and Laywell, E.D. (2006). Mesenchymal stem cells spontaneously express neural proteins in culture and are neurogenic after transplantation. Stem Cells 24, 1054–1064.10.1634/stemcells.2005-0370Search in Google Scholar PubMed

Di Giorgio, F.P., Carrasco, M.A., Siao, M.C., Maniatis, T., and Eggan, K. (2007). Non-cell autonomous effect of glia on motor neurons in an embryonic stem cell-based ALS model. Nat. Neurosci. 10, 608–614.10.1038/nn1885Search in Google Scholar PubMed PubMed Central

Dieriks, B.V., Park, T.I.H., Fourie, C., Faull, R.L.M., Dragunow, M., and Curtis, M.A. (2017). α-synuclein transfer through tunneling nanotubes occurs in SH-SY5Y cells and primary brain pericytes from Parkinson’s disease patients. Sci. Rep. 7, 42984.10.1038/srep42984Search in Google Scholar PubMed PubMed Central

Ding, Y., Yan, Q., Ruan, J.W., Zhang, Y.Q., Li, W.J., Zeng, X., Huang, S.F., Zhang, Y.J., Wu, J.L., Fisher, D., et al. (2013). Electroacupuncture promotes the differentiation of transplanted bone marrow mesenchymal stem cells overexpressing TrkC into neuron-like cells in transected spinal cord of rats. Cell Transplant. 22, 65–86.10.3727/096368912X655037Search in Google Scholar PubMed

Ding, X., Ma, M., Teng, J., Teng, R.K.F., Zhou, S., Yin, J., Fonkem, E., Huang, J.H., Wu, E., and Wang, X. (2015). Exposure to ALS-FTD-CSF generates TDP-43 aggregates in glioblastoma cells through exosomes and TNTs-like structure. Oncotarget 6, 24178–24191.10.18632/oncotarget.4680Search in Google Scholar PubMed PubMed Central

Domhan, S., Ma, L., Tai, A., Anaya, Z., Beheshti, A., Zeier, M., Hlatky, L., and Abdollahi, A. (2011). Intercellular communication by exchange of cytoplasmic material via tunneling nano-tube like structures in primary human renal epithelial cells. PLoS One 6, e21283.10.1371/journal.pone.0021283Search in Google Scholar PubMed PubMed Central

Dominici, M., Le Blanc, K., Mueller, I., Slaper-Cortenbach, I., Marini, F., Krause, D., Deans, R., Keating, A., Prockop, D., and Horwitz, E. (2006). Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8, 315–317.10.1080/14653240600855905Search in Google Scholar PubMed

Drago, D., Cossetti, C., Iraci, N., Gaude, E., Musco, G., Bachi, A., and Pluchino, S. (2013). The stem cell secretome and its role in brain repair. Biochimie 95, 2271–2285.10.1016/j.biochi.2013.06.020Search in Google Scholar PubMed PubMed Central

Drommelschmidt, K., Serdar, M., Bendix, I., Herz, J., Bertling, F., Prager, S., Keller, M., Ludwig, A.K., Duhan, V., Radtke, S., et al. (2017). Mesenchymal stem cell-derived extracellular vesicles ameliorate inflammation-induced preterm brain injury. Brain Behav. Immun. 60, 220–232.10.1016/j.bbi.2016.11.011Search in Google Scholar PubMed

Edens, B.M., Miller, N., and Ma, Y.C. (2016). Impaired autophagy and defective mitochondrial function: converging paths on the road to motor neuron degeneration. Front Cell Neurosci. 10, 44.10.3389/fncel.2016.00044Search in Google Scholar PubMed PubMed Central

Eugenin, E.A., Gaskill, P.J., and Berman, J.W. (2009). Tunneling nanotubes (TNT): a potential mechanism for intercellular HIV trafficking. Commun. Integr. Biol. 2, 243–244.10.4161/cib.2.3.8165Search in Google Scholar PubMed PubMed Central

Faravelli, I., Bucchia, M., Rinchetti, P., Nizzardo, M., Simone, C., Frattini, E., and Corti, S. (2014a). Motor neuron derivation from human embryonic and induced pluripotent stem cells: experimental approaches and clinical perspectives. Stem Cell Res. Ther. 5, 87.10.1186/scrt476Search in Google Scholar PubMed PubMed Central

Faravelli, I., Riboldi, G., Nizzardo, M., Simone, C., Zanetta, C., Bresolin, N., Comi, G.P., and Corti, S. (2014b). Stem cell transplantation for amyotrophic lateral sclerosis: therapeutic potential and perspectives on clinical translation. Cell Mol. Life Sci. 71, 3257–3268.10.1007/s00018-014-1613-4Search in Google Scholar PubMed

Feiler, M.S., Strobel, B., Freischmidt, A., Helferich, A.M., Kappel, J., Brewer, B.M., Li, D., Thal, D.R., Walther, P., Ludolph, A.C., et al. (2015). TDP-43 is intercellularly transmitted across axon terminals. J. Cell. Biol. 211, 897–911.10.1083/jcb.201504057Search in Google Scholar PubMed PubMed Central

Ferraiuolo, L., Meyer, K., Sherwood, T.W., Vick, J., Likhite, S., Frakes, A., Miranda, C.J., Braun, L., Heath, P.R., Pineda, R., et al. (2016). Oligodendrocytes contribute to motor neuron death in ALS via SOD1-dependent mechanism. Proc. Natl. Acad. Sci. USA 113, E6496–E6505.10.1073/pnas.1607496113Search in Google Scholar PubMed PubMed Central

Ferrero, I., Mazzini, L., Rustichelli, D., Gunetti, M., Mareschi, K., Testa, L., Nasuelli, N., Oggioni, G.D., and Fagioli, F. (2008). Bone marrow mesenchymal stem cells from healthy donors and sporadic amyotrophic lateral sclerosis patients. Cell Transplant. 17, 255–266.10.3727/096368908784153940Search in Google Scholar PubMed

Figeac, F., Lesault, P.F., Le Coz, O., Damy, T., Souktani, R., Trébeau, C., Schmitt, A., Ribot, J., Mounier, R., Guguin, A., et al. (2014). Nanotubular crosstalk with distressed cardiomyocytes stimulates the paracrine repair function of mesenchymal stem cells. Stem Cells 32, 216–230.10.1002/stem.1560Search in Google Scholar PubMed

Forostyak, S., Jendelova, P., Kapcalova, M., Arboleda, D., and Sykova, E. (2011). Mesenchymal stromal cells prolong the lifespan in a rat model of amyotrophic lateral sclerosis. Cytotherapy 13, 1036–1046.10.3109/14653249.2011.592521Search in Google Scholar PubMed

Franco Lambert, A.P., Fraga Zandonai, A., Bonatto, D., Cantarelli Machado, D., and Pêgas Henriques, J.A. (2009). Differentiation of human adipose-derived adult stem cells into neuronal tissue: does it work? Differentiation 77, 221–228.10.1016/j.diff.2008.10.016Search in Google Scholar PubMed

Frausin, S., Viventi, S., Verga Falzacappa, L., Quattromani, M.J., Leanza, G., Tommasini, A., and Valencic, E. (2015). Wharton’s jelly derived mesenchymal stromal cells: biological properties, induction of neuronal phenotype and current applications in neurodegeneration research. Acta Histochem. 117, 329–338.10.1016/j.acthis.2015.02.005Search in Google Scholar PubMed

Gerdes, H.H., and Carvalho, R.N. (2008). Intercellular transfer mediated by tunneling nanotubes. Curr. Opin. Cell Biol. 20, 470–475.10.1016/j.ceb.2008.03.005Search in Google Scholar PubMed

Gitler, A.D., and Tsuiji, H. (2016). There has been an awakening: emerging mechanisms of C9orf72 mutations in FTD/ALS. Brain Res. 1647, 19–29.10.1016/j.brainres.2016.04.004Search in Google Scholar PubMed PubMed Central

Goldman, S.A. (2016). Stem and progenitor cell-based therapy of the central nervous system: hopes, hype, and wishful thinking. Cell Stem Cell 18, 174–188.10.1016/j.stem.2016.01.012Search in Google Scholar PubMed PubMed Central

Goyal, N.A., and Mozaffar, T. (2014). Experimental trials in amyotrophic lateral sclerosis: a review of recently completed, ongoing and planned trials using existing and novel drugs. Expert Opin. Investig. Drugs 23, 1541–1551.10.1517/13543784.2014.933807Search in Google Scholar PubMed

Grad, L.I., Yerbury, J.J., Turner, B.J., Guest, W.C., Pokrishevsky, E., O’Neill, M.A., Yanai, A., Silverman, J.M., Zeineddine, R., Corcoran, L., et al. (2014). Intercellular propagated misfolding of wild-type Cu/Zn superoxide dismutase occurs via exosome-dependent and -independent mechanisms. Proc. Natl. Acad. Sci. USA 111, 3620–3625.10.1073/pnas.1312245111Search in Google Scholar PubMed PubMed Central

Gransee, H.M., Zhan, W.Z., Sieck, G.C., and Mantilla, C.B. (2015). Localized delivery of brain-derived neurotrophic factor-expressing mesenchymal stem cells enhances functional recovery following cervical spinal cord injury. J. Neurotrauma. 32, 185–193.10.1089/neu.2014.3464Search in Google Scholar PubMed PubMed Central

Grégoire, C., Lechanteur, C., Briquet, A., Baudoux, É., Baron, F., Louis, E., and Beguin, Y. (2017). Review article: mesenchymal stromal cell therapy for inflammatory bowel diseases. Aliment Pharmacol. Ther. 45, 205–221.10.1111/apt.13864Search in Google Scholar PubMed

Gross, J.C., Chaudhary, V., Bartscherer, K., and Boutros, M. (2012). Active Wnt proteins are secreted on exosomes. Nat. Cell. Biol. 14, 1036–1045.10.1038/ncb2574Search in Google Scholar PubMed

Gurke, S., Barroso, J.F.V., Hodneland, E., Bukoreshtliev, N.V., Schlicker, O., and Gerdes, H.H. (2008). Tunneling nanotube (TNT)-like structures facilitate a constitutive, actomyosin-dependent exchange of endocytic organelles between normal rat kidney cells. Exp. Cell Res. 314, 3669–3683.10.1016/j.yexcr.2008.08.022Search in Google Scholar PubMed

Haidet-Phillips, A.M., Hester, M.E., Miranda, C.J., Meyer, K., Braun, L., Frakes, A., Song, S., Likhite, S., Murtha, M.J., Foust, K.D., et al. (2011). Astrocytes from familial and sporadic ALS patients are toxic to motor neurons. Nat. Biotechnol. 29, 824–828.10.1038/nbt.1957Search in Google Scholar PubMed PubMed Central

Hajishengallis, G., and Lambris, J.D. (2016). More than complementing Tolls: complement-Toll-like receptor synergy and crosstalk in innate immunity and inflammation. Immunol. Rev. 274, 233–244.10.1111/imr.12467Search in Google Scholar PubMed PubMed Central

Henkel, J.S., Beers, D.R., Wen, S., Rivera, A.L., Toennis, K.M., Appel, J.E., Zhao, W., Moore, D.H., Powell, S.Z., and Appel, S.H. (2013). Regulatory T-lymphocytes mediate amyotrophic lateral sclerosis progression and survival. EMBO Mol. Med. 5, 64–79.10.1002/emmm.201201544Search in Google Scholar PubMed PubMed Central

Heo, J.S., Choi, S.M., Kim, H.O., Kim, E.H., You, J., Park, T., Kim, E., and Kim, H.S. (2013). Neural transdifferentiation of human bone marrow mesenchymal stem cells on hydrophobic polymer-modified surface and therapeutic effects in an animal model of ischemic stroke. Neuroscience 238, 305–318.10.1016/j.neuroscience.2013.02.011Search in Google Scholar PubMed

Hombach-Klonisch, S., Panigrahi, S., Rashedi, I., Seifert, A., Alberti, E., Pocar, P., Kurpisz, M., Schulze-Osthoff, K., Mackiewicz, A., and Los, M. (2008). Adult stem cells and their trans-differentiation potential—perspectives and therapeutic applications. J. Mol. Med. 86, 1301–1314.10.1007/s00109-008-0383-6Search in Google Scholar PubMed PubMed Central

Howitt, J., and Hill, A.F. (2016). Exosomes in the pathology of neurodegenerative diseases. J. Biol. Chem. 291, 26589–26597.10.1074/jbc.R116.757955Search in Google Scholar PubMed PubMed Central

Jackson, M.V., Morrison, T.J., Doherty, D.F., McAuley, D.F., Matthay, M.A., Kissenpfennig, A., O’Kane, C.M., and Krasnodembskaya, A.D. (2016). Mitochondrial transfer via tunneling nanotubes is an important mechanism by which mesenchymal stem cells enhance macrophage phagocytosis in the in vitro and in vivo models of ARDS. Stem Cells 34, 2210–2223.10.1002/stem.2372Search in Google Scholar PubMed PubMed Central

Jiang, D., Gao, F., Zhang, Y., Wong, D.S.H., Li, Q., Tse, H.F., Xu, G., Yu, Z., and Lian, Q. (2016). Mitochondrial transfer of mesenchymal stem cells effectively protects corneal epithelial cells from mitochondrial damage. Cell Death Dis. 7, e2467.10.1038/cddis.2016.358Search in Google Scholar PubMed PubMed Central

Jose, S., Tan, S.W., Ooi, Y.Y., Ramasamy, R., and Vidyadaran, S. (2014). Mesenchymal stem cells exert anti-proliferative effect on lipopolysaccharide-stimulated BV2 microglia by reducing tumour necrosis factor-α levels. J. Neuroinflamm. 11, 149.10.1186/s12974-014-0149-8Search in Google Scholar PubMed PubMed Central

Joyce, N., Annett, G., Wirthlin, L., Olson, S., Bauer, G., and Nolta, J.A. (2010). Mesenchymal stem cells for the treatment of neurodegenerative disease. Regen. Med. 5, 933–946.10.2217/rme.10.72Search in Google Scholar PubMed

Karussis, D., Karageorgiou, C., Vaknin-Dembinsky, A., Gowda-Kurkalli, B., Gomori, J.M., Kassis, I., Bulte, J.W.M., Petrou, P., Ben-Hur, T., Abramsky, O., et al. (2010). Safety and immunological effects of mesenchymal stem cell transplantation in patients with multiple sclerosis and amyotrophic lateral sclerosis. Arch. Neurol. 67, 1187–1194.10.1001/archneurol.2010.248Search in Google Scholar PubMed

Kiernan, M.C., Vucic, S., Cheah, B.C., Turner, M.R., Eisen, A., Hardiman, O., Burrell, J.R., and Zoing, M.C. (2011). Amyotrophic lateral sclerosis. Lancet 377, 942–955.10.1016/S0140-6736(10)61156-7Search in Google Scholar PubMed

Kim, H.Y., Kim, H., Oh, K.W., Oh, S.I., Koh, S.H., Baik, W., Noh, M.Y., Kim, K.S., and Kim, S.H. (2014). Biological markers of mesenchymal stromal cells as predictors of response to autologous stem cell transplantation in patients with amyotrophic lateral sclerosis: an investigator-initiated trial and in vivo study. Stem Cells 32, 2724–2731.10.1002/stem.1770Search in Google Scholar PubMed

Koh, S.H., Baik, W., Noh, M.Y., Cho, G.W., Kim, H.Y., Kim, K.S., and Kim, S.H. (2012). The functional deficiency of bone marrow mesenchymal stromal cells in ALS patients is proportional to disease progression rate. Exp. Neurol. 233, 472–480.10.1016/j.expneurol.2011.11.021Search in Google Scholar PubMed

Kumar, A., Mishra, H.K., Dwivedi, P., and Subramaniam, J.R. (2015). Secreted trophic factors of human umbilical cord stromal cells induce differentiation and neurite extension through PI3K and independent of cAMP pathway. Ann. Neurosci. 22, 97–106.10.5214/ans.0972.7531.220208Search in Google Scholar PubMed PubMed Central

Kwiatkowski, T.J., Bosco, D.A., Leclerc, A.L., Tamrazian, E., Vanderburg, C.R., Russ, C., Davis, A., Gilchrist, J., Kasarskis, E.J., Munsat, T., et al. (2009). Mutations in the FUS/TLS gene on chromosome 16 cause familial amyotrophic lateral sclerosis. Science 323, 1205–1208.10.1126/science.1166066Search in Google Scholar PubMed

Kwon, M.S., Noh, M.Y., Oh, K.W., Cho, K.A., Kang, B.Y., Kim, K.S., Kim, Y.S., and Kim, S.H. (2014). The immunomodulatory effects of human mesenchymal stem cells on peripheral blood mononuclear cells in ALS patients. J. Neurochem. 131, 206–218.10.1111/jnc.12814Search in Google Scholar PubMed

Lee, M., Ban, J.J., Kim, K.Y., Jeon, G.S., Im, W., Sung, J.J., and Kim, M. (2016). Adipose-derived stem cell exosomes alleviate pathology of amyotrophic lateral sclerosis in vitro. Biochem. Biophys. Res. Commun. 479, 434–439.10.1016/j.bbrc.2016.09.069Search in Google Scholar PubMed

Lee, S.H., Kim, Y., Rhew, D., Kim, A., Jo, K.R., Yoon, Y., Choi, K.U., Jung, T., Kim, W.H., and Kweon, O.K. (2017). Impact of local injection of brain-derived neurotrophic factor-expressing mesenchymal stromal cells (MSCs) combined with intravenous MSC delivery in a canine model of chronic spinal cord injury. Cytotherapy 19, 75–87.10.1016/j.jcyt.2016.09.014Search in Google Scholar PubMed

Liao, B., Zhao, W., Beers, D.R., Henkel, J.S., and Appel, S.H. (2012). Transformation from a neuroprotective to a neurotoxic microglial phenotype in a mouse model of ALS. Exp. Neurol. 237, 147–152.10.1016/j.expneurol.2012.06.011Search in Google Scholar PubMed PubMed Central

Liddelow, S.A., Guttenplan, K.A., Clarke, L.E., Bennett, F.C., Bohlen, C.J., Schirmer, L., Bennett, M.L., Münch, A.E., Chung, W.S., Peterson, T.C., et al. (2017). Neurotoxic reactive astrocytes are induced by activated microglia. Nature 541, 481–487.10.1038/nature21029Search in Google Scholar PubMed PubMed Central

Lillo, P., Savage, S., Mioshi, E., Kiernan, M.C., and Hodges, J.R. (2012). Amyotrophic lateral sclerosis and frontotemporal dementia: a behavioural and cognitive continuum. Amyotroph. Lateral Scler. 13, 102–109.10.3109/17482968.2011.639376Search in Google Scholar PubMed

Lim, Y.S., and Tang, B.L. (2012). Intercellular organelle trafficking by membranous nanotube connections: a possible new role in cellular rejuvenation? Cell Commun. Adhes. 19, 39–44.10.3109/15419061.2012.712574Search in Google Scholar PubMed

Lindvall, O. (2015). Treatment of Parkinson’s disease using cell transplantation. Philos. Trans. R. Soc. Lond. B Biol. Sci. 370, 20140370.10.1098/rstb.2014.0370Search in Google Scholar PubMed PubMed Central

Liu, Y., Zhang, R., Yan, K., Chen, F., Huang, W., Lv, B., Sun, C., Xu, L., Li, F., and Jiang, X. (2014). Mesenchymal stem cells inhibit lipopolysaccharide-induced inflammatory responses of BV2 microglial cells through TSG-6. J. Neuroinflamm. 11, 135.10.1186/1742-2094-11-135Search in Google Scholar PubMed PubMed Central

Liu, M.L., Zang, T., and Zhang, C.L. (2016). Direct lineage reprogramming reveals disease-specific phenotypes of motor neurons from human ALS patients. Cell Rep. 14, 115–128.10.1016/j.celrep.2015.12.018Search in Google Scholar PubMed PubMed Central

Lopez-Verrilli, M.A., Caviedes, A., Cabrera, A., Sandoval, S., Wyneken, U., and Khoury, M. (2016). Mesenchymal stem cell-derived exosomes from different sources selectively promote neuritic outgrowth. Neuroscience 320, 129–139.10.1016/j.neuroscience.2016.01.061Search in Google Scholar PubMed

Low, C.B., Liou, Y.C., and Tang, B.L. (2008). Neural differentiation and potential use of stem cells from the human umbilical cord for central nervous system transplantation therapy. J. Neurosci. Res. 86, 1670–1679.10.1002/jnr.21624Search in Google Scholar PubMed

Lunn, J.S., Sakowski, S.A., and Feldman, E.L. (2014). Stem cell therapies for amyotrophic lateral sclerosis: recent advances and prospects for the future. Stem Cells. 32, 1099–1109.10.1002/stem.1628Search in Google Scholar PubMed PubMed Central

Maas, S.L.N., Breakefield, X.O., and Weaver, A.M. (2017). Extracellular vesicles: unique intercellular delivery vehicles. Trends Cell Biol. 27, 172–188.10.1016/j.tcb.2016.11.003Search in Google Scholar PubMed

Mackenzie, I.R., Rademakers, R., and Neumann, M. (2010). TDP-43 and FUS in amyotrophic lateral sclerosis and frontotemporal dementia. Lancet Neurol. 9, 995–1007.10.1016/S1474-4422(10)70195-2Search in Google Scholar PubMed

Mancuso, R., and Navarro, X. (2015). Amyotrophic lateral sclerosis: current perspectives from basic research to the clinic. Prog. Neurobiol. 133, 1–26.10.1016/j.pneurobio.2015.07.004Search in Google Scholar PubMed

Marchetto, M.C.N., Muotri, A.R., Mu, Y., Smith, A.M., Cezar, G.G., and Gage, F.H. (2008). Non-cell-autonomous effect of human SOD1 G37R astrocytes on motor neurons derived from human embryonic stem cells. Cell Stem Cell 3, 649–657.10.1016/j.stem.2008.10.001Search in Google Scholar PubMed

Maria Ferri, A.L., Bersano, A., Lisini, D., Boncoraglio, G., Frigerio, S., and Parati, E. (2016). Mesenchymal stem cells for ischemic stroke: progress and possibilities. Curr. Med. Chem. 23, 1598–1608.10.2174/0929867323666160222113702Search in Google Scholar PubMed

Matula, Z., Németh, A., Lőrincz, P., Szepesi, Á., Brózik, A., Buzás, E.I., Lőw, P., Német, K., Uher, F., and Urbán, V.S. (2016). The role of extracellular vesicle and tunneling nanotube-mediated intercellular cross-talk between mesenchymal stem cells and human peripheral T Cells. Stem Cells Dev. 25, 1818–1832.10.1089/scd.2016.0086Search in Google Scholar PubMed

Mause, S.F., and Weber, C. (2010). Microparticles: protagonists of a novel communication network for intercellular information exchange. Circ. Res. 107, 1047–1057.10.1161/CIRCRESAHA.110.226456Search in Google Scholar PubMed

Mazzini, L., Fagioli, F., Boccaletti, R., Mareschi, K., Oliveri, G., Olivieri, C., Pastore, I., Marasso, R., and Madon, E. (2003). Stem cell therapy in amyotrophic lateral sclerosis: a methodological approach in humans. Amyotroph. Lateral Scler. Other Motor. Neuron. Disord. 4, 158–161.10.1080/14660820310014653Search in Google Scholar PubMed

Mazzini, L., Mareschi, K., Ferrero, I., Vassallo, E., Oliveri, G., Boccaletti, R., Testa, L., Livigni, S., and Fagioli, F. (2006). Autologous mesenchymal stem cells: clinical applications in amyotrophic lateral sclerosis. Neurol. Res. 28, 523–526.10.1179/016164106X116791Search in Google Scholar PubMed

Mazzini, L., Mareschi, K., Ferrero, I., Vassallo, E., Oliveri, G., Nasuelli, N., Oggioni, G.D., Testa, L., and Fagioli, F. (2008). Stem cell treatment in amyotrophic lateral sclerosis. J. Neurol. Sci. 265, 78–83.10.1016/j.jns.2007.05.016Search in Google Scholar PubMed

Mazzini, L., Ferrero, I., Luparello, V., Rustichelli, D., Gunetti, M., Mareschi, K., Testa, L., Stecco, A., Tarletti, R., Miglioretti, M., et al. (2010). Mesenchymal stem cell transplantation in amyotrophic lateral sclerosis: a Phase I clinical trial. Exp. Neurol. 223, 229–237.10.1016/j.expneurol.2009.08.007Search in Google Scholar PubMed

Mazzini, L., Mareschi, K., Ferrero, I., Miglioretti, M., Stecco, A., Servo, S., Carriero, A., Monaco, F., and Fagioli, F. (2012). Mesenchymal stromal cell transplantation in amyotrophic lateral sclerosis: a long-term safety study. Cytotherapy 14, 56–60.10.3109/14653249.2011.613929Search in Google Scholar PubMed

Mazzini, L., Vescovi, A., Cantello, R., Gelati, M., and Vercelli, A. (2016). Stem cells therapy for ALS. Expert Opin. Biol. Ther. 16, 187–199.10.1517/14712598.2016.1116516Search in Google Scholar PubMed

Melentijevic, I., Toth, M.L., Arnold, M.L., Guasp, R.J., Harinath, G., Nguyen, K.C., Taub, D., Parker, J.A., Neri, C., Gabel, C.V., et al. (2017). C. elegans neurons jettison protein aggregates and mitochondria under neurotoxic stress. Nature 542, 367–371.10.1038/nature21362Search in Google Scholar PubMed PubMed Central

Miller, R.G., Mitchell, J.D., and Moore, D.H. (2012). Riluzole for amyotrophic lateral sclerosis (ALS)/motor neuron disease (MND). Cochrane Database Syst. Rev. 3, CD001447.10.1002/14651858.CD001447.pub3Search in Google Scholar PubMed PubMed Central

Mishra, P.S., Dhull, D.K., Nalini, A., Vijayalakshmi, K., Sathyaprabha, T.N., Alladi, P.A., and Raju, T.R. (2016). Astroglia acquires a toxic neuroinflammatory role in response to the cerebrospinal fluid from amyotrophic lateral sclerosis patients. J. Neuroinflamm. 13, 212.10.1186/s12974-016-0698-0Search in Google Scholar PubMed PubMed Central

Momin, E.N., Mohyeldin, A., Zaidi, H.A., Vela, G., and Quiñones-Hinojosa, A. (2010). Mesenchymal stem cells: new approaches for the treatment of neurological diseases. Curr. Stem Cell Res. Ther. 5, 326–344.10.2174/157488810793351631Search in Google Scholar PubMed

Morcuende, S., Muñoz-Hernández, R., Benítez-Temiño, B., Pastor, A.M., and de la Cruz, R.R. (2013). Neuroprotective effects of NGF, BDNF, NT-3 and GDNF on axotomized extraocular motoneurons in neonatal rats. Neuroscience 250, 31–48.10.1016/j.neuroscience.2013.06.050Search in Google Scholar PubMed

Morita, E., Watanabe, Y., Ishimoto, M., Nakano, T., Kitayama, M., Yasui, K., Fukada, Y., Doi, K., Karunaratne, A., Murrell, W.G., et al. (2008). A novel cell transplantation protocol and its application to an ALS mouse model. Exp. Neurol. 213, 431–438.10.1016/j.expneurol.2008.07.011Search in Google Scholar PubMed

Mounayar, M., Kefaloyianni, E., Smith, B., Solhjou, Z., Maarouf, O.H., Azzi, J., Chabtini, L., Fiorina, P., Kraus, M., Briddell, R., et al. (2015). PI3kα and STAT1 interplay regulates human mesenchymal stem cell immune polarization. Stem Cells 33, 1892–1901.10.1002/stem.1986Search in Google Scholar PubMed PubMed Central

Müller, G., Schneider, M., Biemer-Daub, G., and Wied, S. (2011). Microvesicles released from rat adipocytes and harboring glycosylphosphatidylinositol-anchored proteins transfer RNA stimulating lipid synthesis. Cell Signal. 23, 1207–1223.10.1016/j.cellsig.2011.03.013Search in Google Scholar PubMed

Nagai, M., Re, D.B., Nagata, T., Chalazonitis, A., Jessell, T.M., Wichterle, H., and Przedborski, S. (2007). Astrocytes expressing ALS-linked mutated SOD1 release factors selectively toxic to motor neurons. Nat. Neurosci. 10, 615–622.10.1038/nn1876Search in Google Scholar PubMed PubMed Central

Naghdi, M., Tiraihi, T., Namin, S.A.M., and Arabkheradmand, J. (2009). Transdifferentiation of bone marrow stromal cells into cholinergic neuronal phenotype: a potential source for cell therapy in spinal cord injury. Cytotherapy 11, 137–152.10.1080/14653240802716582Search in Google Scholar PubMed

Najar, M., Raicevic, G., Crompot, E., Fayyad-Kazan, H., Bron, D., Toungouz, M., and Lagneaux, L. (2016a). The immunomodulatory potential of mesenchymal stromal cells: a story of a regulatory network. J. Immunother. 39, 45–59.10.1097/CJI.0000000000000108Search in Google Scholar PubMed

Najar, M., Raicevic, G., Fayyad-Kazan, H., Bron, D., Toungouz, M., and Lagneaux, L. (2016b). Mesenchymal stromal cells and immunomodulation: a gathering of regulatory immune cells. Cytotherapy 18, 160–171.10.1016/j.jcyt.2015.10.011Search in Google Scholar PubMed

Naphade, S., Sharma, J., Gaide Chevronnay, H.P., Shook, M.A., Yeagy, B.A., Rocca, C.J., Ur, S.N., Lau, A.J., Courtoy, P.J., and Cherqui, S. (2015). Lysosomal cross-correction by hematopoietic stem cell-derived macrophages via tunneling nanotubes. Stem Cells 33, 301–309.10.1002/stem.1835Search in Google Scholar PubMed PubMed Central

Ng, L., Khan, F., Young, C.A., and Galea, M. (2017). Symptomatic treatments for amyotrophic lateral sclerosis/motor neuron disease. Cochrane Database Syst. Rev. 1, CD011776.10.1002/14651858.CD011776Search in Google Scholar PubMed

Noh, M.Y., Lim, S.M., Oh, K.W., Cho, K.A., Park, J., Kim, K.S., Lee, S.J., Kwon, M.S., and Kim, S.H. (2016). Mesenchymal stem cells modulate the functional properties of microglia via TGF-β secretion. Stem Cells Transl. Med. 5, 1538–1549.10.5966/sctm.2015-0217Search in Google Scholar PubMed PubMed Central

Oh, K.W., Moon, C., Kim, H.Y., Oh, S.I., Park, J., Lee, J.H., Chang, I.Y., Kim, K.S., and Kim, S.H. (2015). Phase I trial of repeated intrathecal autologous bone marrow-derived mesenchymal stromal cells in amyotrophic lateral sclerosis. Stem Cells Transl. Med. 4, 590–597.10.5966/sctm.2014-0212Search in Google Scholar PubMed PubMed Central

Onfelt, B., Nedvetzki, S., Benninger, R.K.P., Purbhoo, M.A., Sowinski, S., Hume, A.N., Seabra, M.C., Neil, M.A.A., French, P.M.W., and Davis, D.M. (2006). Structurally distinct membrane nanotubes between human macrophages support long-distance vesicular traffic or surfing of bacteria. J. Immunol. 177, 8476–8483.10.4049/jimmunol.177.12.8476Search in Google Scholar PubMed

Ong, W.K., and Sugii, S. (2013). Adipose-derived stem cells: fatty potentials for therapy. Int. J. Biochem. Cell. Biol. 45, 1083–1086.10.1016/j.biocel.2013.02.013Search in Google Scholar PubMed

Ooi, Y.Y., Dheen, S.T., and Tay, S.S.W. (2015). Paracrine effects of mesenchymal stem cells-conditioned medium on microglial cytokines expression and nitric oxide production. Neuroimmunomodul. 22, 233–242.10.1159/000365483Search in Google Scholar PubMed

Ophelders, D.R.M.G., Wolfs, T.G.A.M., Jellema, R.K., Zwanenburg, A., Andriessen, P., Delhaas, T., Ludwig, A.K., Radtke, S., Peters, V., Janssen, L., et al. (2016). Mesenchymal stromal cell-derived extracellular vesicles protect the fetal brain after hypoxia-ischemia. Stem Cells Transl. Med. 5, 754–763.10.5966/sctm.2015-0197Search in Google Scholar PubMed PubMed Central

Otero, L., Zurita, M., Bonilla, C., Aguayo, C., Rico, M.A., Rodríguez, A., and Vaquero, J. (2012). Allogeneic bone marrow stromal cell transplantation after cerebral hemorrhage achieves cell transdifferentiation and modulates endogenous neurogenesis. Cytotherapy 14, 34–44.10.3109/14653249.2011.608349Search in Google Scholar PubMed

Park, H.J., Oh, S.H., Kim, H.N., Jung, Y.J., and Lee, P.H. (2016). Mesenchymal stem cells enhance α-synuclein clearance via M2 microglia polarization in experimental and human parkinsonian disorder. Acta Neuropathol. 132, 685–701.10.1007/s00401-016-1605-6Search in Google Scholar PubMed

Pegtel, D.M., Peferoen, L., and Amor, S. (2014). Extracellular vesicles as modulators of cell-to-cell communication in the healthy and diseased brain. Philos. Trans. R. Soc. Lond. B Biol. Sci. 369, pii: 20130516.10.1098/rstb.2013.0516Search in Google Scholar PubMed PubMed Central

Pen, A.E., and Jensen, U.B. (2017). Current status of treating neurodegenerative disease with induced pluripotent stem cells. Acta Neurol. Scand. 135, 57–72.10.1111/ane.12545Search in Google Scholar PubMed

Petit, G.H., Olsson, T.T., and Brundin, P. (2014). The future of cell therapies and brain repair: Parkinson’s disease leads the way. Neuropathol. Appl. Neurobiol. 40, 60–70.10.1111/nan.12110Search in Google Scholar PubMed

Petrou, P., Gothelf, Y., Argov, Z., Gotkine, M., Levy, Y.S., Kassis, I., Vaknin-Dembinsky, A., Ben-Hur, T., Offen, D., Abramsky, O., et al. (2016). Safety and clinical effects of mesenchymal stem cells secreting neurotrophic factor transplantation in patients with amyotrophic lateral sclerosis: results of phase 1/2 and 2a clinical trials. J. Am. Med. Assoc. Neurol. 73, 337–344.10.1001/jamaneurol.2015.4321Search in Google Scholar PubMed

Qiu, X.C., Jin, H., Zhang, R.Y., Ding, Y., Zeng, X., Lai, B.Q., Ling, E.A., Wu, J.L., and Zeng, Y.S. (2015). Donor mesenchymal stem cell-derived neural-like cells transdifferentiate into myelin-forming cells and promote axon regeneration in rat spinal cord transection. Stem Cell Res. Ther. 6, 105.10.1186/s13287-015-0100-7Search in Google Scholar PubMed PubMed Central

Renton, A.E., Majounie, E., Waite, A., Simón-Sánchez, J., Rollinson, S., Gibbs, J.R., Schymick, J.C., Laaksovirta, H., van Swieten, J.C., Myllykangas, L., et al. (2011). A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron 72, 257–268.10.1016/j.neuron.2011.09.010Search in Google Scholar PubMed PubMed Central

Renton, A.E., Chiò, A., and Traynor, B.J. (2014). State of play in amyotrophic lateral sclerosis genetics. Nat. Neurosci. 17, 17–23.10.1038/nn.3584Search in Google Scholar PubMed PubMed Central

Riva, N., Agosta, F., Lunetta, C., Filippi, M., and Quattrini, A. (2016). Recent advances in amyotrophic lateral sclerosis. J. Neurol. 263, 1241–1254.10.1007/s00415-016-8091-6Search in Google Scholar PubMed PubMed Central

Robberecht, W., and Philips, T. (2013). The changing scene of amyotrophic lateral sclerosis. Nat. Rev. Neurosci. 14, 248–264.10.1038/nrn3430Search in Google Scholar PubMed

Rodríguez, M.J., and Mahy, N. (2016). Neuron-microglia interactions in motor neuron degeneration. The inflammatory hypothesis in amyotrophic lateral sclerosis revisited. Curr. Med. Chem. 23, 4753–4772.10.2174/0929867324666161123091314Search in Google Scholar PubMed

Roy, S., Huang, H., Liu, S., and Kornberg, T.B. (2014). Cytoneme-mediated contact-dependent transport of the Drosophila decapentaplegic signaling protein. Science 343, 1244624.10.1126/science.1244624Search in Google Scholar PubMed PubMed Central

Ruegsegger, C., and Saxena, S. (2016). Proteostasis impairment in ALS. Brain Res. 1648, 571–579.10.1016/j.brainres.2016.03.032Search in Google Scholar PubMed

Rushkevich, Y.N., Kosmacheva, S.M., Zabrodets, G.V., Ignatenko, S.I., Goncharova, N.V., Severin, I.N., Likhachev, S.A., and Potapnev, M.P. (2015). The use of autologous mesenchymal stem cells for cell therapy of patients with amyotrophic lateral sclerosis in Belarus. Bull. Exp. Biol. Med. 159, 576–581.10.1007/s10517-015-3017-3Search in Google Scholar PubMed

Rustom, A., Saffrich, R., Markovic, I., Walther, P., and Gerdes, H.H. (2004). Nanotubular highways for intercellular organelle transport. Science 303, 1007–1010.10.1126/science.1093133Search in Google Scholar PubMed

Sanchez, V., Villalba, N., Fiore, L., Luzzani, C., Miriuka, S., Boveris, A., Gelpi, R.J., Brusco, A., and Poderoso, J.J. (2017). Characterization of tunneling nanotubes in Wharton’s jelly mesenchymal stem cells. An intercellular exchange of components between neighboring cells. Stem Cell Rev. doi: 10.1007/s12015-017-9730-8.10.1007/s12015-017-9730-8Search in Google Scholar PubMed

Scuteri, A., Miloso, M., Foudah, D., Orciani, M., Cavaletti, G., and Tredici, G. (2011). Mesenchymal stem cells neuronal differentiation ability: a real perspective for nervous system repair? Curr. Stem Cell Res. Ther. 6, 82–92.10.2174/157488811795495486Search in Google Scholar PubMed

Sharpe, P.T. (2016). Dental mesenchymal stem cells. Development 143, 2273–2280.10.1242/dev.134189Search in Google Scholar PubMed

Shin, W.J., Shin, S.W., Yuk, J.S., Amornkitbamrung, L., Jang, M.S., Song, I.H., Choi, S.W., Kang, I., Lee, J.Y., Bae, H., et al. (2017). Cell surface nano-modulation for non-invasive in vivo near-IR stem cell monitoring. ChemMedChem. 12, 28–32.10.1002/cmdc.201600428Search in Google Scholar PubMed

Silverman, J.M., Fernando, S.M., Grad, L.I., Hill, A.F., Turner, B.J., Yerbury, J.J., and Cashman, N.R. (2016). Disease mechanisms in ALS: misfolded SOD1 transferred through exosome-dependent and exosome-independent pathways. Cell. Mol. Neurobiol. 36, 377–381.10.1007/s10571-015-0294-3Search in Google Scholar PubMed

Sowinski, S., Jolly, C., Berninghausen, O., Purbhoo, M.A., Chauveau, A., Köhler, K., Oddos, S., Eissmann, P., Brodsky, F.M., Hopkins, C., et al. (2008). Membrane nanotubes physically connect T cells over long distances presenting a novel route for HIV-1 transmission. Nat. Cell Biol. 10, 211–219.10.1038/ncb1682Search in Google Scholar PubMed

Sreedharan, J., Blair, I.P., Tripathi, V.B., Hu, X., Vance, C., Rogelj, B., Ackerley, S., Durnall, J.C., Williams, K.L., Buratti, E., et al. (2008). TDP-43 mutations in familial and sporadic amyotrophic lateral sclerosis. Science 319, 1668–1672.10.1126/science.1154584Search in Google Scholar PubMed PubMed Central

Staff, N.P., Madigan, N.N., Morris, J., Jentoft, M., Sorenson, E.J., Butler, G., Gastineau, D., Dietz, A., and Windebank, A.J. (2016). Safety of intrathecal autologous adipose-derived mesenchymal stromal cells in patients with ALS. Neurology 87, 2230–2234.10.1212/WNL.0000000000003359Search in Google Scholar PubMed PubMed Central

Sun, C., Shao, J., Su, L., Zhao, J., Bi, J., Yang, S., Zhang, S., Gao, J., and Miao, J. (2013). Cholinergic neuron-like cells derived from bone marrow stromal cells induced by tricyclodecane-9-yl-xanthogenate promote functional recovery and neural protection after spinal cord injury. Cell Transplant. 22, 961–975.10.3727/096368912X657413Search in Google Scholar PubMed

Sun, J.M., and Kurtzberg, J. (2015). Cord blood for brain injury. Cytotherapy 17, 775–785.10.1016/j.jcyt.2015.03.004Search in Google Scholar PubMed

Syková, E., Rychmach, P., Drahorádová, I., Konrádová, Š., Růžičková, K., Voříšek, I., Forostyak, S., Homola, A., and Bojar, M. (2017). Transplantation of mesenchymal stromal cells in patients with amyotrophic lateral sclerosis: results of Phase I/IIa clinical trial. Cell Transplant. 26, 647–658.10.3727/096368916X693716Search in Google Scholar PubMed PubMed Central

Tafuri, F., Ronchi, D., Magri, F., Comi, G.P., and Corti, S. (2015). SOD1 misplacing and mitochondrial dysfunction in amyotrophic lateral sclerosis pathogenesis. Front Cell Neurosci. 9, 336.10.3389/fncel.2015.00336Search in Google Scholar PubMed PubMed Central

Tanna, T., and Sachan, V. (2014). Mesenchymal stem cells: potential in treatment of neurodegenerative diseases. Curr. Stem Cell. Res. Ther. 9, 513–521.10.2174/1574888X09666140923101110Search in Google Scholar PubMed

Tomchuck, S.L., Zwezdaryk, K.J., Coffelt, S.B., Waterman, R.S., Danka, E.S., and Scandurro, A.B. (2008). Toll-like receptors on human mesenchymal stem cells drive their migration and immunomodulating responses. Stem Cells 26, 99–107.10.1634/stemcells.2007-0563Search in Google Scholar PubMed PubMed Central

Uccelli, A., Milanese, M., Principato, M.C., Morando, S., Bonifacino, T., Vergani, L., Giunti, D., Voci, A., Carminati, E., Giribaldi, F., et al. (2012). Intravenous mesenchymal stem cells improve survival and motor function in experimental amyotrophic lateral sclerosis. Mol. Med. 18, 794–804.10.2119/molmed.2011.00498Search in Google Scholar PubMed PubMed Central

Van Damme, P., Bogaert, E., Dewil, M., Hersmus, N., Kiraly, D., Scheveneels, W., Bockx, I., Braeken, D., Verpoorten, N., Verhoeven, K., et al. (2007). Astrocytes regulate GluR2 expression in motor neurons and their vulnerability to excitotoxicity. Proc. Natl. Acad. Sci. USA 104, 14825–14830.10.1073/pnas.0705046104Search in Google Scholar PubMed PubMed Central

Vance, C., Rogelj, B., Hortobágyi, T., De Vos, K.J., Nishimura, A.L., Sreedharan, J., Hu, X., Smith, B., Ruddy, D., Wright, P., et al. (2009). Mutations in FUS, an RNA processing protein, cause familial amyotrophic lateral sclerosis type 6. Science 323, 1208–1211.10.1126/science.1165942Search in Google Scholar PubMed PubMed Central

Vaquero, J., and Zurita, M. (2011). Functional recovery after severe CNS trauma: current perspectives for cell therapy with bone marrow stromal cells. Prog. Neurobiol. 93, 341–349.10.1016/j.pneurobio.2010.12.002Search in Google Scholar PubMed

Vercelli, A., Mereuta, O.M., Garbossa, D., Muraca, G., Mareschi, K., Rustichelli, D., Ferrero, I., Mazzini, L., Madon, E., and Fagioli, F. (2008). Human mesenchymal stem cell transplantation extends survival, improves motor performance and decreases neuroinflammation in mouse model of amyotrophic lateral sclerosis. Neurobiol. Dis. 31, 395–405.10.1016/j.nbd.2008.05.016Search in Google Scholar PubMed

Victoria, G.S., Arkhipenko, A., Zhu, S., Syan, S., and Zurzolo, C. (2016). Astrocyte-to-neuron intercellular prion transfer is mediated by cell-cell contact. Sci. Rep. 6, 20762.10.1038/srep20762Search in Google Scholar PubMed PubMed Central

Wang, X., and Gerdes, H.H. (2015). Transfer of mitochondria via tunneling nanotubes rescues apoptotic PC12 cells. Cell Death Differ. 22, 1181–1191.10.1038/cdd.2014.211Search in Google Scholar PubMed PubMed Central

Wang, Y., Cui, J., Sun, X., and Zhang, Y. (2011). Tunneling-nanotube development in astrocytes depends on p53 activation. Cell Death Differ. 18, 732–742.10.1038/cdd.2010.147Search in Google Scholar PubMed PubMed Central

Waterman, R.S., Tomchuck, S.L., Henkle, S.L., and Betancourt, A.M. (2010). A new mesenchymal stem cell (MSC) paradigm: polarization into a pro-inflammatory MSC1 or an Immunosuppressive MSC2 phenotype. PLoS One 5, e10088.10.1371/journal.pone.0010088Search in Google Scholar PubMed PubMed Central

Wen, L., Zhu, M., Madigan, M.C., You, J., King, N.J.C., Billson, F.A., McClellan, K., Sutton, G., and Petsoglou, C. (2014). Immunomodulatory effects of bone marrow-derived mesenchymal stem cells on pro-inflammatory cytokine-stimulated human corneal epithelial cells. PLoS One 9, e101841.10.1371/journal.pone.0101841Search in Google Scholar PubMed PubMed Central

Wislet-Gendebien, S., Hans, G., Leprince, P., Rigo, J.M., Moonen, G., and Rogister, B. (2005). Plasticity of cultured mesenchymal stem cells: switch from nestin-positive to excitable neuron-like phenotype. Stem Cells 23, 392–402.10.1634/stemcells.2004-0149Search in Google Scholar PubMed

Wood, C.R., and Rosenbaum, J.L. (2015). Ciliary ectosomes: transmissions from the cell’s antenna. Trends Cell Biol. 25, 276–285.10.1016/j.tcb.2014.12.008Search in Google Scholar PubMed PubMed Central

Xin, H., Li, Y., Cui, Y., Yang, J.J., Zhang, Z.G., and Chopp, M. (2013a). Systemic administration of exosomes released from mesenchymal stromal cells promote functional recovery and neurovascular plasticity after stroke in rats. J. Cereb. Blood Flow Metab. 33, 1711–1715.10.1038/jcbfm.2013.152Search in Google Scholar PubMed PubMed Central

Xin, H., Li, Y., Liu, Z., Wang, X., Shang, X., Cui, Y., Zhang, Z.G., and Chopp, M. (2013b). MiR-133b promotes neural plasticity and functional recovery after treatment of stroke with multipotent mesenchymal stromal cells in rats via transfer of exosome-enriched extracellular particles. Stem Cells 31, 2737–2746.10.1002/stem.1409Search in Google Scholar PubMed PubMed Central

Xu, L., He, D., and Bai, Y. (2016). Microglia-mediated inflammation and neurodegenerative disease. Mol. Neurobiol. 53, 6709–6715.10.1007/s12035-015-9593-4Search in Google Scholar PubMed

Yang, H., Borg, T.K., Ma, Z., Xu, M., Wetzel, G., Saraf, L.V., Markwald, R., Runyan, R.B., and Gao, B.Z. (2016). Biochip-based study of unidirectional mitochondrial transfer from stem cells to myocytes via tunneling nanotubes. Biofabrication 8, 015012.10.1088/1758-5090/8/1/015012Search in Google Scholar PubMed

Yasuda, K., Khandare, A., Burianovskyy, L., Maruyama, S., Zhang, F., Nasjletti, A., and Goligorsky, M.S. (2011). Tunneling nanotubes mediate rescue of prematurely senescent endothelial cells by endothelial progenitors: exchange of lysosomal pool. Aging 3, 597–608.10.18632/aging.100341Search in Google Scholar PubMed PubMed Central

Ye, Y., Peng, Y.R., Hu, S.Q., Yan, X.L., Chen, J., and Xu, T. (2016). In vitro differentiation of bone marrow mesenchymal stem cells into neuron-like cells by cerebrospinal fluid improves motor function of middle cerebral artery occlusion rats. Front Neurol. 7, 183.10.3389/fneur.2016.00183Search in Google Scholar PubMed PubMed Central

Yousefi, B., Sanooghi, D., Faghihi, F., Joghataei, M.T., and Latifi, N. (2017). Evaluation of motor neuron differentiation potential of human umbilical cord blood-derived mesenchymal stem cells, in vitro. J. Chem. Neuroanat. 81, 18–26.10.1016/j.jchemneu.2017.01.003Search in Google Scholar PubMed

Zappulli, V., Friis, K.P., Fitzpatrick, Z., Maguire, C.A., and Breakefield, X.O. (2016). Extracellular vesicles and intercellular communication within the nervous system. J. Clin. Invest. 126, 1198–1207.10.1172/JCI81134Search in Google Scholar PubMed PubMed Central

Zeng, X., Qiu, X.C., Ma, Y.H., Duan, J.J., Chen, Y.F., Gu, H.Y., Wang, J.M., Ling, E.A., Wu, J.L., Wu, W., et al. (2015). Integration of donor mesenchymal stem cell-derived neuron-like cells into host neural network after rat spinal cord transection. Biomaterials 53, 184–201.10.1016/j.biomaterials.2015.02.073Search in Google Scholar PubMed

Zhang, Y. (2011). Tunneling-nanotube: a new way of cell-cell communication. Commun. Integr. Biol. 4, 324–325.10.4161/cib.4.3.14855Search in Google Scholar PubMed PubMed Central

Zhang, C., Zhou, C., Teng, J.J., Zhao, R.L., Song, Y.Q., and Zhang, C. (2009). Multiple administrations of human marrow stromal cells through cerebrospinal fluid prolong survival in a transgenic mouse model of amyotrophic lateral sclerosis. Cytotherapy 11, 299–306.10.1080/14653240902806986Search in Google Scholar PubMed

Zhang, B., Yin, Y., Lai, R.C., Tan, S.S., Choo, A.B.H., and Lim, S.K. (2014). Mesenchymal stem cells secrete immunologically active exosomes. Stem Cells Dev. 23, 1233–1244.10.1089/scd.2013.0479Search in Google Scholar PubMed

Zhang, L., Liu, D., Pu, D., Wang, Y., Li, L., He, Y., Li, Y., Li, L., Qiu, Z., Zhao, S., et al. (2015a). The role of Toll-like receptor 3 and 4 in regulating the function of mesenchymal stem cells isolated from umbilical cord. Int. J. Mol. Med. 35, 1003–1010.10.3892/ijmm.2015.2106Search in Google Scholar PubMed

Zhang, L., Zhang, S., Yao, J., Lowery, F.J., Zhang, Q., Huang, W.C., Li, P., Li, M., Wang, X., Zhang, C., et al. (2015b). Microenvironment-induced PTEN loss by exosomal microRNA primes brain metastasis outgrowth. Nature 527, 100–104.10.1038/nature15376Search in Google Scholar PubMed PubMed Central

Zhao, C.P., Zhang, C., Zhou, S.N., Xie, Y.M., Wang, Y.H., Huang, H., Shang, Y.C., Li, W.Y., Zhou, C., Yu, M.J., et al. (2007). Human mesenchymal stromal cells ameliorate the phenotype of SOD1-G93A ALS mice. Cytotherapy 9, 414–426.10.1080/14653240701376413Search in Google Scholar PubMed

Zhu, S., Victoria, G.S., Marzo, L., Ghosh, R., and Zurzolo, C. (2015a). Prion aggregates transfer through tunneling nanotubes in endocytic vesicles. Prion 9, 125–135.10.1080/19336896.2015.1025189Search in Google Scholar PubMed PubMed Central

Zhu, T., Yu, D., Feng, J., Wu, X., Xiang, L., Gao, H., Zhang, X., and Wei, M. (2015b). GDNF and NT-3 induce progenitor bone mesenchymal stem cell differentiation into neurons in fetal gut culture medium. Cell Mol. Neurobiol. 35, 255–264.10.1007/s10571-014-0120-3Search in Google Scholar PubMed

Received: 2017-2-27
Accepted: 2017-4-4
Published Online: 2017-5-25
Published in Print: 2017-10-26

©2017 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 13.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/revneuro-2017-0018/html
Scroll to top button