Abstract
When injected via the intracerebroventricular route, corticosterone-releasing hormone (CRH) reduced exploration in the elevated plus-maze, the center region of the open-field, and the large chamber in the defensive withdrawal test. The anxiogenic action of CRH in the elevated plus-maze also occurred when infused in the basolateral amygdala, ventral hippocampus, lateral septum, bed nucleus of the stria terminalis, nucleus accumbens, periaqueductal grey, and medial frontal cortex. The anxiogenic action of CRH in the defensive withdrawal test was reproduced when injected in the locus coeruleus, while the amygdala, hippocampus, lateral septum, nucleus accumbens, and lateral globus pallidus contribute to center zone exploration in the open-field. In addition to elevated plus-maze and open-field tests, the amygdala appears as a target region for CRH-mediated anxiety in the elevated T-maze. Thus, the amygdala is the principal brain region identified with these three tests, and further research must identify the neural circuits underlying this form of anxiety.
References
Adamec, R.E. and McKay, D. (1993). The effects of CRF and α-helical CRF on anxiety in normal and hypophysectomized rats. J. Psychopharmacol. 7, 346–354.10.1177/026988119300700406Search in Google Scholar PubMed
Adamec, R.E., Sayin, U., and Brown, A. (1991). The effects of corticotrophin releasing factor (CRF) and handling stress on behavior in the elevated plus-maze test of anxiety. J. Psychopharmacol. 5, 175–186.10.1177/026988119100500301Search in Google Scholar PubMed
Albertin, G., Casale, V., Ziolkowska, A., Spinazzi, R., Malendowicz, L.K., Rossi, G.P., and Nussdorfer, G.G. (2006). Urotensin-II and UII-receptor expression and function in the rat adrenal cortex. Int. J. Mol. Med. 17, 1111–1115.10.3892/ijmm.17.6.1111Search in Google Scholar
Albrecht, A., Çalışkan, G., Oitzl, M.S., Heinemann U., and Stork, O. (2013). Long-lasting increase of corticosterone after fear memory reactivation: anxiolytic effects and network activity modulation in the ventral hippocampus. Neuropsychopharmacology 38, 386–394.10.1038/npp.2012.192Search in Google Scholar PubMed PubMed Central
Al Chawaf, A., Xu, K., Tan, L., Vaccarino, F.J., Lovejoy, D.A., and Rotzinger, S. (2007). Corticotropin-releasing factor (CRF)-induced behaviors are modulated by intravenous administration of teneurin C-terminal associated peptide-1 (TCAP-1). Peptides 28, 1406–1415.10.1016/j.peptides.2007.05.014Search in Google Scholar PubMed
Allen, B.D., Sutanto, W., and Jones, M.T. (1988). A correlative study of RU38486 biopotency and competition with [3H]dexamethasone for receptors in the rat central nervous system. J. Steroid Biochem. 30, 411–415.10.1016/0022-4731(88)90133-1Search in Google Scholar PubMed
Alves, S.W., Portela, N.C., Silva, M.S., Céspedes, I.C., Bittencourt, J.C., and Viana, M.B. (2016). The activation and blockage of CRF type 2 receptors of the medial amygdala alter elevated T-maze inhibitory avoidance, an anxiety-related response. Behav. Brain Res. 305, 191–197.10.1016/j.bbr.2016.03.013Search in Google Scholar PubMed
Andreatini, R. and Leite, J.R. (1994). Evidence against the involvement of ACTH/CRF release or corticosteroid receptors in the anxiolytic effect of corticosterone. Braz. J. Med. Biol. Res. 27, 1237–1241.Search in Google Scholar
Appenrodt, E., Kröning, G., and Schwarzberg, H. (1999). Increased plasma ACTH in rats exposed to the elevated plus-maze is independent of the pineal gland. Psychoneuroendocrinology 24, 833–838.10.1016/S0306-4530(99)00040-2Search in Google Scholar
Arborelius, L., Skelton, K.H., Thrivikraman, K.V., Plotsky, P.M., Schulz, D.W., and Owens, M.J. (2000). Chronic administration of the selective corticotropin-releasing factor 1 receptor antagonist CP-154,526: behavioral, endocrine and neurochemical effects in the rat. J. Pharmacol. Exp. Ther. 294, 588–597.10.1016/S0022-3565(24)39110-4Search in Google Scholar
Ardayfio, P. and Kim, K. (2006). Anxiogenic-like effect of chronic corticosterone in the light-dark emergence task in mice. Behav. Neurosci. 120, 249–256.10.1037/0735-7044.120.2.249Search in Google Scholar PubMed
Asakawa, A., Inui, A., Kaga, T., Yuzuriha, H., Nagata, T., Fujimiya, M., Katsuura, G., Makino, S., Fujino, M.A., and Kasuga, M. (2001). A role of ghrelin in neuroendocrine and behavioral responses to stress in mice. Neuroendocrinology 74, 143–147.10.1159/000054680Search in Google Scholar PubMed
Aston-Jones, G. (2004). Locus coeruleus, A5 and A7 noradrenergic cell groups. In: The Rat Nervous System, 3rd ed. G. Paxinos, ed. (Amsterdam: Elsevier), pp. 259–294.10.1016/B978-012547638-6/50012-2Search in Google Scholar
Bakke, H.K., Bogsnes, A., and Murison, R. (1990). Studies on the interaction between ICV effects of CRF and CNS noradrenaline depletion. Physiol. Behav. 47, 1253–1260.10.1016/0031-9384(90)90379-ISearch in Google Scholar PubMed
Bakshi, V.P., Newman, S.M., Smith-Roe, S., Jochman, K.A., and Kalin, N.H. (2007). Stimulation of lateral septum CRF2 receptors promotes anorexia and stress-like behaviors: functional homology to CRF1 receptors in basolateral amygdala. J. Neurosci. 27, 10568–10577.10.1523/JNEUROSCI.3044-06.2007Search in Google Scholar PubMed PubMed Central
Baldwin, H.A., Rassnick, S., Rivier, J., Koob, G.F., and Britton, K.T. (1991). CRF antagonist reverses the “anxiogenic” response to ethanol withdrawal in the rat. Psychopharmacology 103, 227–232.10.1007/BF02244208Search in Google Scholar PubMed
Bale, T.L., Contarino, A., Smith, G.W., Chan, R., Gold, L.H., Sawchenko, P.E., Koob, G.F., Vale, W.W., and Lee, K.F. (2000). Mice deficient for corticotropin-releasing hormone receptor-2 display anxiety-like behaviour and are hypersensitive to stress. Nat. Genet. 24, 410–414.10.1038/74263Search in Google Scholar PubMed
Belzung, C. and Griebel, G. (2001). Measuring normal and pathological anxiety-like behaviour in mice: a review. Behav. Brain Res. 125, 141–149.10.1016/S0166-4328(01)00291-1Search in Google Scholar PubMed
Berridge, C.W. and Dunn, A.J. (1987). A corticotropin-releasing factor antagonist reverses the stress-induced changes of exploratory behavior in mice. Horm. Behav. 21, 393–401.10.1016/0018-506X(87)90023-7Search in Google Scholar PubMed
Berridge, C.W. and Dunn, A.J. (1989). CRF and restraint-stress decrease exploratory behavior in hypophysectomized mice. Pharmacol. Biochem. Behav. 34, 517–519.10.1016/0091-3057(89)90551-0Search in Google Scholar PubMed
Beuving, G. and Vonder, G.M. (1977). Daily rhythm of corticosterone in laying hens and the influence of egg laying. J. Reprod. Fertil. 51, 169–173.10.1530/jrf.0.0510169Search in Google Scholar PubMed
Bhatt, S., Mahesh, R., Devadoss, T., and Jindal, A. (2013). Anxiolytic-like effect of N-n-butyl-3-methoxyquinoxaline-2-carboxamide (60) in experimental mouse models of anxiety. Indian J. Exp. Biol. 51, 510–514.Search in Google Scholar
Bilkei-Gorzo, A. and Gyertyan, I. (1996). Some doubts about the basic concept of hole-board test. Neurobiology (Bp) 4, 405–415.Search in Google Scholar
Bitran, D., Shiekh, M., Dowd, J.A., Dugan, M.M., and Renda, P. (1998). Corticosterone is permissive to the anxiolytic effect that results from the blockade of hippocampal mineralocorticoid receptors. Pharmacol. Biochem. Behav. 60, 879–887.10.1016/S0091-3057(98)00071-9Search in Google Scholar
Bittencourt, J.C., Vaughan, J., Arias, C., Rissman, R.A., Vale, W.W., and Sawchenko, P.E. (1999). Urocortin expression in rat brain: evidence against a pervasive relationship of urocortin-containing projections with targets bearing type 2 CRF receptors. J. Comp. Neurol. 415, 285–312.10.1002/(SICI)1096-9861(19991220)415:3<285::AID-CNE1>3.0.CO;2-0Search in Google Scholar
Bohlen, M., Hayes, E.R., Bohlen, B., Bailoo, J.D., Crabbe, J.C., and Wahlsten, D. (2014). Experimenter effects on behavioral test scores of eight inbred mouse strains under the influence of ethanol. Behav. Brain Res. 272, 46–54.10.1016/j.bbr.2014.06.017Search in Google Scholar
Borelli, K.G. and Brandao, M.L. (2008). Effects of ovine CRF injections into the dorsomedial, dorsolateral and lateral columns of the periaqueductal gray: a functional role for the dorsomedial column. Horm. Behav. 53, 40–50.10.1016/j.yhbeh.2007.08.013Search in Google Scholar
Bourin, M. (2015). Animal models for screening anxiolytic-like drugs: a perspective. Dialogues Clin. Neurosci. 17, 295–303.10.31887/DCNS.2015.17.3/mbourinSearch in Google Scholar
Bourin, M. and Hascoët, M. (2003). The mouse light/dark box test. Eur. J. Pharmacol. 463, 55–65.10.1016/S0014-2999(03)01274-3Search in Google Scholar
Britton, D.R., Koob, G.F., Rivier, J., and Vale, W. (1982). Intraventricular corticotropin-releasing factor enhances behavioral effects of novelty. Life Sci. 31, 363–367.10.1016/0024-3205(82)90416-7Search in Google Scholar
Britton, K.T., Lee, G., Vale, W., Rivier, J., and Koob, G.F. (1986). Corticotropin releasing factor (CRF) receptor antagonist blocks activating and ‘anxiogenic’ actions of CRF in the rat. Brain Res. 369, 303–306.10.1016/0006-8993(86)90539-1Search in Google Scholar
Brown, G.R. and Nemes, C. (2008). The exploratory behaviour of rats in the hole-board apparatus: is head-dipping a valid measure of neophilia? Behav. Proc. 78, 442–448.10.1016/j.beproc.2008.02.019Search in Google Scholar
Bruchas, M.R., Land, B.B., Lemos, J.C., and Chavkin, C. (2009). CRF1-R activation of the dynorphin/kappa opioid system in the mouse basolateral amygdala mediates anxiety-like behavior. PLoS One 4, e8528.10.1371/journal.pone.0008528Search in Google Scholar
Brummelte, S., Pawluski, J.L., and Galea, L.A. (2006). High post-partum levels of corticosterone given to dams influence postnatal hippocampal cell proliferation and behavior of offspring: a model of post-partum stress and possible depression. Horm. Behav. 50, 370–382.10.1016/j.yhbeh.2006.04.008Search in Google Scholar
Butler, P.D., Weiss, J.M., Stout, J.C., and Nemeroff, C.B. (1990). Corticotropin-releasing factor produces fear-enhancing and behavioral activating effects following infusion into the locus coeruleus. J. Neurosci. 10, 176–183.10.1523/JNEUROSCI.10-01-00176.1990Search in Google Scholar PubMed PubMed Central
Buwalda, B., de Boer, S.F., Van Kalkeren, A.A., and Koolhaas, J.M. (1997). Physiological and behavioral effects of chronic intracerebroventricular infusion of corticotropin-releasing factor in the rat. Psychoneuroendocrinology 22, 297–309.10.1016/S0306-4530(97)00032-2Search in Google Scholar PubMed
Calabrese, E.J. (2008). An assessment of anxiolytic drug screening tests: hormetic dose responses predominate. Crit. Rev. Toxicol. 38, 489–542.10.1080/10408440802014238Search in Google Scholar PubMed
Caldji, C., Francis, D., Sharma, S., Plotsky, P. M., and Meaney, M.J. (2000). The effects of early rearing environment on the development of GABAA and central benzodiazepine receptor levels and novelty-induced fearfulness in the rat. Neuropsychopharmacology 22, 219–229.10.1016/S0893-133X(99)00110-4Search in Google Scholar PubMed
Calfa, G., Volosin, M., and Molina, V.A. (2006). Glucocorticoid receptors in lateral septum are involved in the modulation of the emotional sequelae induced by social defeat. Behav. Brain Res. 172, 324–332.10.1016/j.bbr.2006.05.022Search in Google Scholar PubMed
Calfa, G., Bussolino, D., and Molina, V.A. (2007). Involvement of the lateral septum and the ventral hippocampus in the emotional sequelae induced by social defeat: role of glucocorticoid receptors. Behav. Brain Res. 181, 23–34.10.1016/j.bbr.2007.03.020Search in Google Scholar PubMed
Callahan, L.B., Tschetter, K.E., and Ronan, P.J. (2013). Inhibition of corticotropin releasing factor expression in the central nucleus of the amygdala attenuates stress-induced behavioral and endocrine responses. Front. Neurosci. 7, 195.10.3389/fnins.2013.00195Search in Google Scholar PubMed PubMed Central
Calvo, N. and Volosin, M. (2001). Glucocorticoid and mineralocorticoid receptors are involved in the facilitation of anxiety-like response induced by restraint. Neuroendocrinology 73, 261–271.10.1159/000054643Search in Google Scholar PubMed
Campbell, B.M., Morrison, J.L., Walker, E.L., and Merchant, K.M. (2004). Differential regulation of behavioral, genomic, and neuroendocrine responses by CRF infusions in rats. Pharmacol. Biochem. Behav. 77, 447–455.10.1016/j.pbb.2003.12.010Search in Google Scholar PubMed
Campos, A.C., Fogaça, M.V., Aguiar, D.C., and Guimarães, F.S. (2013). Animal models of anxiety disorders and stress. Rev. Bras. Psiquiatr. 35(Suppl. 2), S101–111.10.1590/1516-4446-2013-1139Search in Google Scholar PubMed
Canini, F., Brahimi, S., Drouet, J.B., Michel, V., Alonso, A., Buguet, A., and Cespuglio, R. (2009). Metyrapone decreases locomotion acutely. Neurosci. Lett. 457, 41–44.10.1016/j.neulet.2009.03.103Search in Google Scholar PubMed
Canny, B.J., Funder, J.W., and Clarke, I.J. (1989). Glucocorticoids regulate ovine hypophysial portal levels of corticotropin-releasing factor and arginine vasopressin in a stress-specific manner. Endocrinology 125, 2532–2539.10.1210/endo-125-5-2532Search in Google Scholar PubMed
Canteras, N.S., Simerly, R.B., and Swanson, L.W. (1995). Organization of projections from the medial nucleus of the amygdala: a PHAL study in the rat. J. Comp. Neurol. 360, 213–245.10.1002/cne.903600203Search in Google Scholar PubMed
Cardinali, D.P. and Gómez, E. (1977). Changes in hypothalamic noradrenaline, dopamine and serotonin uptake after oestradiol administration to rats. J. Endocrinol. 73, 181–182.10.1677/joe.0.0730181Search in Google Scholar PubMed
Carlini, V.P., Monzón, M.E., Varas, M.M., Cragnolini, A.B., Schiöth, H.B., Scimonelli, T.N., and de Barioglio, S.R. (2002). Ghrelin increases anxiety-like behavior and memory retention in rats. Biochem. Biophys. Res. Commun. 299, 739–743.10.1016/S0006-291X(02)02740-7Search in Google Scholar PubMed
Carlini, V.P., Varas, M.M., Cragnolini, A.B., Schiöth, H.B., Scimonelli, T.N., and de Barioglio, S.R. (2004). Differential role of the hippocampus, amygdala, and dorsal raphe nucleus in regulating feeding, memory, and anxiety-like behavioral responses to ghrelin. Biochem. Biophys. Res. Commun. 313, 635–641.10.1016/j.bbrc.2003.11.150Search in Google Scholar PubMed
Carola, V., D’Olimpio, F., Brunamonti, E., Mangia, F, and Renzi, P. (2002). Evaluation of the elevated plus-maze and open-field tests for the assessment of anxiety-related behaviour in inbred mice. Behav. Brain Res. 134, 49–57.10.1016/S0166-4328(01)00452-1Search in Google Scholar
Chaki, S., Nakazato, A., Kennis, L., Nakamura, M., Mackie, C., Sugiura, M., Vinken, P., Ashton, D., Langlois, X., and Steckler, T. (2004). Anxiolytic- and antidepressant-like profile of a new CRF1 receptor antagonist, R278995/CRA0450. Eur. J. Pharmacol. 485, 145–158.10.1016/j.ejphar.2003.11.032Search in Google Scholar PubMed
Chalmers, D.T., Lovenberg, T.W., and De Souza, E.B. (1995). Localization of novel corticotropin-releasing factor receptor (CRF2) mRNA expression to specific subcortical nuclei in rat brain: comparison with CRF1 receptor mRNA expression. J. Neurosci. 15, 6340–6350.10.1523/JNEUROSCI.15-10-06340.1995Search in Google Scholar PubMed PubMed Central
Champagne, D., Beaulieu, J., and Drolet, G. (1998). CRFergic innervation of the paraventricular nucleus of the rat hypothalamus: a tract-tracing study. J. Neuroendocrinol. 10, 119–131.10.1046/j.1365-2826.1998.00179.xSearch in Google Scholar PubMed
Chanoine, J.P., De Waele, K., and Walia, P. (2009). Ghrelin and the growth hormone secretagogue receptor in growth and development. Int. J. Obes. 33(Suppl. 1), S48–52.10.1038/ijo.2009.17Search in Google Scholar
Chen, Y., Brunson, K.L., Müller, M.B., Cariaga, W., and Baram, T.Z. (2000). Immunocytochemical distribution of corticotropin-releasing hormone receptor type-1 (CRF(1))-like immunoreactivity in the mouse brain: light microscopy analysis using an antibody directed against the C-terminus. J. Comp. Neurol. 420, 305–323.10.1002/(SICI)1096-9861(20000508)420:3<305::AID-CNE3>3.0.CO;2-8Search in Google Scholar
Chen, Y.W., Rada, P.V., Bützler, B.P., Leibowitz, S.F., and Hoebel, B.G. (2012). Corticotropin-releasing factor in the nucleus accumbens shell induces swim depression, anxiety, and anhedonia along with changes in local dopamine/acetylcholine balance. Neuroscience 206, 155–166.10.1016/j.neuroscience.2011.12.009Search in Google Scholar
Choleris, E., Thomas, A.W., Kavaliers, M., and Prato, F.S. (2001). A detailed ethological analysis of the mouse open field test: effects of diazepam, chlordiazepoxide and an extremely low frequency pulsed magnetic field. Neurosci. Biobehav. Rev. 25, 235–260.10.1016/S0149-7634(01)00011-2Search in Google Scholar
Cipriano, A.C., Gomes, K.S., and Nunes-de-Souza, R.L. (2016). CRF receptor type 1 (but not type 2) located within the amygdala plays a role in the modulation of anxiety in mice exposed to the elevated plus maze. Horm. Behav. 81, 59–67.10.1016/j.yhbeh.2016.03.002Search in Google Scholar
Contarino, A., Dellu, F., Koob, G.F., Smith, G.W., Lee, K.F., Vale, W., and Gold, L.H. (1999). Reduced anxiety-like and cognitive performance in mice lacking the corticotropin-releasing factor receptor 1. Brain Res. 835, 1–9.10.1016/S0006-8993(98)01158-5Search in Google Scholar
Conti, L.H., Costello, D.G., Martin, L.A., White, M.F., and Abreu, M.E. (1994). Mouse strain differences in the behavioral effects of corticotropin-releasing factor (CRF) and the CRF antagonist α-helical CRF9-41. Pharmacol. Biochem. Behav. 48, 497–503.10.1016/0091-3057(94)90559-2Search in Google Scholar
Coste, S.C., Kesterson, R.A., Heldwein, K.A., Stevens, S.L., Heard, A.D., Hollis, J.H., Murray, S.E., Hill, J.K., Pantely, G.A., Hohimer, A.R., et al. (2000). Abnormal adaptations to stress and impaired cardiovascular function in mice lacking corticotropin-releasing hormone receptor-2. Nat. Genet. 24, 403–409.10.1038/74255Search in Google Scholar
Crabbe, J.C., Wahlsten, D., and Dudek, B.C. (1999). Genetics of mouse behavior: interactions with laboratory environment. Science 284, 1670–1672.10.1126/science.284.5420.1670Search in Google Scholar
Crawley, J.N. (1981). Neuropharmacologic specificity of a simple animal model for the behavioral actions of benzodiazepines. Pharmacol. Biochem. Behav. 15, 695–699.10.1016/0091-3057(81)90007-1Search in Google Scholar
Crawley, J.N. (1985). Exploratory behavior models of anxiety in mice. Neurosci. Biobehav. Rev. 9, 37–44.10.1016/0149-7634(85)90030-2Search in Google Scholar PubMed
Croteau, J.D., Schulkin, J., and Shepard, J.D. (2017). Behavioral effects of chronically elevated corticosterone in subregions of the medial prefrontal cortex. Behav. Brain Res. 316, 82–86.10.1016/j.bbr.2016.08.055Search in Google Scholar PubMed PubMed Central
Currie, P.J., Khelemsky, R., Rigsbee, E.M., Dono, L.M., Coiro, C.D., Chapman, C.D., and Hinchcliff, K. (2012). Ghrelin is an orexigenic peptide and elicits anxiety-like behaviors following administration into discrete regions of the hypothalamus. Behav. Brain Res. 226, 96–105.10.1016/j.bbr.2011.08.037Search in Google Scholar PubMed PubMed Central
Daniels, W.M., Richter, L., and Stein, D.J. (2004). The effects of repeated intra-amygdala CRF injections on rat behavior and HPA axis function after stress. Metab. Brain Dis. 19, 15–23.10.1023/B:MEBR.0000027413.42946.61Search in Google Scholar PubMed
David, D.J., Samuels, B.A., Rainer, Q., Wang, J.W., Marsteller, I. Mendez, I., Drew, M, Craig, D.A., Guiard, B.P., Guilloux, J.P., et al. (2009). Neurogenesis-dependent and -independent effects of fluoxetine in an animal model of anxiety/depression. Neuron 62, 479–493.10.1016/j.neuron.2009.04.017Search in Google Scholar PubMed PubMed Central
Dawson, G.R. and Tricklebank, M.D. (1995). Use of the elevated plus maze in the search for novel anxiolytic agents. Trends Pharmacol. Sci. 16, 33–36.10.1016/S0165-6147(00)88973-7Search in Google Scholar PubMed
De Kloet, E.R. (1991). Brain corticosteroid receptor balance and homeostatic control. Front. Neuroendocrinol. 12, 95–164.Search in Google Scholar
Demuyser, T., Deneyer, L., Bentea, E., Albertini, G., Van Liefferinge, J., Merckx, E., De Prins, A., De Bundel, D., Massie, A., and Smolders, I. (2016). In-depth behavioral characterization of the corticosterone mouse model and the critical involvement of housing conditions. Physiol. Behav. 156, 199–207.10.1016/j.physbeh.2015.12.018Search in Google Scholar PubMed
Dickinson, S.L., Kennett, G.A., and Curzon, G. (1985). Reduced-5-hydroxytryptamine-dependent behavior in rats following chronic corticosterone treatment. Brain Res. 345, 10–18.10.1016/0006-8993(85)90830-3Search in Google Scholar PubMed
Diniz, L., Dos Reis, B.B., de Castro, G.M., Medalha, C.C., and Viana, M.B. (2011). Effects of chronic corticosterone and imipramine administration on panic and anxiety-related responses. Braz. J. Med. Biol. Res. 44, 1048–1053.10.1590/S0100-879X2011007500117Search in Google Scholar PubMed
Donaldson, C., Sutton, S., Perrin, M., Corrigan, A., Lewis, K., Rivier, J., Vaughan, J., and Vale, W. (1996). Cloning and characterization of human urocortin. Endocrinology 137, 2167–2170.10.1210/endo.137.5.8612563Search in Google Scholar PubMed
Donner, N.C., Montoya, C.D., Lukkes, J.L., and Lowry, C.A. (2012). Chronic non-invasive corticosterone administration abolishes the diurnal pattern of tph2 expression. Psychoneuroendocrinology 37, 645–661.10.1016/j.psyneuen.2011.08.008Search in Google Scholar PubMed PubMed Central
Dore, R., Iemolo, A., Smith, K.L., Wang, X., Cottone, P., and Sabino, V. (2013). CRF mediates the anxiogenic and anti-rewarding, but not the anorectic effects of PACAP. Neuropsychopharmacology 38, 2160–2169.10.1038/npp.2013.113Search in Google Scholar PubMed PubMed Central
do-Rego, J.C., Chatenet, D., Orta, M.H., Naudin, B., Le Cudennec, C., Leprince, J., Scalbert, E., Vaudry, H., and Costentin, J. (2005). Behavioral effects of urotensin-II centrally administered in mice. Psychopharmacology 183, 103–117.10.1007/s00213-005-0140-2Search in Google Scholar PubMed
do-Rego, J.C., Viana, A.F., Le Maître, E., Deniel, A., Rates, S.M., Leroux-Nicollet, I., and Costentin, J. (2006). Comparisons between anxiety tests for selection of anxious and non anxious mice. Behav. Brain Res. 169, 282–288.10.1016/j.bbr.2006.01.018Search in Google Scholar PubMed
Dunn, A.J. and Berridge, C.W. (1987). Corticotropin-releasing factor administration elicits a stress-like activation of cerebral catecholaminergic systems. Pharmacol. Biochem. Behav. 27, 685–691.10.1016/0091-3057(87)90195-XSearch in Google Scholar PubMed
Dunn, A.J. and Berridge, C.W. (1990). Physiological and behavioral responses to corticotropin-releasing factor administration: is CRF a mediator of anxiety or stress responses? Brain Res. Rev. 15, 71–100.10.1016/0165-0173(90)90012-DSearch in Google Scholar PubMed
Dunn, A.J. and Swiergiel, A.H. (1999). Behavioral responses to stress are intact in CRF-deficient mice. Brain Res. 845, 14–20.10.1016/S0006-8993(99)01912-5Search in Google Scholar
Durcan, M.J., Lister, R.G., Eckardt, M.J., and Linnoila, M. (1988). Interactions of 5HT reuptake inhibitors and ethanol in tests of exploration and anxiety. Adv. Alcohol Subst. Abuse 7, 113–117.10.1300/J251v07n03_18Search in Google Scholar PubMed
Eaves, M., Thatcher-Britton, K., Rivier, J., Vale, W., and Koob, G.F. (1985). Effects of corticotropin releasing factor on locomotor activity in hypophysectomized rats. Peptides 6, 923–926.10.1016/0196-9781(85)90323-7Search in Google Scholar PubMed
Echeverry, M.B., Hasenöhrl, R.U., Huston, J.P., and Tomaz, C. (2001). Comparison of neurokinin SP with diazepam in effects on memory and fear parameters in the elevated T-maze free exploration paradigm. Peptides 22, 1031–1036.10.1016/S0196-9781(01)00421-1Search in Google Scholar PubMed
Ennaceur, A. and Chazot, P.L. (2016). Preclinical animal anxiety research – flaws and prejudices. Pharmacol. Res. Perspect. 4, e00223.10.1002/prp2.223Search in Google Scholar PubMed PubMed Central
Espallergues, J., Teegarden, S., Veerakumar, A., Boulden, J., Challis, C., Jochems, J., Chan, M., Petersen, T., Deneris, E., Matthias, P., et al. (2012). HDAC6 regulates glucocorticoid receptor signaling in serotonin pathways with critical impact on stress resilience. J. Neurosci. 32, 4440–4416.10.1523/JNEUROSCI.5634-11.2012Search in Google Scholar PubMed PubMed Central
Etches, R.J. (1976). A radioimmunoassay for corticosterone and its application to the measurement of stress in poultry. Steroids 28, 763–773.10.1016/0039-128X(76)90028-3Search in Google Scholar PubMed
Fan, Y., Chen, P., Li, Y., Cui, K., Noel, D.M., Cummins, E.D., Peterson, D.J., Brown, R.W., and Zhu, M.Y. (2014). Corticosterone administration up-regulated expression of norepinephrine transporter and dopamine β-hydroxylase in rat locus coeruleus and its terminal regions. J. Neurochem. 128, 445–458.10.1111/jnc.12459Search in Google Scholar PubMed PubMed Central
Fatima, A., Haroon, M.F., Wolf, G., Engelmann, M., and Spina, M.G. (2010). Urocortin 1 administered into the hypothalamic supraoptic nucleus affects open-field behaviour in rats. Amino Acids 38, 1407–1414.10.1007/s00726-009-0349-1Search in Google Scholar PubMed
Felszeghy, K., Sasvári, M., and Nyakas, C. (1993). Behavioral depression: opposite effects of neonatal dexamethasone and ACTH-(4-9) analogue (ORG 2766) treatments in the rat. Horm. Behav. 27, 380–396.10.1006/hbeh.1993.1028Search in Google Scholar PubMed
Ferguson, S.A. and Holson, R.R. (1999). Neonatal dexamethasone on day 7 causes mild hyperactivity and cerebellar stunting. Neurotoxicol. Teratol. 21, 71–76.10.1016/S0892-0362(98)00029-4Search in Google Scholar
Fernandes, C. and File, S.E. (1996). The influence of open arm ledges and maze experience in the elevated plus-maze. Pharmacol. Biochem. Behav. 54, 31–40.10.1016/0091-3057(95)02171-XSearch in Google Scholar
Farrokhi, C.B., Tovote, P., Blanchard, R.J., Blanchard, D.C., Litvin, Y., and Spiess, J. (2007). Cortagine: behavioral and autonomic function of the selective CRF receptor subtype 1 agonist. CNS Drug Rev. 13, 423–443.10.1111/j.1527-3458.2007.00027.xSearch in Google Scholar PubMed PubMed Central
File, S.E. (1982). The rat corticosterone response: habituation and modification by chlordiazepoxide. Physiol. Behav. 29, 91–95.10.1016/0031-9384(82)90371-7Search in Google Scholar PubMed
File, S.E. (2001). Factors controlling measures of anxiety and responses to novelty in the mouse. Behav. Brain Res. 125, 151–157.10.1016/S0166-4328(01)00292-3Search in Google Scholar
File, S.E. and Wardill, A.G. (1975). Validity of head-dipping as a measure of exploration in a modified hole-board. Psychopharmacologia 44, 53–59.10.1007/BF00421184Search in Google Scholar PubMed
File, S.E., Zangrossi, H. Jr, Sanders, F.L., and Mabbutt, P.S. (1994). Raised corticosterone in the rat after exposure to the elevated plus-maze. Psychopharmacology 113, 543–546.10.1007/BF02245237Search in Google Scholar PubMed
Fisk, G.D. and Wyss, J.M. (2000). Descending projections of infralimbic cortex that mediate stimulation-evoked changes in arterial pressure. Brain Res. 859, 83–95.10.1016/S0006-8993(00)01935-1Search in Google Scholar PubMed
Forray, M.I. and Gysling, K. (2004). Role of noradrenergic projections to the bed nucleus of the stria terminalis in the regulation of the hypothalamic-pituitary-adrenal axis. Brain Res. Rev. 47, 145–160.10.1016/j.brainresrev.2004.07.011Search in Google Scholar PubMed
Fuxe, K., Wikström, A.C., Okret, S., Agnati, L.F., Härfstrand, A., Yu, Z.Y., Granholm, L., Zoli, M., Vale, W., and Gustafsson, J.A. (1985). Mapping of glucocorticoid receptor immunoreactive neurons in the rat tel- and diencephalon using a monoclonal antibody against rat liver glucocorticoid receptor. Endocrinology 117, 1803–1812.10.1210/endo-117-5-1803Search in Google Scholar PubMed
Gammie, S.C. and Stevenson, S.A. (2006). Intermale aggression in corticotropin-releasing factor receptor 1 deficient mice. Behav. Brain Res. 171, 63–69.10.1016/j.bbr.2006.03.017Search in Google Scholar PubMed PubMed Central
Gammie, S.C., Bethea, E.D., and Stevenson, S.A. (2007). Altered maternal profiles in corticotropin-releasing factor receptor 1 deficient mice. BMC Neurosci. 8, 17.10.1186/1471-2202-8-17Search in Google Scholar PubMed PubMed Central
Ghosal, S., Bundzikova-Osacka, J., Dolgas, C.M., Myers, B., and Herman, J.P. (2014). Glucocorticoid receptors in the nucleus of the solitary tract (NTS) decrease endocrine and behavioral stress responses. Psychoneuroendocrinology 45, 142–153.10.1016/j.psyneuen.2014.03.018Search in Google Scholar PubMed PubMed Central
Gomez-Sanchez, E. and Gomez-Sanchez, C.E. (2014). The multifaceted mineralocorticoid receptor. Compr. Physiol. 4, 965–994.10.1002/cphy.c130044Search in Google Scholar PubMed PubMed Central
Graeff, F.G., Netto, C.F., and Zangrossi, H. Jr. (1998). The elevated T-maze as an experimental model of anxiety. Neurosci. Biobehav. Rev. 23, 237–246.10.1016/S0149-7634(98)00024-4Search in Google Scholar
Gray, T.S. (1993). Amygdaloid CRF pathways. Role in autonomic, neuroendocrine, and behavioral responses to stress. Ann. N.Y. Acad. Sci. 697, 53–60.10.1111/j.1749-6632.1993.tb49922.xSearch in Google Scholar PubMed
Gray, T.S. and Magnuson, D.J. (1987). Neuropeptide neuronal efferents from the bed nucleus of the stria terminalis and central amygdaloid nucleus to the dorsal vagal complex in the rat. J. Comp. Neurol. 262, 365–374.10.1002/cne.902620304Search in Google Scholar PubMed
Gray, T.S. and Magnuson, D.J. (1992). Peptide immunoreactive neurons in the amygdala and the bed nucleus of the stria terminalis project to the midbrain central gray in the rat. Peptides 13, 451–460.10.1016/0196-9781(92)90074-DSearch in Google Scholar PubMed
Gray, T.S., Carney, M.E., and Magnuson, D.J. (1989). Direct projections from the central amygdaloid nucleus to the hypothalamic paraventricular nucleus: possible role in stress-induced adrenocorticotropin release. Neuroendocrinology 50, 433–446.10.1159/000125260Search in Google Scholar PubMed
Gray, J.M., Vecchiarelli, H.A., Morena, M., Lee, T.T., Hermanson, D.J., Kim, A.B., McLaughlin, R.J., Hassan, K.I., Kühne, C., Wotjak, C.T., et al. (2015). Corticotropin-releasing hormone drives anandamide hydrolysis in the amygdala to promote anxiety. J. Neurosci. 35, 3879–3892.10.1523/JNEUROSCI.2737-14.2015Search in Google Scholar PubMed PubMed Central
Greenwood-Van Meerveld, B., Gibson, M., Gunter, W., Shepard, J., Foreman, R., and Myers, D. (2001). Stereotaxic delivery of corticosterone to the amygdala modulates colonic sensitivity in rats. Brain Res. 893, 135–142.10.1016/S0006-8993(00)03305-9Search in Google Scholar
Gregus, A., Wintink, A.J., Davis, A.C., and Kalynchuk, L.E. (2005). Effect of repeated corticosterone injections and restraint stress on anxiety and depression-like behavior in male rats. Behav. Brain Res. 156, 105–114.10.1016/j.bbr.2004.05.013Search in Google Scholar PubMed
Griebel, G., Perrault, G., and Sanger, D.J. (1998). Characterization of the behavioral profile of the non-peptide CRF receptor antagonist CP-154,526 in anxiety models in rodents: comparison with diazepam and buspirone. Psychopharmacology 138, 55–66.10.1007/s002130050645Search in Google Scholar PubMed
Griebel, G., Simiand, J., Steinberg, R., Jung, M., Gully, D., Roger, P., Geslin, M., Scatton, B., Maffrand, J.P., and Soubrié, P. (2002). 4-(2-Chloro-4-methoxy-5-methylphenyl)-N-[(1S)-2-cyclopropyl-1-(3-fluoro-4-methylphenyl)ethyl]5-methyl-N-(2-propynyl)-1, 3-thiazol-2-amine hydrochloride (SSR125543A), a potent and selective corticotrophin-releasing factor(1) receptor antagonist. II. Characterization in rodent models of stress-related disorders. J. Pharmacol. Exp. Ther. 301, 333–345.10.1124/jpet.301.1.333Search in Google Scholar PubMed
Gutman, D.A., Coyer, M.J., Boss-Williams, K.A., Owens, M.J., Nemeroff, C.B., and Weiss, J.M. (2008). Behavioral effects of the CRF1 receptor antagonist R121919 in rats selectively bred for high and low activity in the swim test. Psychoneuroendocrinology 33, 1093–1101.10.1016/j.psyneuen.2008.05.003Search in Google Scholar PubMed
Gutman, D.A., Owens, M.J., Thrivikraman, K.V., and Nemeroff, C.B. (2011). Persistent anxiolytic affects after chronic administration of the CRF-1 receptor antagonist R121919 in rats. Neuropharmacology 60, 1135–1141.10.1016/j.neuropharm.2010.10.004Search in Google Scholar PubMed PubMed Central
Haller, J., Aliczki, M., and Gyimesine Pelczer, K. (2013). Classical and novel approaches to the preclinical testing of anxiolytics: a critical evaluation. Neurosci. Biobehav. Rev. 37, 2318–2330.10.1016/j.neubiorev.2012.09.001Search in Google Scholar PubMed
Han, F., Ding, J., and Shi, Y. (2014). Expression of amygdala mineralocorticoid receptor and glucocorticoid receptor in the single-prolonged stress rats. BMC Neurosci. 15, 77.10.1186/1471-2202-15-77Search in Google Scholar PubMed PubMed Central
Harding, A., Paxinos, G., and Halliday, G. (2004). The serotonin and tachykinin systems. In: The Rat Nervous System, 3rd ed. G. Paxinos, ed. (Amsterdam: Elsevier), pp. 1205–1256.10.1016/B978-012547638-6/50035-3Search in Google Scholar
Härfstrand, A., Fuxe, K., Cintra, A., Agnati, L.F., Zini, I., Wikström, A.C., Okret, S., Yu, Z.Y., Goldstein M., Steinbusch H., et al. (1986). Glucocorticoid receptor immunoreactivity in monoaminergic neurons of rat brain. Proc. Natl. Acad. Sci. USA 83, 9779–9783.10.1073/pnas.83.24.9779Search in Google Scholar PubMed PubMed Central
Harro, J., Tõnissaar, M., and Eller, M. (2001). The effects of CRA 1000, a non-peptide antagonist of corticotropin-releasing factor receptor type 1, on adaptive behaviour in the rat. Neuropeptides 35, 100–109.10.1054/npep.2001.0851Search in Google Scholar PubMed
Hascoët, M., Bourin, M., and Nic Dhonnchadha, B.A. (2001). The mouse light-dark paradigm: a review. Prog. Neuropsychopharmacol. Biol. Psychiatry. 25, 141–166.10.1016/S0278-5846(00)00151-2Search in Google Scholar
Hashimoto, K., Maskino, S., Asaba, K., and Nishiyama. M. (2001). Physiological roles of corticotropin-releasing hormone receptor type 2. Endocr. J. 48, 1–9.10.1507/endocrj.48.1Search in Google Scholar PubMed
Hauger, R.L., Risbrough, V., Brauns, O., and Dautzenberg, F.M. (2006). Corticotropin releasing factor (CRF) receptor signaling in the central nervous system: new molecular targets. CNS Neurol. Disord. Drug Targets 5, 453–479.10.2174/187152706777950684Search in Google Scholar PubMed PubMed Central
Hauger, R.L., Risbrough, V., Oakley, R.H., Olivares-Reyes, J.A., and Dautzenberg, F.M. (2009). Role of CRF receptor signaling in stress vulnerability, anxiety, and depression. Ann. NY Acad. Sci. 1179, 120–143.10.1111/j.1749-6632.2009.05011.xSearch in Google Scholar PubMed PubMed Central
He, L.Q., Gilligan, P.J., Zaczek, R., Fitzgerald, L.W., McElroy, J., Shen, H.S.L., Saye, J.A., Kalin, N.H., Shelton, S., Christ, D., et al. (2000). 4-(1,3-Dimethoxyprop-2-ylamino)-2,7-dimethyl-8-(2,4-dichlorophenyl)-pyrazolo[1,5-a]1,3,5-triazine: a potent, orally bioavailable CRF1 receptor antagonist. J. Med. Chem. 43, 449–456.10.1021/jm9904351Search in Google Scholar PubMed
Heinrichs, S.C. and Koob, G.F. (2004). Corticotropin-releasing factor in brain: a role in activation, arousal, and affect regulation. J. Pharmacol. Exp. Ther. 311, 427–440.10.1124/jpet.103.052092Search in Google Scholar PubMed
Heinrichs, S.C., Pich, E.M., Miczek, K., Britton, K.T., and Koob, G.F. (1992). Corticotropin-releasing factor antagonist reduces emotionality in socially defeated rats via direct neurotropic action. Brain Res. 581, 190–197.10.1016/0006-8993(92)90708-HSearch in Google Scholar
Heinrichs, S.C., Menzaghi, F., Merlo-Pich, E., Baldwin, H.A., Rassnick, S., Britton, K.T., and Koob, G.F. (1994). Anti-stress action of a corticotropin-releasing factor antagonist on behavioral reactivity to stressors of varying type and intensity. Neuropsychopharmacology 11, 179–186.10.1038/sj.npp.1380104Search in Google Scholar PubMed
Heinrichs, S.C., Lapsansky, J., Lovenberg, T.W., De Souza, E.B., and Chalmers, D.T. (1997). Corticotropin-releasing factor CRF1, but not CRF2, receptors mediate anxiogenic-like behavior. Regul. Pept. 71, 15–21.10.1016/S0167-0115(97)01005-7Search in Google Scholar
Heinrichs, S.C., De Souza, E.B., Schulteis, G., Lapsansky, J.L., and Grigoriadis, D.E. (2002). Brain penetrance, receptor occupancy and antistress in vivo efficacy of a small molecule corticotropin releasing factor type I receptor selective antagonist. Neuropsychopharmacology 27, 194–202.10.1016/S0893-133X(02)00299-3Search in Google Scholar PubMed
Henry, B., Vale, W., and Markou, A. (2006). The effect of lateral septum corticotropin-releasing factor receptor 2 activation on anxiety is modulated by stress. J. Neurosci. 26, 9142–9152.10.1523/JNEUROSCI.1494-06.2006Search in Google Scholar PubMed PubMed Central
Hensler, J.G. (2006). Serotonergic modulation of the limbic system. Neurosci. Biobehav. Rev. 30, 203–214.10.1016/j.neubiorev.2005.06.007Search in Google Scholar PubMed
Herman, J.P. (1993). Regulation of adrenocorticosteroid receptor mRNA expression in the central nervous system. Cell Mol. Neurobiol. 13, 349–372.10.1007/BF00711577Search in Google Scholar PubMed
Hlavacova, N. and Jezova, D. (2008). Chronic treatment with the mineralocorticoid hormone aldosterone results in increased anxiety-like behavior. Horm. Behav. 54, 90–97.10.1016/j.yhbeh.2008.02.004Search in Google Scholar PubMed
Hlavacova, N., Bakos, J., and Jezova, D. (2010). Eplerenone, a selective mineralocorticoid receptor blocker, exerts anxiolytic effects accompanied by changes in stress hormone release. J. Psychopharmacol. 24, 779–786.10.1177/0269881109106955Search in Google Scholar PubMed
Hodgson, R.A., Higgins, G.A., Guthrie, D.H., Lu, S.X., Pond, A.J., Mullins, D.E., Guzzi, M.F., Parker, E.M., and Varty, G.B. (2007). Comparison of the V1b antagonist, SSR149415, and the CRF1 antagonist, CP-154,526, in rodent models of anxiety and depression. Pharmacol. Biochem. Behav. 86, 431–440.10.1016/j.pbb.2006.12.021Search in Google Scholar PubMed
Hogg, S. (1996). A review of the validity and variability of the elevated plus-maze as an animal model of anxiety. Pharmacol. Biochem. Behav. 54, 21–30.10.1016/0091-3057(95)02126-4Search in Google Scholar PubMed
Horvath, K.M., Meerlo, P., Felszeghy, K., Nyakas, C., and Luiten, P.G. (1999). Early postnatal treatment with ACTH4-9 analog ORG 2766 improves adult spatial learning but does not affect behavioural stress reactivity. Behav. Brain Res. 106, 181–188.10.1016/S0166-4328(99)00106-0Search in Google Scholar PubMed
Howard, E. and Granoff, D.M. (1968). Increased voluntary running and decreased motor coordination in mice after neonatal corticosterone implantation. Exp. Neurol. 22, 661–673.10.1016/0014-4886(68)90155-6Search in Google Scholar PubMed
Isogawa, K., Akiyoshi, J., Tsutsumi, T., Kodama, K., Horinouti, Y., and Nagayama, H. (2003). Anxiogenic-like effect of corticotropin-releasing factor receptor 2 antisense oligonucleotides infused into rat brain. J. Psychopharmacol. 17, 409–413.10.1177/0269881103174004Search in Google Scholar PubMed
Jaferi, A. and Bhatnagar, S. (2007). Corticotropin-releasing hormone receptors in the medial prefrontal cortex regulate hypothalamic-pituitary-adrenal activity and anxiety-related behavior regardless of prior stress experience. Brain Res. 1186, 212–223.10.1016/j.brainres.2007.07.100Search in Google Scholar PubMed PubMed Central
Jahn, H., Montkowski, A., Knaudt, K., Ströhle, A., Kiefer, F., Schick, M., and Wiedemann, K. (2001). Alpha-helical-corticotropin-releasing hormone reverses anxiogenic effects of C-type natriuretic peptide in rats. Brain Res. 893, 21–28.10.1016/S0006-8993(00)03275-3Search in Google Scholar
Jaszberenyi, M., Bujdosó, E., Bagosi, Z., and Telegdy, G. (2006). Mediation of the behavioral, endocrine and thermoregulatory actions of ghrelin. Horm. Behav. 50, 266–273.10.1016/j.yhbeh.2006.03.010Search in Google Scholar PubMed
Jaszberenyi, M., Bagosi, Z., Thurzó, B., Földesi, I., and Telegdy, G. (2007). Endocrine and behavioral effects of neuromedin S. Horm. Behav. 52, 631–639.10.1016/j.yhbeh.2007.08.002Search in Google Scholar PubMed
Jazayeri, A. and Meyer, W.J. 3rd. (1988). Glucocorticoid modulation of β-adrenergic receptors of cultured rat arterial smooth muscle cells. Hypertension 12, 393–398.10.1161/01.HYP.12.4.393Search in Google Scholar
Joëls, M. and de Kloet, E.R. (1989). Effects of glucocorticoids and norepinephrine on the excitability in the hippocampus. Science 245, 1502–1505.10.1126/science.2781292Search in Google Scholar PubMed
Jones, D.N.C., Kortekaas, R., Slade, P.D., Middlemiss, D.N., and Hagan, J.J. (1998). The behavioural effects of corticotropin-releasing factor-related peptides in rats. Psychopharmacology 138, 124–132.10.1007/s002130050654Search in Google Scholar PubMed
Kagamiishi, Y., Yamamoto, T., and Watanabe, S. (2003). Hippocampal serotonergic system is involved in anxiety-like behavior induced by corticotropin-releasing factor. Brain Res. 991, 212–221.10.1016/j.brainres.2003.08.021Search in Google Scholar PubMed
Kalin, N.H., Shelton, S.E., Kraemer, G.W., and McKinney, W.T. (1983). Corticotropin-releasing factor administered intraventricularly to rhesus monkeys. Peptides 4, 217–220.10.1016/0196-9781(83)90117-1Search in Google Scholar PubMed
Kalivas, P.W., Duffy, P., and Latimer, L.G. (1987). Neurochemical and behavioral effects of corticotropin-releasing factor in the ventral tegmental area of the rat. J. Pharmacol. Exp. Ther. 242, 757–763.10.1016/S0022-3565(25)39170-6Search in Google Scholar
Kalynchuk, L.E., Gregus, A., Boudreau, D., and Perrot-Sinal, T.S. (2004). Corticosterone increases depression-like behavior, with some effects on predator odor-induced defensive behavior, in male and female rats. Behav. Neurosci. 118, 1365–1377.10.1037/0735-7044.118.6.1365Search in Google Scholar PubMed
Karalis, K., Sano, H., Redwine, J., Listwak, S., Wilder, R.L., and Chrousos, G.P. (1991). Autocrine or paracrine inflammatory actions of corticotropin releasing hormone in vivo. Science 254, 421–423.10.1126/science.1925600Search in Google Scholar PubMed
Karolyi, I.J., Burrows, H.L., Ramesh, T.M., Nakajima, M., Lesh, J.S., Seong, E., Camper, S.A., and Seasholtz, A.F. (1999). Altered anxiety and weight gain in corticotropin-releasing hormone-binding protein-deficient mice. Proc. Natl. Acad. Sci. USA 96, 11595–11600.10.1073/pnas.96.20.11595Search in Google Scholar PubMed PubMed Central
Kasahara, M., Groenink, L., Breuer, M., Olivier, B., and Sarnyai, Z. (2007). Altered behavioural adaptation in mice with neural corticotrophin-releasing factor overexpression. Genes Brain Behav. 6, 598–607.10.1111/j.1601-183X.2006.00286.xSearch in Google Scholar PubMed
Keay, K.A. and Bandler, R. (2004). Periaqueductal grey. In: The Rat Nervous System, 3rd ed. G. Paxinos, ed. (Amsterdam: Elsevier), pp. 243–257.10.1016/B978-012547638-6/50011-0Search in Google Scholar
Keck, M.E., Welt, T., Wigger, A., Renner, U., Engelmann, M., Holsboer, F., and Landgraf, R. (2001). The anxiolytic effect of the CRH(1) receptor antagonist R121919 depends on innate emotionality in rats. Eur. J. Neurosci. 13, 373–380.10.1046/j.0953-816X.2000.01383.xSearch in Google Scholar
Keenan, C.R., Lew, M.J., and Stewart, A.G. (2016). Biased signalling from the glucocorticoid receptor: renewed opportunity for tailoring glucocorticoid activity. Biochem. Pharmacol. 112, 6–12.10.1016/j.bcp.2016.02.008Search in Google Scholar PubMed
Keller-Wood, M.E. and Dallman, M.F. (1984). Corticosteroid inhibition of ACTH secretion. Endocr. Rev. 5, 1–24.10.1210/edrv-5-1-1Search in Google Scholar PubMed
Kerr, D.S., Campbell, L.W., Hao, S.Y., and Landfield, P.W. (1989). Corticosteroid modulation of hippocampal potentials: increased effect with aging. Science 245, 1505–1509.10.1126/science.2781293Search in Google Scholar PubMed
Kim, H., Yi, J.H., Choi, K., Hong, S., Shin, K.S., and Kang, S.J. (2014). Regional differences in acute corticosterone-induced dendritic remodeling in the rat brain and their behavioral consequences. BMC Neurosci. 15, 65.10.1186/1471-2202-15-65Search in Google Scholar PubMed PubMed Central
Kishimoto, T., Radulovic, J., Radulovic, M., Lin, C.R., Schrick, C., Hooshmand, F., Hermanson, O., Rosenfeld, M.G., and Spiess, J. (2000). Deletion of crhr2 reveals an anxiolytic role for corticotropin-releasing hormone receptor-2. Nat. Genet. 24, 415–419.10.1038/74271Search in Google Scholar PubMed
Kliethermes, C.L. (2005). Anxiety-like behaviors following chronic ethanol exposure. Neurosci. Biobehav. Rev. 28, 837–850.10.1016/j.neubiorev.2004.11.001Search in Google Scholar PubMed
Kliethermes, C.L. and Crabbe, J.C. (2006). Pharmacological and genetic influences on hole-board behaviors in mice. Pharmacol. Biochem. Behav. 85, 57–65.10.1016/j.pbb.2006.07.007Search in Google Scholar PubMed
Koob, G.F. and Bloom, F.E. (1985). Corticotropin-releasing factor and behavior. Fed. Proc. 44, 259–263.10.1016/B978-0-12-532102-0.50007-3Search in Google Scholar
Koob, G.F. and Heinrichs, S.C. (1999). A role for corticotropin releasing factor and urocortin in behavioral responses to stressors. Brain Res. 848, 141–152.10.1016/S0006-8993(99)01991-5Search in Google Scholar
Koob, G.F. and Thatcher-Britton, K. (1985). Stimulant and anxiogenic effects of corticotropin releasing factor. Prog. Clin. Biol. Res. 192, 499–506.Search in Google Scholar
Koob, G.F., Heinrichs, S.C., Pich, E.M., Menzaghi, F., Baldwin, H., Miczek, K., and Britton, K.T. (1993). The role of corticotropin-releasing factor in behavioural responses to stress. Ciba Found. Symp. 172, 277–289.10.1002/9780470514368.ch14Search in Google Scholar PubMed
Korte, S.M., de Boer, S.F., de Kloet, E.R., and Bohus, B. (1995). Anxiolytic-like effects of selective mineralocorticoid antagonists on fear-enhanced behavior in the elevated plus-maze. Psychoneuroendocrinology 20, 385–394.10.1016/0306-4530(94)00069-7Search in Google Scholar PubMed
Kulesskaya, N. and Voikar, V. (2014). Assessment of mouse anxiety-like behavior in the light-dark box and open-field arena: role of equipment and procedure. Physiol. Behav. 133, 30–38.10.1016/j.physbeh.2014.05.006Search in Google Scholar PubMed
Kulkarni, S.K. and Sharma, A.C. (1991). Elevated plus-maze: a novel psychobehavioral tool to measure anxiety in rodents. Methods Find. Exp. Clin. Pharmacol. 13, 573–577.Search in Google Scholar
Kumar, K.B. and Karanth, K.S. (1996). Alpha-helical CRF blocks differential influence of corticotropin releasing factor (CRF) on appetitive and aversive memory retrieval in rats. J. Neural Transm. 103, 1117–1126.10.1007/BF01291796Search in Google Scholar PubMed
Kur’yanova, E.V., Teplyi, D.L., Zhukova, Y.D., and Zhukovina, N.V. (2015). Heart rate variability in nonlinear rats with different orientation and exploratory activity in the open field. Bull. Exp. Biol. Med. 160, 183–186.10.1007/s10517-015-3122-3Search in Google Scholar PubMed
Lalonde, R. and Strazielle, C. (2008). Relations between open-field, elevated plus-maze, and emergence tests as displayed by C57BL/6J and BALB/c mice. J. Neurosci. Methods 171, 48–52.10.1016/j.jneumeth.2008.02.003Search in Google Scholar PubMed
Lalonde, R. and Strazielle, C. (2010). Relations between open-field, elevated plus-maze, and emergence tests in C57BL/6J and BALB/c mice injected with GABA- and 5HT-anxiolytic agents. Fund. Clin. Pharmacol. 24, 365–376.10.1111/j.1472-8206.2009.00772.xSearch in Google Scholar PubMed
Lalonde, R. and Strazielle, C. (2012). Relations between open-field, elevated plus-maze, and emergence tests in C57BL/6JIco and BALB/cAnN@Ico mice injected with ethanol. Fund. Clin. Pharmacol. 26, 271–278.10.1111/j.1472-8206.2010.00919.xSearch in Google Scholar PubMed
Laue, L., Loriaux, D.L., and Chrousos, G.P. (1988). Glucocorticoid antagonists and the role of glucocorticoids at the resting and stress state. Adv. Exp. Med. Biol. 245, 225–235.10.1007/978-1-4899-2064-5_18Search in Google Scholar PubMed
Lecorps, B., Rödel, H.G., and Féron, C. (2016). Assessment of anxiety in open field and elevated plus maze using infrared thermography. Physiol. Behav. 157, 209–216.10.1016/j.physbeh.2016.02.014Search in Google Scholar PubMed
Lee, E.H. and Tsai, M.J. (1989). The hippocampus and amygdala mediate the locomotor stimulating effects of corticotropin-releasing factor in mice. Behav. Neural Biol. 51, 412–423.10.1016/S0163-1047(89)91052-2Search in Google Scholar
Lee, E.H.Y., Tsai, M.J., and Chai, C.Y. (1986). Stress selectively influences center region activity of mice in an open field. Physiol. Behav. 37, 659–662.10.1016/0031-9384(86)90301-XSearch in Google Scholar
Lee, E.H., Tang, Y.P., and Chai, C.Y. (1987). Stress and corticotropin-releasing factor potentiate center region activity of mice in an open field. Psychopharmacology 93, 320–323.10.1007/BF00187250Search in Google Scholar PubMed
Lee, Y., Fitz, S., Johnson, P.L., and Shekhar, A. (2008). Repeated stimulation of CRF receptors in the BNST of rats selectively induces social but not panic-like anxiety. Neuropsychopharmacology 33, 2586–2594.10.1038/sj.npp.1301674Search in Google Scholar PubMed PubMed Central
Lee, R.S., Tamashiro, K.L., Yang, X., Purcell, R.H., Harvey, A., Willour, V.L., Huo, Y., Rongione, M, Wand, GS, and Potash, J.B. (2010). Chronic corticosterone exposure increases expression and decreases deoxyribonucleic acid methylation of Fkbp5 in mice. Endocrinology 151, 4332–4343.10.1210/en.2010-0225Search in Google Scholar PubMed PubMed Central
Lee, B., Sur, B., Kwon, S., Yeom, M., Shim, I., Lee, H., and Hahm, D.H. (2013). Chronic administration of catechin decreases depression and anxiety-like behaviors in a rat model using chronic corticosterone injections. Biomol. Ther. (Seoul) 21, 313–322.10.4062/biomolther.2013.004Search in Google Scholar PubMed PubMed Central
Lelas, S., Wong, H., Li, Y.W., Heman, K.L., Ward, K.A., Zeller, K.L., Sieracki, K.K., Polino, J.L., Godonis, H.E., Ren, S.X., et al. (2004). Anxiolytic-like effects of the corticotropin-releasing factor1 (CRF1) antagonist DMP904 [4-(3-pentylamino)-2,7-dimethyl-8-(2-methyl-4-methoxyphenyl)-pyrazolo-[1,5-a]-pyrimidine] administered acutely or chronically at doses occupying central CRF1 receptors in rats. J. Pharmacol. Exp. Ther. 309, 293–302.10.1124/jpet.103.058784Search in Google Scholar PubMed
Lewejohann, L., Reinhard, C., Schrewe, A., Brandewiede, J., Haemisch, A., Görtz, N., Schachner, M., and Sachser, N. (2006). Environmental bias? Effects of housing conditions, laboratory environment and experimenter on behavioral tests. Genes Brain Behav. 5, 64–72.10.1111/j.1601-183X.2005.00140.xSearch in Google Scholar PubMed
Li, C., Vaughan, J., Sawchenko, P.E., and Vale, W.W. (2002). Urocortin 3-immuno-reactive projections in rat brain: partial overlap with sites of type 2 corticotrophin-releasing factor receptor expression, J. Neurosci. 22, 991–1001.10.1523/JNEUROSCI.22-03-00991.2002Search in Google Scholar PubMed PubMed Central
Li, X.F., Hu, M.H., Li, S.Y., Geach, C., Hikima, A., Rose, S., Greenwood, M.P., Greenwood, M., Murphy, D., Poston, L., et al. (2014). Overexpression of corticotropin releasing factor in the central nucleus of the amygdala advances puberty and disrupts reproductive cycles in female rats. Endocrinology 155, 3934–3944.10.1210/en.2014-1339Search in Google Scholar PubMed
Liang, K.C. and Lee, E.H. (1988). Intra-amygdala injections of corticotropin releasing factor facilitate inhibitory avoidance learning and reduce exploratory behavior in rats. Psychopharmacology 96, 232–236.10.1007/BF00177566Search in Google Scholar PubMed
Liebsch, G., Landgraf, R., Gerstberger, R., Probst, J.C., Wotjak, C.T., Engelmann, M., Holsboer, F., and Montkowski, A. (1995). Chronic infusion of a CRH1 receptor antisense oligodeoxynucleotide into the central nucleus of the amygdala reduced anxiety-related behavior in socially defeated rats. Regul. Pept. 59, 229–239.10.1016/0167-0115(95)00099-WSearch in Google Scholar
Liebsch, G., Landgraf, R., Engelmann, M., Lörscher P., and Holsboer F. (1999). Differential behavioural effects of chronic infusion of CRH1 and CRH2 receptor antisense oligonucleotides into the rat brain. J. Psychiat. Res. 33, 153–163.10.1016/S0022-3956(98)80047-2Search in Google Scholar
Lim, H., Jang, S., Lee, Y., Moon, S., Kim, J., and Oh, S. (2012). Enhancement of anxiety and modulation of TH and pERK expressions in amygdala by repeated injections of corticosterone. Biomol. Ther. 20, 418–424.10.4062/biomolther.2012.20.4.418Search in Google Scholar PubMed PubMed Central
Liu, W. and Zhou, C. (2012). Corticosterone reduces brain mitochondrial function and expression of mitofusin, BDNF in depression-like rodents regardless of exercise preconditioning. Psychoneuroendocrinology 37, 1057–1070.10.1016/j.psyneuen.2011.12.003Search in Google Scholar PubMed
Lorivel, T., Gras, M., and Hilber, P. (2010). Effects of corticosterone synthesis inhibitor metyrapone on anxiety-related behaviors in Lurcher mutant mice. Physiol. Behav. 101, 309–314.10.1016/j.physbeh.2010.05.011Search in Google Scholar PubMed
Lundkvist, J., Chai. Z., Teheranian. R., Hasanva, H., Bartfai, T., Jenck, F., Widmer, U., and Moreau, J.L. (1996). A non-peptidic corticotropin releasing factor receptor antagonist attenuates fever and exhibits anxiolytic-like activity. Eur. J. Pharmacol. 309, 195–200.10.1016/0014-2999(96)00337-8Search in Google Scholar PubMed
Madruga, C., Xavier, L.L., Achaval, M., Sanvitto, G.L., and Lucion, A.B. (2006). Early handling, but not maternal separation, decreases emotional responses in two paradigms of fear without changes in mesolimbic dopamine. Behav. Brain Res. 166, 241–246.10.1016/j.bbr.2005.08.005Search in Google Scholar PubMed
Mansi, J.A., Rivest, S., and Drolet, G. (1996). Regulation of corticotropin-releasing factor type 1 (CRF1) receptor messenger ribonucleic acid in the paraventricular nucleus of rat hypothalamus by exogenous CRF. Endocrinology 137, 4619–4629.10.1210/endo.137.11.8895325Search in Google Scholar PubMed
Marin, M.T., Cruz, F.C., and Planeta, C.S. (2007). Chronic restraint or variable stresses differently affect the behavior, corticosterone secretion and body weight in rats. Physiol. Behav. 90, 29–35.10.1016/j.physbeh.2006.08.021Search in Google Scholar PubMed
Marinelli, M., Rougé-Pont, F., De Jesus-Oliveira, C., Le Moal, M., and Piazza, P.V. (1997). Acute blockade of corticosterone secretion decreases the psychomotor stimulant effects of cocaine. Neuropsychopharmacology 16, 156–161.10.1016/S0893-133X(96)00169-8Search in Google Scholar PubMed
Marks, W., Fournier, N.M., and Kalynchuk, L.E. (2009). Repeated exposure to corticosterone increases depression-like behavior in two different versions of the forced swim test without altering nonspecific locomotor activity or muscle strength. Physiol. Behav. 98, 67–72.10.1016/j.physbeh.2009.04.014Search in Google Scholar PubMed
Martins, A.P., Marras, R.A., and Guimarães, F.S. (1997). Anxiogenic effect of corticotropin-releasing hormone in the dorsal periaqueductal grey. NeuroReport 8, 3601–3604.10.1097/00001756-199711100-00036Search in Google Scholar PubMed
Martins, A.P., Marras, R.A., and Guimarães, F.S. (2000). Anxiolytic effect of a CRH receptor antagonist in the dorsal periaqueductal gray. Depress. Anxiety 12, 99–101.10.1002/1520-6394(2000)12:2<99::AID-DA6>3.3.CO;2-HSearch in Google Scholar
Matsumoto, Y., Abe, M., Watanabe, T., Adachi, Y., Yano, T., Takahashi, H., Sugo, T., Mori, M., Kitada, C., Kurokawa, T., et al. (2004). Intracerebroventricular administration of urotensin II promotes anxiogenic-like behaviors in rodents. Neurosci. Lett. 358, 99–102.10.1016/j.neulet.2003.12.116Search in Google Scholar
McEown, K. and Treit, D. (2011). Mineralocorticoid receptors in the medial prefrontal cortex and hippocampus mediate rats’ unconditioned fear behaviour. Horm. Behav. 60, 581–588.10.1016/j.yhbeh.2011.08.007Search in Google Scholar
McEwen, B.S., Davis, P.G., Parsons, B., and Pfaff, D.W. (1979). The brain as a target for steroid hormone action. Annu. Rev. Neurosci. 2, 65–112.10.1146/annurev.ne.02.030179.000433Search in Google Scholar
McKlveen, J.M., Myers, B., Flak, J.N., Bundzikova, J., Solomon, M.B., Seroogy, K.B., and Herman, J.P. (2013). Role of prefrontal cortex glucocorticoid receptors in stress and emotion. Biol. Psychiatry 74, 672–679.10.1016/j.biopsych.2013.03.024Search in Google Scholar
Meaney, M.J., Aitken, D.H., van Berkel, C., Bhatnagar, S., and Sapolsky, R.M. (1988). Effect of neonatal handling on age-related impairments associated with the hippocampus. Science 239, 766–768.10.1126/science.3340858Search in Google Scholar
Meaney, M.J., Aitken, D.H., Viau, V., Sharma, S., and Sarrieau, A. (1989). Neonatal handling alters adrenocortical negative feedback sensitivity and hippocampal type II glucocorticoid receptor binding in the rat. Neuroendocrinology 50, 597–604.10.1159/000125287Search in Google Scholar PubMed
Meaney, M.J., O’Donnell, D., Rowe, W., Tannenbaum, B., Steverman, A., Walker, M., Nair, N.P., and Lupien, S. (1995). Individual differences in hypothalamic-pituitary-adrenal activity in later life and hippocampal aging. Exp. Gerontol. 30, 229–251.10.1016/0531-5565(94)00065-BSearch in Google Scholar PubMed
Menzaghi, F., Howard, R.L., Heinrichs, S.C., Vale, W., Rivier, J., and Koob, G.F. (1994). Characterization of a novel and potent corticotropin-releasing factor antagonist in rats, J. Pharmacol. Exp. Ther. 269, 564–572.10.1016/S0022-3565(25)38740-9Search in Google Scholar
Merchenthaler, I., Vigh, S., Petrusz, P., and Schally, A.V. (1982). Immunocytochemical localization of corticotropin-releasing factor (CRF) in the rat brain. Am. J. Anat. 165, 385–396.10.1002/aja.1001650404Search in Google Scholar PubMed
Miguel, T.T. and Nunes-de-Souza, R.L. (2011). Anxiogenic and antinociceptive effects induced by corticotropin-releasing factor (CRF) injections into the periaqueductal gray are modulated by CRF1 receptor in mice. Horm. Behav. 60, 292–300.10.1016/j.yhbeh.2011.06.004Search in Google Scholar PubMed
Miguel, T.M., Gomes, K.S., and Nunes-de-Souza, R.L. (2014). Tonic modulation of anxiety-like behavior by corticotropin-releasing factor (CRF) type 1 receptor (CRF1) within the medial prefrontal cortex (mPFC) in male mice: role of protein kinase A (PKA). Horm. Behav. 66, 247–256.10.1016/j.yhbeh.2014.05.003Search in Google Scholar PubMed
Millan, M.J., Brocco, M., Gobert, A., Dorey, G., Casara, P., and Dekeyne, A. (2001). Anxiolytic properties of the selective, non-peptidergic corticotropin-releasing factor (CRF)1 antagonists, CP154,526 and DMP 695: a comparison to other classes of anxiolytic agent, Neuropsychopharmacology 25, 585–600.10.1016/S0893-133X(01)00244-5Search in Google Scholar PubMed
Miller, A.L., Chaptal, C., McEwen, B.S., and Peck, E.J. Jr. (1978). Modulation of high affinity GABA uptake into hippocampal synaptosomes by glucocorticoids. Psychoneuroendocrinology 3, 155–164.10.1016/0306-4530(78)90003-3Search in Google Scholar PubMed
Misslin, R., Belzung, C., and Vogel, E. (1989). Behavioural validation of a light/dark choice procedure for testing anti-anxiety agents. Behav. Processes 18, 119–132.10.1016/S0376-6357(89)80010-5Search in Google Scholar PubMed
Mitra, R. and Sapolsky, R.M. (2008). Acute corticosterone treatment is sufficient to induce anxiety and amygdaloid dendritic hypertrophy. Proc. Natl. Acad. Sci. USA 105, 5573–5578.10.1073/pnas.0705615105Search in Google Scholar PubMed PubMed Central
Mitra, R. and Sapolsky, R.M. (2010). Expression of chimeric estrogen-glucocorticoid-receptor in the amygdala reduces anxiety. Brain Res. 1342, 33–38.10.1016/j.brainres.2010.03.092Search in Google Scholar PubMed
Mitra, R., Ferguson, D., and Sapolsky, R.M. (2009). Mineralocorticoid receptor overexpression in basolateral amygdala reduces corticosterone secretion and anxiety. Biol. Psychiatry 66, 686–690.10.1016/j.biopsych.2009.04.016Search in Google Scholar PubMed
Moore, R.Y. and Bloom, F.E. (1979). Central catecholamine neuron systems: anatomy and physiology of the norepinephrine and epinephrine systems. Annu. Rev. Neurosci. 2, 113–168.10.1146/annurev.ne.02.030179.000553Search in Google Scholar PubMed
Moreau, J.L., Kilpatrick, G., and Jenck, F. (1997). Urocortin, a novel neuropeptide with anxiogenic-like properties. NeuroReport 8, 1697–701.10.1097/00001756-199705060-00027Search in Google Scholar PubMed
Mori, K., Miyazato, M., and Kangawa, K. (2008). Neuromedin S: discovery and functions. Results Probl. Cell Differ. 46, 201–212.10.1007/400_2007_054Search in Google Scholar PubMed
Morimoto, M., Morita, N., Ozawa, H., Yokoyama, K., and Kawata, M. (1996). Distribution of glucocorticoid receptor immunoreactivity and mRNA in the rat brain: an immunohistochemical and in situ hybridization study. Neurosci. Res. 26, 235–269.10.1016/S0168-0102(96)01105-4Search in Google Scholar PubMed
Müller, M.B., Zimmermann, S., Sillaber, I., Hagemeyer, T.P., Deussing, J.M., Timpl, P., Kormann, M.S., Droste, S.K., Kühn, R., Reul, J.M., et al. (2003). Limbic corticotropin-releasing hormone receptor 1 mediates anxiety-related behavior and hormonal adaptation to stress. Nat. Neurosci. 6, 1100–1107.10.1038/nn1123Search in Google Scholar PubMed
Murphy, B.E. (1967). Some studies of the protein binding of steroids and their application to the routine micro and ultramicro measurement of various steroids in body fluids by competitive protein binding radioassay. J. Clin. Endocr. 27, 973–990.10.1210/jcem-27-7-973Search in Google Scholar PubMed
Murray, F., Smith, D.W., and Hutson, P.H. (2008). Chronic low dose corticosterone exposure decreased hippocampal cell proliferation, volume and induced anxiety and depression like behaviours in mice. Eur. J. Pharmacol. 583, 115–127.10.1016/j.ejphar.2008.01.014Search in Google Scholar PubMed
Myers, B. and Greenwood-Van Meerveld, B. (2007). Corticosteroid receptor-mediated mechanisms in the amygdala regulate anxiety and colonic sensitivity. Am. J. Physiol. Gastrointest. Liver Physiol. 292, G1622–G1629.10.1152/ajpgi.00080.2007Search in Google Scholar PubMed
Myers, B. and Greenwood-Van Meerveld, B. (2010). Divergent effects of amygdala glucocorticoid and mineralocorticoid receptors in the regulation of visceral and somatic pain. Am. J. Physiol. Gastrointest. Liver Physiol. 298, G295–G303.10.1152/ajpgi.00298.2009Search in Google Scholar PubMed
Nolan, N.A. and Parkes, M.W. (1973). The effects of benzodiazepines on the behaviour of mice on a hole-board. Psychopharmacologia 29, 277–286.10.1007/BF00414043Search in Google Scholar PubMed
Ohata, H. and Shibasaki, T. (2011). Microinjection of different doses of corticotropin-releasing factor into the medial prefrontal cortex produces effects opposing anxiety-related behavior in rats. J. Nippon Med. Sch. 78, 286–292.10.1272/jnms.78.286Search in Google Scholar PubMed
Ohmura, Y., Yamaguchi, T., Izumi, T., Matsumoto, M., and Yoshioka, M. (2008). Corticotropin releasing factor in the median raphe nucleus is involved in the retrieval of fear memory in rats. Eur. J. Pharmacol. 584, 357–360.10.1016/j.ejphar.2008.02.023Search in Google Scholar PubMed
Oitzl, M.S., Fluttert, M., and de Kloet, E.R. (1994). The effect of corticosterone on reactivity to spatial novelty is mediated by central mineralocorticosteroid receptors. Eur. J. Neurosci. 6, 1072–1079.10.1111/j.1460-9568.1994.tb00604.xSearch in Google Scholar PubMed
Oitzl, M.S., Fluttert, M., Sutanto, W., and de Kloet, E.R. (1998). Continuous blockade of brain glucocorticoid receptors facilitates spatial learning and memory in rats. Eur. J. Neurosci. 10, 3759–3766.10.1046/j.1460-9568.1998.00381.xSearch in Google Scholar PubMed
Okuyama, S., Chaki, S., Kawashima, N., Suzuki, Y., Ogawa, S., Nakazato, A., Kumagai, T., Okubo, T., and Tomisawa, K. (1999). Receptor binding, behavioral, and electrophysiological profiles of nonpeptide corticotropin-releasing factor subtype 1 receptor antagonists CRA1000 and CRA1001. J. Pharmacol. Exp. Ther. 289, 926–935.10.1016/S0022-3565(24)38220-5Search in Google Scholar
O’Malley, D., Julio-Piepera, M., Dinan, T.G., and Cryan, J.F. (2014). Strain differences in stress-induced changes in central CRF1 receptor expression. Neurosci. Lett. 561, 192–197.10.1016/j.neulet.2013.12.065Search in Google Scholar PubMed
Onaivi, E.S. and Martin, B.R. (1989). Neuropharmacological and physiological validation of a computer-controlled two-compartment black and white box for the assessment of anxiety. Prog. Neuropsychopharmacol. Biol. Psychiatry 13, 963–976.10.1016/0278-5846(89)90047-XSearch in Google Scholar PubMed
Orozco-Cabal, L., Pollandt, S., Liu, J., Shinnick-Gallagher, P., and Gallagher, J.P. (2006). Regulation of synaptic transmission by CRF receptors. Rev. Neurosci. 17, 279–307.10.1515/REVNEURO.2006.17.3.279Search in Google Scholar PubMed
Padoin, M.J., Cadore, L.P., Gomes, C.M., Barros, H.M.T., and Lucion, A. B. (2001). Long-lasting effects of neonatal handling stimulation in the behavior of rats. Behav. Neurosci. 115, 1332–1340.10.1037/0735-7044.115.6.1332Search in Google Scholar
Paré, W.P., Tejani-Butt, S., and Kluczynski, J. (2001). The emergence test: effects of psychotropic drugs on neophobic disposition in Wistar Kyoto (WKY) and Sprague Dawley rats. Prog Neuropsychopharmacol. Biol. Psychiatry 25, 1615–1628.10.1016/S0278-5846(01)00204-4Search in Google Scholar
Pego, J.M., Morgado, P., Pinto, L.G., Cerqueira, J.J., Almeida, O.F., and Sousa, N. (2008). Dissociation of the morphological correlates of stress-induced anxiety and fear. Eur. J. Neurosci. 27, 1503–1516.10.1111/j.1460-9568.2008.06112.xSearch in Google Scholar PubMed
Pelleymounter, M.A., Joppa, M., Ling, N., and Foster, A.C. (2002). Pharmacological evidence supporting a role for central corticotropin-releasing factor(2) receptors in behavioral, but not endocrine, response to environmental stress. J. Pharmacol. Exp. Ther. 302, 145–152.10.1124/jpet.302.1.145Search in Google Scholar PubMed
Pelleymounter, M.A., Joppa, M., Ling, N., and Foster, A.C. (2004). Behavioral and neuroendocrine effects of the selective CRF2 receptor agonists urocortin II and urocortin III. Peptides 25, 659–666.10.1016/j.peptides.2004.01.008Search in Google Scholar PubMed
Pellow, S. and File, S.E. (1985). The effects of putative anxiogenic compounds (FG 7142, CGS 8216 and Ro 15-1788) on the rat corticosterone response. Physiol. Behav. 35, 587–590.10.1016/0031-9384(85)90145-3Search in Google Scholar PubMed
Pellow, S., Chopin, P., File, S.E., and Briley, M. (1985). Validation of open:closed arm entries in an elevated plus-maze as a measure of anxiety in the rat. J. Neurosci. Methods 14, 149–167.10.1016/0165-0270(85)90031-7Search in Google Scholar PubMed
Pentkowski, N.S., Litvin, Y., Blanchard, D.C., Vasconcellos, A., King, L.B., and Blanchard, R.J. (2009). Effects of acidic-astressin and ovine-CRF microinfusions into the ventral hippocampus on defensive behaviors in rats. Horm. Behav. 56, 35–43.10.1016/j.yhbeh.2009.02.007Search in Google Scholar PubMed PubMed Central
Phelix, C.F. and Paull, W.K. (1990). Demonstration of distinct corticotropin releasing factor-containing neuron populations in the bed nucleus of the stria terminalis. A light and electron microscopic immunocytochemical study in the rat. Histochemistry 94, 345–364.10.1007/BF00266441Search in Google Scholar PubMed
Pinheiro, S.H., Zangrossi, H. Jr., Del-Ben, C.M., and Graeff, F.G. (2007). Elevated mazes as animal models of anxiety: effects of serotonergic agents. An. Acad. Bras. Cienc. 79, 71–85.10.1590/S0001-37652007000100010Search in Google Scholar
Potter, E., Sutton, S., Donaldson, C., Chen, R., Perrin, M., Lewis, K., Sawchenko, P.E., and Vale W. (1994). Distribution of corticotropin-releasing factor receptor mRNA expression in the rat brain and pituitary. Proc. Natl. Acad. Sci. USA 91, 8777–8781.10.1073/pnas.91.19.8777Search in Google Scholar PubMed PubMed Central
Prut, L. and Belzung, C. (2003). The open field as a paradigm to measure the effects of drugs on anxiety-like behaviors: a review. Eur. J. Pharmacol. 463, 3–33.10.1016/S0014-2999(03)01272-XSearch in Google Scholar
Rabasa, C., Gagliano, H., Pastor-Ciurana, J., Fuentes, S., Belda, X., Nadal, R., and Armario, A. (2015). Adaptation of the hypothalamus-pituitary-adrenal axis to daily repeated stress does not follow the rules of habituation: a new perspective. Neurosci. Biobehav. Rev. 56, 35–49.10.1016/j.neubiorev.2015.06.013Search in Google Scholar PubMed
Radulovic, J., Ruhman, A., Leipold, R., and Spiess, J. (1999). Modulation of learning and anxiety by corticotropin releasing factor (CRF) and stress: differential roles of CRF receptors 1 and 2. J. Neurosci. 19, 5016–5025.10.1523/JNEUROSCI.19-12-05016.1999Search in Google Scholar PubMed PubMed Central
Raineki, C., Lucion, A.B., and Weinberg, J. (2014). Neonatal handling: an overview of the positive and negative effects. Dev. Psychobiol. 56, 1613–1625.10.1002/dev.21241Search in Google Scholar PubMed PubMed Central
Rainer, Q., Xia, L., Guilloux, J.P., Gabriel, C., Mocaer, E., Hen, R., Enhamre, E., Gardier, A.M., and David, D.J. (2012). Beneficial behavioural and neurogenic effects of agomelatine in a model of depression/anxiety. Int. J. Neuropsychopharmacol. 15, 321–335.10.1017/S1461145711000356Search in Google Scholar PubMed
Ramos, A. (2008). Animal models of anxiety: do I need multiple tests? Trends Pharmacol. Sci. 29, 493–498.10.1016/j.tips.2008.07.005Search in Google Scholar PubMed
Ramos, A., Berton, O., Mormède, P., and Chaouloff, F. (1997). A multiple-test study of anxiety-related behaviours in six inbred rat strains. Behav. Brain Res. 85, 57–69.10.1016/S0166-4328(96)00164-7Search in Google Scholar
Rassnick, S., Heinrichs, S.C., Britton, K.T., and Koob, G.F. (1993). Microinjection of a corticotropin-releasing factor antagonist into the central nucleus of the amygdala reverses anxiogenic-like effects of ethanol withdrawal. Brain Res. 605, 25–32.10.1016/0006-8993(93)91352-SSearch in Google Scholar PubMed
Regev, L., Neufeld-Cohen, A., Tsoory, M., Kuperman, Y., Getselter, D., Gil, S., and Chen, A. (2011). Prolonged and site-specific over-expression of corticotropin-releasing factor reveals differential roles for extended amygdala nuclei in emotional regulation. Mol. Psychiatry 16, 714–728.10.1038/mp.2010.64Search in Google Scholar PubMed
Regev, L., Tsoory, M., Gil, S., and Chen, A. (2012). Site-specific genetic manipulation of amygdala corticotropin-releasing factor reveals its imperative role in mediating behavioral response to challenge. Biol. Psychiatry 71, 317–326.10.1016/j.biopsych.2011.05.036Search in Google Scholar PubMed
Reul, J.M. and Holsboer, F. (2002). Corticotropin-releasing factor receptors 1 and 2 in anxiety and depression. Curr. Opin. Pharmacol. 2, 23–33.10.1016/S1471-4892(01)00117-5Search in Google Scholar PubMed
Reul, J.M., Probst, J.C., Skutella, T., Hirschmann, M., Stec, I.S., Montkowski, A., Landgraf, R., and Holsboer, F. (1997). Increased stress-induced adrenocorticotropin response after long-term intracerebroventricular treatment of rats with antisense mineralocorticoid receptor oligodeoxynucleotides. Neuroendocrinology 65, 189–199.10.1159/000127272Search in Google Scholar PubMed
Rey, M., Carlier, E., and Soumireu-Mourat, B. (1989). Effects of RU 486 on hippocampal slice electrophysiology in normal and adrenalectomized BALB/c mice. Neuroendocrinology 49, 120–124.10.1159/000125102Search in Google Scholar PubMed
Rey, M., Carlier, E., Talmi, M., and Soumireu-Mourat, B. (1994). Corticosterone effects on long-term potentiation in mouse hippocampal slices. Neuroendocrinology 60, 36–41.10.1159/000126717Search in Google Scholar PubMed
Reyes, T., Lewis, K., Perrin, M., Kunitake, K., Vaughan, J., Arias, C., Hogenesch, J., Gulyas, J., Rivier, J., Vale, W., et al. (2001). Urocortin II: a member of the corticotropin releasing factor (CRF) neuropeptide family that is selectively bound by type 2 CRF receptors. Proc. Natl. Acad. Sci. USA 98, 2843–2848.10.1073/pnas.051626398Search in Google Scholar PubMed PubMed Central
Risold, P.Y. and Swanson, L.W. (1997). Connections of the rat lateral septal complex. Brain Res. Rev. 24, 115–195.10.1016/S0165-0173(97)00009-XSearch in Google Scholar PubMed
Rochford, J., Beaulieu, S., Rousse, I., Glowa, J.R., and Barden, N. (1997). Behavioral reactivity to aversive stimuli in a transgenic mouse model of impaired glucocorticoid (type II) receptor function: effects of diazepam and FG-7142. Psychopharmacology 132, 145–152.10.1007/s002130050330Search in Google Scholar PubMed
Rodgers, R.J. and Dalvi, A. (1997). Anxiety, defence and the elevated plus-maze. Neurosci. Biobehav. Rev. 21, 801–810.10.1016/S0149-7634(96)00058-9Search in Google Scholar
Rodi, D., Zucchini, S., Simonato, M., Cifani, C., Massi, M., and Polidori, C. (2008). Functional antagonism between nociceptin/orphanin FQ (N/OFQ) and corticotropin-releasing factor (CRF) in the rat brain: evidence for involvement of the bed nucleus of the stria terminalis. Psychopharmacology 196, 523–531.10.1007/s00213-007-0985-7Search in Google Scholar PubMed
Rodriguez de Fonseca, F., Rubio, P., Menzaghi, F., Merlo-Pich, E., Rivier, J., Koob, G.F., and Navarro, M. (1996). Corticotropin-releasing factor (CRF) antagonist [D-Phe 12, NLE21,38, CαMeLeu37] CRF attenuates the acute actions of the highly potent cannabinoid receptor agonist HU-210 on defensive-withdrawal behavior in rats. J. Pharmacol. Exp. Ther. 276, 56–64.10.1016/S0022-3565(25)12276-3Search in Google Scholar
Roozendaal, B., Bohus, B., and McGaugh, J.L. (1996). Dose-dependent suppression of adrenocortical activity with metyrapone: effects on emotion and memory. Psychoneuroendocrinology 21, 681–693.10.1016/S0306-4530(96)00028-5Search in Google Scholar
Roth, K.A. and Katz, R.J. (1979). Stress, behavioral arousal, and open field activity – a reexamination of emotionality in the rat. Neurosci. Biobehav. Rev. 3, 247–263.10.1016/0149-7634(79)90012-5Search in Google Scholar PubMed
Saha, S. (2005). Role of the central nucleus of the amygdala in the control of blood pressure: descending pathways to medullary cardiovascular nuclei. Clin. Exp. Pharmacol. Physiol. 32, 450–456.10.1111/j.1440-1681.2005.04210.xSearch in Google Scholar PubMed
Sahuque, L.L., Kullberg, E.F., Mcgeehan, A.J., Kinder, J.R., Hicks, M.P., Blanton, M.G., Janak, P.H., and Olive, M.F. (2006). Anxiogenic and aversive effects of corticotropin-releasing factor (CRF) in the bed nucleus of the stria terminalis in the rat: role of CRF receptor subtypes. Psychopharmacology 186, 122–132.10.1007/s00213-006-0362-ySearch in Google Scholar PubMed PubMed Central
Sandi, C., Venero, C., and Guaza, C. (1996a). Novelty-related rapid locomotor effects of corticosterone in rats. Eur. J. Neurosci. 8, 794–800.10.1111/j.1460-9568.1996.tb01264.xSearch in Google Scholar PubMed
Sandi, C., Venero, C., and Guaza, C. (1996b). Nitric oxide synthesis inhibitors prevent rapid behavioral effects of corticosterone in rats. Neuroendocrinology 63, 446–453.10.1159/000127070Search in Google Scholar PubMed
Sandoval-Herrera. V., Trujillo-Ferrara, J.G., Miranda-Páez, A., De La Cruz, F., and Zamudio, S.R. (2011). Corticosterone microinjected into nucleus pontis oralis increases tonic immobility in rats. Horm. Behav. 60, 448–456.10.1016/j.yhbeh.2011.07.013Search in Google Scholar PubMed
Saper, C.B. (2004). Central autonomic system. In: The Rat Nervous System, 3rd ed. G. Paxinos, ed. (Amsterdam: Elsevier), pp. 761–796.10.1016/B978-012547638-6/50025-0Search in Google Scholar
Sapolsky, R.M., Romero, L.M., and Munck, A.U. (2000). How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions. Endocr. Rev. 21, 55–89.10.1210/edrv.21.1.0389Search in Google Scholar PubMed
Schulz, D.W., Mansbach, R.S., Sprouse, J., Braselton, J.P., Collins, J., Corman, M., Dunaiskis, A., Faraci, S., Schmidt, A.W., Seeger, T., et al. (1996). CP-154,526: a potent and selective nonpeptide antagonist of corticotropin releasing factor receptors. Proc. Natl. Acad. Sci. U.S.A. 93, 10477–10482.10.1073/pnas.93.19.10477Search in Google Scholar PubMed PubMed Central
Selye, H. (1976). Forty years of stress research: principal remaining problems and misconceptions. Can. Med. Assoc. J. 115, 53–56.Search in Google Scholar
Seo, J.J., Lee, S.H., Lee, Y.S., Kwon, B.M., Ma, Y., Hwang, B.Y., Hong, J.T., and Oh, K.W. (2007). Anxiolytic-like effects of obovatol isolated from Magnolia obovata: involvement of GABA/benzodiazepine receptors complex. Prog. Neuropsychopharmacol. Biol. Psychiatry 31, 1363–1369.10.1016/j.pnpbp.2007.05.009Search in Google Scholar PubMed
Sergio, T.O., Spiacci, A. Jr., and Zangrossi, H. Jr. (2014). Effects of dorsal periaqueductal gray CRF1- and CRF2-receptor stimulation in animal models of panic. Psychoneuroendocrinology 49, 321–330.10.1016/j.psyneuen.2014.07.026Search in Google Scholar PubMed
Seymour, P.A., Schmidt, A.W., and Schulz, D.W. (2003). The pharmacology of CP-154,526, a non-peptide antagonist of the CRH1 receptor: a review. CNS Drug Rev. 9, 57–96.10.1111/j.1527-3458.2003.tb00244.xSearch in Google Scholar PubMed PubMed Central
Shepard, J.D. and Myers, D.A. (2008). Strain differences in anxiety-like behavior: association with corticotropin-releasing factor. Behav. Brain Res. 186, 239–245.10.1016/j.bbr.2007.08.013Search in Google Scholar PubMed
Shepard, J.D., Barron, K.W., and Myers, D.A. (2000). Corticosterone delivery to the amygdala increases corticotropin-releasing factor mRNA in the central amygdaloid nucleus and anxiety-like behavior. Brain Res. 861, 288–295.10.1016/S0006-8993(00)02019-9Search in Google Scholar PubMed
Shepard, J.D., Barron, K.W., and Myers, D.A. (2003). Stereotaxic localization of corticosterone to the amygdala enhances hypothalamo-pituitary-adrenal responses to behavioral stress. Brain Res. 963, 203–213.10.1016/S0006-8993(02)03978-1Search in Google Scholar PubMed
Sherrin, T., Todorovic, C., Zeyda, T., Tan, C.H., Wong, P.T., Zhu, Y.Z., and Spiess, J. (2009). Chronic stimulation of corticotropin-releasing factor receptor 1 enhances the anxiogenic response of the cholecystokinin system. Mol. Psychiatry 14, 291–307.10.1038/sj.mp.4002121Search in Google Scholar PubMed
Shinonaga, Y., Takada, M., and Mizuno, N. (1992). Direct projections from the central amygdaloid nucleus to the globus pallidus and substantia nigra in the cat. Neuroscience 251, 691–703.10.1016/0306-4522(92)90308-OSearch in Google Scholar PubMed
Silva, M.S., Pereira, B.A., Céspedes, I.C., Nascimento, J.O., Bittencourt, J.C., and Viana, M.B. (2014). Dorsomedial hypothalamus CRF type 1 receptors selectively modulate inhibitory avoidance responses in the elevated T-maze. Behav. Brain Res. 271, 249–257.10.1016/j.bbr.2014.06.018Search in Google Scholar PubMed
Sink, K.S., Chung, A., Ressler, K.J., Davis, M., and Walker, D.L. (2013a). Anxiogenic effects of CGRP within the BNST may be mediated by CRF acting at BNST CRFR1 receptors. Behav. Brain Res. 243, 286–293.10.1016/j.bbr.2013.01.024Search in Google Scholar PubMed PubMed Central
Sink, K.S., Walker, D.L., Freeman, S.M., Flandreau, E., Ressler, K.J., and Davis, M. (2013b). Effects of continuously enhanced corticotropin releasing factor expression within the bed nucleus of the stria terminalis on conditioned and unconditioned anxiety. Mol. Psychiatry 18, 308–319.10.1038/mp.2011.188Search in Google Scholar PubMed PubMed Central
Skorzewska, A., Bidziński A., Lehner, M., Turzyńska, D., Wisłowska-Stanek A., Sobolewska A., Szyndler J., Maciejak P., Taracha E., and Płaznik A. (2006). The effects of acute and chronic administration of corticosterone on rat behavior in two models of fear responses, plasma corticosterone concentration, and c-Fos expression in the brain structures. Pharmacol. Biochem. Behav. 85, 522–534.10.1016/j.pbb.2006.10.001Search in Google Scholar PubMed
Skorzewska, A., Bidzinski, A., Lehner, M., Turzynska, D., Sobolewska, A., Wislowska-Stanek, A., Maciejak, P., Szyndler, J., and Plaznik, A. (2011). The localization of brain sites of anxiogenic-like effects of urocortin-2. Neuropeptides 45, 83–92.10.1016/j.npep.2010.11.003Search in Google Scholar PubMed
Skutella, T., Montkowski, A., Stöhr, T., Probst, J.C., Landgraf, R., Holsboer, F., and Jirikowski, G.F. (1994). Corticotropin-releasing hormone (CRH) antisense oligodeoxynucleotide treatment attenuates social defeat-induced anxiety in rats. Cell Mol. Neurobiol. 14, 579–588.10.1007/BF02088839Search in Google Scholar PubMed
Skutella, T., Probst, J.C., Renner, U., Holsboer, F., and Behl, C. (1998). Corticotropin-releasing hormone receptor (type I) antisense targeting reduces anxiety. Neuroscience 85, 795–805.10.1016/S0306-4522(97)00682-9Search in Google Scholar PubMed
Smagin, G.N., Harris, R.B., and Ryan, D.H. (1996). Corticotropin-releasing factor receptor antagonist infused into the locus coeruleus attenuates immobilization stress-induced defensive withdrawal in rats. Neurosci. Lett. 220, 167–170.10.1016/S0304-3940(96)13254-7Search in Google Scholar PubMed
Smith, G.W., Aubry, J.M., Dellu, F., Contarino, A., Bilezikjian, L.M., Gold, L.H., Chen, R., Marchuk, Y., Hauser, C., Bentley, C.A., et al. (1998). Corticotropin releasing factor receptor 1-deficient mice display decreased anxiety, impaired stress response, and aberrant neuroendocrine development. Neuron 20, 1093–1102.10.1016/S0896-6273(00)80491-2Search in Google Scholar
Smythe, J.W., Murphy, D., Timothy, C., and Costall B. (1997). Hippocampal mineralocorticoid, but not glucocorticoid, receptors modulate anxiety-like behavior in rats. Pharmacol. Biochem. Behav. 56, 507–513.10.1016/S0091-3057(96)00244-4Search in Google Scholar PubMed
Song, C., Earley, B., and Leonard, B.E. (1995). Behavioral, neurochemical, and immunological responses to CRF administration: is CRF a mediator of stress? Ann. N.Y. Acad. Sci. 771, 55–72.10.1111/j.1749-6632.1995.tb44670.xSearch in Google Scholar PubMed
Spadaro, F., Berridge, C.W., Baldwin, H.A., and Dunn, A.J. (1990). Corticotropin-releasing factor acts via a third ventricle site to reduce exploratory behavior in rats. Pharmacol. Biochem. Behav. 36, 305–309.10.1016/0091-3057(90)90408-ASearch in Google Scholar
Spencer, R.L., Miller, A.H., Stein, M., and McEwen, B.S. (1991). Corticosterone regulation of type I and type II adrenal steroid receptors in brain, pituitary and immune tissue. Brain Res. 549, 236–246.10.1016/0006-8993(91)90463-6Search in Google Scholar PubMed
Spina, M., Merlo-Pich, E., Chan, R.K.W., Basso, A.M., Rivier, J., Vale, W., and Koob, G.F. (1996). Appetite suppressant effects of urocortin, a CRF-related neuropeptide. Science 273, 1561–1564.10.1126/science.273.5281.1561Search in Google Scholar PubMed
Spina, M.G., Basso, A.M., Zorrilla, E.P., Heyser, C.J., Rivier, J., Vale, W., Merlo-Pich, E., Koob, G.F. (2000). Behavioral effects of central administration of the novel CRF antagonist astressin in rats. Neuropsychopharmacology 22, 230–239.10.1016/S0893-133X(99)00108-6Search in Google Scholar PubMed
Spina, M.G., Merlo-Pich, E., Akwa, Y., Balducci, C., Basso, A.M., Zorrilla, E.P., Britton, K.T., Rivier, J., Vale, W.W., and Koob, G.F. (2002). Time-dependent induction of anxiogenic-like effects after central infusion of urocortin or corticotropin-releasing factor in the rat. Psychopharmacology 160, 113–121.10.1007/s00213-001-0940-ySearch in Google Scholar PubMed
Steketee, J.D. and Goeders, N.E. (2002). Pretreatment with corticosterone attenuates the nucleus accumbens dopamine response but not the stimulant response to cocaine in rats. Behav. Pharmacol. 13, 593–601.10.1097/00008877-200211000-00008Search in Google Scholar PubMed
Steckler, T. and Holsboer, F. (1999). Corticotopin-releasing hormone receptor subtypes and emotion. Biol. Psychiatry 46, 1480–1508.10.1016/S0006-3223(99)00170-5Search in Google Scholar PubMed
Stenzel-Poore, M.P., Heinrichs, S.C., Rivest, S., Koob, G.F., and Vale, W.W. (1994). Overproduction of corticotropin-releasing factor in transgenic mice: a genetic model of anxiogenic behavior. J. Neurosci. 14, 2579–2584.10.1523/JNEUROSCI.14-05-02579.1994Search in Google Scholar PubMed PubMed Central
Sternberg, E.M., Hill, J.M., Chrousos, G.P., Kamilaris, T., Listwak, S.J., Gold, P.W., and Wilder, R.L. (1989). Inflammatory mediator-induced hypothalamic-pituitary-adrenal axis activation is defective in streptococcal cell wall arthritis-susceptible Lewis rats. Proc. Natl. Acad. Sci. USA 86, 2374–2378.10.1073/pnas.86.7.2374Search in Google Scholar PubMed PubMed Central
Sternberg, E.M., Glowa, J.R., Smith, M.A., Calogero, A.E., Listwak, S.J., Aksentijevich, S., Chrousos G.P., Wilder R.L., and Gold P.W. (1992). Corticotropin releasing hormone related behavioral and neuroendocrine responses to stress in Lewis and Fischer rats. Brain Res. 570, 54–60.10.1016/0006-8993(92)90563-OSearch in Google Scholar
Sterner, E.Y. and Kalynchuk, L.E. (2010). Behavioral and neurobiological consequences of prolonged glucocorticoid exposure in rats: relevance to depression. Prog. Neuropsychopharmacol. Biol. Psychiatry 34, 777–790.10.1016/j.pnpbp.2010.03.005Search in Google Scholar PubMed
Stock, H., Foradori, C., Ford, K., and Wilson, M.A. (2000). A lack of tolerance to the anxiolytic effects of diazepam on the plus-maze: comparison of male and female rats. Psychopharmacology 147, 362–370.10.1007/s002130050004Search in Google Scholar PubMed
Stone, E.A., Lina, Y., Sarfraza, Y., and Quartermain, D. (2011). The role of the central noradrenergic system in behavioral inhibition. Brain Res. Rev. 67, 193–208.10.1016/j.brainresrev.2011.02.002Search in Google Scholar PubMed PubMed Central
Stotz-Potter, E.H., Willis, L.R., and DiMicco, J.A. (1996). Muscimol acts in dorsomedial but not paraventricular hypothalamic nucleus to suppress cardiovascular effects of stress. J. Neurosci. 16, 1173–1179.10.1523/JNEUROSCI.16-03-01173.1996Search in Google Scholar PubMed PubMed Central
Sturm, M., Becker, A., Schroeder, A., Bilkei-Gorzo, A., and Zimmer, A. (2015). Impact of chronic corticosterone application on depression-like behavior in C57BL/6N and C57BL/6J mice. Genes Brain Behav. 14, 292–300.10.1111/gbb.12208Search in Google Scholar PubMed
Suchecki, D., Duarte Palma, B., and Tufik, S. (2000). Pituitary-adrenal axis and behavioural responses of maternally deprived juvenile rats to the open field. Behav. Brain Res. 111, 99–106.10.1016/S0166-4328(00)00148-0Search in Google Scholar PubMed
Sudakov, S.K., Nazarova, G.A., Alekseeva, E.V., and Bashkatova, V.G. (2013). Estimation of the level of anxiety in rats: differences in results of open-field test, elevated plus-maze test, and Vogel’s conflict test. Bull. Exp. Biol. Med. 155, 295–297.10.1007/s10517-013-2136-ySearch in Google Scholar PubMed
Sutton, R.E., Koob, G.F., Le Moal, M., Rivier, J., and Vale, W. (1982). Corticotropin releasing factor produces behavioural activation in rats. Nature 297, 331–333.10.1038/297331a0Search in Google Scholar PubMed
Swanson, L.W., Sawchenko, P.E., Rivier, J., and Vale, W.W. (1983). Organization of ovine corticotropin-releasing factor immunoreactive cells and fibers in the rat brain: an immunohistochemical study. Neuroendocrinology 36, 165–186.10.1159/000123454Search in Google Scholar PubMed
Szakacs, J., Csabafi, K., Lipták, N., and Szabó, G. (2015). The effect of obestatin on anxiety-like behaviour in mice. Behav. Brain Res. 293, 41–45.10.1016/j.bbr.2015.06.042Search in Google Scholar PubMed
Sztainberg, Y., Kuperman, Y., Justice, N., and Chen, A. (2011). An anxiolytic role for CRF receptor type 1 in the globus pallidus. J. Neurosci. 31, 17416–17424.10.1523/JNEUROSCI.3087-11.2011Search in Google Scholar PubMed PubMed Central
Takahashi, L.K., Kalin, N.H., Vanden Burgt, J.A., and Sherman, J.E. (1989). Corticotropin-releasing factor modulates defensive-withdrawal and exploratory behavior in rats. Behav. Neurosci. 103, 648–654.10.1037/0735-7044.103.3.648Search in Google Scholar
Takahashi, L.K., Ho, S.P., Livanov, V., Graciani, N., and Arneric, S.P. (2001). Antagonism of CRF(2) receptors produces anxiolytic behavior in animal models of anxiety. Brain Res. 902, 135–142.10.1016/S0006-8993(01)02405-2Search in Google Scholar
Takeda, H., Tsuji, M., and Matsumiya, T. (1998). Changes in head-dipping behavior in the hole-board test reflect the anxiogenic and/or anxiolytic state in mice. Eur. J. Pharmacol. 350, 21–29.10.1016/S0014-2999(98)00223-4Search in Google Scholar PubMed
Tan, L.A., Xu, K., Vaccarino, F.J., Lovejoy, D.A., and Rotzinger, S. (2008). Repeated intracerebral teneurin C-terminal associated peptide (TCAP)-1 injections produce enduring changes in behavioral responses to corticotropin-releasing factor (CRF) in rat models of anxiety. Behav Brain Res. 188, 195–200.10.1016/j.bbr.2007.10.032Search in Google Scholar PubMed
Tang, X. and Sanford, L.D. (2005). Home cage activity and activity-based measures of anxiety in 129P3/J, 129X1/SvJ and C57BL/6J mice. Physiol. Behav. 84, 105–115.10.1016/j.physbeh.2004.10.017Search in Google Scholar PubMed
Tang-Christensen, M., Vrang, N., Ortmann, S., Bidlingmaier, M., Horvath, T.L., and Tschöp, M. (2004). Central administration of ghrelin and agouti-related protein (83–132) increases food intake and decreases spontaneous locomotor activity in rats. Endocrinology 145, 4645–4652.10.1210/en.2004-0529Search in Google Scholar PubMed
Tata, D.A., Marciano, V.A., and Anderson, B.J. (2006). Synapse loss from chronically elevated glucocorticoids: relationship to neuropil volume and cell number in hippocampal area CA3. J. Comp. Neurol. 498, 363–374.10.1002/cne.21071Search in Google Scholar PubMed
Telegdy, G. and Adamik, A. (2013). Involvement of transmitters in the anxiolytic action of urocortin 3 in mice. Behav. Brain Res. 252, 88–91.10.1016/j.bbr.2013.05.054Search in Google Scholar PubMed
Tenk, C.M., Kavaliers, M., and Ossenkopp, K.P. (2006). The effects of acute corticosterone on lithium chloride-induced conditioned place aversion and locomotor activity in rats. Life Sci. 79, 1069–1080.10.1016/j.lfs.2006.03.008Search in Google Scholar PubMed
Tezval, H., Jahn, O., Todorovic, C., Sasse, A., Eckart, K., and Spiess, J. (2004). Cortagine, a specific agonist of corticotropin-releasing factor receptor subtype 1, is anxiogenic and antidepressive in the mouse model. Proc. Natl. Acad. Sci. USA 101, 9468–9473.10.1073/pnas.0403159101Search in Google Scholar PubMed PubMed Central
Thoeringer, C.K., Sillaber, I., Roedel, A., Erhardt, A., Mueller, M.B., Ohl, F., Holsboer, F., and Keck, M.E. (2007). The temporal dynamics of intrahippocampal corticosterone in response to stress-related stimuli with different emotional and physical load: an in vivo microdialysis study in C57BL/6 and DBA/2 inbred mice. Psychoneuroendocrinology 32, 746–757.10.1016/j.psyneuen.2007.05.005Search in Google Scholar PubMed
Timpl, P., Spanagel, R., Sillaber, I., Kresse, A., Reul, J.M., Stalla, G.K., Blanquet, V., Steckler, T., Holsboer, F., and Wurst, W. (1998). Impaired stress response and reduced anxiety in mice lacking a functional corticotropin-releasing hormone receptor 1. Nat. Genet. 19, 162–166.10.1038/520Search in Google Scholar PubMed
Tovote, P., Fadok, J.P., and Lüthi, A. (2015). Neuronal circuits for fear and anxiety. Nat. Rev. Neurosci. 16, 317–331.10.1038/nrn3945Search in Google Scholar PubMed
Tran, L., Schulkin, J., and Greenwood-Van Meerveld, B. (2014). Importance of CRF receptor-mediated mechanisms of the bed nucleus of the stria terminalis in the processing of anxiety and pain. Neuropsychopharmacology 39, 2633–2645.10.1038/npp.2014.117Search in Google Scholar PubMed PubMed Central
Tsang, H.W. and Ho, T.Y. (2010). A systematic review on the anxiolytic effects of aromatherapy on rodents under experimentally induced anxiety models. Rev. Neurosci. 21, 141–152.10.1515/REVNEURO.2010.21.2.141Search in Google Scholar
Tsukiyama, N., Saida, Y., Kakuda, M., Shintani, N., Hayata, A., Morita, Y., Tanida, M., Tajiri, M., Hazama, K., Ogata, K., et al. (2011). PACAP centrally mediates emotional stress-induced corticosterone responses in mice. Stress 14, 368–375.10.3109/10253890.2010.544345Search in Google Scholar PubMed PubMed Central
Vale, W., Spiess, J., Rivier, C., and Rivier, J. (1981). Characterization of a 41-residue ovinehypothalamic peptide that stimulates secretion of corticotropin and β-endorphin. Science 213, 1394–1397.10.1126/science.6267699Search in Google Scholar PubMed
Valdez, G.R., Inoue, K., Koob, G.F., Rivier, J., Vale, W.W., and Zorrilla, E.P. (2002). Human urocortin 2: mild locomotor suppressive and delayed anxiolytic-like effects of a novel corticotropin-releasing factor related peptide, Brain Res. 943, 142–150.10.1016/S0006-8993(02)02707-5Search in Google Scholar
Valdez, G.R., Zorrilla, E.P., Rivier, J., Vale, W.W., and Koob, G.F. (2003). Locomotor suppressive and anxiolytic-like effects of urocortin 3, a highly selective type 2 corticotropin-releasing factor agonist. Brain Res. 980, 206–212.10.1016/S0006-8993(03)02971-8Search in Google Scholar
Valentino, R.J., Chen, S., Zhu, Y., and Aston-Jones, G. (1996). Evidence for divergent projections to the brain noradrenergic system and the spinal parasympathetic system from Barrington’s nucleus. Brain Res. 732, 1–15.10.1016/0006-8993(96)00482-9Search in Google Scholar PubMed
van Gaalen, M.M., Stenzel-Poore, M.P., Holsboer, F., and Steckler, T. (2002). Effects of transgenic overproduction of CRH on anxiety-like behaviour. Eur. J. Neurosci. 15, 2007–2015.10.1046/j.1460-9568.2002.02040.xSearch in Google Scholar PubMed
Van Pett, K., Viau, V., Bittencourt, J.C., Chan, R.K., Li, H.Y., Arias, C., Prins, G.S., Perrin, M., Vale, W., and Sawchenko, P.E. (2000). Distribution of mRNAs encoding CRF receptors in brain and pituitary of rat and mouse. J. Comp. Neurol. 428, 191–212.10.1002/1096-9861(20001211)428:2<191::AID-CNE1>3.0.CO;2-USearch in Google Scholar
Vaudry, D., Falluel-Morel, A., Bourgault, S., Basille, M., Burel, D., Wurtz, O., Fournier, A., Chow, B., Hashimoto, H., Galas, L., et al. (2009). Pituitary adenylate cyclase-activating polypeptide and its receptors: 20 years after the discovery. Pharmacol. Rev. 61, 283–357.10.1124/pr.109.001370Search in Google Scholar PubMed
Vaughan, J., Donaldson, C., Bittencourt, J., Perrin, M.H., Lewis, K., Sutton, S., Chan, R., Turnbull, A.V., Lovejoy, D., Rivier, C., et al. (1995). Urocortin, a mammalian neuropeptide related to fish urotensin I and to corticotropin-releasing factor. Nature 378, 287–292.10.1038/378287a0Search in Google Scholar PubMed
Veldhuis, H.D. and De Wied, D. (1984). Differential behavioral actions of corticotropin-releasing factor (CRF). Pharmacol. Biochem. Behav. 21, 707–713.10.1016/S0091-3057(84)80007-6Search in Google Scholar PubMed
Venihaki, M., Sakihara, S., Subramanian, S., Dikkes, P., Weninger, S.C., Liapakis, G., Graf, T., and Majzoub, J.A. (2004). Urocortin III, a brain neuropeptide of the corticotropin-releasing hormone family: modulation by stress and attenuation of some anxiety-like behaviours. J. Neuroendocrinol. 16, 411–422.10.1111/j.1365-2826.2004.01170.xSearch in Google Scholar PubMed
Vermes, I., Smelik, P.G., and Mulder, A.H. (1976). Effects of hypophysectomy, adrenalectomy and corticosterone treatment on uptake and release of putative central neurotransmitters by rat hypothalamic tissue in vitro. Life Sci. 19, 1719–1725.10.1016/0024-3205(76)90079-5Search in Google Scholar PubMed
Viana, M.B., Tomaz, C., and Graeff, F.G. (1994). The elevated T-maze: a new animal model of anxiety and memory. Pharmacol. Biochem. Behav. 49, 549–554.10.1016/0091-3057(94)90067-1Search in Google Scholar PubMed
Vicentini, E., Arban, R., Angelici, O., Maraia, G., Perico, M., Mugnaini, M., Ugolini A., Large C., Domenici, E., Gerrard, P., et al. (2009). Transient forebrain over-expression of CRF induces plasma corticosterone and mild behavioural changes in adult conditional CRF transgenic mice. Pharmacol. Biochem. Behav. 93, 17–24.10.1016/j.pbb.2009.03.015Search in Google Scholar PubMed
Vicentini, J.E., Céspedes, I.C., Nascimento, J.O., Bittencourt, J.C., and Viana, M.B. (2014). CRF type 1 receptors of the medial amygdala modulate inhibitory avoidance responses in the elevated T-maze. Horm. Behav. 65, 195–202.10.1016/j.yhbeh.2014.01.004Search in Google Scholar PubMed
Vielkind, U., Walencewicz, A., Levine, J.M., and Bohn, M.C. (1990). Type II glucocorticoid receptors are expressed in oligodendrocytes and astrocytes. J. Neurosci. Res. 27, 360–373.10.1002/jnr.490270315Search in Google Scholar PubMed
Vincent, M.Y. and Jacobson, L. (2014). Glucocorticoid receptor deletion from the dorsal raphé nucleus of mice reduces dysphoria-like behavior and impairs hypothalamic-pituitary-adrenocortical axis feedback inhibition. Eur. J. Neurosci. 39, 1671–1681.10.1111/ejn.12538Search in Google Scholar PubMed PubMed Central
Walf, A.A. and Frye, C.A. (2007). The use of the elevated plus maze as an assay of anxiety-related behavior in rodents. Nat. Protoc. 2, 322–328.10.1038/nprot.2007.44Search in Google Scholar PubMed PubMed Central
Wall, P.M. and Messier, C. (2001). Methodological and conceptual issues in the use of the elevated plus-maze as a psychological measurement instrument of animal anxiety-like behavior. Neurosci. Biobehav. Rev. 25, 275–286.10.1016/S0149-7634(01)00013-6Search in Google Scholar PubMed
Walsh, R.N. and Cummins, R.A. (1976). The open-field test: a critical review. Psychol. Bull. 83, 482–504.10.1037/0033-2909.83.3.482Search in Google Scholar
Wang, H., Xing, X., Liang, J., Bai, Y., Lui, Z., and Zheng, X. (2014). High-dose corticosterone after fear conditioning selectively suppresses fear renewal by reducing anxiety-like response. Pharmacol. Biochem. Behav. 124, 188–195.10.1016/j.pbb.2014.06.003Search in Google Scholar PubMed
Ward, H.E., Johnson, E.A., Goodman, I.J., Birkle, D.L., Cottrell, D.J., and Azzaro, A.J. (1998). Corticotropin-releasing factor and defensive withdrawal: inhibition of monoamine oxidase prevents habituation to chronic stress. Pharmacol. Biochem. Behav. 60, 209–215.10.1016/S0091-3057(97)00580-7Search in Google Scholar PubMed
Warembourg, M. (1975). Radioautographic study of the rat brain and pituitary after injection of 3H dexamethasone. Cell Tissue Res. 161, 183–191.10.1007/BF00220367Search in Google Scholar PubMed
Waters, P. and McCormick, C.M. (2011). Caveats of chronic exogenous corticosterone treatments in adolescent rats and effects on anxiety-like and depressive behavior and hypothalamic-pituitary-adrenal (HPA) axis function. Biol. Mood Anxiety Disord. 1, 4.10.1186/2045-5380-1-4Search in Google Scholar PubMed PubMed Central
Weaver, S.A., Aherne, F.X., Meaney, M.J., Schaefer, A.L., and Dixon, W.T. (2000). Neonatal handling permanently alters hypothalamic-pituitary-adrenal axis function, behaviour, and body weight in boars. J. Endocrinol. 164, 349–359.10.1677/joe.0.1640349Search in Google Scholar PubMed
Weiser, M.J., Foradori, C.D., and Handa, R.J. (2010). Estrogen receptor β activation prevents glucocorticoid receptor-dependent effects of the central nucleus of the amygdala on behavior and neuroendocrine function. Brain Res. 1336, 78–88.10.1016/j.brainres.2010.03.098Search in Google Scholar PubMed PubMed Central
Welberg, L.A., Seckl, J.R., and Holmes, M.C. (2001). Prenatal glucocorticoid programming of brain corticosteroid receptors and corticotrophin-releasing hormone: possible implications for behaviour. Neuroscience 104, 71–79.10.1016/S0306-4522(01)00065-3Search in Google Scholar PubMed
Weninger, S.C., Dunn, A.J., Muglia, L.J., Dikkes, P., Miczek, K.A., Swiergiel, A.H., Berridge, C.W., and Majzoub, J.A. (1999). Stress-induced behaviors require the corticotropin-releasing hormone (CRH) receptor, but not CRH. Proc. Natl. Acad. Sci. USA 96, 8283–8288.10.1073/pnas.96.14.8283Search in Google Scholar PubMed PubMed Central
Wilcoxon, J.S. and Redei, E.E. (2007). Maternal glucocorticoid deficit affects hypothalamic-pituitary-adrenal function and behavior of rat offspring. Horm. Behav. 51, 321–327.10.1016/j.yhbeh.2006.11.006Search in Google Scholar PubMed PubMed Central
Witter, M.P. and Amaral, D.G. (2004). Hippocampal formation. In: The Rat Nervous System, 3rd ed. G. Paxinos, ed. (Amsterdam: Elsevier), pp. 635–704.10.1016/B978-012547638-6/50022-5Search in Google Scholar
Yang, X.-M. and Dunn, A.J. (1990). Central β1-adrenergic receptors are involved in CRF-induced defensive withdrawal, Pharmacol. Biochem. Behav. 36, 847–851.10.1016/0091-3057(90)90088-YSearch in Google Scholar
Yang, X.M., Gorman, A.L., and Dunn, A.J. (1990). The involvement of central noradrenergic systems and corticotropin-releasing factor in defensive-withdrawal behavior in rats. J. Pharmacol. Exp. Ther. 255, 1064–1070.10.1016/S0022-3565(25)23129-9Search in Google Scholar
Yoon, S.H., Kim, B.H., Ye, S.K., and Kim, M.H. (2014). Chronic non-social stress affects depressive behaviors but not anxiety in mice. Korean J. Physiol. Pharmacol. 18, 263–268.10.4196/kjpp.2014.18.3.263Search in Google Scholar PubMed PubMed Central
Zaletel, I, Filipović, D, and Puškaš, N. (2016). Chronic stress, hippocampus and parvalbumin-positive interneurons: what do we know so far? Rev. Neurosci. 27, 397–409.10.1515/revneuro-2015-0042Search in Google Scholar PubMed
Zangrossi, H. Jr and Graeff, F.G. (2014). Serotonin in anxiety and panic: contributions of the elevated T-maze. Neurosci. Biobehav. Rev. 46, 397–406.10.1016/j.neubiorev.2014.03.007Search in Google Scholar PubMed
Zenker, N. and Bernstein, D.E. (1958). The estimation of small amounts of corticosterone in rat plasma. J. Biol. Chem. 231, 695–701.10.1016/S0021-9258(18)70434-1Search in Google Scholar
Zieba, B., Grzegorzewska, M., Branski, P., Domin, H., Wieronska, J.M., Hess, G., and Smialowska, M. (2008). The behavioural and electrophysiological effects of CRF in rat frontal cortex. Neuropeptides 42, 513–523.10.1016/j.npep.2008.05.004Search in Google Scholar PubMed
Zorrilla, E.P., Valdez, G.R., Nozulak, J., Koob, G.F., and Markou, A. (2002). Effects of antalarmin, a CRF type 1 receptor antagonist, on anxiety-like behavior and motor activation in the rat. Brain Res. 952, 188–199.10.1016/S0006-8993(02)03189-XSearch in Google Scholar
Zorrilla, E.P., Roberts, A.J., Rivier, J.E., and Koob, G.F. (2013). Anxiolytic-like effects of antisauvagine-30 in mice are not mediated by CRF2 receptors. PLoS One 8, e63942.10.1371/journal.pone.0063942Search in Google Scholar PubMed PubMed Central
©2017 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- The unappreciated roles of the cholecystokinin receptor CCK(1) in brain functioning
- A brief essay on non-pharmacological treatment of Alzheimer’s disease
- On the ‘data stirring’ role of the dentate gyrus of the hippocampus
- Neuroanatomical pathways underlying the effects of hypothalamo-hypophysial-adrenal hormones on exploratory activity
- Regulatory role of NGFs in neurocognitive functions
- Hippocampal BDNF in physiological conditions and social isolation
Articles in the same Issue
- Frontmatter
- The unappreciated roles of the cholecystokinin receptor CCK(1) in brain functioning
- A brief essay on non-pharmacological treatment of Alzheimer’s disease
- On the ‘data stirring’ role of the dentate gyrus of the hippocampus
- Neuroanatomical pathways underlying the effects of hypothalamo-hypophysial-adrenal hormones on exploratory activity
- Regulatory role of NGFs in neurocognitive functions
- Hippocampal BDNF in physiological conditions and social isolation